
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/221307432

Precise	detection	of	un-initialized	variables	in
large,	real-life	COBOL	programs	in	presence	of
unrealizable	paths

CONFERENCE	PAPER	·	JANUARY	2011

DOI:	10.1109/ICSM.2011.6080812	·	Source:	DBLP

CITATIONS

2

READS

35

3	AUTHORS:

Rahul	Jiresal

University	of	British	Columbia	-	Vancouver

2	PUBLICATIONS			10	CITATIONS			

SEE	PROFILE

Adnan	Contractor

Tata	Research	Development	and	Design	Centre

2	PUBLICATIONS			3	CITATIONS			

SEE	PROFILE

Ravindra	Naik

Tata	Consultancy	Services	Limited

8	PUBLICATIONS			8	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Rahul	Jiresal

Retrieved	on:	18	January	2016

https://www.researchgate.net/publication/221307432_Precise_detection_of_un-initialized_variables_in_large_real-life_COBOL_programs_in_presence_of_unrealizable_paths?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_2
https://www.researchgate.net/publication/221307432_Precise_detection_of_un-initialized_variables_in_large_real-life_COBOL_programs_in_presence_of_unrealizable_paths?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_1
https://www.researchgate.net/profile/Rahul_Jiresal?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_4
https://www.researchgate.net/profile/Rahul_Jiresal?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_5
https://www.researchgate.net/institution/University_of_British_Columbia-Vancouver?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_6
https://www.researchgate.net/profile/Rahul_Jiresal?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_7
https://www.researchgate.net/profile/Adnan_Contractor?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_4
https://www.researchgate.net/profile/Adnan_Contractor?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_5
https://www.researchgate.net/institution/Tata_Research_Development_and_Design_Centre?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_6
https://www.researchgate.net/profile/Adnan_Contractor?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_7
https://www.researchgate.net/profile/Ravindra_Naik?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_4
https://www.researchgate.net/profile/Ravindra_Naik?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_5
https://www.researchgate.net/institution/Tata_Consultancy_Services_Limited?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_6
https://www.researchgate.net/profile/Ravindra_Naik?enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy&el=1_x_7


Precise Detection of Un-Initialized Variables in Large, Real-life COBOL Programs
in Presence of Un-realizable Paths

Rahul Jiresal
Tata Research Development

and Design Centre
Pune, India

rahul.jiresal@tcs.com

Adnan Contractor
Tata Research Development

and Design Centre
Pune, India

adnan.contractor@tcs.com

Ravindra Naik
Tata Research Development

and Design Centre
Pune, India

rd.naik@tcs.com

Abstract—Using variables before assigning any values to
them are known to result in critical failures in an application.
Few compilers warn about the use of some, but not all uses
of un-initialized variables. The problem persists, especially in
COBOL systems, due to lack of reliable program analysis tools.
A critical reason is the presence of large number of control
flow paths due to the use of un-structured constructs of the
language.

We present the problems faced by one of our big client
in his large, COBOL based software system due to the use
of un-initialized variables. Using static data and control-flow
analysis to detect them, we observed large number of false
positives (imprecision) introduced due to the un-realizable paths
in the un-structured COBOL code. We propose a solution to
address the realizability issue. The solution is based on the
summary based function analysis, which is adapted for COBOL
Paragraphs and Sections, to handle the perform-through and
fall-through control-flow, and is significantly engineered to scale
for large programs (single COBOL program extending to tens
of thousands of lines). Using this technique, we noted very large
reduction, 45% on an average, in the number of false positives
for the un-initialized variables.

Keywords-un-initialzed variables; program analysis; defect
detection;

I. INTRODUCTION

In software systems the use of un-initialized variables may
lead to system outages, as the variables may have garbage
values. Such failures may imply that the system does not
behave as per its specifications. Further, the garbage value
of an un-initialized variable may flow through the program
resulting in incorrect computations, and the severity of the
failure may increase multi-fold. The outcome of running
such a program may simply be undeterminable. Tracking
down a reason for this kind of failures and localizing the
fault caused due to an un-initialized variable is a non-trivial
task. As reported by one of our client, some of the faults
took several months to be localized and traced. Certainly,
such long time-frames for localizing a fault due to un-
initialized variables are not desirable for the systems that
are in production.

