Static Analysis and Software Verification

Introduction

(©Nga Nguyen

EISTI

o

o Classical Scientific Bugs
o Memory-related Bugs

Qo
o

o Abstract Interpretation
@ Program Flow Analysis

(©Nga Nguyen

Software Bugs

Factorial program

#include <stdio.h>
int fact(int n) {
int r, i;
r =1;
for (i=2; i<=n; i++) {
r = r*i;

+

return r;
}
int main() {

int n;

scanf ("%d", &n);

printf("%d ! = %d",n,fact(n));
}

(©Nga Nguyen

Software Bugs

Factorial program

% gcc fact.c -o fact.exe
% ./fact.exe

4

4 1 =24

% ./fact.exe

100

100 ' =0

% ./fact.exe

20

20 ! = -2102132736

Questions :

fact(-1) 7
Different results with respect to programming languages 7

(©Nga Nguyen

| A\

Software Bugs

Example with rounding error (1)

#include <stdio.h>
int main() {
double x, a;

float y, z;

x = 1125899973951488.0;
a=1.0;

y =x+ a;

zZ=x - a;
printf ("%f", y-z);

(©Nga Nguyen

Software Bugs

Example with rounding error (1)

% gcc arrondil.c -o arrondil.exe
% ./arrondil.exe
134217728.000000

(©Nga Nguyen

Software Bugs

Example with rounding error (2)

#include <stdio.h>
int main() {
double x, a;

float y, z;

x = 1125899973951487.0;
a=1.0;

y =x+ a;

zZ=x - a;
printf ("%f", y-z);

(©Nga Nguyen

Software Bugs

Example with rounding error (2)

% gcc arrondi2.c -o arrondi2.exe
% ./arrondi2.exe
0.000000

(©Nga Nguyen

Software Bugs

hmetic Precision Errors

o Ariane 5’s failure : data conversion from a 64-bit
floating point to 16-bit signed integer value caused an
arithmetic overflow.

o Patriot’s failure : software error in the system’s clock
((0,1)10 = (0,00011001100110011...),).

(©Nga Nguyen

Software Bugs

hmetic Precision Errors

o Excel 2007 bug : 77,1 x 850 = 65535 but 100000 is
displayed (round-off error while converting IEEE 754
64-bit floating point to Unicode string)

o Yorktown bug : division by zero

(©Nga Nguyen

Software Bugs

Memory-related Bugs in C Programs

ter Systems : A Programmer’s Perspective,
and O'Hallaron)

@ Dereferencing bad pointers

o Reading uninitialized memory

o Overwriting memory

o Referencing nonexistent variables
o Freeing blocks multiple times

o Referencing freed blocks

o Failing to free blocks

)

Buffer overflow

(©Nga Nguyen

Software Bugs

The classic scanf bug

int val;

scanf ("%d", val);

Will cause scanf to interpret contents of val as an address !

o Best case : program terminates immediately due to
segmentation fault

o Worst case : contents of val correspond to some valid
read /write area of virtual memory, causing scanf to
overwrite that memory, with disastrous and baffling
consequences much later in program execution

(©Nga Nguyen

Software Bugs

Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = (int *)malloc(N * sizeof (int));
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {
y[il += A[i1[3]1 * x[j];
}
}

return y;

}

(©Nga Nguyen

Software Bugs

Allocating the (possibly) wrong sized object

int *x*p;

p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {
pli]l = (int *)malloc(M * sizeof (int));

3

[CLEEREIYEN

Software Bugs

Off-by-one error

int *x*p;
p = (int *)malloc(N * sizeof(int *));

for (i=0; i<=N; i++) {
pli]l = (int *)malloc(M * sizeof (int));

}

(©Nga Nguyen

Software Bugs

Misunderstanding pointer arithmetic

int #*search(int *p, int val) {

while (p && *p != val)
p += sizeof (int);

return p;

3

(©Nga Nguyen

Software Bugs

Referencing a pointer instead of the object it points to

int *getPacket(int **packets, int *size) {
int xpacket = packets[0];
packets[0] = packets[*size - 1];
*size-—;
reorderPackets (packets, *size);
return(packet) ;

(©Nga Nguyen

Software Bugs

Referencing a pointer instead of the object it points to

int *getPacket(int **packets, int *size) {
int *packet = packets[0];
packets[0] = packets[*size - 1];

xsize-—; // what is happening here?
reorderPackets (packets, *size);
return(packet) ;

} ”
o —— and * operators have same precedence and associate

from right-to-left, so —— happens first !

o gcc will raise a warning for this line of code only if -Wall
is used (value computed is not used [-Wunused-value])

(©Nga Nguyen

Software Bugs

Forgetting that local variables disappear when a function
returns

int *foo () {
int val;

return &val;

