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Abstract
DARPA’s HPCS program has set a goal of bringing high pro-
ductivity to high-performance computing. This has resulted
in the creation of three new high-level languages, namely
Chapel, Fortress andX10, that have successfully addressed
one aspect of productivity: programmability. Unfortunately,
the current state of the art in implementation of these high-
level language concepts result in significant performance
overheads. Our research addresses this issue by concentrat-
ing on the second aspect of productivity: performance.

This paper presents an interprocedural rank analysis al-
gorithm that is capable of automatically inferring ranks of
the arrays inX10, a language that allows rank-independent
specification of loop and array computations usingregions
and points. Further, it uses the rank analysis information
to enable storage transformations on arrays; the storage
transformation evaluated in this paper converts high-level
multidimensionalX10 arrays into lower-level multidimen-
sional Java arrays, when legal to do so. We also describe
a compiler-to-runtime communication strategy that deter-
mines when array bounds checks can be eliminated in
high-levelX10 loops, and conveys that information to the
run-time system, further improving performance. We use
a 64-way AIX Power5+ SMP machine to evaluate our op-
timizations on a set of parallel computational benchmarks
and show that they optimizeX10 programs with high-level
loops usingregions, points andrank-free computation to de-
liver performance that rivals the performance of lower-level,
hand-tuned code with explicit loops and array accesses, and
up to two orders of magnitude faster than unoptimized, high-
levelX10 programs. The experimental results also show that
our optimizations help the scalability ofX10 programs as
well, demonstrating that relative performance improvements
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over the unoptimized versions increase as we scale from
using a single CPU to using all 64 CPUs.

General Terms Compilers

Keywords high productivity, high performance, type anal-
ysis

1. Introduction
The Defense Advanced Research Projects Agency (DARPA)
has challenged supercomputer vendors to increase develop-
ment productivity in high-performance scientific computing
by a factor of 10 by the year 2010. DARPA has recognized
that constructing new languages designed for scientific com-
puting is important to meeting this productivity goal. Several
new language are a result of this initiative: Chapel (Cray),
X10 (IBM), and Fortress (Sun).

These languages have significantly improved the pro-
grammability of high-performance, scientific codes through
a use of higher-level language constructs, object-oriented de-
sign, and higher-level abstractions for arrays, loops and dis-
tributions [10]. Unfortunately, high programmability often
comes at a price of lower performance. These higher-level
abstractions and constructs can sometimes result in up to two
orders of magnitute longer execution times.

This paper addresses efficient array implementation for
high productivity languages, particularlyX10. Figure 1
shows theX10 compiler structure assumed in our research.
The focus of this paper is on compiler analyses and opti-
mizations that improve the performance of high level array
operations in high productivity languages — compilers for
other high productivity languages have a similar structureto
Figure 1. In Section 3.1 we present an interprocedural array
rank analysis algorithm, that automatically infers exact ranks
of rank-free array variables in manyX10 programs. We also
describe an array transformation strategy (Section 3.4), that
uses the results from our rank analysis algorithm to convert
generalX10 arrays into a lower-level, more efficient Java
arrays. These two techniques, combined withobject inlining
of points [5, 12, 13] result in performance improvements of
up to two orders of magnitude.
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Figure 1. X10 compiler structure

In Section 4, we validate our techniques on a set of par-
allel Java Grande benchmarks [11]. Several of these bench-
marks are rewritten inX10 to use theX10 high-level loop
constructs,points andregions for manipulating arrays, and
rank-free array computation in places where such abstrac-
tions improve the readability, expressiveness and generality
of the program. We show that the combination of our tech-
niques results in very large performance improvements, up
to more than two orders of magnitude in some cases. We
ran our experiments on a 64-way SMP machine and demon-
strated that our techniques not only apply to parallel as well
as sequential programs, but that in fact our transformations
help improve the scalability ofX10 programs by eliminating
some synchronization bottlenecks that can occur in current
X10 implementation.

To further improve array performance, we have also de-
vised a compiler-to-runtime communication strategy for
eliminating array bounds checks, which is discussed in detail
in Section 5. This strategy uses the information our compiler
infers from high-levelX10 loops that usepoints andregions
to determine which array accesses within the loop do not
have to be checked for out of bounds exceptions. We then
communicate this information to theX10 run-time system
(the JIT compiler) to avoid unecessary array bounds checks.
This results in further performance improvements of up to
10%.

