
Accelerating Dynamic Detection of Uses of Undefined
Values with Static Value-Flow Analysis

Ding Ye Yulei Sui Jingling Xue
Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales, NSW 2052, Australia
{dye, ysui, jingling}@cse.unsw.edu.au

ABSTRACT
Uninitialized variables can cause system crashes when used
and security vulnerabilities when exploited. With source
rather than binary instrumentation, dynamic analysis tools
such as MSan can detect uninitialized memory uses at sig-
nificantly reduced overhead but are still costly.

In this paper, we introduce a static value-flow analysis,
called Usher, to guide and accelerate the dynamic anal-
ysis performed by such tools. Usher reasons about the
definedness of values using a value-flow graph (VFG) that
captures def-use chains for both top-level and address-taken
variables interprocedurally and removes unnecessary instru-
mentation by solving a graph reachability problem. Usher
works well with any pointer analysis (done a priori) and
facilitates advanced instrumentation-reducing optimizations
(with two demonstrated here). Implemented in LLVM and
evaluated using all the 15 SPEC2000 C programs, Usher
can reduce the slowdown of MSan from 212% – 302% to
123% – 140% for a number of configurations tested.

Categories and Subject Descriptors
F.3.2 [Logics and Meaning of Programs]: Semantics of
Programming Languages—Program analysis

General Terms
Algorithms, languages, reliability, performance

Keywords
Undefined values, static and dynamic analysis

1. INTRODUCTION
Uninitialized variables in C/C++ programs can cause sys-

tem crashes if they are used in some critical operations (e.g.,
pointer dereferencing and branches) and security vulnera-
bilities if their contents are controlled by attackers. The
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undefinedness of a value can be propagated widely through-
out a program directly (via assignments) or indirectly (via
the results of operations using the value), making uses of
undefined values hard to detect efficiently and precisely.

Static analysis tools [3, 14] can warn for the presence of
uninitialized variables but usually suffer from a high false
positive rate. As such, they typically sacrifice soundness (by
missing bugs) for scalability in order to reduce excessively
high false positives that would otherwise be reported.

To detect more precisely uses of undefined values (with
fairly low false positives), dynamic analysis tools are of-
ten used in practice. During an instrumented program’s
execution, every value is shadowed, and accordingly, every
statement is also shadowed. For a value, its shadow value
maintains its definedness to enable a runtime check to be
performed on its use at a critical operation (Definition 1).

The instrumentation code for a program can be inserted
into either its binary [2, 24] or its source [9, 12]. Binary in-
strumentation causes an order of magnitude slowdown (typi-
cally 10X - 20X). In contrast, source instrumentation can be
significantly faster as it reaps the benefits of optimizations
performed at compile time. For example, MSan (Memo-
rySanitizer) [9], a state-of-the-art tool that adopts the latter
approach, is reported to exhibit a typical slowdown of 3X
but is still costly, especially for some programs.

Both approaches suffer from the problem of blindly per-
forming shadow propagations for all the values and defined-
ness checks at all the critical operations in a program. In
practice, most values in real programs are defined. The
shadow propagations and checks on a large percentage of
these values can be eliminated since their definedness can
be proved statically. In addition, a value that is never used
at any critical operation does not need to be tracked.

In this paper, we present a static value-flow analysis frame-
work, called Usher, to accelerate uninitialized variable de-
tection performed by source-level instrumentation tools such
as MSan for C programs. We demonstrate its usefulness by
evaluating an implementation in LLVM against MSan using
all the 15 SPEC2000 C programs. Specifically, this paper
makes the following contributions:

• We introduce a new static value-flow analysis, Usher,
for detecting uses of undefined values in C programs.
Usher reasons about statically the definedness of val-
ues using a value-flow graph (VFG) that captures def-
use chains for all variables interprocedurally and re-
moves unnecessary instrumentation by solving a graph
reachability problem. Usher is field-, flow- and
context-sensitive wherever appropriate and supports



two flavors of strong updates. Our value-flow analysis
is sound (by missing no bugs statically) as long as the
underlying pointer analysis is. This work represents
the first such whole-program analysis for handling top-
level and address-taken variables to guide dynamic in-
strumentation for C programs.

• We show that our VFG representation allows advanced
instrumentation-reducing optimizations to be devel-
oped (with two demonstrated in this paper). In ad-
dition, its precision can be improved orthogonally by
leveraging existing and future advances on pointer anal-
ysis.

• We show that Usher, which is implemented in LLVM,
can reduce the slowdown of MSan from 212% – 302%
to 123% – 140% for all the 15 SPEC2000 C programs
under a number of configurations tested.

The rest of the paper is organized as follows. Section 2
introduces a subset of C as the basis to present our tech-
niques. Section 3 describes our Usher framework. Section 4
presents and analyzes our experimental results. Section 5
discusses the related work. Section 6 concludes.

2. PRELIMINARIES
In Section 2.1, we introduce TinyC, a subset of C, to

allow us to present our Usher framework succinctly. In
Section 2.2, we highlight the performance penalties incurred
by shadow-memory-based instrumentation.

2.1 TinyC

As shown in Figure 1, TinyC represents a subset of C.
A program is a set of functions, with each comprising a
list of statements (marked by labels from Lab) followed by
a return. TinyC includes all kinds of statements that are
sufficient to present our techniques: assignments, memory
allocations, loads, stores, branches and calls. We distinguish
two types of allocation statements, (1) x := allocTρ , where

the allocated memory ρ is initialized, and (2) x := allocFρ ,
where the allocated memory ρ is not initialized.

Without loss of generality, we consider only local vari-
ables, which are divided into (1) the set VarTL of top-level
variables (accessed directly) and (2) the set VarAT of address-
taken variables (accessed indirectly only via top-level point-
ers). In addition, all variables in VarTL ∪ VarAT and all
constants in Const have the same type.
TinyC mimics LLVM-IR [15] in how the & (address) oper-

ation as well as loads and stores are represented. In TinyC,
as illustrated in Figure 2, & is absent since the addresses
of variables are taken by using allocTρ and allocFρ operations
and the two operands at a load/store must be both top-
level variables. In Figure 2(c), we have VarTL = {a, i, x, y},
VarAT = {b, c} and Const = {10}.

2.2 Shadow-Memory-based Instrumentation
When a program is fully instrumented with shadow mem-

ory [2, 9, 12, 24], the definedness of every variable v in
VarTL∪VarAT is tracked by its shadow variable, v ∈ {T ,F},
of a Boolean type. All constant values in Const are defined
(with T ). Whether a variable is initialized with a defined
value or not upon declaration depends on the default ini-
tialization rules given. In C programs, for example, global
variables are default-initialized but local variables are not.

