
Static Analysis and Software Verification
Introduction

c©Nga Nguyen

2/54

Software Bugs
Verification and Validation Methods

Static Analysis

1 Software Bugs
Classical Scientific Bugs
Memory-related Bugs

2 Verification and Validation Methods

3 Static Analysis
Abstract Interpretation
Program Flow Analysis

c©Nga Nguyen Static Analysis and Software Verification Introduction

3/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Integer Operations

Factorial program
#include <stdio.h>
int fact(int n) {

int r, i;
r = 1;
for (i=2; i<=n; i++) {

r = r*i;
}
return r;

}
int main() {

int n;
scanf("%d", &n);
printf("%d ! = %d",n,fact(n));

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

4/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Integer Operations
Factorial program
% gcc fact.c -o fact.exe
% ./fact.exe
4
4 ! = 24
% ./fact.exe
100
100 ! = 0
% ./fact.exe
20
20 ! = -2102132736

Questions :
fact(-1) ?
Different results with respect to programming languages ?

c©Nga Nguyen Static Analysis and Software Verification Introduction

5/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Floating-point Operations

Example with rounding error (1)
#include <stdio.h>
int main() {

double x, a;
float y, z;
x = 1125899973951488.0;
a = 1.0;
y = x + a;
z = x - a;
printf("%f", y-z);

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

6/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Floating-point Operations

Example with rounding error (1)
% gcc arrondi1.c -o arrondi1.exe
% ./arrondi1.exe
134217728.000000

c©Nga Nguyen Static Analysis and Software Verification Introduction

7/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Floating-point Operations

Example with rounding error (2)
#include <stdio.h>
int main() {

double x, a;
float y, z;
x = 1125899973951487.0;
a = 1.0;
y = x + a;
z = x - a;
printf("%f", y-z);

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

8/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Classical Bugs with Floating-point Operations

Example with rounding error (2)
% gcc arrondi2.c -o arrondi2.exe
% ./arrondi2.exe
0.000000

c©Nga Nguyen Static Analysis and Software Verification Introduction

9/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Some Arithmetic Precision Errors

Ariane 5’s failure : data conversion from a 64-bit
floating point to 16-bit signed integer value caused an
arithmetic overflow.
Patriot’s failure : software error in the system’s clock
((0, 1)10 = (0, 00011001100110011...)2).

c©Nga Nguyen Static Analysis and Software Verification Introduction

10/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Some Arithmetic Precision Errors

Excel 2007 bug : 77,1 x 850 = 65535 but 100000 is
displayed (round-off error while converting IEEE 754
64-bit floating point to Unicode string)
Yorktown bug : division by zero

c©Nga Nguyen Static Analysis and Software Verification Introduction

11/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Common Memory-related Bugs in C Programs
(Computer Systems : A Programmer’s Perspective,
Bryant and O’Hallaron)

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory
Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks
Failing to free blocks
Buffer overflow

c©Nga Nguyen Static Analysis and Software Verification Introduction

12/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Dereferencing Bad Pointers

The classic scanf bug
int val;

...

scanf("%d", val);

Will cause scanf to interpret contents of val as an address !
Best case : program terminates immediately due to
segmentation fault
Worst case : contents of val correspond to some valid
read/write area of virtual memory, causing scanf to
overwrite that memory, with disastrous and baffling
consequences much later in program execution

c©Nga Nguyen Static Analysis and Software Verification Introduction

13/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Reading Uninitialized Memory

Assuming that heap data is initialized to zero
/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = (int *)malloc(N * sizeof(int));
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

y[i] += A[i][j] * x[j];
}

}
return y;

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

14/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Overwriting Memory

Allocating the (possibly) wrong sized object
int **p;

p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

15/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Overwriting Memory

Off-by-one error
int **p;

p = (int *)malloc(N * sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

16/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Overwriting Memory

Misunderstanding pointer arithmetic
int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

c©Nga Nguyen Static Analysis and Software Verification Introduction

17/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Overwriting Memory

Referencing a pointer instead of the object it points to
int *getPacket(int **packets, int *size) {

int *packet = packets[0];
packets[0] = packets[*size - 1];
*size--;
reorderPackets(packets, *size);
return(packet);

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

18/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Overwriting Memory

Referencing a pointer instead of the object it points to
int *getPacket(int **packets, int *size) {

int *packet = packets[0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets(packets, *size);
return(packet);

}

−− and * operators have same precedence and associate
from right-to-left, so −− happens first !
gcc will raise a warning for this line of code only if -Wall
is used (value computed is not used [-Wunused-value])

c©Nga Nguyen Static Analysis and Software Verification Introduction

19/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Referencing Nonexistent Variables