Section 7 concludes the results of this paper and suggest
some directions for future research.

2. X10 Arrays
X10 provides powerful high-level array syntax that encour-
ages programmers to code array computations in a highly
productive manner. As an example, consider the Java code
fragment shown in Figure 2 for the Java Grande Forum [11]
SOR benchmark1. Note that the Java version involves a lot of
explicit array index manipulation and explicit loops bounds

1 For convenience, we use the same name,G, for the allocated array as
well as the array used inside the SOR computation, even though the actual
benchmark uses distinct names for both.

that can be error prone. In contrast, the rank-specificX10

version uses a singlefor loop to iterate over all the points in
the inner region (R inner), and also uses point expressions
of the form “t+[-1,0]” to access individual array elements
in a stencil computation. One consequence of thepoint-wise
for loop in theX10 version is that (by default) it leads to
an allocation of a new point object in every iteration for
the index and for all subscript expressions, thereby signifi-
cantly degrading performance. We previously addressed this
problem (for sequential execution only) with a point inlining
optimization [13]. However, after applying this transforma-
tion, we still experience up to 2 orders of magnitude in per-
formance degradation when comparing Java Grande bench-
marks withX10’s general high-level arrays against the same
benchmarks with lower-level Java arrays.

In addition to point expressions,X10 also promotes
productivity by enabling programmers to develop rank-
independent array computations. Figure 2 also contains a
rank-independent X10 version of the SOR array computa-
tion. In this case, an additional loop is introduced to compute
the weighted sum using all elements in the stencil. Note that
the computation performed by the nestedt ands for loops
in this version can be reused unchanged for different val-
ues ofR inner andstencil. During compilation, theX10

compiler translatesX10 code into Java. TheX10 compiler
transforms allX10 arrays into objects, and array accesses
(read or write) intoget andset method calls. Theseget and
set method calls can be expensive, especially if they oc-
cur within the innermost loop, which is very often the case.
The performance penalty can reach a staggering 2 orders of
magnitude over lower-level Java version of the code in some
cases.

This paper presents a technique for enabling high-level
array utilization without suffering reductions in perfor-
mance. We present an algorithm to automatically determine
when the compiler can convert high-levelX10 arrays into a
more efficient lower-level representation.



Java version:
double G[][] = new double[M][N];

. . .
int Mm1 = M-1; int Nm1 = N-1;
for (int p=0; p<num_iterations; p++) {

for (int i=1; i<Mm1; i++) {
double[] Gi = G[i]; double[] Gim1 = G[i-1];

double [] Gip1 = G[i+1];
for (int j=1; j<Nm1; j++)

Gi[j] = omega_over_four

* (Gim1[j] + Gip1[j] + Gi[j-1] + Gi[j+1])
+ one_minus_omega * Gi[j];

} // for i
} // for p

X10 version (rank-specific):
region R = [0:M-1,0:N-1]; double[.] G = new double[R];

. . .
region R_inner = [1:M-2,1:N-2]; // R_inner is a subregion of R

for (int p=0; p<num_iterations; p++) {
for (point t : R_inner) {

G[t] = omega_over_four * (G[t+[-1,0]] + G[t+[1,0]]
+ G[t+[0,-1]] + G[t+[0,1]])
+ one_minus_omega * G[t];

} // for t
} // for p

X10 version (rank-independent):
. . .

region R_inner = ... ; // Inner region as before
region stencil = ... ; // Set of points in stencil

double omega_factor = ... ; // Weight used for stencil points
for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) {
double sum = one_minus_omega * G[t];
for (point s : stencil) sum += omega_factor * G[t+s];

G[t] = sum;
} // for t

} // for p

Figure 2. Java Grande SOR benchmark

3. X10 General Array Conversion
The algorithm for converting generalX10 arrays into a
lower-level, more efficient representation, consist of three
phases. The first phase is Rank Analysis, which infers the
concrete ranks of all theX10 arrays in the program. The
second phase is Safety Analysis, which determines which
X10 arrays can be safely converted into Java arrays, using
the rank information computed in Phase 1. The last phase
of the algorithm is the actual conversion of the code that
manipulatesX10 arrays into code that operates directly on
the underlying Java arrays. This section describes the three
phases of the algorithm in more detail.

