
Speculative Improvements to Verifiable Bounds Check
Elimination

Andreas Gampe Jeffery von Ronne David Niedzielski Kleanthis Psarris
Department of Computer Science
University of Texas at San Antonio

San Antonio, Texas, USA
{agampe,vonronne,dniedzie,psarris}@cs.utsa.edu

AUTHOR’S PREPRINT, TO APPEAR: Principles and Practice of Programming In Java (PPPJ 2008)

ABSTRACT
As a safety measure, the Java programming language requires bounds
checking of array accesses. This usually translates to dynamic
checks each time an array element is accessed. Static analysis
can help eliminate some of those checks by proving them to be
redundant, reducing the runtime overhead. Compilation of Java
programs is usually method-based, and dynamic dispatch compli-
cates interprocedural analysis. The result is a severely restricted
static analysis. This paper presents a novel combination of two
techniques to alleviate this problem. By assuming constraints that
cannot safely be inferred from the program, the amount of prov-
able safe bounds can be greatly extended. These constraints, called
speculations, can be derived automatically from the program code
by an analyzer, which assumes that there will be no violation of
the array bounds. To ensure that the speculations hold at runtime,
additional checks have to be injected into the code. Finding good
speculations that benefit the runtime performance can be expen-
sive. This paper shows that the speculation technique can be com-
bined with a verifiable annotation framework, allowing most of the
work to be shifted to compile-time. Experimental results show that
this combination of techniques increases the number of eliminated
bounds checks and can result in speedups that approach uncondi-
tional bounds check removal.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers, Opti-
mization, Code generation

General Terms
Algorithms, Languages, Performance

Keywords
Java, array bounds check elimination, just-in-time compilation, op-
timization, verifiable annotations, SafeTSA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ 2008, September 9–11, 2008, Modena, Italy.
Copyright 2008 ACM 978-1-60558-223-8/08/0009 ...$5.00.

1. INTRODUCTION
The semantics of the Java programming language require that

out-of-bounds array accesses be caught at run-time [8]. A simple
way to achieve this is by performing a runtime “bounds check” be-
fore each access to an array, but this can incur a quite significant
overhead [11], which is caused not only by the direct cost of condi-
tional branches implementing the array bounds checks but also by
lost opportunities for optimization and parallelization due to Java’s
precise exception semantics.

One way to reduce this overhead is to apply a static analysis
that identifies some of the array element accesses that will never
cause an out of bounds exception and to optimize the program by
eliminating those unnecessary bounds checks.

Because Java is designed to use a virtual machine providing
platform-independence, dynamic class-loading, and safety, most
optimizations are done at runtime during just-in-time (JIT) compi-
lation. Although it is possible for JIT compilers to perform bounds
check elimination, the most precise analyses (e.g.,[11, 13, 16])
are too expensive to run in JIT compilers. For that reason, faster
analyses (e.g., [2],[20]), which eliminate fewer unnecessary array
bounds checks, are used instead.

An alternative light-weight bounds-check elimination algorithms
is to develop an annotation scheme that allows more expensive
static analysis to be performed by an annotator once prior to dis-
tribution as part of the compilation from source code. The results
of this analysis can be shipped to the code consumer as annotations
added to bytecode. The code consumer’s JIT can then optimize
the bytecode based on these annotations. This is only safe, how-
ever, if the annotations can be verified to be correct. Otherwise a
malicious annotator could lie causing the code consumer to omit
necessary bounds checks.

Any intraprocedural static analysis will be limited in its abil-
ity to eliminate bounds checks whose redundancy depend on rela-
tionships among variables that are passed as parameters. Interpro-
cedural analysis can expose those relationships, but suffers prac-
tical limitations in Java. The potential complications arise from
the combination of interprocedural analyses’s need to know what
method implementations are being called, Java’s dynamic class-
loading and Java’s dynamic dispatch of most method invocations.
In general, new classes can be loaded at any time, and if a new
class overrides an existing method, this can invalidate assumptions
about which method implementations can be invoked at particular
call sites. This in turn may invalidate the results of the analysis, and
may require discarding machine code that was optimized using that
analysis. The overhead in complexity and in performance is such
that (except for inlining) most Java optimizations are done only at
the intraprocedural level.

Another technique for optimizing code which depends on prop-

erties which are stable but cannot be proven through intraproce-
dural analysis is to utilize speculative optimization. A speculative
optimization uses some heuristic to identify some property (such
as that a variable has some particular value or that a certain hot
branch will be taken) is likely to hold. It then specializes the code
under the assumption that the property holds, but also uses some
mechanism to revert to an unspecialized version when the property
does not hold. Würthinger et al.’s recent work with pattern-based
speculations for array bounds check elimination has shown that this
technique can achieve considerable speedups [19].

In this paper, we present a novel combination of verifiable anno-
tations and speculative optimization for bounds check elimination
This allows both the process of traditional static analysis as well as
finding beneficial speculations to be shifted to compile time, open-
ing a path to more complex speculation finding algorithms for JIT
compilers.

2. VERIFIABLE ANNOTATION FRAME-
WORK

Our approach is based on a verifiable boundscheck elimination
framework[18]. This framework uses linear inequality constraints
to encode the ranges of integer variables, which are more general
then the widely-used difference constraints (e.g. [2],[4],[19]), with-
out imposing a substantial cost in the code consumer. The ulti-
mate goal is then to derive constraints of the form 0 ≤ index and
index < a. length for an array access a[index], that is, that no out-
of-bounds exception will occur.

The following constraints are allowed in this framework:

linear inequality constraints assertions of linear inequalities in-
volving program variables, constants, and the lengths of ar-
rays

predicate constraints assertions that a particular boolean variable
is either true or false

predicated constraints assertion that a constraint will hold if a
particular predicate holds

Proofs of certain constraints, e.g. the redundancy of a bounds
check, are gained by combining program constraints. There are
two primitive constraint combinators:

+ (addition) takes two inequalities and combines them by a adding
them together to produce a new linear equality

MP (Modus Ponens) takes a predicated constraint, and the predi-
cate on which the constraint is predicated, and yields an un-
predicted constraint.