(©Nga Nguyen

Software Bugs

x = (int *)malloc(N * sizeof(int));
<manipulate x>
free(x);

y = (int *)malloc(M * sizeof (int));
free(x);
<manipulate y>

(©Nga Nguyen

Software Bugs

x = (int *)malloc(N * sizeof(int));
<manipulate x>
free(x);

y = (int *)malloc(M * sizeof(int));
for (i=0; i<M; i++)
y[i]l = x[i]++;

(©Nga Nguyen

Software Bugs

Slow, silent, long-term killer !
foo() {

int *x = (int *)malloc(N*sizeof (int));

return;

[CLEEREIYEN

Software Bugs

Failing
Freeing only part of a data structure

struct list {
int val;
struct list *next;
s
foo() {
struct list *head =
(struct list *)malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
free(head) ;
return;
}

(©Nga Nguyen

Software Bugs

Overflow

Definition (wikipedia)
A buffer overflow (buffer overrun) is an anomaly where a

program, while writing data to a buffer, overruns the buffer's
boundary and overwrites adjacent memory.

o 50% of software errors

@ erratic program behaviors : memory access errors,
incorrect results, crashes, security holes, ...

o sources of problem in C, C4++ : gets, strcpy, memcpy, ...

(©Nga Nguyen

Software Bugs

Software Bugs

Heartbleed is a security bug disclosed in April 2014 in the OpenSSL cryptography
library, which is a widely used implementation of the Transport Layer Security (TLS)
protocol. It results from improper input validation (due to a missing bounds check) in
the implementation of the TLS heartbeat extension, thus the bug’s name derives from
"heartbeat”. The vulnerability is classified as a buffer over-read, a situation where
software allows more data to be read than should be allowed.

(©Nga Nguyen

Software Bugs

@ Heartbeat - Mormal usage

Server, send me
this 4 letter word Server
if you are there: .
i *bird® bird
Client bird

‘;? Heartbeat - Malicious usage

Server, send me
this 500 letter | DIrd. Server Server
word iF you are master key is

i there: "hird” 31431498531054,
Clignk User Carol wants

ko change
password ko
"password 123",

Software Bugs

ELLO! rosoft Internet Explorer [_[Ofx]
J File Edit ¥iew Favortes Tools Help ‘
« . =+ 9 2] A Q i
EEch Eanwerd Stop Fetfresh Home Search
JAQCWESS I@ H4\Projectstmalicious code’Code Red Wnrm\hackedwej @ Go H Links *
=
Welcome to hitp://www.worm.com !
Hacked By Chinese!
-

[&] Done ’_’_‘w_EJ My Computer

S

Software Bugs

Microsoft Internet Explorer M= B
Wiew Favortes Tools Help ‘

« . =+ .9 B A a §

EiEch Eanwerdl Stop Fefresh Haome Search
JAQWBSS I@ H:4\Projectsimalicious code’,Code Pied Wnrm\hﬁckedwej @ Go H Links *
=

Welcome to hitp://www.worm.com !
Hacked By Chinese!

=
|@ Done '_'_‘ﬁEJ My Computer 7

Code Red Exploit Code, attack www.whitehouse.gov (denial of service attack)

(©Nga Nguyen

Verification and Validation Methods

on and Validation

(©Nga Nguyen

Verification and Validation Methods

n and Validation

o Validation : Are we building the right system ?
o Verification : Are we building the system right ?

Problem

Situation :
:¥| Problem Statement |
B (Specification)

I

Implementation
(Program Code)

b,

. Venﬁcalion

www.easterbrook.ca/steve

(©Nga Nguyen

Verification and Validation Methods

on and Validation

Verification

Validation

style o
checkers unit test

customer .

“ integration regrtesstion acceptance prototyping
test o test ‘
static analysis
4 automated| system test usabilty tiodemigl |
testing test e.g. UML, |
proofs of oetatect | formal methods |
correctness biiai], model
robustness checking
analysis goal analysis
consistency model/specification
checking inspection

Verification and Validation Toolbox
(www.easterbrook.ca/steve)

(©Nga Nguyen

Verification and Validation Methods

ication and Validation ?