3.1 Rank Analysis

This section details the type inference algorithm we utilize
to discover the ranks ofX10 arrays. Recall, the generality of
X10 arrays enables programmers to develop rank indepen-
dent code by omitting array dimensionality at the declaration
site. We need precise rank information to generate more ef-
ficient array representations. We employ an interprocedural,
context-insensitive algorithm to gather array rank informa-
tion from theX10 program.

Our whole-program analysis algorithm uses intraproce-
dural analysis to capture local rank information from exam-
ining array assignments. We then perform interprocedural
analysis to glean rank information arising from bothX10 ar-
ray method arguments and methods returningX10 arrays.

Figure 3 shows the high-level description of the rank
inference algorithm.

Input : X10 program
Output : rank, a mapping of each X10 array, region and point

to its rank
begin

// initialization

foreach Region r do rank[r] = TOP

foreach Point p do rank[p] = TOP

foreach Array a do rank[a] = TOP

// infer X10 array ranks

foreach AST node n do switch typeof(n) do
caseassignment

// get inferred rank for rhs

rank ← TOP

if n.lhs is an Array then
switch typeof(n.rhs) do

casearray constructor
rank ←

rank[constructorRegion(n.rhs)]

casemethod call
rank ← rank[n.rhs.returnType]

casevariable
rank ← rank[n.rhs]

casearray access
rank ← rank[n.rhs.array]− 1

if n.lhs is a Point or Region then
rank ← rank[n.rhs.constructor]

rank ← merge(rank[n.lhs], rank)
rank[n.lhs]← rank

caseprocedure call
// merge actual with formal parameters

foreach formal parameter fp and corresponding
argument ap do

rank[fp]← merge(rank[ap], rank[fp])

casearray access
rank[n.array]←
merge(rank[n.array], rank[n.point])

casemethod return
m← method we’re currently analysing
rank[m.returnType]←
merge(rank[m.returnType], rank[n.expr])

end

Figure 3. Inferring ranks of general X10 arrays

Function merge(Rank left, Rank right)

if left = right or right =⊤ then return left;
if left =⊤ then return right;
else return ⊥;

The rank information flows from right to left in the rank
inference algorithm. That is to say, in an assignment, the in-
ferred rank of the left hand side is the lower (in the type



lattice sense) of the rank of the right hand side and the previ-
ous rank of the left hand side. Similarly for a method call (in
which the parameter passing can be conceptually thought of
as assignments of actual parameters to formal parameters),
the rank information flows from actual to formal parameters.

The rank inference algorithm can be implemented to run
in O(n) time, wheren is the number of AST nodes across all
procedures in the program. A simple worklist algorithm puts
an AST node on the worklist every time an element of the
expression has its rank lowered. Since the rank lattice is of
finite height (3), the rank of each AST node con be lowered
at most 2 times (⊤ to a number to⊥), each AST node will go
on the worklist at most 3 times, resulting inO(n) algorithm
complexity.

3.2 Safety Analysis

In addition to gathering precise rank information, our type
inference algorithm also employs a safety analysis algorithm
to ensure that it is safe to transform an X10 general array into
a more efficient representation. The alternate representation
we currently use is the Java array. There are several X10
array operations that are non-trivial to translate to Java array
operations. In these cases, we mark the X10 array asunsafe.
This ensures that our transformation preserves the original
representation of the X10 array. Figure 5 shows the high-
level description of the safety analysis algorithm we perform
before transforming X10 arrays to Java arrays.

Another detail worth mentioning is that our algorithm
performs a two-way safety inference. That is, we utilize
safety information on the left hand side of an assignment
to infer safety information for the right hand side and vice
versa, thereby reducing safety analysis to an equivalence
partitioning problem. Our algorithm incorporates this two-
way strategy for method arguments and formal parameters
as well.