2.1 Integer overflow/underflow
Combining linear inequality constraints relies on properties which

hold for standard arithmetic in Z. The Java programming lan-
guage’s primitive integer type (int) cannot represent any number
in the integer domain, but is instead, restricted to integers that can
be stored into a 32-bit word using 2’s complement representation.
When integer arithmetic operations result in a value less than −231

(referred to as MIN) or more than 231 − 1 (referred to as MAX), the
computation “wraps around” so that only the least significant 32-
bits are retained.

This difference between the mathematical domain of integers (Z)
and Java’s primitive int type needs to be taken to account during
integer range analysis to ensure the soundness of the array bounds
check elimination. Therefore, linear inequality constraints must be
expressed in the domain of integer numbers. But linear inequality

Inequalities
1© 0 ≤ 0
2© −1 ≤ 0
3© [[a.length]]−MAX ≤ 0
4© −[[a.length]] ≤ 0
5© [[x]]−MAX ≤ 0
6© −[[x]]+MIN ≤ 0

x is a Java variable of type int
a is a Java variable referencing an array

Table 1: Axiomatic Linear Inequalities

constraints that would seem to fall out naturally from source code
statements may not hold when constraints among 2’s complement
variables are expressed as inequalities of variables in Z. For exam-
ple, consider the proposition that the Java statement, x = y + z,
implies that −[[x]]+ [[y]]+ [[z]] ≤ 0 (where [[x]] denotes the value
in Z of the Java variable x). This proposition will not hold if y + z
overflows.

2.2 Valid constraints
Except for a handful of universally valid axiomatic constraints

(see Table 1), a constraint cannot be considered valid unless an
annotation claims it to be true. These claims must match one of the
claim rules listed in Tables 2 and 3. These may be categorized as:

• the claim that a bounds check is unnecessary (Rule (0) in
Table 2)

• a linear inequality constraint anchored to a particular integer
or array operation (Rules (1)-(14) in Table 2)

• a constraint that is anchored to the join node in the control
flow graph (Rule (15) in Table 2)

• a predicate constraint anchored to an out-going control flow
graph edge of a conditional branch instruction (Rules (16)-
(17) in Table 3)

• a predicated linear inequalities constraint anchored to an in-
teger comparison operation (Rules (18)-(29) in Table 3)

• a predicated predicate anchored to a boolean logic operation
(Rules (30)-(33) in Table 3)

With the exception of rule (15), the constraints are dictated by the
rule and the instruction to which it is attached. The validity of a
claim depends only on the semantics of the instruction to which
the claim is anchored and the satisfaction of any proof obligations
included in the claim rule. If the proof obligations are discharged,
then the claim is guaranteed to be valid in the region dominated by
that claim’s anchor.

All proof obligations, except for the ones associated with (15),
must be proven using only those constraints that have been claimed
to be valid at a program point that dominates the claim which the
proof obligation is associated with.

2.3 Merging Constraints at Join nodes
In order to simplify tracking the validity of constraints, our ver-

ification system assumes programs are in static single assignment
form (SSA) such as SafeTSA [1].Rule (15), which is associated
with join nodes (i.e., nodes in the control flow graph that have more
than one predecessor and may contain φ -functions), requires some
explanation. This claim rule is a consequence of the instructions
being in SSA form, and exists to allow constraints that are valid in

Instruction Form Rule Claim Proof Obligations

Arrays
a[i] (0) access within bounds [[i]]− [[a.length]]+1 ≤ 0

−[[i]] ≤ 0

x = a.length (1) [[x]]− [[a.length]] ≤ 0 —
(2) −[[x]]+ [[a.length]] ≤ 0

a = new C[x] (3) [[x]]− [[a.length]] ≤ 0 —
(4) −[[x]]+ [[a.length]] ≤ 0

a[i] (5) [[i]]− [[a.length]]+1 ≤ 0 —
(6) −[[i]] ≤ 0

Algebraic
x = y (7) [[x]]− [[y]] ≤ 0 —

(8) −[[x]]+ [[y]] ≤ 0

x = y + z (9) [[x]]− [[y]]− [[z]] ≤ 0 −[[y]]− [[z]]+MIN ≤ 0
(10) −[[x]]+ [[y]]+ [[z]] ≤ 0 [[y]]+ [[z]]−MAX ≤ 0

x = y - z (11) [[x]]− [[y]]+ [[z]] ≤ 0 −[[y]]+ [[z]]+MIN ≤ 0
(12) −[[x]]+ [[y]]− [[z]] ≤ 0 [[y]]− [[z]]−MAX ≤ 0

x = c * y (13) [[x]]− c[[y]] ≤ 0 −c[[y]]+MIN ≤ 0
(14) −[[x]]+ c[[y]] ≤ 0 c[[y]]−MAX ≤ 0

φ -functions
x1 = φ(x0,x2) (15) c[[x1]]+ . . . ≤ 0 c[[x0]]+ . . . ≤ 0 *

c[[x2]]+ . . . ≤ 0
Where x, y, and z are Java variables of type int, a is a Java variable containing an array reference, and c is an integer constant
* proof obligation is based on the claimed constraint and all of the φ -functions in the join node. See Section 2.3 for details.