Forgetting that local variables disappear when a function
returns
int *foo () {

int val;

return &val;
}

c©Nga Nguyen Static Analysis and Software Verification Introduction

20/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Freeing Blocks Multiple Times

Nasty !
x = (int *)malloc(N * sizeof(int));

<manipulate x>
free(x);
...

y = (int *)malloc(M * sizeof(int));
free(x);

<manipulate y>

c©Nga Nguyen Static Analysis and Software Verification Introduction

21/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Referencing Freed Blocks

Evil !
x = (int *)malloc(N * sizeof(int));

<manipulate x>
free(x);

...
y = (int *)malloc(M * sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

c©Nga Nguyen Static Analysis and Software Verification Introduction

22/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Failing to Free Blocks (Memory Leaks)

Slow, silent, long-term killer !
foo() {

int *x = (int *)malloc(N*sizeof(int));
...
return;

}

c©Nga Nguyen Static Analysis and Software Verification Introduction

23/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Failing to Free Blocks (Memory Leaks)
Freeing only part of a data structure
struct list {

int val;
struct list *next;

};

foo() {
struct list *head =

(struct list *)malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...

free(head);
return;

}
c©Nga Nguyen Static Analysis and Software Verification Introduction

24/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Buffer Overflow

Definition (wikipedia)
A buffer overflow (buffer overrun) is an anomaly where a
program, while writing data to a buffer, overruns the buffer’s
boundary and overwrites adjacent memory.

50% of software errors
erratic program behaviors : memory access errors,
incorrect results, crashes, security holes, ...
sources of problem in C, C++ : gets, strcpy, memcpy, ...

c©Nga Nguyen Static Analysis and Software Verification Introduction

25/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

c©Nga Nguyen Static Analysis and Software Verification Introduction

26/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Heartbleed is a security bug disclosed in April 2014 in the OpenSSL cryptography
library, which is a widely used implementation of the Transport Layer Security (TLS)
protocol. It results from improper input validation (due to a missing bounds check) in
the implementation of the TLS heartbeat extension, thus the bug’s name derives from
”heartbeat”. The vulnerability is classified as a buffer over-read, a situation where
software allows more data to be read than should be allowed.

c©Nga Nguyen Static Analysis and Software Verification Introduction

27/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

c©Nga Nguyen Static Analysis and Software Verification Introduction

28/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

c©Nga Nguyen Static Analysis and Software Verification Introduction

29/54

Software Bugs
Verification and Validation Methods

Static Analysis
Classical Scientific Bugs
Memory-related Bugs

Code Red Exploit Code, attack www.whitehouse.gov (denial of service attack)

c©Nga Nguyen Static Analysis and Software Verification Introduction

30/54

Software Bugs
Verification and Validation Methods

Static Analysis

Verification and Validation

c©Nga Nguyen Static Analysis and Software Verification Introduction

31/54

Software Bugs
Verification and Validation Methods

Static Analysis

Verification and Validation
Validation : Are we building the right system ?
Verification : Are we building the system right ?

Figure – www.easterbrook.ca/steve
c©Nga Nguyen Static Analysis and Software Verification Introduction

32/54

Software Bugs
Verification and Validation Methods

Static Analysis

Verification and Validation

Figure – Verification and Validation Toolbox
(www.easterbrook.ca/steve)

c©Nga Nguyen Static Analysis and Software Verification Introduction

33/54

Software Bugs
Verification and Validation Methods

Static Analysis

Why Verification and Validation ?

The most expensive bug : explosion of Ariane 5 (10 year
project costing 7$ billions)
Verification and validation are critical to guarantee
reliability, robustness and quality of software systems
But it is an expensive process : 80% of development cost
in safety-critical systems

c©Nga Nguyen Static Analysis and Software Verification Introduction

34/54

Software Bugs
Verification and Validation Methods

Static Analysis

Verification and Validation Methods

Software testing
development, validation, in-exhaustive verification

Theorem proving
mathematical foundations, human experts

Model checking
exhaustive enumeration, state explosion problem

Dynamic analysis
run-time checking

Static analysis

c©Nga Nguyen Static Analysis and Software Verification Introduction

35/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Static Analysis

Definition
Methods try to discover properties of a program without
running it :