For a major client in the retail banking domain, several
branches of the bank use a single instance of the application

that services the transaction requests made by the branches.
The transaction requests are maintained in separate queues
depending on the category of the request. This model im-
proves the performance of the system, by saving the time to
load and initialize the application for every service request.
However, several simultaneous executions of the application
can cause problems. Typically, such code is made re-entrant
by using proper initializations of all data-items (variables).
Absence of proper initializations, however, may lead to
defects that are difficult to trace, especially when there are
simultaneous, multiple executions of the application. The
data-space of one execution may be used by another exe-
cution, if there are improper initializations. Unfortunately,
due to the unstructured nature of COBOL constructs that
result into introduction of several paths reaching the use of
a variable, it is very difficult for the developer to ensure
proper initializations.

A generic and simplest solution to this problem could be
to initialize each variable just after its declaration. However,
in large banking applications, which are primarily data-
driven and the variables may be considerably large records,
initializing all the variables may prove expensive in time.
Therefore, these variables are typically initialized only when
needed. Another reason, in some cases, is that the code
was migrated from one platform to the other, and there
is difference in the way the two platforms handle the
initializations of the variables, leading to the use of un-
initialized variables on the migrated platform.

A. Sample Failure Description

Honoring the confidentiality agreement that TCS has with
its clients, their names, details of the source code and real
defects are not mentioned in the paper. However, we explain
sample failure by explaining the situation that arose in the
Recurring Deposit (RD) account closure scenario.

The Bank reported a defect that only in some cases,
the Recurring Deposit accounts would show discrepancies
when they were closed. The customer account and the teller
account would not match. The development team was not
able to even reproduce the problem at the development



site for a few months. After a very careful and lengthy
analysis, the team was able to simulate it. The error would
occur when two separate branches simultaneously tried to
close two different Recurring Deposit accounts. The causal
analysis revealed that variables that held the closing amounts
were not initialized along certain paths (amounts were not
re-fetched from database). The re-fetch from database was
avoided to enable better performance. Hence, the closing
amount of one Recurring Deposit account would flow to the
second Recurring Deposit account, leading to incorrect teller
account update for the second account. These paths were
encountered rarely, only when two bank branches attempted
to close two Recurring Deposit accounts simultaneously and
the requests were serviced by the same application instance;
hence it was extremely difficult to reproduce and detect this
defect.

To detect the un-initialized variables, even in the presence
of un-realizable paths, we propose to adapt the technique
outlined by M. Sharir and Amir Pnueli [1] to COBOL
programs by treating PARAGRAPHs and SECTIONs as pro-
cedures, executing inter-procedural analysis by calculating
summary analysis of each procedure and propagating the
context information from each procedure call point to the
procedure.

In the next section, we discuss the state-of-the-art to solve
the un-initialized variables detection problem and describe
the conventional solution in section III. The problems arising
due to unrealizable paths in COBOL and the proposed
solution are discussed in sections IV and V. We present the
heuristics to further reduce the number of false positives and
prioritize the important results in section VI. The results of
our solutions are presented in Section VI.

II. RELATED WORK

A large focus to detect un-initialized variables is by
employing dynamic analysis. In the paper [2], Dewar et
al. focus on an improvement in the language Ada that
ensures automatic initialization of the variables that are
not initialized. They also present a language extension for
verification of these variables at run-time.

There are numerous run-time memory checking tools that
can be used to detect references to un-initialized variables.
Some of these tools are Valgrind [3, 4], Purify [5], Mem-
Check [3], Dr. Memory [6]. These tools are based on the con-
cepts of intercepting and inspecting memory management
APIs like malloc(), new(), free(), delete(). For every instance
of the allocated memory, these tools check the access of the
variables, and report an error if a variable is accessed without
getting defined. However, such runtime memory checking
tools are dependent heavily on the instruction set and the
platforms. Another drawback in using such tools in the
client production line is that they hamper the performance,
and need much larger memory. For example, Purify reports
around five-fold slower execution times [5]. For COBOL

applications running on Mainframe systems, such tools can
add to the cost by consuming the expensive Mainframe CPU
cycles.

Making use of both dynamic and static analysis tech-
niques, Nguyen et al. [8] present a combination of compile-
time analysis along with source code instrumentation for
run-time checking, but only for Fortran programs. In this
approach, the authors propose inter-procedural array data-
flow analysis. If the compile time information is insufficient,
they initialize array elements with special values and instru-
ment their uses with a check to assert the legality of the
access. Even though the instrumentation needed is small,
using a similar approach may not be feasible in our client
environment due to the difficulties in executing the code on
expensive and a myriad of platforms.