Table 2: Claim Rules for Linear Inequality Constraints

Instruction Form Rule Claimed Constraint

Conditional Branches
if b goto . . . [branch taken] (16) b
if b goto . . . [not taken] (17) ¬b

Predicated Inequalities
b = x == y (18) b ⇒ [[x]]− [[y]]+0 ≤ 0

(19) b ⇒−[[x]]+ [[y]]+0 ≤ 0

b = x != y (20) ¬b ⇒ [[x]]− [[y]]+0 ≤ 0
(21) ¬b ⇒−[[x]]+ [[y]]+0 ≤ 0

b = x <= y (22) b ⇒ [[x]]− [[y]]+0 ≤ 0
(23) ¬b ⇒−[[x]]+ [[y]]+1 ≤ 0

b = x < y (24) b ⇒ [[x]]− [[y]]+1 ≤ 0
(25) ¬b ⇒−[[x]]+ [[y]]+0 ≤ 0

b = x >= y (26) b ⇒−[[x]]+ [[y]]+0 ≤ 0
(27) ¬b ⇒ [[x]]− [[y]]+1 ≤ 0

b = x > y (28) b ⇒−[[x]]+ [[y]]+1 ≤ 0
(29) ¬b ⇒ [[x]]− [[y]]+0 ≤ 0

b = c & d (30) b ⇒ c
(31) b ⇒ d

b = c | d (32) c ⇒ b
(33) d ⇒ b

Table 3: Claim Rules for Conditional Branches & Predicated
Inequalities

all of the join node’s predecessors to the program region dominated
by the join node, even though the join node may not be dominated
by any of the join node’s predecessors. This can be used to annotate
loop invariants, but can also be used to show that some constraint
holds after an if statement because it holds at the end of the then
part of the if statement and at the end of the else part of the if state-
ment.

Rule (15) is unique in a few ways. First, the claim is anchored to
a join node as a whole rather than to any individual φ -function con-
tained inside of it. Second, the constraint being claimed can be any
constraint (which must be described completely in the annotation)
as long as the required proof obligations are discharged. Third, one
proof obligation is anchored to each of the join node’s predecessors
and can only use the claims which are valid at the branch instruc-
tion in that predecessor. Fourth, the proof obligations are obtained
by taking the claimed constraint and substituting, for each occur-
rence of variables which are on the left-hand side of φ -functions in
the join node, the variable on the right-hand side of that φ -function
that is associated with that proof obligation’s anchor.

Note that in the case of loops this does not create circular proofs.
The rules above result in proofs by induction. There is one obli-
gation that is bound to the initial value of the φ -function. This
obligation’s proof cannot use the claim itself since the φ does not
dominate this predecessor. It constitutes the base case of the induc-
tion. The other obligation is bound to the end of the loop and thus
describes the induction step. It is legal to use the induction claim,
and thus the φ ’s claim, here.

Instructions Rule Claims Obligations

1 Init:
2 sum0 ← 0
3 i0 ← 0 (8) A© −i0 −0 ≤ 0

4 Loop: (15) B© −i1 ≤ 0 1 −i0 ≤ 0, 2 −i2 ≤ 0
5 sum1 ← φ(sum0,sum1)
6 i1 ← φ(i0, i2)

7 t0 ← a0 . length (7) C© t0 −a0 . length ≤ 0
8 t1 ← i1 < t0 (24) D© t1 ⇒ i1 − t0 +1 ≤ 0
9 if t1 then goto Body

else goto Done

10 Body: (16) E© t1
11 t2 ← load a0[i1] (0) within bounds 3 −i1 ≤ 0

4 i1 −a0 . length +1 ≤ 0
12 sum2 ← sum1 + t2
13 i2 ← i1 +1 (10) F© −i2 + i1 +1 ≤ 0 5 i1 +1−MAX ≤ 0
14 repeat Loop

15 Done:

Figure 1: Claims and Proof Obligations for an Idiomatic For Loop

1 −i0 ≤ 0
anchored at end of Init

∵ A©

2 −i2 ≤ 0
anchored at end of Body

∵ −i2 + i1 +1 ≤ 0 F©
+ −i1 ≤ 0 B©

−i2 +1 ≤ 0
+ −1 ≤ 0 2©

−i2 ≤ 0

3 −i1 ≤ 0
∵ B©

4 i1 −a0 . length +1 ≤ 0

∵ t1 ⇒ i1 − t0 +1 ≤ 0 D©
MP t1 E©

i1 − t0 +1 ≤ 0
+ t0 −a0 . length ≤ 0 C©

i1 −a0 . length +1 ≤ 0

5 i1 +1−MAX ≤ 0

∵ t1 ⇒ i1 − t0 +1 ≤ 0 D©
MP t1 E©

i1 − t0 +1 ≤ 0
+ t0 −a0 . length ≤ 0 C©

i1 −a0 . length +1 ≤ 0
+ a0 . length −MAX ≤ 0 3©

i1 +1−MAX ≤ 0

Figure 2: Proofs for the Claims in the Idiomatic Loop

2.4 An Example: an Idiomatic Java Loop
Consider the Java function:

void f(int a[]) {

int sum = 0;

for (int i = 0; i < a.length; i++)

sum = sum + a[i];

}

Since the loop variable i is monotonically increasing, with an initial
value of 0 and a maximum value one less than a.length, the value
i should range from 0 to a.length−1, so the access a[i] should
never cause bounds check exception.

Figures 1 and 2 show how our annotation scheme can be used
to prove this fact. The first column of Figure 1 shows the function
body translated into SSA form. (This example is arranged such
that each instruction is dominated by all of the instructions above
it, so each claim is valid from its appearance down.) The second
column indicates the claim rule being used. The third column lists
the constraint being claimed with that rule, and the final column

indicates the proof obligations resulting from that claim. Figure 2
shows the proof used to fulfill those proof obligations.

It is important to note, however, that not all of this information
needs to be explicitly transmitted. Each annotation needs to indi-
cate the claim rule, but once this is indicated, except for the con-
straint for B©, the actual constraints can be derived from just the
instruction and the claim rule. Similarly none of the proof obliga-
tions need to be included in the annotation, since they are derived
from the instruction and the claim rule, and the proofs only need to
include the constraints they are using by reference.

2.5 Verifying Annotations
Verification of these linear constraint annotations is straight for-

ward. The system merely requires a pre-order traversal of the pro-
gram’s dominator tree, during which a list of active claims is main-
tained. When an annotation is encountered, the claim rule is checked
against the instruction it is anchored to. If the type of instruction
does not match the claim rule, if the referenced claims are not in
the active list, or if the referenced claims do not match the kinds

of constraints required by a combinator, then the annotation will be
rejected. Otherwise, the proofs are checked by loading referenced
claims from the active list, applying the indicated combinators, and
computing a resulting proof. If this discharges the proof obligation
for that claim, then the claim is added to the active list until it no
longer dominates the current node (claims are added and removed
from the active list in LIFO order).