3.3 Extensions for Increased Precision

The Rank analysis and Safety analysis algorithms as pre-
sented in this section are fairly easy to understand and easy
to implement as linear-time flow-insensitive and context-
insensitive algorithms. We have also designed more complex
flow-sensitive and context-sensitive versions of these algo-
rithms that can potentially compute more precise rank and
safety information, and lead to better optimization.

For the set of applications we used as benchmarks in this
paper these extensions do not produce more precise results,
thus we chose to omit a more detailed discussion of those
extensions. Here, we will give a brief description of those
techniques.

SSA Form The Rank Analysis and Safety Analysis algo-
rithms as described on Figures 3 and 5 are flow insensitive.
Thus, if an array variablea is reassigned an array of a dif-
ferent rank than before, it will get⊥ as its rank, which can
futher get propagated to other variables involved in compu-

Input : X10 program
Output : function Safe(a), ⊤ if X10 array a can be safely

converted to a Java array
begin

foreach AST node n do Safe(n)← ⊤
foreach AST node n do switch typeof(n) do

caseassignment
if rank(n.lhs) 6= rank(n.rhs) then

Safe(n.lhs)← Safe(n.rhs)← ⊥

if ¬Safe(n.lhs) then Safe(n.rhs)← ⊥
else switchtypeof(n.lhs) do

// region must be rectangular, zero

based

caseregion
Safe(n.lhs)← Rectangular(n.rhs) ∧
ZeroBased(n.rhs)

casearray
if n.rhs is a constructor then

Safe(n.lhs)←
Safe(getRegion(n.rhs))

if n.rhs is a variable then
Safe(n.lhs)← Safe(n.rhs)

caseprocedure call
// only allow region rank() calls

if n.target is region then
Safe(n.target)← isRankCall(n)

// only allow array region() calls

if n.target is array then
Safe(n.target)← isRegionCall(n)

// check safety of array arguments

foreach formal parameter fp and corresponding
argument ap do

safe← rank(fp) = rank(ap)
safe← safe ∧ ¬ (fp or ap is a region)
if fp or ap is an array then

safe← safe ∧ Safe(fp) ∧ Safe(ap)

Safe(fp)← Safe(ap)← safe

casebinary operation
// cannot transform X10 arrays involved

in binary array operations

safe← ¬ (n.lhs or n.rhs is array or region)
Safe(n.lhs)← Safe(n.rhs)← safe

end

Figure 5. Safety analysis for transforming X10 arrays

into Java arrays

tation with a. Similarly, if a variable is marked unsafe for
conversion into a Java array, it will prevent conversion of
all occurences of that variable into a Java array, even if they
could potentially be safely converted in different regionsof
the code. This source of imprecision can be eliminated by
converting the code into SSA form [4]. Theφ nodes in the
SSA form are treated similarly to an assignment: the rank of
the variable on the left hand side gets assigned amerge()
of the ranks of all the argument variables to theφ func-
tion. Since rank analysis is just an analysis and does not
involve any code reorganization, conversion from the SSA



form back into the original form is simple and doesn’t in-
volve any copy coalescing [6].

Type Jump Functions The two analysis algorithms as de-
scribed in this section will propagate the rank and safety in-
formation through infeasible paths through the call graph.If
a method is called in one place with an argument of rank 2,
and on another place with an argument of rank 1, the formal
argument will get⊥ for the rank, and possibly propagate this
lower type through the return variable back into the caller
code.

This imprecision can be avoided by usingtype jump func-
tions [8] for method calls. The idea behind type jump func-
tions is to encapsulate the relation between the types of ac-
tual arguments to a method and the type of the return ar-
gument. Since rank and safety information are essentially
types, this method generalization can be used to increase the
precision of the rank and safety analysis algorithms. If a type
jump function describes a methodm as accepting the argu-
ment of rankR and returning a value of rankR−1, then this
method can be analyzed independently at different call sites
and will propagate the correct values for the rank, even if the
ranks of the arguments at different call sites are different.

During the conversion ofX10 arrays into Java arrays, a
method with polymorphic rank arguments has to be cloned
to a variant with the specific ranks that are determined by the
call site. The most aggressive approach is to convert as many
X10 arrays as possible by generating as many variants of the
method as there are call sites with different sets of ranks for
actual arguments. Alternatively, to avoid code explosion,the
compiler can generate a limited set of variants for the most
profitable call paths, and leave the default variant that uses
unconvertedX10 arrays for the general case.