Compilers for some of the modern languages report the
uses of un-initialized variables at compile-time either with
errors (example is Java) or warnings (GCC). The known
problem in compile-time static analysis is the lack of preci-
sion because of complex control and data flows in the code.
Even in the absence of un-realizable paths, the precision
of un-initialized variables reported by the GCC-COBOL
compiler is questionable.

In his paper [7], Z. J. Czech puts forth an algorithm to find
un-initialized variables during compile time. However, his
solution does not guarantee the detection of all the references
to undefined variables. It, therefore, becomes a moot point if
it actually helps locating and removing all potential defects.

Our work for detecting uses of un-initialized variables in
COBOL applications is based on the approaches mentioned
in the technical report [1] by Micha Sharir and Amir Pneuli.
We adapt their approach by treating the Paragraphs and
Sections in COBOL as procedures, except that they share
the data space of the program. When a Paragraph / Section
is performed, the context of the performing Paragraph is
remembered and propagated to the performed Paragraph to
compute the precise analysis information. This approach
reduces the number of false positives in the computed results
by not propagating the analysis information of the performed
Paragraph along unrealizable paths. The next two sections
discuss the issues of the unrealizable paths as applicable in
COBOL.

III. UN-INITIALIZED VARIABLES DETECTION AND
ISSUES

A variable is termed as un-initialized at a use-point if
there is at least one program path from the entry point to
the use-point through which the variable does not get a
definition, meaning, along that program path, the variable
is not assigned a value.

Static data-flow and control-flow program analysis tech-
niques [12] are used to detect un-initialized variables in the
code. It requires Dataflow functions to be defined for each
node type of interest in the program, and Meet operation

https://www.researchgate.net/publication/220881495_Using_Valgrind_to_Detect_Undefined_Value_Errors_with_Bit-Precision?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/220881495_Using_Valgrind_to_Detect_Undefined_Value_Errors_with_Bit-Precision?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/239534920_Purify_Fast_detection_of_memory_leaks_and_access_errors?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/239534920_Purify_Fast_detection_of_memory_leaks_and_access_errors?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/220751901_Seward_J_Valgrind_a_framework_for_heavyweight_dynamic_binary_instrumentation_SIGPLAN_Not_426_89-100?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/220459900_Efficient_Implementation_of_Detection_of_Undefined_Variables?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/221033032_Exposing_Uninitialized_Variables_Strengthening_and_Extending_Run-Time_Checks_in_Ada?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/213893922_Two_approaches_to_interprocedural_data_flow_analysis?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/213893922_Two_approaches_to_interprocedural_data_flow_analysis?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy
https://www.researchgate.net/publication/221302868_Automatic_Detection_of_Uninitialized_Variables?el=1_x_8&enrichId=rgreq-9a5e0b24-544c-4e75-8ef3-585a8d644a58&enrichSource=Y292ZXJQYWdlOzIyMTMwNzQzMjtBUzo5NzYyNTUzNzc3NzY3MUAxNDAwMjg3MTUwMzcy


on nodes having more than one incoming edges. It also
requires the Control Flow Graph (CFG) of the program to
be constructed. A CFG is a directed graph in which nodes
represent statements, and an edge u → v represents possible
flow of control from u to v. The technique involves traversing
the CFG and solving corresponding data flow functions for
each node to obtain the analysis information at the nodes.

At a given program point P, the strategy used to detect un-
initialized variables is dependent on the defined set at P. The
un-initialized variables set UV at P is stated as the variables
being used at P but are not defined till P. We explain the
strategy in further detail as follows.

i) For every program point, we compute the defined set
using the following flow functions.

Dataflow function:

DFo(n) : Iin(n) ∪ {v | v ∈ Gen(n)}
where,
Iin(n) : set of defined variables carried from

predecessor of node n
Gen(n) : set of variables occurring in lval

context at node n

Meet operation at a node:

M(n) : D0 ∩D1 ∩ . . . ∩Di

where,
M(n) : Meet function at CFG node n

for incoming paths 0 to i
Di : Set of defined variables flowing into

node n along control path i

Summarizing in words, at every node, all the variables
that occur in lval context are identified, and carried
forward to the next node. In an expression, any variable
to which a value is being written to is said to be in lval
context. At the node where multiple paths meet, only
the variables that are defined along all the incoming
paths are carried forward.

ii) For every statement in the program, fetch the
expressions and identify all variables that are
referenced in those expressions. The set of un-
initialized variables derived from the defined set is
computed as follows.