3. SPECULATIVE OPTIMIZATION
Classical static bounds check analysis can be severely hindered

by programming patterns that hide dependencies between program
variables. An example of this is:

void f(int n, int a[]) {

for (int i = 0; i < n; i++)

a[i] = a[i] + 1;

}

void g(int a[]) {

f(a.length , a);

}

In the context of method f there is no relation between n and a.length,
which results in any system not being able to safely remove the
bounds checks.

If g is the only method calling f, interprocedural analysis will
show that there is a relation between the method parameters, thus
allowing the removal of the bounds checks. But since the Java Vir-
tual Machine supports dynamic class-loading, this may change at
any time. Thus ensuring the validity of the analysis needs addi-
tional overhead of the VM.

Inlining the method f into g will also expose the dependency, but
has the same problem with dynamic class-loading as interprocedu-
ral analysis. The optimizer has to ensure that the correct method
gets inlined into g, which may change upon loading new classes.

Specialization is a technique that does not rely on the context a
method is called in. Instead, the specializer assumes certain prop-
erties of the program state at certain points in the method and may
then optimize the code accordingly. This can result in a set of ver-
sions of a method body or smaller code fragments, all optimized for
different assumptions. The specializer then inserts dispatch code to
choose at runtime which version to run.

Since the properties the specializer assumes are not necessarily
based on any other analysis, we call them speculation in our frame-
work, the resulting optimized bounds check removal speculative
optimization.

Speculations form a third group of annotations beside basic rules
and axioms in our framework. They can be anchored to any loca-
tion in a program and claim an arbitrary linear inequality over the
SSA variables arising from the source. This is only valid if those
sources are defined at the point of usage, that is their definition
dominates that location. It is adequate to anchor speculations to
instructions and define that they are valid immediately before that
location.

Furthermore speculations have to be proven dynamically by in-
serting checks into the program code. While a scheduling algo-
rithm might be used at JIT compile-time to find a good placement
of those checks, it is simpler and more efficient to use the anchor
of the speculations. This way the scheduling can be performed
while annotating the program, shifting this work to producer-side
compile-time.

With this embedding in the verification framework, speculations
can be referenced in proofs just like any other axiom, avoiding un-
necessary complexity of the architecture.

4. SPECULATION FRAMEWORK
The extension of the verification framework allows speculations

to be used in the verification. The implementation is split between
code producer and code consumer side. On the producer side, the
annotation generator of the verification framework has to be ex-
tended to create speculations and make them available for proofs.
We call this component analyzer from here on. On the consumer
side, the verifier has to be extended to allow speculations in proofs.
Furthermore a component has to be added that injects the necessary
runtime checks into the program code and creates unoptimized fall-
back versions. We call this component specializer from here on.

Separating the components has several advantages. It allows to
change each if necessary or better technology becomes available.
Furthermore the specializer can work on the consumer side. This
results in significant size benefits of the mobile code, since special-
ization will take place after transmission. With approriate runtime
support, it is possible to avoid code duplication altogether (e.g.,
[19]).

The task of the analyzer is to incorporate the possibilities of spec-
ulative optimizations, that is finding good speculations. A gen-
eral assumption in finding speculative constraints should be that a
normal program runs without bounds check exceptions (that is no
out-of-bounds array access is attempted in a safe program). Given
this definition, the safety constraints of an index of an array access
could be used directly as a speculation, albeit a rather nonsensical
one. If we simply replace the bounds checks with its safety con-
straints, nothing is gained since the runtime system has to ensure
the speculation by inserting checks again. There are two obvious
ways out of this dilemma. One could make use of one speculation
in multiple bounds checks, or ensure that a speculation for a certain
bounds check would be checked less often than the bounds check
itself. An example of the latter occurs if the speculation can be
moved through loop-invariant code motion.

This approach can be implemented by a two-stage process. The
first stage analyzes every bounds check for itself, trying to find the
best speculation to remove that check. The second stage then con-
solidates the found speculations and proofs, using heuristics to re-
move those that do not seem to be beneficial.

4.1 Patterns
Our analyzer uses code patterns to find good speculations in the

first stage, which cover a range of common program constructs.
Note that for simplicity examples in the following paragraphs are
given in high-level code, while the framework itself uses SSA form.
Loop-invariant bounds checks Consider the following code
fragment derived from the example in section 2:

void f(int a[], int x) {

int sum = 0;

for (int i = 0; i < x; i++)

sum = sum + a[i];

}

In this code, neither the array a nor the upper bound x are changed
during the execution of the loop. They are loop-invariant. The
lower bounds check can be statically proven redundant. The in-
dex is a phi function, so both control flows that reach it have to be
proven separately. The first one, coming from before the loop, is
trivial. The second one requires that [[i]]+1≥ 0. With our assump-
tion of [[i]] ≥ 0, this is true. It can also be shown that there will be
no overflow. When i+1 gets computed, it is known that i<x (rules
(16) and (24)) and x≤MAX (axiom 5©), which can be combined to
yield i+1 ≤MAX, which is the obligation for no overflow.