P ::= F+ (program)

F ::= def f(a) {` : stmt; ret r; } (function)
stmt ::= x := n (constant copy)

| x := y (variable copy)
| x := y ⊗ z (binary operation)
| x := allocTρ (allocation with ρ

initialized)
| x := allocFρ (allocation with ρ

not initialized)
| x := ∗y (load)
| ∗x := y (store)
| x := f(y) (call)
| if x goto ` (branch)

x, y, z, a, r ∈ VarTL ρ ∈ VarAT n ∈ Const ` ∈ Lab

Figure 1: The TinyC source language.

int **a, *b;

int c, i;

a = &b;

b = &c;

c = 10;

i = c;

a = allocb
x = allocc
STORE x, a

STORE 10, x

i = LOAD x

a := allocFb ;
x := allocFc ;
∗a := x;
y := 10;
∗x := y;
i := ∗x;

(a) C (b) LLVM (c) TinyC

Figure 2: The TinyC representation vs. LLVM-IR
(where x and y are top-level temporaries).

As the results produced by statements may be tainted by
the undefined values used, every statement s is also instru-
mented by its shadow, denoted s. For example, x := y⊗z is
instrumented by x := y ⊗ z, which implies that x := y∧ z is
executed at run time to enable shadow propagations, where
∧ represents the Boolean AND operator.

Definition 1 (Critical Operations). An operation
performed at a load, store or branch is a critical operation.

A runtime check is made for the use of a value at every
critical operation. If its shadow is F , a warning is issued.

By indiscriminately tracking all values and propagating
their shadow values across all statements in a program, full
instrumentation can slow the program down significantly.

3. METHODOLOGY
As shown in Figure 3, Usher, which is implemented in

LLVM, comprises five phases (described below). In “Mem-
ory SSA Construction”, each function in a program is put in
SSA (Static Single Assignment) form based on the pointer
information available. In “Building VFG”, a VFG that con-
nects def-use chains interprocedurally is built
(flow-sensitively) with two flavors of strong updates being
supported. In “Definedness Resolution”, the definedness
of all values is statically resolved context-sensitively. In
“Guided Instrumentation”, the instrumentation code
required is generated, with strong updates performed to
shadow values. This phase is regarded as the key contri-
bution of this paper. In “VFG-based Optimizations”, some
VFG-based optimizations are applied to reduce instrumen-
tation overhead further. Compared to full instrumentation,
our guided instrumentation is more lightweight.



Usher is sound as long as the underlying pointer analysis
is. So no uses of undefined values will be missed. In addition
to being flow- and context-sensitive, our value-flow analysis
is also field-sensitive to obtain improved precision.

3.1 Memory SSA Construction
Initially, Usher puts all functions in a program in SSA

form, an IR where a variable is statically defined exactly
once. In TinyC (as in LLVM-IR), def-use information for
top-level variables is immediately available. However, def-
use information for address-taken variables requires pointer
analysis to discover how they are accessed indirectly as in-
direct defs at stores and indirect uses at loads.

Figure 4 shows how TinyC is extended to allow a TinyC
program to be put in SSA form. Note that φ is the standard
function for handling control-flow join points. Following [6],
we use µ and χ functions to, respectively, indicate the po-
tentially indirect uses and defs of address-taken variables at
loads, stores and allocation sites. Each load x := ∗y is an-
notated with a list µ(ρ) of µ functions, where each µ(ρk)
function represents potentially an indirect use of ρk (that
may be pointed to by y). Similarly, each store ∗x := y is

annotated with a list ρ := χ(ρ) of χ functions, where each
ρk := χ(ρk) function represents potentially an indirect use
and def of ρk (that may be pointed to by x). At an alloca-
tion site, a single ρ := χ(ρ) function is added, where ρ is the
name of the address-taken variable allocated.

A function def f(a) {..., ret r; } is extended to make ex-
plicit (1) all address-taken variables (called virtual formal
parameters) that are used, i.e., read in f directly or indi-
rectly via a, and (2) all address-taken variables (called vir-
tual output parameters) that are either modified in f via
a or returned by r, directly or indirectly. Accordingly, the
syntax for the call sites of f is extended. For a function f
and its call sites, ρk (the k-th element) in each of the ρ lists
used always represents the same address-taken variable.

Once all required µ and χ functions have been added,
every function is put in SSA form individually by using a
standard SSA construction algorithm. Figure 5 gives an

Source

Clang Front-End

Memory SSA Construction

Building Value-Flow Graph 

Definedness Resolution

VFG-based Optimizations

Code Generation

bc files

Full Instrumentation

bc files

Binary

U
SH
ER

Pointer Analysis

instrumented bc filesinstrumented bc files

Guided Instrumentation

Figure 3: The Usher value-flow analysis framework.

F ::= . . .
::= def f(a [ρ]){. . . ret r [ρ]; } (virtual input and

output parameters)

stmt ::= . . .

| x := allocρ [ρ := χ(ρ)] (allocation)

| x := ∗y [µ(ρ)] (load)

| ∗x := y [ρ := χ(ρ)] (store)

| x [ρ] := f(y [ρ]) (call)

| v := φ(v, v) (phi)

v ∈ VarTL ∪VarAT

Figure 4: The TinyC language in SSA form.

. . .
a := allocFb ;
. . . := foo(a);
. . .
def foo(q) {
x := ∗q;
if x goto l;
t := 10;
x := x⊗ t;
∗q := x;

l : ret x;
}

. . .
a1 := allocFb [b2 := χ(b1)];
. . . := foo(a1 [b2]);
. . .
def foo(q1 [b1]) {
x1 := ∗q1 [µ(b1)];
if x1 goto l′;
t1 := 10;
x2 := x1 ⊗ t1;
∗q1 := x2 [b2 := χ(b1)];

l′ : x3 := φ(x1, x2);
b3 := φ(b1, b2);
ret x3 [b3];
}

(a) TinyC (b) SSA

Figure 5: A TinyC program and its SSA form.

example. It is understood that different occurrences of a
variable with the same version (e.g., b1 and b2) are differ-
ent if they appear in different functions. Recall that each
ρ := χ(ρ) function represents a potential use and def of ρ [6].
In b2 := χ(b1) associated with *q1 := x2, b1 indicates a po-
tential use of the previous definition of b and b2 a potentially
subsequent re-definition of b. The opportunities for strong
updates at a χ function are explored below.

3.2 Building Value-Flow Graph
During this phase, Usher builds a value-flow graph for a

program to capture the def-use chains both within a function
and across the function boundaries in a program. What is
novel about this phase is that two types of strong updates
are considered for store statements.