UV (n) = {v | v ∈ Rn and v /∈ Dn}
where,
UV (n) : set of un-initialized variables at node n
Rn : set of variables referenced at node n
Dn : set of defined variables till node n

Thus, the un-initialized variables are a set of variables that
have not been defined at least along one path.

A. Automation and Results

The solution for the data-flow equations was encoded
using Prism [11] workbench. The queries for computing the
defined set and un-initialized set were programmed using
the workbench primitives, and the CFG between paragraphs
due to performs, gotos and fall-throughs, called as Para-flow
graph was computed precisely.

By applying the above strategy on a large COBOL pro-
gram AB0000 (single computation unit of over 60K lines of
code), we observed about 6000 instances of un-initialized
variables. Though the strategy is conservative in nature,
this was too large a number to be of practical use for the
development team to analyze the results and identify the
subset of variables that are truly uninitialized.

We performed a careful analysis of a subset of the results.
The study revealed the presence of considerable number of
false positives in the results. Certain variables that were
actually initialized were also reported. A more detailed
analysis revealed that many of these variables were reported
because there was no definition reaching the use point
through one or more unrealizable paths.

In the next section, we discuss the problem of unrealizable
paths and our potential solution.

IV. UNREALIZABLE PATHS

A COBOL program consists of one or more Paragraphs
or Sections. A Paragraph or Section in COBOL is a set of
statements represented by a label. A Section can consist of
one or more Paragraphs. Using the PERFORM statement,
the execution control is transferred to a Paragraph (Paragraph
is performed). Similar to a sub-routine, a Paragraph, after
executing statements contained in it, returns the control to
the statement immediately after the PERFORM statement.
The target of PERFORM statement is either the Paragraph
name or a range of Paragraph names, the latter representing
execution of a range of paragraphs. For simplicity, we treat
a paragraph range as a basic cohesive unit and the COBOL
program as a collection of paragraph ranges.

In the context-insensitive inter-procedural analysis (de-
scribed in section III), the analysis information of a sub-
routine from one call point may get propagated to other
callers of the same subroutine, since the calling context is
not remembered. The information propagation thus takes the
unrealizable path. In an application with sub-routines, the
unrealizable paths are the paths occurring in the Control
Flow Graph in the absence of calling context information.

Similarly, in case of COBOL, within a procedure, the
analysis information from one PERFORM point may get
propagated to other performers of the same Paragraph,
resulting into an unrealizable path.

Consider the COBOL code in Figure 1 and a relevant part
of its Control Flow Graph in Figure 2.

In figure 2, the nodes marked as E and X represent the
Entry and Exit nodes of a paragraph, respectively. Also, the



Figure 2. Control Flow Graph for code snippet in Figure 1

1. A.
2. MOVE TEMP-VAR TO VAR-A
3. PERFORM P.
4.
5. B.
6. MOVE TEMP-VAR TO VAR-B
7. MOVE TEMP-VAR TO VAR-A
8. PERFORM P
9. MOVE VAR-B TO MOVE-VAR.

10.
11. P.
12. MOVE TEMP-VAR TO VAR-P.

Figure 1. Sample code for Unrealizable paths in COBOL code

Perform statements at line 3 and line 8 are represented by
PerfNodes. The sets of un-initialized variables flowing along
the control paths are shown along the edges.

The PERFORM statements at line 3 and line 8 transfer
control to the paragraph P. The incoming edges to P are E1
and E2 and outgoing edges are E3 and E4.
Here the actual paths are:

E1−E3 & E2−E4
But, there are Unrealizable paths too:

E1−E4 & E2−E3
Multiple contexts from perform nodes (from lines 3 and

8) are merged at the entry point of the paragraph P (line 11)
and the analysis information at exit point (end of line 12)
is propagated to all the perform points (end of lines 3 and
8). This introduces potential false positives in the results, as
there is no provision to pair up corresponding incoming and
outgoing edges.

By applying the original strategy mentioned in section III,
the variable VAR-B, at line 9, is reported as un-initialized.
This is clearly a false positive, as VAR-B gets a definition at
line 6, before the paragraph P is performed. In the mentioned
strategy, the contexts of both the performers are merged at
the entry point of the performee. Because of this, the context
of B at line 7 - the fact that VAR-B is defined at line 6 - is
lost when it is merged with context of A at line 3. Therefore,
after the Perform at line 8, VAR-B is treated as un-initialized.
By definition, the variable should get a value on all paths
leading to the point under consideration (line 9), but the
unrealizable path E1-E4 has no definition for VAR-B.