Type jump functions for the safety analysis, while similar
to those for rank analysis, are simpler since the only two
“types” a variable can have aresafe andunsafe.

3.4 Array Transformation

Once we have completed the array rank and safety analysis,
we begin the transformation fromX10 arrays to the more
efficient representation (Java array). There are two main
steps in this process. First, we convert each declaredX10

array to our analyzed precise type. Second, we must convert
the X10ArrayAccess AST node into theArrayAccess AST
node. TheX10 compiler makes the distinction between the
2 nodes so that only theX10ArrayAccess can accept apoint
expression as an argument. As a result, during the conversion
process, we must also convert anypoint valued subscript
expression into equivalent integer-valued expressions since
we cannot perform a Java array access with apoint object.

4. Performance Results
The performance results reported in this section were ob-
tained using the following system settings:

• The target system is a IBM 64-way 2.3 GHz Power5+
SMP with 512 GB main memory.

• The Java runtime environment used for all X10 runs is
the IBM J9 virtual machine (build 2.4, J2RE 1.6.0) which
includes the IBM TestaRossa (TR) Just-in-Time (JIT)
compiler [17]. The following internal TR JIT options
were used for all X10 runs:

Options to enable classes to be preloaded, and each
method to be JIT-compiled at a high (”very hot”)
optimization level on its first execution rather than
being first executed by the interpreter.

An option to ignore strict confirmance with IEEE
floating point.

An option to recognize special annotations communi-
cated by the X10 compiler.

• In addition, a specialskip checks option was used for
some of the results to measure the opportunities for opti-
mization. This option directs the JIT compiler to disable
all runtime checks (array bounds, null pointer, divide by
zero).

• Version 1.5 of the X10 compiler and runtime [21] were
used for all executions. This version supportsimplicit
syntax [20] for place-remote accesses. In addition, all
runs were performed with the number of places set to 1,
so all runtime “bad place” checks [7] were disabled.

• The default heap size used was 2GB, with the exception
of one set of results that studied the impact of reducing
the heap size.

• For all runs, the main program was extended with a three-
iteration loop within the same Java process, and the best
of the three times was reported in each case. This config-
uration was deliberately chosen to reduce/eliminate the
impact of JIT compilation time, garbage collection and
other sources of perturbation in the performance compar-
isons.

The benchmarks studied in this paper are X10 ports of
benchmarks from the Java Grande [11] suite. The bench-
marks were executed using the class C input size (largest
size). We compare three versions of each benchmark:

1. The light version uses X10 concurrency constructs like
async andfinish, but directly uses low-level Java ar-
rays as in [2]. It does not support the productivity ben-
efits of higher-level X10 arrays, but instead serves as a
performance target for the optimizations presented in this
paper.

2. Theunoptimized version represents direct execution of
the unoptimized X10 programs with high-level array con-
structs, obtained using the X10 reference implementation
on SourceForge [21].



3. Theoptimized version uses the same input program as
theunoptimized case but also includes the optimizations
introduced in this paper.

We compare the performance of the optimizedX10 gen-
eral arrays (Version 3) to both the unoptimized version (Ver-
sion 2) and our baseline (Version 1). Table 1 shows the raw
execution times for the unoptimized and optimized versions,
and Figure 6 shows the relative speedup obtained due to op-
timization. As can be seen in Table 1and Figure 6, the per-
formance improvements due to optimization can be very sig-
nificant, reaching as a high as a factor of 266.

Figure 7 shows the performance of the optimized X10 im-
plementation (Version 3) relative to the light version (Ver-
sion 1). We see that the performance is at most 10% in
one case (SOR) and is less than 2% in all other cases.
These results suggest that the optimization techniques pre-
sented in this paper can enable programmers to write high-
productivity array computations usingX10 arrays without
suffering substantial performance penalties.