For each definition vr in the SSA form of a program, where
r is the version of v, we write v̂r for its node in the VFG.
We sometimes elide the version number when the context
is clear. A value-flow edge v̂m ←↩ v̂n indicates a data de-
pendence of vm on vn. Since we are only concerned with
checking the definedness of a value used at a critical oper-
ation, it suffices to build the VFG only for the part of the
program dependent by all critical operations.

For an allocation site xr := allocIρ [ρm := χ(ρn)], where

I ∈ {T ,F}, we add x̂r ←↩ T̂ (since xr points to ρ), ρ̂m ←↩ Î
and ρ̂m ←↩ ρ̂n. Here, T̂ and F̂ are two special nodes, called

the root nodes in the VFG, with T̂ representing a defined

value and F̂ an undefined value.
For an assignment representing a copy, binary operation,



def foo(q1 [b1]) {
l : b2 := φ(b1, b4);

q1 := allocFb [b3 := χ(b2)];
p1 := q1;
t1 := 0;

∗p1 := t1 [b4 := χ(b3)];

. . .
if . . . goto l;
. . .
ret . . . ;
}

b̂1b̂2

b̂3

b̂4

F̂

t̂1 T̂

q̂1p̂1

. . .

. . .

8

(a) TinyC (b) VFG

Figure 6: A semi-strong update performed at
∗p1 := t1 . With a weak update, b̂4 ←↩ b̂3 would be

introduced. With a semi-strong update, this edge is
replaced (indicated by a cross) by b̂4 ←↩ b̂2 (indicated

by the dashed arrow) so that b̂3 ←↩ F̂ is bypassed.

load or φ statement of the form xm := . . . , we add x̂m ←↩ ŷn
for every use of yn on the right-hand side of the assignment.
Given a2 := b3⊗ c4, for example, â2 ←↩ b̂3 and â2 ←↩ ĉ4 will

be added. Given d4 := 10, d̂4 ←↩ T̂ will be created.
For stores, we consider both traditional strong and weak

updates as well as a new semi-strong update. Consider a
store ∗xs = yt [ρm := χ(ρn)]. If xs uniquely points to a
concrete location ρ, ρm can be strongly updated. In this
case, ρm receives whatever yt contains and the value flow
from ρn is killed. So only ρ̂m ←↩ ŷt is added. Otherwise, ρm
must incorporate the value flow from ρn, by also including
ρ̂m ←↩ ρ̂n. As a result, ρm can only be weakly updated.

Presently, Usher uses a pointer analysis that does not
provide must-alias information. We improve precision by
also performing a semi-strong update for a store ∗xs := yt
[ρm := χ(ρn)], particularly when it resides in a loop. Sup-
pose there is an allocation site zr := allocIρ [ := χ(ρj)]
such that ẑr dominates x̂s in the VFG, which implies that
zr := allocIρ dominates ∗xs := yt in the CFG (Control-Flow
Graph) of the program as both zr and xs are top-level vari-
ables. This means that xs uniquely points to ρ created at the
allocation site. Instead of adding ρ̂m ←↩ ŷt and ρ̂m ←↩ ρ̂n
by performing a weak update, we will add ρ̂m ←↩ ŷt and
ρ̂m ←↩ ρ̂j .

Consider an example given in Figure 6, where foo may
be called multiple times so that the address-taken variable
b is both used (read) and modified inside. At the store
∗p1 := t1 , p1 points to an abstract location. So a strong

update is impossible. If a weak update is applied, b̂4 ←↩ t̂1
and b̂4 ←↩ b̂3 will be introduced, causing Usher to conclude

that b4 may be undefined due to the presence of b̂3 ←↩ F̂ .
Since q̂1 dominates p̂1, a semi-strong update can be per-
formed at the store ∗p1 := t1 . Instead of b̂4 ←↩ b̂3, which

is introduced by a weak update, b̂4 ←↩ b̂2 is added, so that

b̂3 ←↩ F̂ will be bypassed. Usher can then more precisely
deduce that b4 is defined as long as b1 is.

Finally, we discuss how to add value-flow edges across the
function boundaries. Consider a function definition
def f(a1 [ρ11, ρ

2
1, . . . ]) {. . . ret rs [ρ1i1 , ρ

2
i2 , . . . ]; }, where ρk1 (ρkik )

is the k-th virtual input (output) parameter with version 1

(ik). For each call site xt [ρ1j1 , ρ
2
j2 , . . . ] = f(ym [ρ1h1

, ρ2h2
, . . . ]),

we add â1 ←↩ ŷm and ρ̂k1 ←↩ ρ̂khk
(for every k) to connect

each actual argument to its corresponding formal param-
eter. Similarly, we also propagate each output parameter
to the call site where it is visible, by adding x̂t ←↩ r̂s and

ρ̂kjk ←↩ ρ̂
k
ik

(for every k).

3.3 Definedness Resolution
Presently, Usher instruments every function in a program

only once (without cloning the function). Therefore, the de-
finedness of all the variables (i.e., values) in the VFG of the
program can be approximated by a graph reachability anal-
ysis, context-sensitively by matching call and return edges
to rule out unrealizable interprocedural flows of values in
the standard manner [18, 23, 25, 29, 33].

Let Γ be a function mapping the set of nodes in the VFG
to {⊥,>}. The definedness, i.e., state of a node v̂ is Γ(v̂) =

⊥ if it is reachable by the root F̂ and Γ(v̂) = > otherwise

(i.e., if it is reachable only by the other root, T̂ ).

3.4 Guided Instrumentation
Instead of shadowing all variables and statements in a

program, Usher solves a graph reachability problem on its
VFG by identifying only a subset of these to be instrumented
at run time. The instrumentation code generated by Usher
is sound as long as the underlying pointer analysis used is.
This ensures that all possible undefined values flowing into
every critical operation in a program are tracked at run time.

During this fourth phase (and also the last phase in Sec-
tion 3.5), Usher works on a program in SSA form. To avoid
cluttering, we often refer to an SSA variable with its version
being elided since it is deducible from the context.

A statement may need to be shadowed only if the value
v̂ defined (directly/indirectly) by the statement can reach a
node x̂ that satisfies Γ(x̂) = ⊥ in the VFG such that x is used
in a critical statement. A sound instrumentation implies
that all shadow values accessed by any shadow statement at
run time are well-defined.

Given a statement ` : s, we formally define an instrumen-

tation item for ` : s as a pair 〈
←−
` , s〉 or 〈

−→
` , s〉, indicating

that the shadow operation (or statement) s for s is inserted
just before or after ` (with s omitted). The instrumentation
item sets for different types of statements are computed ac-
cording to the instrumentation rules given in Figure 7.