To eliminate these false positives, one solution is to resort
to context-sensitive analysis of the Paragraph ranges, or sub-
routines in general. The proposed strategy is described in the
next section.

V. CONTEXT-SENSITIVE DETECTION OF
UN-INITIALIZED VARIABLES

To make the analysis context sensitive, it is required to
store the context at each invocation of the subroutine or



Paragraph. Conceptually, each perform statement needs to
have its own copy of the paragraph range that it performs.
If separate copies of the information are created for each
perform, it is possible to avoid the problem of unrealizable
paths.

There are mainly two approaches to achieve context-
sensitivity. The first is the Cloning approach, involving
inlining of the performees into performers. For obvious
reasons, this approach proves to be inefficient as it replicates
the Paragraph ranges at each Perform point. This approach
does not scale-up, and does not work in the presence of
recursion.

The second approach involves computing and storing
summaries and contexts. In summary-based analysis, a sum-
mary is created for each paragraph range, which summarizes
the effects of the paragraphs in that range. The algorithm has
two phases - A bottom-up phase in which the summaries
are incorporated into the performers and a top-down phase
in which the context is propagated into the performees
(performed ranges).

A. Solution

While computing analysis information for the defined set
as described in Section III, the global, context-insensitive
approach considers the program as a whole unit and solves
the data-flow equations without considering the context. This
approach results in the unrealizable paths issue.

To resolve this issue, the program is considered to consist
of paragraph ranges. Using the Para-Flow graph, which is a
directed graph, in which nodes represent a paragraph range,
and an edge u → v represents possible flow of control
from the perform statement u to the paragraph range v, the
paragraph ranges are identified.

Analysis information is first computed for the leaf level
paragraph ranges in the Para-Flow graph, while treating each
paragraph range in isolation. This information is stored as
symbolic summary and is communicated up the Para-Flow
graph to the callers of the range. Further, our approach is
designed to remember the context (incoming information) at
each perform node. This context, together with the summary
of the paragraph range being performed, is used to calculate
outgoing information at the bottom of the perform node.
The analysis information at each perform node is computed
as:

NBottom : [Ntop - KillSump] ∪GenSump

where,
NBottom : Set of defined variables at bottom of

perform node N
Ntop : Set of defined variables at top of per-

form node N
KillSump : Kill summary information at exit of

paragraph range p
GenSump : Gen summary information at exit of

paragraph range p

For the above equations, we defined the Gen and Kill
summary sets for a paragraph range p as follows.

GenSump = Defined(X)
KillSump = ∅

where,
X : Exit node of paragraph range p
Defined(X) : Set of defined variables at the exit node

X
The Kill Summary set is an empty set since a variable,

once defined is treated as always defined.
Applying the new program analysis strategy to compute

the un-initialized variables set for the example in Figure 1,
the results of the analysis information at the top and bottom
of Perform Nodes (PerfNodes) are as follows.

Gen Summary of paragraph P :
{VAR-P}

Kill Summary of paragraph P :
{}

Defined Set (Context) at top of PerfNode@3:
{VAR-A}

Defined Set at bottom of PerfNode@3:
{VAR-P, VAR-A}

Defined Set (Context) at top of PerfNode@8:
{VAR-A, VAR-B}

Defined Set at bottom of PerfNode@8:
{VAR-A, VAR-B, VAR-P}

According to the Step ii of the strategy described in
Section III, the set of un-initialized variables at line 9 is,

UV (9) ={ TEMP-VAR }

Thus, it can be seen that at line 9, after resolving the
realizability issue, VAR-B is not reported as un-initialized.
At the same time, the strategy ensures that the no un-
initialized variables are missed out, that is, there are no false
negatives.

VI. IMPROVING THE RESULTS USING HEURISTICS

The proposed and prototyped approach guarantees high
precision. Even then, for large COBOL programs, the num-
ber of reported instances of un-initialized variables is fairly
large (we illustrate the results in section VII). As discussed
earlier in the paper, a variable needs to be defined on all
the paths reaching its use to be flagged as initialized. As a
large program can have hundreds of paths by which the as-
signment reaches the use, the variable will be flagged as un-
initialized if it is not defined even along one path, however



practically infeasible that path is. This conservative approach
ensures that the strategy does not miss any potential defect
due to an un-initialized variables.