@ The most expensive bug : explosion of Ariane 5 (10 year
project costing 7$ billions)

o Verification and validation are critical to guarantee
reliability, robustness and quality of software systems

o But it is an expensive process : 80% of development cost
in safety-critical systems

(©Nga Nguyen

Verification and Validation Methods

n and Validation Methods

(]

Software testing
o development, validation, in-exhaustive verification

(]

Theorem proving
o mathematical foundations, human experts
o Model checking
o exhaustive enumeration, state explosion problem
@ Dynamic analysis
o run-time checking

©

Static analysis

(©Nga Nguyen

Static Analysis

Analysis

Methods try to discover properties of a program without
running it :
o Code optimization : improving time, space, energy ;
compilation for special architectures (multicore, ...)
o Software and reverse engineering : program
comprehension, code review, documentation,
maintenance, ...

o Verification and validation

(©Nga Nguyen

Static Analysis

Static

Verification and validation

o Finding run-time errors at compilation-time

o Proving the absence of errors in the source code, i.e the
program will :

never divide a number by zero

never dereference a NULL pointer

close all opened files, all opened socket connections

not allow buffer overflow security violation

© © 6 © o

(©Nga Nguyen

Static Analysis

ic Analysis Tools

CodeSonar (Grammatech) : C, C++, Java
PolySpace (MathWorks) : C, C++, Ada

Frama-C (CEA + INRIA) : C

CodePeer (AdaCore) : SPARK

Coverity : C, C++, Java, C#

Splint / LCLint (University of Virginia) : C; PC-Lint
(Grimpel) : C, C++

Microsoft/analyze : C, C++ (Visual Studio)

Fortify (HP)

PVS-Studio : C, C++

Astree : C embedded and real-time systems

Clang Static Analyzer (LLVM) : C, C++, Objective-C
Java : programming rules, dead code, optimization
(Checkstyle, FindBugs, PMD, ...)

© 0 06 06 0 ©

Qo
(*]
Qo
Q
Qo
(*]

Static Analysis

Code Prover

static void pointer_arithmetic (void)

Green: reliable

safe pointer access Nt i;
\ror (i = 0: < 100; Rl
Red: faulty y Y

out of bounds error

variable 1" (int32): [0 .. 99]
assignment of I’ (int32): [1 .. 100]
Gray:

unreacha

() > 0) {
e() > 0) {

Purple: violation i
MISRA-C/C++ or JSF++
code rules

Range data
tool tip

Static Analysis

Program analysis approaches

o Abstract interpretation
o Program flow analysis
° ..

(©Nga Nguyen

Static Analysis

terpretation (P. and R. Cousot)

Abstraction theory :
@ concrete semantics of a program : undecidable (i.e
termination)

o P = while termination(P) do skip od (K. Godel)

@ abstract semantics : safe approximations of program
semantics
o safe approximations must be :

o simple enough to be computable by computer

o precise enough to avoid false alarms (errors do not
correspond to a real execution)

o sound so that no possible error can be forgotten

(©Nga Nguyen

Static Analysis

Semantics

Set of traces (finite ou infinite)

(©Nga Nguyen

Static Analysis

Semantics

Set of points {(x;,yi)}

(©Nga Nguyen

Static Analysis

smantics : Abstraction by Signs

Signs x >0,y >0

(©Nga Nguyen

Static Analysis

antics : Abstraction by Intervals

Intervals a < x < b,c <y <d

(©Nga Nguyen

Static Analysis

antics : Abstraction by Octagons

Octagons x —y < a,x+y<b

(©Nga Nguyen

Static Analysis

antics : Abstraction by Polyhedrons

Polyhedrons a.x + b.y < ¢

(©Nga Nguyen

Static Analysis

act Interpretation

z(t)
Forbidden zone

Possible
trajectories

Abstraction of the trajectories

t

Graphic Example (Cousot_MIT_2005_Course)

If the abstract semantics is safe (does not intersect the
forbidden zone), then so is the concrete semantics.

(©Nga Nguyen

Static Analysis

am Flow Analysis

Definition :
Method for describing what a program does to its data :
o Control-flow analysis

o Data-flow analysis

[CLEEREIYEN

Static Analysis

ow Analysis

o Discover the hierarchical control flow within each
procedure

o Control flow graph (flowchart) : block, test, loop

(©Nga Nguyen

Static Analysis

of an Informal Control-flow Graph

M= M+1

(©Nga Nguyen

Static Analysis

@ basic block : maximal sequence of instructions that can
be entered only at the first instruction and exited only
from the last one

@ entry node, exit node
o split node : a node that has more than one successor

@ join node : a node that has more than one predecessor

(©Nga Nguyen

Static Analysis

a=0

|
b=a+1l €«

l
c=c+b

|
a=b*2

|
ifa<N goto 2

y
return ¢

(©Nga Nguyen

Static Analysis

ow Graph with Blocks

B1
a=0

B2
b=a+1
c=c+b
a=b*2
ifa < N goto B2

B3

returnc

(©Nga Nguyen

Static Analysis

o next course !]

(©Nga Nguyen

	Software Bugs
	Classical Scientific Bugs
	Memory-related Bugs

	Verification and Validation Methods
	Static Analysis
	Abstract Interpretation
	Program Flow Analysis