The deduction rules are formulated in terms of

P,Γ ` v̂ ⇓ Σv̂ (1)

where Σv̂ is the set of instrumentation items that enables the
flows of undefined values into node v̂ to be tracked soundly
via shadow propagations. This is achieved by propagating
the Σ’s of v̂’s predecessors in the VFG into v̂ and also adding
relevant new instrumentation items for v̂. Here, P is a given
program in SSA form. In addition, P(code) holds if the block
of statements, denoted code, exists in P.

In shadow-memory-based instrumentation, a runtime
shadow map, denoted σ, is maintained for mapping vari-
ables (or precisely their locations) to (the locations of) their
shadow variables. In addition, E records at run time whether
a critical statement has accessed an undefined value or not.

The guided instrumentation for P is precisely specified as
the union of Σ’s computed by applying the rules in Figure 7
to all nodes representing the uses at critical operations. In



P,Γ ` v̂ ⇓ Σv̂

s ∈ { := ∗x, ∗x := , if x goto } P(` : s) Γ(x̂) = >
[>-Check]

P,Γ ` ̂̀x ⇓ ∅
s ∈ {x := n/y, x := alloc , x := ⊗ , x := ∗ , x [ ] := f( )} P(` : s) Γ(x̂) = >

[>-Assign]
P,Γ ` x̂ ⇓ {〈

−→
` , σ(x) := T 〉}

P(def f(a [ ]){` : ; . . .}) Γ(â) = >
[>-Para]

P,Γ ` â ⇓ {〈
←−
` , σ(a) := T 〉}

P(` : x := allocTρ [ρm := χ( )]) Γ(ρ̂m) = >
[>-Alloc]

P,Γ ` ρ̂m ⇓ {〈
−→
` , σ(∗x) := T 〉}

P(` : ∗x := [ρm := χ( )]) Γ(ρ̂m) = > ρ̂m 6←↩ ρ̂
[>-StoreSU ]

P,Γ ` ρ̂m ⇓ {〈
−→
` , σ(∗x) := T 〉}

P( : ∗ := [ , ρm := χ( ), ]) Γ(ρ̂m) = > ρ̂m ←↩ ρ̂n P,Γ ` ρ̂n ⇓ Σρ̂n
[>-StoreWU/SemiSU ] P,Γ ` ρ̂m ⇓ Σρ̂n

s ∈ { := ∗x, ∗x := , if x goto } P(` : s) Γ(x̂) = ⊥ P,Γ ` x̂ ⇓ Σx̂
[⊥-Check]

P,Γ ` ̂̀x ⇓ Σx̂ ∪ {〈
←−
` , E(`) := (σ(x) = F)〉}

P(` : x := y) Γ(x̂) = ⊥ P,Γ ` ŷ ⇓ Σŷ
[⊥-VCopy]

P,Γ ` x̂ ⇓ Σŷ ∪ {〈
−→
` , σ(x) := σ(y)〉}

P(` : x := y ⊗ z) Γ(x̂) = ⊥ P,Γ ` ŷ ⇓ Σŷ P,Γ ` ẑ ⇓ Σẑ
[⊥-Bop]

P,Γ ` x̂ ⇓ Σŷ ∪ Σẑ ∪ {〈
−→
` , σ(x) := σ(y) ∧ σ(z)〉}

P(` : x := allocTρ /allocFρ [ρm := χ(ρn)]) Γ(ρ̂m) = ⊥ P,Γ ` ρ̂n ⇓ Σρ̂n
[⊥-Alloc]

P,Γ ` ρ̂m ⇓ Σρ̂n ∪ {〈
−→
` , σ(∗x) := T /F 〉}

P(def f(a [ ]){` : ; . . .}) Γ(â) = ⊥ ∀ `i ∈ Cf , P(`i : := f(yi [ ])) : P,Γ ` ŷi ⇓ Σ
ŷi

[⊥-Para]
P,Γ ` â ⇓ (

⋃
i Σ

ŷi
) ∪ {〈

←−
` , σ(a) := σg〉, 〈

←−
`i , σg := σ(yi)〉}

P(` : x [ ] := f( )) P(def f( ){. . . `′ : ; ret r [ ]; }) Γ(x̂) = ⊥ P,Γ ` r̂ ⇓ Σr̂
[⊥-Ret]

P,Γ ` x̂ ⇓ Σr̂ ∪ {〈
−→
` , σ(x) := σg〉, 〈

−→
`′ , σg := σ(r)〉}

P(` : x := ∗y [µ(ρ1), µ(ρ2), . . . ]) ∀ρi : P,Γ ` ρ̂i ⇓ Σ
ρ̂i

Γ(x̂) = ⊥
[⊥-Load]

P,Γ ` x̂ ⇓ (
⋃
i Σ

ρ̂i
) ∪ {〈

−→
` , σ(x) := σ(∗y)〉}

P(` : ∗x := y [ , ρm := χ( ), ]) Γ(ρ̂m) = ⊥ P,Γ ` ŷ ⇓ Σŷ ρ̂m ←↩ ρ̂n P,Γ ` ρ̂n ⇓ Σρ̂n
[⊥-StoreSU/WU/SemiSU ]

P,Γ ` ρ̂m ⇓ Σŷ ∪ {〈
−→
` , σ(∗x) := σ(y)〉} ∪Σρ̂n

P( : vl := φ(vm, vn)) P,Γ ` v̂m ⇓ Σv̂m P,Γ ` v̂n ⇓ Σv̂n
[Phi]

P,Γ ` v̂l ⇓ Σv̂m ∪ Σv̂n

P(def f( [ , ρm, ]) {. . .}) ∀ ρ̂m ←↩ ρ̂i : P,Γ ` ρ̂i ⇓ Σρ̂i
[VPara]

P,Γ ` ρ̂m ⇓
⋃
i Σρ̂i

P( : [ , ρm, ] := f( )) ρ̂m ←↩ ρ̂n P,Γ ` ρ̂n ⇓ Σρ̂n
[VRet]

P,Γ ` ρ̂m ⇓ Σρ̂n

Auxiliaries: σg is a global variable introduced at run time to shadow parameter passing.

Cf := {`i | `i is a call site for function f}.

Figure 7: Instrumentation rules.



[>-Check] and [⊥-Check], ̂̀x denotes a virtual node (due to the
existence of a virtual assignment of the form `x := x) asso-
ciated with the critical statement ` to ease the presentation.

Different propagation schemes are used for >-nodes v̂
(where Γ(v̂) = >) and ⊥-nodes v̂ (where Γ(v̂) = ⊥). The
rules are divided into three sections (separated by the dashed
lines): (1) those prefixed by > for >-nodes, (2) those pre-
fixed by ⊥ for ⊥-nodes, and (3) the rest for some “virtual”
nodes introduced for handling control-flow splits and joins.