Code optimization : improving time, space, energy ;
compilation for special architectures (multicore, ...)
Software and reverse engineering : program
comprehension, code review, documentation,
maintenance, ...
Verification and validation

c©Nga Nguyen Static Analysis and Software Verification Introduction

36/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Static Analysis

Verification and validation
Finding run-time errors at compilation-time
Proving the absence of errors in the source code, i.e the
program will :

never divide a number by zero
never dereference a NULL pointer
close all opened files, all opened socket connections
not allow buffer overflow security violation
...

c©Nga Nguyen Static Analysis and Software Verification Introduction

37/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Some Static Analysis Tools
CodeSonar (Grammatech) : C, C++, Java
PolySpace (MathWorks) : C, C++, Ada
Frama-C (CEA + INRIA) : C
CodePeer (AdaCore) : SPARK
Coverity : C, C++, Java, C#
Splint / LCLint (University of Virginia) : C ; PC-Lint
(Grimpel) : C, C++
Microsoft/analyze : C, C++ (Visual Studio)
Fortify (HP)
PVS-Studio : C, C++
Astree : C embedded and real-time systems
Clang Static Analyzer (LLVM) : C, C++, Objective-C
Java : programming rules, dead code, optimization
(Checkstyle, FindBugs, PMD, ...)

c©Nga Nguyen Static Analysis and Software Verification Introduction

38/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Polyspace Code Prover

Figure – Polyspace Coded Color
c©Nga Nguyen Static Analysis and Software Verification Introduction

39/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Static Analysis

Program analysis approaches
Abstract interpretation
Program flow analysis
...

c©Nga Nguyen Static Analysis and Software Verification Introduction

40/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Interpretation (P. and R. Cousot)

Abstraction theory :
concrete semantics of a program : undecidable (i.e
termination)

P = while termination(P) do skip od (K. Godel)

abstract semantics : safe approximations of program
semantics
safe approximations must be :

simple enough to be computable by computer
precise enough to avoid false alarms (errors do not
correspond to a real execution)
sound so that no possible error can be forgotten

c©Nga Nguyen Static Analysis and Software Verification Introduction

41/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Program Semantics

Figure – Set of traces (finite ou infinite)

c©Nga Nguyen Static Analysis and Software Verification Introduction

42/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Program Semantics

Figure – Set of points {(xi , yi)}

c©Nga Nguyen Static Analysis and Software Verification Introduction

43/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Semantics : Abstraction by Signs

Figure – Signs x ≥ 0, y ≥ 0

c©Nga Nguyen Static Analysis and Software Verification Introduction

44/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Semantics : Abstraction by Intervals

Figure – Intervals a ≤ x ≤ b, c ≤ y ≤ d

c©Nga Nguyen Static Analysis and Software Verification Introduction

45/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Semantics : Abstraction by Octagons

Figure – Octagons x − y ≤ a, x + y ≤ b

c©Nga Nguyen Static Analysis and Software Verification Introduction

46/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Semantics : Abstraction by Polyhedrons

Figure – Polyhedrons a.x + b.y ≤ c

c©Nga Nguyen Static Analysis and Software Verification Introduction

47/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Abstract Interpretation

Figure – Graphic Example (Cousot MIT 2005 Course)

If the abstract semantics is safe (does not intersect the
forbidden zone), then so is the concrete semantics.

c©Nga Nguyen Static Analysis and Software Verification Introduction

48/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Program Flow Analysis

Definition :
Method for describing what a program does to its data :

Control-flow analysis
Data-flow analysis

c©Nga Nguyen Static Analysis and Software Verification Introduction

49/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Control-flow Analysis

Discover the hierarchical control flow within each
procedure
Control flow graph (flowchart) : block, test, loop

c©Nga Nguyen Static Analysis and Software Verification Introduction

50/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Example of an Informal Control-flow Graph

c©Nga Nguyen Static Analysis and Software Verification Introduction

51/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Control-flow Graph

Definitions
basic block : maximal sequence of instructions that can
be entered only at the first instruction and exited only
from the last one
entry node, exit node
split node : a node that has more than one successor
join node : a node that has more than one predecessor

c©Nga Nguyen Static Analysis and Software Verification Introduction

52/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Control-flow Graph

c©Nga Nguyen Static Analysis and Software Verification Introduction

53/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Control-flow Graph with Blocks

c©Nga Nguyen Static Analysis and Software Verification Introduction

54/54

Software Bugs
Verification and Validation Methods

Static Analysis
Abstract Interpretation
Program Flow Analysis

Data-flow Analysis

next course !

c©Nga Nguyen Static Analysis and Software Verification Introduction

	Software Bugs
	Classical Scientific Bugs
	Memory-related Bugs

	Verification and Validation Methods
	Static Analysis
	Abstract Interpretation
	Program Flow Analysis