There is no similar proof for the upper bounds check. All that

Instructions Rule Claims Obligations

1 Init:
speculation α© x−a0 . length ≤ 0 runtime check

2 sum0 ← 0
3 i0 ← 0 (8) B© −i0 −0 ≤ 0

4 Loop: (15) C© −i1 ≤ 0 1 −i0 ≤ 0, 2 −i2 ≤ 0
5 sum1 ← φ(sum0,sum1)
6 i1 ← φ(i0, i2)

7 t0 ← i1 < x (24) D© t0 ⇒ i1 − x+1 ≤ 0
8 if t0 then goto Body

else goto Done

9 Body: (16) E© t0
10 t1 ← load a0[i1] (0) within bounds 3 −i1 ≤ 0

4 i1 −a0 . length +1 ≤ 0
11 sum2 ← sum1 + t2
12 i2 ← i1 +1 (10) F© −i2 + i1 +1 ≤ 0 5 i1 +1−MAX ≤ 0
13 repeat Loop

14 Done:

Figure 3: Claims and Proof Obligations for an Extended Idiomatic For Loop

1 −i0 ≤ 0
anchored at end of Init

∵ B©

2 −i2 ≤ 0
anchored at end of Body

∵ −i2 + i1 +1 ≤ 0 F©
+ −i1 ≤ 0 C©

−i2 +1 ≤ 0
+ −1 ≤ 0 2©

−i2 ≤ 0

3 −i1 ≤ 0
∵ C©

4 i1 −a0 . length +1 ≤ 0

∵ t1 ⇒ i1 − x+1 ≤ 0 D©
MP t1 E©

i1 − x+1 ≤ 0
+ x−a0 . length ≤ 0 α©

i1 −a0 . length +1 ≤ 0

5 i1 +1−MAX ≤ 0

∵ t1 ⇒ i1 − x+1 ≤ 0 D©
MP t1 E©

i1 − x+1 ≤ 0
+ x−MAX ≤ 0 3©

i1 +1−MAX ≤ 0

Figure 4: Proofs for the Claims in the Extended Idiomatic Loop

can be derived is that i<x at the location of the array access. The
bounds check is thus not fully redundant and cannot be removed
directly. Since neither the array a nor the upper bound x change
during the loop, the upper bounds check is partially redundant. It
can be moved before the loop, where it only gets executed once.
Therefore the speculation will be x≤a.length, anchored at a point
before the loop where both x and a dominate it. The SSA code and
these proofs are shown in figures 3 and 4.

Care has to be taken to account for the precise exception seman-
tics of Java. All exceptions have to be reported faithfully (that is,
leaving the same program state as an unoptimized version). If in the
above example the loop would be executed n times before throwing
an exception, the optimized code has to behave exactly the same.
Thus it is not valid to throw an exception before the loop. In our
system the specializer takes care of those semantics.

While this simple pattern already applies to a significant number
of loops, it can be generalized to apply to more. The general linear
inequality constraints of the verification framework are allowing us
to potentially annotate loops where the initial value, condition and
array index are extended to linear expressions. Note however that

in such cases, one speculation will not suffice anymore. To prove
that there will be no overflow, further speculations on the values of
the variables in the expressions might be necessary. Since the valid
combinations of the values with no overflow form a rather large
set, the analyzer will have to guess reasonable values, for example
guessing that the values are bigger or equal to zero. These specula-
tions are more arbitrary than the original speculation that there will
be no out-of-bounds array access, thus it is not clear how they im-
pact runtime performance. Furthermore, adding more speculations
means adding more runtime checks. If the loop is not executed
enough times, the gain might not offset the JIT compile time and
runtime check overhead. Thus it is reasonable to set an upper bound
for the complexity of the expressions in the loop. We found that re-
stricting the expressions so that the resulting speculations have at
most three variables is a good compromise that catches all signifi-
cant hot-path loops in our benchmarks without too much overhead.
Coterminous-array loops are an extended case of the above.
Consider the following Java method:

void f(int a[], int b[]) {

for (int i = 0; i < a.length; i++)

a[i]= a[i] + b[i];

}

In this code, it is quietly assumed that the array b is at least as long
as array a. So this is a reasonable speculation, which is enabled by
allowing array lengths in the speculations of loop-invariant bounds
checks. In the example above this results in a speculation of the
form a.length≤b.length.
Rectangular arrays Scientific algorithms often make use of
multi-dimensional arrays for data storage. A computation could
look like the following fragment.

void f(int a[][]) {

int n = a[0]. length

for(int i = 0; i<n; i++) {

b = a[i]

for(int j=0; j<n; j++)

b[j]...;

}

}

Many applications only use rectangular arrays, though Java allows
multi-dimensional arrays to have any form. That suggests that it
might be beneficial to speculate that any higher-dimensional array
is rectangular. Note however that this requires certain safeguards. If
the given array is non-local, concurrent modifications might occur
during the execution of the loop. The Java specification allows
to circumvent this in well-defined cases through load elimination,
which translates to creating a local copy of the outer array.

As a generalization of rectangular arrays, this system can also
be used to only establish a lower or upper bound on the length of
arrays. This broadens the applicability in cases of “jagged” arrays
that still allow safe bounds check removal, without added complex-
ity to the process.

It is noteworthy that the previous techniques described in the
first analyzer stage will probably already produce annotations for
some instances of rectangular arrays. Their speculations can only
be anchored after the sub-array has been retrieved. This forces the
runtime system to insert checks in the middle of the program code,
which might either increase code in the hot path or not be supported
at all. Thus rectangular array speculation involves a trade-off: in-
curring some overhead in copying the array, but allowing specula-
tion at the beginning of a method.

In our implementation, we focus on an array and its direct sub-
arrays. In that case, the first stage of the analyzer is augmented to
recognize the origin of an array. If it is another array, we mark that
one as possibly rectangular and add new constraints to our program
representation. These involve a new virtual variable that stands for
the lengths of all subarrays of the rectangular array as well as a vari-
able describing the actual length of the current subarray. With these
added constraints, the analyzer might be able to prove a bounds
check safe with or without further speculations. In either case, the
added constraints are generalized to form a statement over the pos-
sibly rectangular array and are added as speculations. A new rule
(34) is introduced to apply those speculations to a certain sub-array,
replacing the added constraints in proofs.