Special attention should be paid to the rules (that apply
to >-nodes only), where a shadow location can be strongly
updated. The remaining rules are straightforward. Consider
a statement where σ(v) needs to be computed for a variable
v at run time. We say that σ(v) can be strongly updated if
σ(v) := T can be set directly at run time to indicate that
v is defined at that point so that the (direct or indirect)
predecessors of v̂ in the VFG do not have to be instrumented
with respect to v at this particular statement.

>-Nodes. Let us first consider the rules for >-nodes. The
value flow of a (top-level or address-taken) variable v is mim-
icked exactly by that of its shadow σ(v). There are two cases
in which a strong update to σ(v) can be safely performed.
For top-level variables, this happens in [>-Assign] and [>-

Para]), which are straightforward to understand.
For address-taken variables, strong updates are performed

in [>-Alloc]) and [>-StoreSU] but not in [>-StoreWU/SemiSU].
For an allocation site x := allocTρ [ρm := χ( )], such that
Γ(ρ̂m) = >, ∗x uniquely represents the location ρm, which
contains a well-defined value. Therefore, σ(∗x) can be
strongly updated, by setting σ(∗x) := T ([>-Alloc]).

Let us consider an indirect def ρm at a store, where ρ̂m
is a >-node. As discussed in Section 3.2, ρ̂m has at most
two predecessors. One predecessor represents the variable,
say yt, on the right-hand side of the store. The shadow
propagation for yt is not needed since Γ(ρ̂m) = > implies
Γ(ŷt) = >. The other predecessor represents an older ver-
sion of ρ, denoted ρn. If ρ̂m ←↩ ρ̂n is absent, then [>-StoreSU]

applies. Otherwise, [>-StoreWU/SemiSU] applies. In the former
case, σ(∗x) := T is strongly updated as x uniquely points to
a concrete location ρ. However, the same cannot happen in
[>-StoreWU/SemiSU] since the resulting instrumentation would
be incorrect otherwise. Consider the following code snippet:

*p2 := t1 [b3 := χ(b2), c4 := χ(c3)];
. . . := *q3 [µ(b3];

Even Γ(b̂3) = Γ(ĉ4) = >, we cannot directly set σ(∗p) := T
due to the absence of strong updates to b and c at the store.
During a particular execution, it is possible that p2 points to
c but q3 points to b. In this case, *p2 is not a definition for
b. If b needs to be shadowed at the load, its shadow σ(b)
must be properly initialized earlier and propagated across
the store to ensure its well-definedness at the load.

Finally, a runtime check is not needed at a critical opera-
tion when a defined value is used ([>-Check]).

⊥-Nodes. Now let us discuss the rules for ⊥-nodes. The
instrumentation code is generated as in full instrumentation,
requiring the instrumentation items for its predecessors to
be generated to enable shadow propagations into this node.
[⊥-VCopy] and [⊥-Bop]) are straightforward to understand.
For an allocation site x := allocTρ (allocFρ ) [ρm := χ(ρn)],
such that Γ(ρ̂m) = ⊥, σ(∗x), i.e., the shadow for the object

currently allocated at the site, is strongly updated to be T
(F). In addition, the older version ρn is tracked as well.

The standard parameter passing for a function is instru-
mented so that the value of the shadow of its actual argu-
ment at every call site is propagated into the shadow of
the (corresponding) formal parameter ([⊥-Para]). This is
achieved by using an auxiliary global variable σg to relay
an shadow value across two different scopes. Retrieving a
value returned from a function is handled similarly ([⊥-Ret]).

At a load x := ∗y, where Γ(x̂) = ⊥, all the indirect uses
made via ∗y must be tracked separately to enable the shadow
propagation σ(x) := σ(∗y) for the load ([⊥-Load]).

In [⊥-Store
SU/ WU/SemiSU

], strong updates to shadow loca-
tions cannot be safely performed. In particular, the value
flow from the right-hand side y of a store must also be
tracked, unlike in [>-StoreSU] and [>-StoreWU/SemiSU].

When an undefined value x may be potentially used at a
critical statement at `, a runtime check must be performed
at the statement ([⊥-Check]). In this case, E(`) is set to true
if and only if σ(x) evaluates to F .

Virtual Nodes. For the “virtual” value-flow edges added
due to φ and parameter passing for virtual input and out-
put parameters, the instrumentation items required will be
simply collected across the edges, captured by [Phi], [VPara]

and [VRet]. During program execution, the corresponding
shadow values will “flow” across such value-flow edges.

3.5 VFG-based Optimizations
Our VFG representation is general as it allows various

instrumentation-reducing optimizations to be developed. Be-
low we describe two optimizations, developed based on the
concept of Must Flow-from Closure (MFC), denoted ∇.

Definition 2 (MFC). ∇x̂ for a top-level variable x is:

∇x̂ :=


{x̂} ∪ ∇ŷ ∪∇ẑ, P(x := y ⊗ z)
{x̂} ∪ ∇ŷ, P(x := y)

{x̂, T̂ }, P(x := n) or P(x := alloc )

{x̂}, otherwise

It is easy to see that ∇x̂ is a DAG (directed acyclic graph),
with x̂ as the (sole) sink and one or more sources (i.e., the
nodes without incoming edges). In addition, Γ(x̂) = > if
and only if Γ(ŷ) = > for all nodes ŷ in ∇x̂.
∇x̂ contains only top-level variables because loads and

stores cannot be bypassed during shadow propagations.

3.5.1 Optimization I: Value-Flow Simplification
This optimization (referred to as Opt I later) aims to re-

duce shadow propagations in an MFC. For each ∇x̂, the
shadow value σ(x) of a top-level variable x is a conjunct of
the shadow values of its source nodes. Thus, it suffices to
propagate directly the shadow values of the sources s, such
that Γ(ŝ) = ⊥, to x̂, as illustrated in Figure 8.

3.5.2 Optimization II: Redundant Check Elimination
Our second optimization (Opt II ) is more elaborate but

also conceptually simple. The key motivation is to reduce
instrumentation overhead by avoiding spurious error mes-
sages. If an undefined value can be detected at a critical
statement, then its rippling effects on the other parts of the
program (e.g., other critical statements) can be suppressed.



. . .
x1 := a1 ⊗ b1;
y1 := c1 ⊗ d1;
z1 := x1 ⊗ y1;
. . .

â1

⊥
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ĉ1

⊥
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⊥
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⊥

ẑ1

(a) TinyC (b) ∇ẑ1 (c) Simplified ∇ẑ1

Figure 8: An example of value-flow simplification.

. . .
c1 := a1 ⊗ b1;

l1 : . . . := ∗c1 [...];
. . .
d1 := 0;
e1 := b1 ⊗ d1;

l2 : if e1 goto . . . ;
. . .