In practice, while fixing defects, the developer is reluc-
tant to manually analyze a large number of un-initialized
variables. Therefore, we prioritize the results using a pre-
defined set of heuristics. Some of the reported un-initialized
variables are filtered and marked as low priority using the
heuristics. We are in the process of improving existing
heuristics and evolving new ones. Few heuristics to prioritize
the un-initialized variables are described in the subsequent
sub-sections.

A. Removal Of Bad Code Smells

Unlike a PERFORM, a GOTO to a label acts as a non-
returning jump to a paragraph. While a PERFORM state-
ment is considered to be a good programming practice to
reuse a portion of code, a GOTO is considered as a poor (un-
structured) programming practice. This is because it can lead
to difficult-to-track flow of control. In COBOL, additionally,
the jump to a Paragraph because of a GOTO results in a
fall-through of control to the subsequent Paragraph, leading
to potentially incomprehensible behaviour. Agrawal et al. in
their paper [9] have presented a statistic that about 50% of
the transaction outages are caused by undesirable GOTOs in
the program. Such undesired GOTOs are the reason behind
the unintended fall-throughs in the code. They also state that
removal of such bad GOTOs, and effectively fall-throughs,
can reduce the number of un-initialized variables. The reason
is that many of the unintended, accidental paths are avoided.

We run the tool [9] developed by Agrawal et al. on
the large industrial programs, and fix the potential defects
reported by the tool. These include removal of out-of-range
GOTOs, unintended fall-throughs and dead paragraphs in
the code. As per our observation, the un-initialized variables
detected in the subsequent analysis are reduced by 3-5% for
the large programs.

B. Instances In Utility Function Calls

In COBOL, parameters in the calls to other programs are
passed by reference. In the called programs like database
library or formatting library, the parameters are updated /
modified in the called program. Such variables are usually
not initialized in the calling program before the call. Even
though, technically, such variables are un-initialized at the
call-point, the developers typically want to ignore them
during the analysis. A heuristic proposed by us allows
developers to list all the Utility programs and for each
such program, the parameters that are to be ignored while
reporting. We mark such variables as low priority un-
initialized variables.

After filtering the low priority un-initialized variables
from the results, we observe an average 20% reduction in
the results.

C. Prioritization Based On Fan-ins Of Paragraphs

A Fan-in of a paragraph is defined as the number of
incoming edges for that paragraph in the perform-graph
of the program. A perform-graph is defined as a graph
G < E,N > where N represents the paragraphs of the
program, and there exists an edge Exy from node Nx to
Ny , if the paragraph x performs paragraph y.

If a paragraph has higher fan-in than others, the execution
of that paragraph is more frequent than that of others.
Hence instances of un-initialized variables in higher fan-
in paragraphs may lead to higher chance of defects at
runtime. Correcting initializations of such variables can lead
to fixing more potential defects in less time. We sort all
the un-initialized variables according to the fan-ins of the
paragraphs they are contained in.

This heuristic proves very useful to the developers to
prioritize their focus to the more important potential defects.
Results of prioritizing the instances of un-initialized vari-
ables according to the fan-in of the paragraphs are shown in
the results section.

VII. RESULTS

We prototyped and applied the proposed strategy on a set
of programs from our clients execution environment. These
programs were of varying lengths from a few thousand
lines of code to around 80 KLOC. The prototype was
executed on JVM 5.0 running on Windows Vista (32 bit)
with 4GB of installed memory. The results were shared with
the development team for verification.

Table I
COMPARISON OF UN-INITIALIZED VARIABLES DETECTED

Program Context
insensitive
analysis

Context
sensitive
analysis

False posi-
tives elimi-
nated

Overall
Im-
prove-
ments3

(%)

11 2 2 1 2 1 2

AB0000 1317 6090 737 2945 580 3145 51.6
(44)

CR0000 1173 4313 838 3001 335 1312 30.4
(29)

CR0025 336 871 187 437 149 434 49.8
(44.3)

CR7070 74 253 30 60 44 193 76.3
(59.5)

AB0024 59 120 48 103 11 17 14.2
(18.6)

1. Unique un-initialized variables
2. Total instances of un-initialized variables
3. Values in the brackets represent the % improvement on unique variables

We compared the results of un-initialized variables before



and after the realizibility change with respect to execution
times and the number of variables detected.