Although our transformations are designed with sequen-
tial performance in mind, they also impact parallel perfor-
mance. Table 2 shows the relative scalability of the Op-
timized and Unoptimized X10 versions. Since the biggest
difference was observed for thesparsematmult benchmark,
we use Figures 8 and Figure 9 to further study this behav-
ior for that benchmark. Figure 8 illustrates that the opti-
mizedsparsematmult benchmark scales better than the un-
optimized version with an initial mininum heap size of 2 GB.
Figure 9 shows that decreasing the initial mininum heap size
to the default size (4 MB) further increases the gap in scala-
bility, thereby suggesting that garbage collection is a major
scalability limitation for the Unoptimized case. This is fur-
ther supported by the fact that Unoptimized version allocates
a large number ofpoint objects that have short life times. The
Optimized version mitigates this problem by inliningpoint
objects. Note that in all these results, the Optimized speedup
is relative to the 1-CPU optimized performance, and the Un-
optimized speedup is relative to the 1-CPU unoptimized per-
formance.

Recall, that theX10 compiler translatesX10 arrays into
Java objects during code generation which in turn leads to
heap allocation for both the arrays and points. When most
of the heap is allocated, the garbage collector must run to
free up space. Because the garbage collector runs sequen-
tially, the entire cost of executing the garbage collector is
distributed equally across each CPU. As a result, as we scale
from 1 CPU to all 64 CPUs the slope for the speedup relative
1 CPU decreases.

Simply increasing the heap size is not an effective so-
lution as there will typically be some application that will
force the garbage collector to run at whatever the heap size
is. We observe this behavior even when increasing the min-
imum heap size for thesparsematmult benchmark result for
Figure 8 to 2 GB.

��������	
�
�
�����������	
�
�
�

�����

������

�������

�������

�������

�������

�������

� � � � �	 �� 	�

��������	�
����
�

��������	
�
�
���
�������	
�
�
� 
��
�����
�������
���
��������
����


��
�����
����������
����


��
������ !��
��������
����


��
�����
�������������
����


��
�������"�
��������
����

Figure 6. Speedup of Optimized X10 version relative to
Unoptimized X10 version
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5. Automatic Array Bounds Check
Elimination

Many high-level languages perform automatic array bounds
checking to improve both safety and correctness of the code,
by eliminating the possibility of an incorrect (or malicious)
code randomly “poking” into memory through an array ac-
cess or buffer overflow. While these checks are beneficial for
safety and correctness, performing these checks at run time
can significantly degrade performance especially in array-
intensive codes.

Significant effort has been made by the compiler research
community to statically eliminate array bounds checks in
higher-level languages when the compiler can prove that
these checks are unnecessary [3, 16, 18]. In this paper,
we take advantage of theX10 region language abstraction



Table 1. Raw runtime performance of Unoptimized and Optimized X10 versions as we scale from 1 to 64 CPUs
Benchmarks Runtime Performance (scaling from 1 to 64 CPUs) in seconds

1 2 4 8 16 32 64
sparsematmult unoptimized 309.495 138.707 73.984 34.269 18.322 10.100 6.306
sparsematmult optimized 13.536 5.398 2.280 1.001 0.457 0.258 0.126
crypt unoptimized 36.388 28.192 13.858 6.902 3.490 1.668 0.971
crypt optimized 7.716 5.732 2.865 1.433 0.717 0.360 0.183
lufact unoptimized 937.158 496.626 238.518 126.333 68.516 42.153 37.257
lufact optimized 5.456 2.535 1.236 0.645 0.346 0.219 0.292
sor unoptimized 614.269 332.917 157.811 81.875 44.658 28.031 23.830
sor optimized 2.757 1.248 0.617 0.321 0.185 0.138 0.190
series unoptimized 1766.129 1767.053 850.969 429.001 215.217 108.858 54.417
series optimized 1764.875 1764.59 850.708 428.981 215.097 107.682 53.786

Table 2. Relative Scalability of Optimized and Unoptimized X10 versions with heap size of 2 GB. The Optimized speedup is
relative to the 1-CPU optimized performance, and the Unoptimized speedup is relative to the 1-CPU unoptimized performance.