â1 b̂1

ĉ1

l̂
c1
1

⊥

ê1

l̂
e1
2

⊥

d̂1

T̂
>. . .

⊥
. . .
⊥

â1 b̂1

ĉ1

l̂
c1
1

⊥

ê1

l̂
e1
2

>

d̂1

T̂
>. . .

⊥
. . .
⊥

(a) TinyC (b) VFG (c) Modified VFG

Figure 9: An example for illustrating redundant
check elimination, where l1 is assumed to dominate
l2 in the CFG of the program. If b1 has an unde-
fined value, then the error can be detected at both
l1 and l2. The check at l2 can therefore be disabled
by a simple modification of the original VFG.

The basic idea is illustrated in Figure 9. There are two
runtime checks at l1 and l2, where l1 is known to dominate
l2 in the CFG for the code in Figure 9(a). According to its
VFG in Figure 9(b), b1 potentially flows into both c1 and
e1. If b1 is the culprit for the use of an undefined value
via c1 at l1, b1 will also cause an uninitialized read via e1
at l2. If we perform definedness resolution on the VFG in
Figure 9(c) modified from Figure 9(b), by replacing ê1 ←↩ b̂1
with ê1 ←↩ T̂ , then no runtime check at l2 is necessary (since
[>-Check] is applicable to l2 when Γ(e1) = >).

As shown in Algorithm 1, we perform this optimization
by modifying the VFG of a program and then recomput-
ing Γ. If an undefined value definitely flows into a critical
statement s via either a top-level variable in ∇x̂ or possibly
an address-taken variable ρm (lines 3 – 4), then the flow of
this undefined value into another node r̂ outside ∇x̂ (lines
5 – 6) such that s dominates sr, where r̂ is defined, can be

redirected from T̂ (lines 7 – 8). As some value flows from
address-taken variables may have been cut (line 9), Usher
must perform its guided instrumentation on the VFG (ob-
tained without this optimization) by using Γ obtained here
to ensure that all shadow values are correctly initialized.

4. EVALUATION
The main objective is to demonstrate that by performing

a value-flow analysis, Usher can significantly reduce instru-
mentation overhead of MSan, a state-of-the-art source-level
instrumentation tool for detecting uses of undefined values.

4.1 Implementation
We have implemented Usher in LLVM (version 3.3),

where MSan is released. Usher uses MSan’s masked offset-
based shadow memory scheme for instrumentation and its

Algorithm 1 Redundant Check Elimination

begin

1 G← the VFG of the program P;

2 foreach top-level variable x ∈ VarTL used at a critical

statement, denoted s, in P do

3 ∇x̂ ← MFC computed for x̂ in G;

4 ∇′x̂ ← ∇x̂ ∪ {ρ̂m | ŷ ∈ ∇x̂, P(y := ∗z [µ(ρm)]),

ρm ∈ VarAT represents a concrete location};
5 Rx̂ ← {r̂ | t̂ ∈ ∇′x̂, r̂ /∈ ∇

′
x̂, r̂ ←↩ t̂ in G};

6 foreach statement sr, where r̂ ∈ Rx̂ is defined do

7 if s dominates sr in the CFG of P then

8 Replace every r̂ ←↩ t̂, where t̂ ∈ ∇′x̂, by r̂ ←↩ T̂
in G;

9 Perform definedness resolution to obtain Γ on G;

runtime library to summarize the side effects of external
functions on the shadow memory used.

Usher performs an interprocedural whole-program anal-
ysis to reduce instrumentation costs. All source files of a
program are compiled and then merged into one bitcode
file (using LLVM-link). The merged bitcode is transformed
by iteratively inlining the functions with at least one func-
tion pointer argument to simplify the call graph (excluding
those functions that are directly recursive). Then LLVM’s
mem2reg is applied to promote memory into (virtual) reg-
isters, i.e., generate SSA for top-level local variables. We
refer to this optimization setting as O0+IM (i.e., LLVM’s
O0 followed by I nlining and M em2reg). Finally, LLVM’s
LTO (Link-Time Optimization) is applied.

For the pointer analysis phase shown in Figure 3, we have
used an offset-based field-sensitive Andersen’s pointer anal-
ysis [10]. Arrays are treated as a whole. 1-callsite-sensitive
heap cloning is applied to allocation wrapper functions. 1-
callsite context-sensitivity is configured for definedness res-
olution (Section 3.3). In addition, access-equivalent VFG
nodes are merged by using the technique from [11].

In LLVM, all the global variables are accessed indirectly
(via loads and stores) and are thus dealt with exactly as
address-taken variables. Their value flows across the func-
tion boundaries are realized as virtual parameters as de-
scribed in Figure 4 and captured by [VPara] and [VRet].

Like MSan, Usher’s dynamic detection is bit-level pre-
cise [24], for three reasons. First, Usher’s static analysis is
conservative for bit-exactness. Second, at run time, every
bit is shadowed and the shadow computations for bit oper-
ations in [⊥-Bop] (defined in Figure 7) are implemented as
described in [24]. Finally, ∇x̂ given in Definition 2 is mod-
ified so that P(x := y ⊗ z) holds when ⊗ is not a bitwise
operation.

4.2 Platform and Benchmarks
All experiments are done on a machine equipped with

a 3.00GHz quad-core Intel Core2 Extreme X9650 CPU and
8GB DDR2 RAM, running a 64-bit Ubuntu 10.10. All the 15
C benchmarks from SPEC CPU2000 are used and executed
under their reference inputs. Some of their salient properties
are given in Table 1 and explained below.

4.3 Methodology
Like MSan, Usher is designed to facilitate detection of



Benchmark
Size Time Mem VarTL VarAT Stores VFG

(KLOC) (secs) (MB) (103) Stack Heap Global %F S Total %SU %WU∗ Nodes (103) %|B| S∇(103) |R| (103)
164.gzip 8.6 0.32 294 7 27 10 428 8 - 617 62 34 16 20 0.6 1.0
175.vpr 17.8 0.54 306 22 177 207 770 31 1.2 1,044 34 53 51 27 3.2 4.9
176.gcc 230.4 58.35 2,758 324 1,600 874 6,824 27 4.7 10,851 40 31 17,932 56 96.0 54.3
177.mesa 61.3 1.88 366 113 738 2,417 2,534 32 0.2 7,798 6 63 151 22 8.7 15.8
179.art 1.2 0.28 291 2 8 48 83 40 - 140 41 59 5 21 0.2 0.6
181.mcf 2.5 0.28 292 2 8 89 71 39 - 221 25 70 4 4 0.0 0.7
183.equake 1.5 0.29 293 4 32 29 122 33 - 189 26 68 6 11 0.6 0.9
186.crafty 21.2 0.70 315 29 71 528 1,460 29 - 2,215 63 28 103 34 2.1 4.5
188.ammp 13.4 0.57 307 26 76 342 416 50 4.9 1,291 11 76 55 32 4.7 6.7
197.parser 11.4 0.79 315 16 184 447 1,005 39 2.9 892 34 60 162 81 1.9 3.3
253.perlbmk 87.1 53.93 1,405 116 736 814 3,705 29 5.7 8,904 52 11 8,378 84 41.9 23.2
254.gap 71.5 19.21 701 125 54 4,101 4,313 49 - 4,378 16 28 1,941 48 49.5 21.8
255.vortex 67.3 11.15 601 76 3,576 1,548 3,602 45 - 6,169 70 5 2,483 78 7.7 11.6
256.bzip2 4.7 0.30 293 5 21 13 166 17 - 303 32 68 11 16 0.3 1.2
300.twolf 20.5 1.26 331 52 116 700 841 49 2.8 2,989 34 38 122 37 11.2 12.4
average 41.4 9.99 591 61 495 811 1,756 34 3.2 3,200 36 46 2,095 38 15.3 10.9