Table I shows the comparison for the number of un-
initialized variables detected using context insensitive anal-
ysis and context sensitive analysis. Sub-column 1 represents
the unique variables that were detected, and sub-column 2
represents the total use-points of these variables. The third
column shows the number of false positives eliminated by
using the context sensitive analysis. The average improve-
ment in the precision of the analysis is nearly 45%. The
figures in the parentheses in the last column represent the
percentage of the unique instances of un-initialized variables.

Although the results shown in Table I show a substantial
improvement in the precision of un-initialized variables, the
absolute number of the un-initialized variables is still high.
Therefore, the heuristics discussed in the previous section
are used to filter and prioritize the un-initialized variables
that have lesser probability to surface as a defect.

Table II shows the results of the un-initialized variables
post applying the heuristics.

In the second column, there is an evident reduction of
around 3-5% in the reported variables after the removal of
bad code smells. The third column represents the numbers
after removal of reported un-init variables in the utility calls.
An average reduction of 40% and maximum reduction up
to 64% was observed after applying this heuristic. This also
indicates that a large number of variables are passed as
parameters to be updated / modified in the called programs.

Table II
RESULTS AFTER APPLYING THE HEURISTICS

Program Context
sensitive
analysis

After
removal
of bad code
smells

After
removal
of Utility
function call
instances

1 2 1 2 1 2

AB0000 737 2945 706 2779 585 1942

CR0000 838 3001 803 2872 689 965

CR0025 190 440 177 422 114 231

CR7070 30 60 29 59 18 37

AB0024 11 17 11 17 7 12

Table III shows the number of instances of un-initialized
variables grouped by the fan-ins of the paragraphs they are
contained in. As it is seen from the table, the larger programs
(AB0000, CR0000) have more variables in the higher fan-in
ranges. On the other hand, smaller programs do not have
a large number of such instances because of the absence

of high fan-in paragraphs. Also, the paragraphs with a zero
fan-in are the entry points of the programs and are certainly
executed.

The developer, typically, wants to fix the code where there
are more likely potential defects. In the absence of run-
time data, fan-in is a useful heuristic to find out more likely
defects.

Table III
NUMBER OF UN-INITIALIZED VARIABLES FOR FAN-IN GROUPS

Fan-in AB0000 CR0000 CR0025 CR7070

0 172 78 0 1

1-5 1615 636 215 36

6-10 45 124 0 0

10-20 69 78 8 0

21+ 41 49 8 0

As depicted in Table IV, if we ignore the smaller pro-
grams, the execution time for the detection of un-initialized
variables has increased by an average of around 65%. This
increase is because of the time taken by the tool to compute
the paragraph summaries and saving / loading the context
information of the paragraphs. Also, the time taken depends
on the number of paragraphs and the complexity of the Para-
flow graph rather than the LOC of the programs.

Table IV
RUNTIMES OF UN-INITIALIZED VARIABLES DETECTION

Program LOC # of
Paras

Context
insen-
sitive
analysis
Runtime

Context
sen-
sitive
analysis
Run-
time

% In-
crease

AB0000 56,721 1004 1 m 55 s 3 m 12 s 66.9

CR0000 77,736 1275 2 m 27 s 4 m 6 s 67.36

CR0025 15,944 450 27 s 43 s 59.25

CR7070 2,961 84 2 s 5 s 150

AB0024 2,628 69 ∼ 1 s ∼ 2 s 100



VIII. FUTURE WORK

As discussed in the results section, the approach proposed
by us has increased the precision in the analysis of COBOL
programs in the presence of unrealizable paths. Handling of
unrealizable paths using the context-sensitive analysis will
potentially improve precision in other data-flow queries for
formal verification and slicing of COBOL programs.

Since uses of un-initialized variables represent critical
faults leading to many different kinds of failures that are
difficult to trace and debug, we aim to improve the solution
further with help of more heuristics and dynamic analysis.
We also plan to productize the prototype and measure the
business gains achieved by the development team. One
option is to measure the reduction in the number of failures
that are attributed to the use of un-initialized variables, over
a substantial period of time.

A. More Heuristics

Error handling is an important aspect of every enterprise
application and constitutes a considerable chunk of the
application code. The detection of error usually diverts the
control from the main, functional path to error handling
module. Analysis of the un-initialized variable reports for
various programs revealed that there is substantial number
of variables reported as un-initialized along the error paths
because they dont have any definitions along the functionally
valid paths. Elimination of such error paths is a potential
heuristic that will reduce the number of un-initialized vari-
ables.