Benchmarks Runtime Performance speedup (relative to 1 CPUs)
1 2 4 8 16 32 64

sparsematmult unoptimized 1.00 2.23 4.18 9.03 16.89 30.64 49.08
sparsematmult optimized 1.00 2.51 5.94 13.52 29.62 52.27 107.43
crypt unoptimized 1.00 1.29 2.63 5.27 10.43 21.82 37.47
crypt optimized 1.00 1.35 2.69 5.38 10.76 21.43 42.16
lufact unoptimized 1.00 1.89 3.93 7.42 13.68 22.23 25.15
lufact optimized 1.00 2.15 4.41 8.46 15.77 24.91 18.68
sor unoptimized 1.00 1.85 3.89 7.50 13.75 21.91 25.78
sor optimized 1.00 2.21 4.47 8.59 14.90 19.98 14.51
series unoptimized 1.00 1.00 2.07 4.12 8.21 16.22 32.46
series optimized 1.00 1.00 2.07 4.11 8.21 16.39 32.81
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Figure 8. Relative Scalability of Optimized and Unopti-
mized X10 versions of the sparsematmult benchmark with
initial mininum heap size of 2 GB (and maximum heap size
of 2GB). The Optimized speedup is relative to the 1-CPU
optimized performance, and the Unoptimized speedup is rel-
ative to the 1-CPU unoptimized performance.
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Figure 9. Scalability of Optimized and Unoptimized X10
versions of the sparsematmult benchmark with initial min-
inum heap size of of 4 MB (and maximum heap size of
2GB). The Optimized speedup is relative to the 1-CPU opti-
mized performance, and the Unoptimized speedup is relative
to the 1-CPU unoptimized performance.



//sparsematmult loop, no bounds check annotations

//may be added to array accesses inside loop
region arrayRegion1 = [0:datasizes_nz[size]-1];

...
Random R = ...
val = new double[arrayRegion1...]; ...

col = new int[arrayRegion1...]; ...
row = new int[arrayRegion1...]; ...

for (point p : arrayRegion1) {

// generate random row index (0, M-1)
row[p] = Math.abs(R.nextInt()) ...

// generate random column index (0, N-1)
col[p] = Math.abs(R.nextInt()) ...

val[p] = R.nextDouble(); ...
}

Figure 10. Java Grande SparseMatmult benchmark

to statically determine when array bounds checks are not
needed. In these cases, we annotate the array access with a
noBoundsCheck annotation to signal to the IBM Java J9 VM
that it can skip the array bounds check for a particular array
access.

X10 regions are particularly beneficial for our static anal-
ysis since this language abstraction makes it easier to deter-
mine when we may remove an array bounds check. Because
regions have the value type property (once defined, cannot
subsequently be modified), it is easier to prove that the re-
gion the loop iterates over remains unchanged over the entire
loop iteration space. For example, consider the two loops:

doub le[.] a = new doub le[[low ,high ,str]]
loop1: f o r (n=low, n < high , str) {
... a[n] ...
}

r e g i o n r = [low,high ,str]

loop2: f o r ( p o i n t p : r) {
... a[p] ...
}

In loop1, we must prove that neitherlow, high, norstr are
changed inside the loop body in a manner that might intro-
duce an illegal array access. However, inloop2, this addi-
tional analysis is unnecessary since the programmer cannot
modify the region bounds or stride. In Figure 10, we illus-
trate this with a loop taken from thesparsematmult bench-
mark. This is an example where we can apply a transfor-
mation that adds annotations to the array accesses, thereby
signaling to the VM to skip the bounds check. In order to
insert the annotations inside the loop, we must prove two
things. First, the domain ofarrayRegion1 in the loop header
must contain the domains of all arrays accessed inside the
loop with index pointp. Second, the programmer must not
modify the domains of any of these arrays he or she accesses
inside the loop with pointp. In Section 4, we show the results
of applying this transformation to a set of benchmarks.

We provide results to first understand the impact runtime
checks have on performance and then to demonstrate the
benefit static array bounds analysis coupled withnoBound-
sCheck annotations have on runtime execution. We turn off

the preload classes flag for these results due to an unresolved
issue arising when adding the VM classes needed to recog-
nize our annotations to the classpath. We compare two ver-
sions of each benchmark. The skip runtime checks version
skips all runtime checks (array bounds, null, divide-by-0).
The second version enables these runtime checks. All times
reported represent a best of 3 run. Figure 11 indicates that
runtime checks (array bounds, null, divide by 0 checks) can
degrade performance and only reach 56% of the peak per-
formance when runtime checks are disabled. Therefore, our
compiler array bounds analysis has an opportunity to signif-
icantly impact runtime performance.
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Figure 11. Shows the impact enabling runtime checks has
on performance

We next provide preliminary results in Table 3, in the se-
quential case, to demonstrate the performance impact of au-
tomatically adding ournoBoundsCheck annotations, through
static analysis, to our benchmark set with runtime checks
enabled. These annotations alert the IBM J9 VM when ar-
ray bounds checking for an array access is unnecessary. We
don’t include theseries benchmark because there is no op-
portunity to improve the performance withnoBoundsCheck
annotations.