Applied to the example above, this yields the speculation va ≥
a.length, where va is the virtual variable describing the length of
sub-arrays of a.
Simple bounds checks For any bounds check that is not caught
by the previous techniques and cannot be proven statically, we can
introduce speculations that coincide with the safety requirements.
These speculations can then be anchored at the earliest point they

are valid, that is their variables are defined.
Note that this in itself does not make much sense since we trade

the bounds check for its two equivalent sub-checks, adding code
and JIT compile-time overhead. It might even trade one check for
two since lower and upper bounds check might be combined into
one instruction, e.g. using an unsigned comparison instead of two
signed ones.

4.2 Consolidation
After a whole method has been analyzed in the first stage, every

bounds check will either be statically proven or have a speculative
proof. The task of the second stage is to remove those speculative
proofs that are unlikely to have a beneficial effect on the runtime.
In addition, it combines and replaces speculations to reduce their
number and make them more precise.

The replacement follows a simple rule. If a proof uses a specu-
lation c1x1 + c2x2 + · · ·+ c0 ≤ 0, and there is another speculation
c1x1 + c2x2 + · · ·+ c′0 ≤ 0 with c′0 > c0, then replace the first one
with the second, since it can be combined with axiom 2© to prove
the first. If the new speculation does not dominate the anchor of
the proof, then move it up in the dominator tree until it does both
dominate its old position and the proof’s anchor. This ensures that
any produced proof stays valid when switching the speculations.
For an example consider the following code fragment:

a[0] = 0;

a[1] = 1;

a[2] = 2;

The first stage of the analyzer will, among others, create three spec-
ulations to prove the upper bounds checks. These speculations are
−a.length+1 ≤ 0, −a.length+2 ≤ 0 and −a.length+3 ≤ 0,
anchored before the first, second and third instruction respectively.
The above rule will consolidate these three speculations into the last
one, which has to be moved to the head of the fragment to cover all
three bounds checks.

A simple heuristic is used to approximate the runtime impact
of a speculation. For every speculation, all bounds checks proofs
that depend on that speculation are gathered. If a speculation is
used to prove a bounds check inside a loop, but is anchored itself
outside the loop, we optimistically assume that it is beneficial. But
if instead a speculation is only used in proofs of bounds check of
the same nesting depth, we require it to be used in at least three such
proofs. This is based on the assumption that a normal bounds check
is implemented as one unsigned comparison in a virtual machine.
Since there might be two speculations needed to prove upper and
lower bounds checks, the speculations can become beneficial with
three bounds checks.

4.3 Runtime dispatch
As mentioned in the previous sections, speculation can poten-

tially change the program semantics. If exceptions are thrown im-
mediately when a runtime check fails, it may violate Java’s precise
exception semantics. Specialization can be used to circumvent this
problem. By holding multiple versions of the fragment under the
control of the speculation, at least one optimized and one unopti-
mized, the correct semantics can be ensured by choosing the right
fragment at runtime. If no out-of-bounds access will happen as
indicated by all speculations holding, choose the fully optimized
version. Otherwise fall back to the unoptimized code, which will
throw exceptions at the right point. Note that it is possible to choose
between more than two fragments, which can be necessary with
overlapping speculation ranges.

LUFact Crypt Heapsort Series SOR SMM
0

20

40

60

80

100

Base

Spec

Spec w/LE

(a) Static Percentage
LUFact Crypt Heapsort Series SOR SMM

0

20

40

60

80

100

Base

Spec

Spec w/LE

(b) Dynamic Percentage

Figure 5: Eliminated Bounds Checks

5. IMPLEMENTATION AND RESULTS
To create a prototype mixed annotation & verification environ-

ment, we used our Verifiable Bounds Check Elimination (VBCE)
system[18], which is implemented as an annotation generator and
annotation verifier within the SafeTSA system. The SafeTSA sys-
tem is based on Jikes RVM 2.2.0. The static component of the
annotation generator creates proofs using a novel Constraint Anal-
ysis System (CAS)[14]. This generator was extended to generate
speculations in case the CAS was not able to prove a bounds check
redundant statically. The implementation followed the patterns and
algorithms outlined in the previous section.

The baseline verifier of VBCE was extended to allow specula-
tive constraints in proofs. Our current implementation is limited to
a simple form of method versioning with only two version of the
method. Every speculation that does not fit this restriction is dis-
carded. This is due to limitations in the JikesRVM platform which
makes speculating at other points overly complex.

Both analyzer and specializer support load elimination and code
motion in conformance with the Java concurrency and precise ex-
ception semantics rules [6]. This allows to keep some of the spec-
ulations that would otherwise have to be discarded.

We evaluated our prototype system using section two of the Java
Grande Forum benchmarks [3]. These benchmarks were compiled
into SafeTSA and optimized using common subexpression elimi-
nation, which eliminates duplicate bounds checks using SafeTSA’s
safe-element-reference type [1].This version of each class is used
as the baseline for the evaluation.

All of the experiments were conducted on a 1.5GHz G4 Pow-
erMac with 1GB of RAM running a Linux 2.6.15 kernel. All tim-
ing measurements were made by repeatedly running the benchmark
program in a fresh virtual machine at least 200 times. The first
fifty runs were discarded and the mean of the subsequent runs is
reported.

5.1 Eliminated Bounds Checks
The number of removed bounds checks is an important metric

when comparing bounds check elimination algorithms. We ex-
tracted the static number of bounds checks in the benchmark code
and compare it to the number of removed bounds check. The four
different methods shown in figure 5(a) are Baseline bounds check

elimination with CAS (Base), Speculative Optimization on top of
baseline (Spec) and Speculative Optimization on top of baseline
with load elimination and code motion (Spec w/ LE).

In all cases the number of eliminated bounds checks increases
significantly when activating speculation. Note that Crypt, Series
and Heapsort have to use Load Elimination to remove any bounds
checks. Also note that the number of removed bounds checks that
our annotator generates proofs for is somewhat higher. As men-
tioned above, unsupported speculations get rejected by the special-
izer.

As a second set of results we extracted the dynamic number
of bounds check executed. The program code is extended to in-
crement a counter before every bounds check instruction. Fur-
thermore, every check for a speculation is counted as one bounds
check, except rectangular array speculations. These count as as
many bounds checks as length checks for sub-arrays have to be
performed. We used those numbers to compute the percentage of
dynamic bounds checks removed and present the results in figure
5(b).