Table 1: Benchmark statistics under O0+IM. “%F” is the percentage of address-taken variables uninitialized
when allocated. “S” is the number of times our semi-strong update rule is applied per non-array heap
allocation site. “%SU” is the percentage of stores with strong updates. “%WU∗” is the percentage of stores
∗x = y with x pointing to one address-taken variable (where weak updates would be performed if semi-strong
updates are not applied). “%|B|” is the percentage of the VFG nodes reaching at least one critical statement,
where a runtime check is needed. “S∇” stands for the number of ∇’s simplified by Opt I. “|R|” is the size of
the union of Rx̂’s for all x̂ defined in line 5 of Algorithm 1 by Opt II.

uninitialized variables. O0+IM represents an excellent set-
ting for obtaining meaningful stack traces in error messages.
In addition, LLVM under “-O1” or higher flags behaves
non-deterministically on undefined (i.e., undef) values [35],
making their runtime detection nondeterministic. Thus, we
will focus on comparing MSan and Usher under O0+IM
in terms of instrumentation overhead when both are im-
plemented identically in LLVM except that their degrees of
instrumentation differ. We will examine both briefly in Sec-
tion 4.6 when higher optimization flags are used.

In addition, we will also highlight the importance of stat-
ically analyzing the value flows for address-taken variables
and evaluate the benefits of our VFG-based optimizations.

4.4 Value-Flow Analysis
Table 1 presents some statistics for Usher’s value-flow

analysis under O0+IM. Usher is reasonably lightweight,
consuming under 10 seconds (inclusive pointer analysis time)
and 600 MB memory on average. The two worst performers
are 176.gcc and 253.perlbmk, both taking nearly 1 minute
and consuming ≈2.7 and ≈1.4 GB memory, respectively.
The latter is more costly when compared to other bench-
marks with similar sizes, since its larger VFG contains more
interprocedural value-flow edges for its global and heap vari-
ables, which are both in VarAT .

In Columns 5 – 8, some statistics for both VarTL (contain-
ing the virtual registers produced by mem2reg) and VarAT

are given for each benchmark. In LLVM, global variables
belong to VarAT and are accessed via loads and stores. This
explains why all benchmarks except 255.vortex have more
global variables than stack variables (that are not converted
to virtual registers by mem2reg). However, at an allocation
site x := allocρ, where ρ is a global variable, x is a const

top-level pointer and is thus always initialized ([>-Alloc]). So
it needs not to be checked when used at a critical statement.
In Column 9 (under “%F”), we see that 34% of the address-

taken variables are not initialized when allocated on average.
Note that heap objects allocated at a calloc() site or its
wrappers are always initialized ([>-Alloc]).

In Columns 11 – 13, we can see some good opportunities
for traditional strong updates, which kill undefined values to
enable more >-nodes to be discovered statically. According
to the pointer analysis used [10], at 82% of the stores (on
average), a (top-level) variable in VarTL points to one single
abstract object in VarAT , with 82% being split into 36%,
where strong updates are performed, and 46%, where weak
updates would have to be applied. In Column 10, we see that
the average number of times that our semi-strong update
rule (introduced in Section 3.2) is applied, i.e., the average
number of cuts made on the VFGs (highlighted by a cross
in Figure 6) per non-array heap allocation site is 3.2.

By performing static analysis, Usher can avoid shadow-
ing the statements that never produce any values consumed
at a critical statement, where a runtime check is needed.
Among all the VFG nodes (Column 14), only an average
of 38% may need to be tracked (Column 15). In the sec-
ond last column, the average number of simplified MFCs
(Definition 2) by Opt I is 15251. In the last column, the

average number of VFG nodes connected to T̂ by Opt II, as
illustrated in Figure 9, is 10859.

4.5 Instrumentation Overhead
Figure 10 compares Usher and MSan in terms of their

relative slowdowns to the native (instrumentation-free) code
for the 15 C benchmarks tested. MSan has an average
slowdown of 302%, reaching 493% for 253.perlbmk. With
guided instrumentation, Usher has reduced MSan’s aver-
age slowdown to 123%, with 340% for 253.perlbmk. In ad-
dition, we have also evaluated three variations of Usher:
(1) UsherTL, which analyzes top-level variables only with-
out performing Opt I and Opt II, which are described in
Section 3.5, (2) UsherTL+AT , which is UsherTL extended
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to handle also address-taken variables, and (3) UsherOptI ,
which is UsherTL+AT extended to perform Opt I only. The
average slowdowns for UsherTL, UsherTL+AT and
UsherOptI are 272%, 193% and 181%, respectively. One use
of an undefined value is detected in the function ppmatch()
of 197.parser by all the analysis tools.

Figure 11 shows the static number of shadow propagations
(i.e., reads from shadow variables) and the static number of
runtime checks (at critical operations) performed by the four
versions of our analysis (normalized with respect to MSan).
UsherTL can remove 43% of all shadow propagations and
28% of all checks performed by MSan, reducing its slow-
down from 302% to 272%. By analyzing also address-taken
variables, UsherTL+AT has lowered this slowdown more
visibly to 193%, by eliminating two-thirds of the shadow
propagations and more than half of the checks performed
by MSan. This suggests that a sophisticated value-flow
analysis is needed to reduce unnecessary instrumentation
for pointer-related operations. There are two major bene-
fits. First, the flows of defined values from address-taken
variables are now captured statically. Second, the state-

ments that contribute no value flow to a critical operation
do not need to be instrumented at all. However, the per-
formance differences between UsherTL and UsherTL+AT

are small for 253.perlbmk and 254.gap. For 253.perlbmk,
the majority (84%) of its VFG nodes reach a critical state-
ment, where a runtime check is needed, as shown in Table 1.
For 254.gap, there are a high percentage (49%) of uninitial-
ized address-taken variables when allocated and a relatively
small number of strong updates (at 16%).