The effect of a function is communicated to the envi-
ronment through its output variables. They include actual
parameters to external function calls, variables being written
to the database or rendered on the screen, and messages that
are sent from the function. A possible heuristic is to detect
automatically or enable the developer to select the output
variables of the function. The heuristic will be used to report
only the un-initialized variables that lie in the program slice
based on the selected output variables.

B. Dynamic Analysis

Since un-initialized variables are very sensitive to the
control-flow paths that are present in the program, we
propose to use techniques akin to dynamic analysis. After
instrumenting the code to log the paths, the idea is the
execute the application for various functional test scenarios,
collect the path logs and use them to prune the paths for
control-flow analysis. Though the precision of un-initialized
variables due to such pruning of control-flow paths depends
on the completeness of the test scenarios, it is found to
be a practically useful. Y. Smaragdakis and C. Csallner
[10] report their experiences of building sequence of more
powerful combinations of static and dynamic analyses for
bug finding.

Another initiative in pipeline is the detection of un-
initialized paths. Amongst all the paths leading to the use
of an un-initialized variable, the variable may not have a
definition only along a few paths. It would be a big help
to the developer if he is provided with guidance about the
paths along which he needs to add the definition, saving him
lot of efforts to locate the path.

IX. CONCLUSION

In this paper, we have discussed the problems faced by
one of our biggest clients in his applications, primarily due
to the use of un-initialized variables. While using static pro-
gram analysis techniques to detect un-initialized variables, a
large number of false positives were observed because of the
unrealizable paths existing in the COBOL code. We adapted
the summary based inter-procedural analysis for COBOL,
and engineered it specifically to address COBOL. On an
average, 45% improvement in the precision was achieved
after applying the approach. To help the developer focus
on more important potential defects, we proposed the use of
heuristics to filter out and prioritize the results. This filtration
has yielded an average of 40% reduction in the instances that
the developer has to manually analyze.

ACKNOWLEDGMENTS

We acknowledge the co-operation of the TCS develop-
ment team who own the business applications for helping
us with analyzing and validating the results. We also ac-
knowledge Shrawan Kumar for his reviews of the strategies
and assistance to adapt the summary-based interprocedural
analysis, and Pavan Chittimalli and Hemanth Makkapati for
his help with the implementation.

REFERENCES

[1] M. Sharir and A. Pneuli, Two Approaches to Inter Procedural
Data Flow Analysis, Technical Report, New York University,
September 1978.

[2] R. Dewar, O. Hainque, D. Craeynest and P. Waroquiers,
Exposing Uninitialized Variables: Strengthening and Extending
Run-Time Checks in Ada, Proceedings of Ada-Europe ’02
Proceedings of the 7th Ada-Europe International Conference
on Reliable Software Technologies, 2002.

[3] J. Seward and N. Nethercote, Using Valgrind to detect unde-
fined value errors with bit-precision, in Proc. of the USENIX
Annual Technical Conference, 2005, pp. 22.

[4] N. Nethercote and J. Seward, Valgrind: A framework for heavy-
weight dynamic binary instrumentation, in Proc. of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 07), Jun. 2007, pp. 89100.

[5] R. Hastings and B. Joyce, Purify: Fast detection of memory
leaks and access errors, in Proc. of the Winter USENIX
Conference, Jan. 1992, pp. 125136.



[6] D. Bruening, Q. Zhao, Practical Memory Checking with Dr.
Memory, 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO), 2011.

[7] Z. J. Czech, Efficient Implementation of Detection of Uninitial-
ized Variables, The Computer Journal (1988) 31 (6): 545-549.

[8] T. Nguyen, F. Irigoin, C. Ancourt, and F. Coelho, Automatic
Detection of Uninitialized Variables, Proceedings of 12th In-
ternational Conference on Compiler Construction, pp 217-231,
2003.

[9] A. Agrawal and R. Naik, Towards Assuring Non-recurrence of
Faults Leading to Transaction Outages an Experiment with
Stable Business Applications, Proceedings of the 4th India
Software Engineering Conference, 2011.

[10] Y. Smaragdakis and C. Csallner, Combining Static and Dy-
namic Reasoning for Bug Detection, Lecture Notes in Com-
puter Science, Volume 4454/2007, 1-16, 2007.

[11] PRISM : Static Data and Control Flow Analysis Workbench,
Technical Report, Tata Research Development and Design
Centre, Pune, 2008.

[12] John. Kam and Jeffrey. Ulman, Monotone Data Flow Analysis
Frameworks, Acta Informatica 7, 305-317, 1977.