The results differ from the static count. In most cases, they indi-
cate that our speculations captured most of the frequently executed
bounds checks. Exceptions are Crypt and Heapsort, where most of
the removed bounds checks are outside the hot path. In the case of
Crypt, most of the speculations that the annotator produced were
incompatible with the specializer and had to be rejected. Heapsort
exhibits complex index arithmetics in its hot methods, which could
not be successfully analyzed yet.

5.2 JIT Compile-time
The overhead of the verification stage to the JIT compile pro-

cess can usually be neglected. Our experiments show that verifi-
cation and program modification takes up less than four percent of
the whole JIT compile time in all benchmarks, with an average of
2.1%.

5.3 Runtime Impact
The resulting speedup of array bounds check elimination de-

pends on the type and programming style of application. If the
annotator is able to find proofs for bounds checks in hot program
paths, the elimination of bounds checks can be very effective, given

LUFact Crypt Heapsort Series SOR SMM
0

5

10

15

20

Spec w/LE

Full removal

Figure 6: Speedup in percent

that the verifier supports the speculations.
Executing the code without any bounds checks gives an upper

bound of the achievable speedup through bounds check elimina-
tion. Therefore we compare the speedup achieved by our frame-
work with this value to examine the efficiency of our implementa-
tion. Note however, that simply removing all bounds checks does
not conform to the Java Language Specification, and can produce
unsafe code. A program could freely access memory in the absence
of ArrayOutOfBoundsExceptions by accessing an array with an
out-of-bounds index. The benchmarks examined do not exhibit this
behaviour, since all array accesses are within the correct bounds, so
are not affected. The resulting speedups are reported in figure 6.

In the cases of LUFact and SOR, where the execution of bounds
checks takes up a considerable amount of execution time and the
benchmarks enable speculations, our framework is able to approach
the theoretically maximum speedup, as indicated by the removal of
88.4% and 99% of the dynamic bounds check overhead.

Crypt shows that even a significant number of static removed
bounds checks does not ensure a resulting speedup, as previously
indicated by the dynamic bounds count. A more complex special-
izer is necessary to achieve significant speedups here.

The Series benchmark displays a rather strange behaviour. While
we are able to eliminate nearly all bounds checks, the performance
of the benchmark does not improve significantly. In this case, the
main factor of the execution time is actually numerical computa-
tion, not the array access. This means that bounds check removal
is never able to improve performance much, as indicated by the
equally low speedup when bounds check are fully removed.

6. RELATED WORK
The concept of annotating programs with proofs of various prop-

erties, including safety of bounds checks, that could then be verified
was explored as part of Proof-Carrying Code [12], which uses first-
order logic. Our framework is more limited: array bounds checks
rather than program type safety, and linear constraints of integers
rather than first order logic. The tighter focus makes our approach
a direct replacement for runtime array bounds-check elimination,
as well as should result in shorter, simpler proofs, and faster veri-
fication times than those based on a complete proof carrying code
framework.

Program specialization is a well-studied topic [17, and refer-

ences therein]. DyC [7] and others use annotations to guide the
specialization process, but rely on programmers to annotate source
files. Calpa [10] automates this by profiling a representative in-
put. A key difference from our work is their reliance on constant
values, whereas our system speculates on relationships among pro-
gram variables and symbolic constants, helping in the removal of
array bounds checks.

There have been several works addressing the array bounds check
problems in Java. Moreira et al. [11] used heavy-weight loop-based
transformations and optimizations to optimize bounds checks in
scientific applications; their goal was a traditional static compiler
for Java programs, so their approach does not support just-in-time
compilation and is not a general solution to the Java bounds check
problem.

The ABCD algorithm [2] provides global bounds check elimi-
nation based on extended-SSA form and difference constraints, it
is quite efficient but has some limitations since it can only obtain
difference constraints that can be overlayed onto the SSA graph.
Menon et al. [9] extended the ABCD algorithm to produce opti-
mized programs augmented with verifiable proof variables, but the
verifier would be required to make judgements about facts using
integer linear programming instead of checking an explicit proof.

Qian et al. [15] use an iterative dataflow analysis based on differ-
ence constraints to annotate bytecode with an indication of which
bounds checks are unnecessary, but no mechanism is provided to
verify that these annotations are correct. Chen and Kandemir [4]
describe a method for annotating the fixed point of an iterative data-
flow analysis of integer variable ranges which can then be verified
using a single iteration of the same algorithm, but their constraints
are limited to a subset of difference constraints.

Würthinger et al. [19] have developed a bounds check elimina-
tion for use in the HotSpot JIT compiler, which similarly identifies
simple patterns in the source code. Additionally it uses speculation
in a similar manner to our approach by recognizing patterns that
can be exploited. Their algorithm is intended as a runtime opti-
mization and thus less comprehensive then ours. It is only based on
difference constraints, which restricts the complexity of the analy-
sis. There are several bounds checks in our benchmarks that can be
eliminated with general linear constraints, but not with difference
constraints. Furthermore their pattern set is more restricted than our
current implementation. While our system can be easily extended
to include any new analysis to find speculations, Würthinger et al.’s
algorithm can only use light-weight techniques adapted for runtime
use.

The specialization component of their algorithm is implemented
by using the on-stack-replacement (OSR) capabilities of the HotSpot
compiler. A whole method is compiled in optimzed form only,
where speculation checks initiate de-optimization and fallback to
interpreted code on mis-speculation. This avoids costly replication
of code and allows speculations to be placed at any point. While our
framework in general allows any specialization system and could
thus work with OSR, our current implementation is not as power-
ful due to limitations of our version of JikesRVM.

The different virtual machines and specialization algorithms make
direct comparisons of the results difficult. The dynamic bounds
check removal counts are generally compareable in that they show
the algorithms able to eliminate most of the bounds checks in some
cases. We expect further work on our analyzer will set us apart in
those cases which don’t exhibit optimal behaviour yet. The result-
ing speedups after bounds check elimination differ, as a result of
the underlying platforms, but also show the same tendencies.