The two VFG-based optimizations bring further bene-
fits to the Usher framework. Compared to UsherTL+AT ,
UsherOptI requires fewer shadow propagations, down from
32% to 22% on average, causing the slowdown to drop from
193% to 181%. If Opt II is also included, Usher can lower
further the number of shadow propagations from 22% to
16% and the number of checks from 44% to 23%, result-
ing in an average slowdown of 123%. Due to Opt II, more

nodes (10859 on average) are connected with T̂ , as shown
in Figure 9. In an extreme case, 181.mcf suffers from only
a 2% slowdown. In this case, many variables that are used
at frequently executed critical statements have received >.



4.6 Effect of Compiler Optimizations on Re-
ducing Instrumentation Overhead

We have also compared Usher and MSan under their
respective higher optimization settings, O1 and O2, even
though this gives LLVM an opportunity to hide some uses
of undefined values counter-productively [35], as discussed
earlier. For an optimization level (O1 or O2) under both
tools, a source file is optimized by (1) performing the LLVM
optimizations at that level, (2) applying the Usher or MSan
analysis to insert the instrumentation code, and (3) rerun-
ning the optimization suite at that level to further optimize
the instrumentation code inserted.

MSan and Usher suffer from 231% and 140% slowdowns,
respectively, under O1, and 212% and 132%, respectively,
under O2 on average. The best performer for both tools
is 164.gzip, with 104% (O1) and 102% (O2) for MSan,
and 26% (O1) and 20% (O2) for Usher. 255.vortex is
the worst performer for MSan, with 501% (O1) and 469%
(O2), and also for Usher under O1 with 300%. However,
the worst performer for Usher under O2 is 253.perlbmk

with 288%. Note that Usher has higher slowdowns under
O1 and O2 than O0+IM, since the base native programs
benefit relatively more than instrumented programs under
the higher optimization levels (in terms of execution times).

Therefore, Usher has reduced MSan’s instrumentation
costs by 39.4% (O1) and 37.7% (O2) on average. Compared
to O0+IM, at which Usher achieves an overhead reduction
of 59.3% on average, the performance gaps have been nar-
rowed when advanced compiler optimizations are enabled.

The users can choose different configurations to suit their
different needs. For analysis performance, they may opt to
O1 or O2 at the risk of missing bugs and having to deci-
pher mysterious error messages generated. For debugging
purposes, they should choose O0+IM.

5. RELATED WORK

5.1 Detecting Uses of Undefined Values
Prior studies rely mostly on dynamic instrumentation (at

the binary or source-level level). The most widely used tool,
Memcheck [24], was developed based on the Valgrind run-
time instrumentation framework [21]. Recently, Dr. Mem-
ory [2], which is implemented on top of DynamoRIO [1,
36], runs twice as fast as Memcheck but is still an order of
magnitude slower than the native code, although they both
detect other bugs besides undefined memory uses. A few
source-level instrumentation tools are also available, includ-
ing Purify [12] and MSan [9]. Source-level instrumentation
can reap the benefits of compile-time optimizations, making
it possible for MSan to achieve a typical slowdown of 3X.

There are also some efforts focused on static detection [3,
14]. In addition, GCC and LLVM’s clang can flag usage
of uninitialized variables. However, their analysis are per-
formed intraprocedurally, leading to false positives and false
negatives. The problem of detecting uses of undefined values
can also be solved by traditional static analysis techniques,
including IFDS [23], typestate verification [8] and type sys-
tems [20] (requiring source-code modifications). However,
due to its approximate nature, static analysis alone finds it
rather difficult to maintain both precision and efficiency.

5.2 Combining Static and Dynamic Analysis

How to combine static and dynamic analysis has been
studied for a variety of purposes. On one hand, static anal-
ysis can guide dynamic analysis to reduce its instrumenta-
tion overhead. Examples include taint analysis [5], buffer
overflow attack protection [7], detection of other memory
corruption errors [13] and WCET evaluation [19]. On the
other hand, some concrete information about a program
can be obtained at run time to improve the precision of
static analysis. In [32], profiling information is used to guide
source-level instrumentation by adding hooks to the identi-
fied contentious code regions to guarantee QoS in a multiple
workload environment. In [26], dynamic analysis results are
used to partition a streaming application into subgraphs, so
that the static optimizations that are not scalable for the
whole program can be applied to all subgraphs individually.

To detect uses of undefined values, a few attempts have
been made. In [22], compile-time analysis and instrumenta-
tion are combined to analyze array-based Fortran programs,
at 5X slowdown. Their static analysis is concerned with an-
alyzing the definedness of arrays by performing a data-flow
analysis interprocedurally. In [20], the proposed approach
infers the definedness of pointers in C programs and checks
those uncertain ones at run time. However, manual source
code modification is required to satisfy its type system.

5.3 Value-Flow Analysis
Unlike data-flow analysis, value-flow analysis computes

the def-use chains relevant to a client and puts them in
some sparse representation. This requires the pointer/alias
information to be made available by pointer analysis. Some
recent studies improve precision by tracking value flows in
pointer analysis [11, 16, 17], memory leak detection [29],
program slicing [27] and interprocedural SSA analysis [4].

5.4 Pointer Analysis
Although orthogonal to this work, pointer analysis can

affect the effectiveness of our value-flow analysis. In the
current implementation of Usher, the VFG of a program
is built based on the pointer information produced by an
offset-based field-sensitive Andersen’s pointer analysis avail-
able in LLVM [10]. To track the flow of values as precisely
as possible, our value-flow analysis is interprocedurally flow-
sensitive and context-sensitive. However, the presence of
some spurious value-flow edges can reduce the chances for
shadow values to be strongly updated. In addition, our
context-sensitive definedness resolution may traverse some
spurious value-flow paths unnecessarily, affecting its effi-
ciency. So both the precision and efficiency of our value-
flow analysis can be improved by using more precise pointer
analysis [11, 16, 25, 28, 30, 31, 34] in future.

6. CONCLUSION
This paper introduces a new VFG-based static analysis,

Usher, to speed up the dynamic detection of uses of unde-
fined values in C programs. We have formalized and devel-
oped the first value-flow analysis framework that supports
two flavors of strong updates to guide source-level instru-
mentation. Validation in LLVM using all the 15 SPEC2000
C programs demonstrates its effectiveness in significantly re-
ducing the instrumentation overhead incurred by a state-of-
the-art source-level dynamic analysis tool. In future work,
we will focus on developing new VFG-based optimizations
and new techniques for handling arrays and heap objects.
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