The largest potential impact our no bounds check analy-
sis may have is on thesparsematmult benchmark. The other
benchmarks still achieve over 90% of runtime performance
with the skip runtime checks flag disabled. With our static
analysis and subsequent automatic program transformation
inserting no bounds check annotations, we increase the run-
time performance up to 10%. While this result is encourag-
ing, there are still opportunities to further improve the per-
formance ofsparsematmult based on results from Figure 11.
Figure 12 illustrates the main computation in thesparsemat-
mult kernel. In order to annotate each of the arrays inside the
loop with a noBoundsCheck annotation, we need to prove
that actual array values of one array are within the array
bounds of another. The addition of this analysis is a subject



Table 3. Results of automatically inserting noBoundsCheck annotations in X10 version of Java Grande benchmarks
Benchmarks Sequential Runtime Performance in seconds

Enable Runtime Checks Skip Runtime Checks Speedup No Bounds Checks Speedup
sparsematmult 22.105 13.986 1.581 20.13 1.098
crypt 8.337 7.781 1.071 8.339 1.000
lufact 5.605 5.055 1.109 5.497 1.020
sor 2.418 2.436 0.993 2.217 1.091

//main loop of execution in sparsematmult benchmark
//array indices for all arrays accesses inside loop are
//based on actual array values

region R2 = [lowsum[id]:highsum[id]-1];

for (int reps=0; reps<NUM_ITERATIONS; reps++) {
for (point p_run[i] : R2) {

yt[ row[p_run] ] += x[ col[p_run] ] * val[p_run];

}
}

Figure 12. Main loop of execution in Java Grande Sparse-
Matmult benchmark

for future work. Despite this challenge, our results demon-
strate that our static no bounds check analysis helps reduce
the performance impact of programmers developing appli-
cations in type-safe languages.

6. Related Work
Our type analysis work which generates precise ranks for ef-
ficient array representations using equivalence sets is a sim-
ilar problem to detecting variable or pointer equivalence [1,
14] and copy propagation [19]. Similarly to copy propaga-
tion, we have a finite lattice where a variable’s lattice value
may only drop to a value further down the lattice. The idea
of creating specialized method variants based on the call-
ing context is related to specialized library variant genera-
tion derived from type jump functions [8]. Our actual trans-
formation fromX10 general array to a more efficient form
is similar toobject inlining [5, 9]. We build upon previous
work for array bounds checking [3, 15, 16, 18] by using the
X10 region language abstraction to both reduce the set of
variables we need to analyze and to simplify the analysis in
determining when array bounds checks are unnecessary.

7. Conclusions and Future Work
This paper makes 3 primary contributions. First, it pro-
vides an algorithm to generate rank-specific efficient array
computations from applications utilizing productive rank-
independent generalX10 arrays. The algorithm propagates
X10 array rank information to generate the more efficient
Java arrays with precise ranks. Our results demonstrate that
we can generate efficient array representations and come
within 90% of the baseline for each benchmark and within
98% in most cases. In the future, we would like to use equiv-
alent codes written in C andFORTRAN as our baseline. The
second contribution shows how our optimizations impact

scalability. We illustrate that the optimized version of the
benchmarks scale much better than the unoptimized general
X10 array version and discuss why this occurs. The final
contribution provides both a static array bounds analysis
utilizing theX10 region and a subsequent program transfor-
mation inserting anoBoundsCheck annotation when we can
prove that performing a Java VM runtime check is unnec-
essary. These contributions enable programmers to develop
high productivity array computations without incurring ad-
ditional runtime costs associated with utilizing higher level
language abstractions.
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