With the notable exceptions of the proof-carrying code frame-
work for the Special J compiler [5] and the work of Würthinger et

al., prior work, including the ABCD algorithm [2] and Chen and
Kandemir’s verification system [4], has generally not addressed in-
teger overflow as it exists in Java. The proof-carrying code frame-
work for Special J considers integer overflow as part of rules for
32-bit signed and unsigned comparisons, which can be used to cor-
rectly prove that incremented loop induction variables are within
array bounds [5], but appear to to be less general than the rules
(9)–(14) of our verification framework. Würthinger et al. use a
mixture of static analysis and runtime checks to address the over-
flow problem. This approach is similar to ours, in that our verifica-
tion framework will try to prove no-overflow statically, if possible,
falling back to speculations if necessary.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have described the combination of verifiable

annotations with speculation to facilitate bounds check elimination
for Java programs. These annotations can be produced by an anno-
tator using thorough static analysis and a speculative analyzer, and
then verified efficiently at runtime. Our speculations are based on
variable relationships and are enforced by a specializer at runtime.

Experimental results show that this approach is able to signifi-
cantly increase the number of eliminated bounds checks in several
cases, almost completely eliminating the bounds-check overhead in
the optimized programs.

In future work, we plan to implement more complex analyzers
like weakest precondition computation to exploit the ability to use
expensive algorithms at compile-time. We would also like to com-
pare and augment our speculative optimization with the use of in-
terprocedural analysis to guide the speculation-finding process.

8. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for

their constructive comments and suggestions that helped improve
the content and presentation of the paper. This research was sup-
ported in part by the Air Force Research Laboratory under grant
F30602-02-1-0001 and NSF under grants EIA-0117255 and CCF-
0702527.

9. REFERENCES
[1] W. Amme, N. Dalton, M. Franz, and J. von Ronne. SafeTSA:

A type safe and referentially secure mobile-code
representation based on static single assignment form. In
Proceedings of the Conference on Programming Language
Design and Implementation (PLDI’2001), volume 36, pages
137–147, June 2001.

[2] R. Bodík, R. Gupta, and V. Sarkar. Abcd: eliminating array
bounds checks on demand. In PLDI ’00: Proceedings of the
ACM SIGPLAN 2000 conference on Programming language
design and implementation, pages 321–333, 2000.

[3] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty, and
R. A. Davey. A benchmark suite for high performance Java.
Concurrency: Practice and Experience, 12(6):375–388, May
2000.

[4] G. Chen and M. Kandemir. Verifiable annotations for
embedded java environments. In CASES ’05: Proceedings of
the 2005 international conference on Compilers,
architectures and synthesis for embedded systems, pages
105–114, 2005.

[5] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, and
K. Cline. A certifying compiler for java. In PLDI ’00:
Proceedings of the ACM SIGPLAN 2000 conference on

Programming language design and implementation, pages
95–107, 2000.

[6] J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification. Addison-Wesley Professional, Boston, MA,
USA, 3 edition, 2005.

[7] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J.
Eggers. DyC: an expressive annotation-directed dynamic
compiler for C. Theoretical Computer Science,
248(1–2):147–199, 2000.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, second edition, 1999.

[9] V. S. Menon, N. Glew, B. R. Murphy, A. McCreight,
T. Shpeisman, A.-R. Adl-Tabatabai, and L. Petersen. A
verifiable ssa program representation for aggressive compiler
optimization. In POPL ’06: Conference record of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 397–408, 2006.

[10] M. Mock, C. Chambers, and S. J. Eggers. Calpa: a tool for
automating selective dynamic compilation. In International
Symposium on Microarchitecture, pages 291–302, 2000.

[11] J. E. Moreira, S. P. Midkiff, and M. Gupta. From flop to
megaflops: Java for technical computing. ACM Trans.
Program. Lang. Syst., 22(2):265–295, 2000.

[12] G. C. Necula. Proof-carrying code. In POPL ’97:
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 106–119,
1997.

[13] T. V. N. Nguyen and F. Irigoin. Efficient and effective array
bound checking. ACM Trans. Program. Lang. Syst.,
27(3):527–570, 2005.

[14] D. Niedzielski, A. Gampe, J. von Ronne, and K. Psarris. A
verifiable, control flow aware constraint analyzer for bounds
check elimination. Technical Report CS-TR-2008-009,
Computer Science, The University of Texas at San Antonio,
2008.

[15] F. Qian, L. J. Hendren, and C. Verbrugge. A comprehensive
approach to array bounds check elimination for java. In CC
’02: Proceedings of the 11th International Conference on
Compiler Construction, pages 325–342, London, UK, 2002.
Springer-Verlag.

[16] R. Rugina and M. C. Rinard. Symbolic bounds analysis of
pointers, array indices, and accessed memory regions. ACM
Trans. Program. Lang. Syst., 27(2):185–235, 2005.

[17] A. Shankar, S. S. Sastry, R. Bodík, and J. E. Smith. Runtime
specialization with optimistic heap analysis. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oriented programming, systems,
languages, and applications, pages 327–343, 2005.

[18] J. von Ronne, A. Gampe, D. Niedzielski, and K. Psarris. Safe
bounds check annotations. Concurrency and Computation:
Practice and Experience, (to appear).

[19] T. Würthinger, C. Wimmer, and H. Mössenböck. Array
bounds check elimination for the java hotspot client
compiler. In PPPJ ’07: Proceedings of the 5th international
symposium on Principles and practice of programming in
Java, pages 125–133, New York, NY, USA, 2007. ACM.

[20] J. Zhao, I. Rogers, C. Kirkham, and I. Watson. Loop
parallelisation for the jikes rvm. In Proceedings of the Sixth
International Conference on Parallel and Distributed
Computing (PDCAT’05), pages 35–39. IEEE Computer
Society, 2005.

