An Elevator Controller

solution

-- This SMV program describes an elevator system for a 4-floors building.
-- It includes modules both for the physical system (reservation buttons,
-- cabin, door), and for the controller.

-- For each floor there is a button to request service, that can be
-- pressed. A pressed button stays pressed unless reset by the

-- controller. A button that is not pressed can become pressed

-- nondeterministically.

MODULE Button(reset)
VAR
pressed : boolean;
ASSIGN
init(pressed) := 0;
next (pressed) :
case
pressed & reset : O;
pressed & !reset : 1;
!pressed : {0,1%};
esac;

-- REQ: The controller must not resets a button that is not pressed.
INVARSPEC (reset -> pressed)

-- The cabin can be at any floor between 1 and 4. It is equipped with an
-- engine that has a direction of motion, that can be either standing, up
-- or down. The engine can receive one of the following commands: nop, in
-- which case it does not change status; stop, in which case it becomes
-- standing; up (down), in which case it goes up (down).

MODULE Cabin(move_cmd)
VAR
floor : {1,2,3,4 };
direction : { standing, moving_up, moving_down };

ASSIGN

init(direction) := standing;
next (direction) :=
case
move_cmd = stop : standing;
move_cmd = move_up : moving_up;
move_cmd = move_down : moving_down;
move_cmd = nop : direction;
esac;

next (floor)

case
next(direction) = standing : floor;
next(direction) = moving_up : case
floor = 4 H
1 : floor + 1;
esac;
next(direction) = moving_down : case
floor = 1 1
1 : floor - 1;
esac;
esac;

-- REQ: The controller can issue a stop command only if the direction
-- is up or down.
INVARSPEC (move_cmd = stop -> direction in {moving_up,moving_down})

-- REQ: The controller can issue a move command only if the
-- direction is standing.
INVARSPEC (move_cmd in {move_up,move_down} -> direction = standing)

-- REQ: The cabin can move up only if the floor is not 4.
SPEC AG (floor = 4 -> AX(direction != moving_ up))

-- REQ: The cabin can move down only if the floor is not 1.
SPEC AG (floor = 1 -> AX(direction != moving_down))

-- The cabin is also equipped with a door, that can be either open

-- or closed. The door can receive either open, close or nop commands
-- from the controller, and it responds opening, closing, or

-- preserving the current state.

MODULE Door (door_cmd)
VAR
status : { open, closed };

ASSIGN
next(status) :=
case

door_cmd = open : open;

door_cmd = close : closed;
door_cmd = nop : status;
esac;

-- REQ: The controller can issue an open command only if the door is closed.
INVARSPEC (door_cmd = open -> status = closed)

-- REQ: The controller can issue a close command only if the door is open.
INVARSPEC (door_cmd = close =-> status = open)

-- The controller takes in input (as sensory signals) the floor and the
—- direction of motion of the cabin, the status of the door, and the

-- status of the four buttons. It decides the controls to the engine, to
-- the door and to the buttons.

MODULE CTRL(floor, dir, door, pressed_1, pressed_2, pressed_3, pressed_4)
VAR

move_cmd : {move_up, move_down, stop, nop};

door_cmd : {open, close, nop};

reset_1 : boolean;

reset_2 : boolean;

reset_3 : boolean;

reset_4 : boolean;

-- Button N is reset only if it is pressed, we are at floor N, and
-- the door is open.

ASSIGN
reset_1 := (pressed_1 & floor = 1 & door = open);
reset_2 := (pressed_2 & floor = 2 & door = open);
reset_3 := (pressed_3 & floor = 3 & door = open);
reset_4 := (pressed_4 & floor = 4 & door = open);

-- Check whether there are pending requests at the current floor,
-- at a higher floor, and at a lower floor.
DEFINE

pending_here := (floor = 1 & pressed_1) | (floor = 2 & pressed_2) |
(floor = 3 & pressed_3) | (floor = 4 & pressed_4) ;

pending_up = (floor = 1 & (pressed_2 | pressed_3 | pressed_4)) |
(floor = 2 & (pressed_3 | pressed_4)) |
(floor = 3 & (pressed_4)) ;

pending_down := (floor = 4 & (pressed_1 | pressed_2 | pressed_3)) |
(floor = 3 & (pressed_1 | pressed_2)) |
(floor = 2 & (pressed_1))

-- % If the cabin is moving, do not send commands to the door.
-- * If there is a pending request at the current floor and
-- the door is closed, open it.

-- % If there are pending requests at different floors and the
-- door is open, close it.
-- % Otherwise, do not send commands to the door.

ASSIGN
door_cmd :=
case
dir !'= standing : nop;
pending_here & door = closed : open;
pending_up & door = open : close;
pending_down & door = open : close;
1 : nop;

esac;

-- Variable "last_dir" records the last movement direction of the cabin.
VAR
last_dir : {moving_up,moving_down};

ASSIGN
next (last_dir) :=
case
dir = standing : last_dir;
1 : dir;
esac;

-- % If the door is open, do not send move commands to the cabin.
-- x If there is a pending request at the current floor
-- and the cabin is moving, stop it.
-- % If there are pending requests both at higher and at lower floors,
-- keep moving in "last_dir".
-- % If there are pending requests at higher (lower) floors,
-- move up (down).
-— % [Otherwise, do not send commands to the cabin.
ASSIGN
move_cmd :=
case
door = open : nop;
pending_here : case
dir != standing : stop;
1 : nop;
esac;
pending_up & pending_down : case
dir != standing ! nop;
last_dir = moving_up ! move_up;
last_dir = moving_down : move_down;
esac;
pending_up : case
dir != standing : nop;
1 : move_up;
esac;
pending_down : case
dir != standing : nop;
1 : move_down;
esac;
1 : nop;

—- The main module shows the connection between modules.

MODULE main

VAR
cabin : Cabin(ctrl.move_cmd);
door : Door(ctrl.door_cmd);

button_1 : Button(ctrl.reset_1);

button_2 : Button(ctrl.reset_2);

button_3 : Button(ctrl.reset_3);

button_4 : Button(ctrl.reset_4);

ctrl : CTRL(cabin.floor, cabin.direction, door.status,
button_1.pressed, button_2.pressed,
button_3.pressed, button_4.pressed);

-- The controller must satisfy the following requirements.

-- REQ: No button can reach a state where it remains pressed forever.
SPEC AG AF ! button_1.pressed
SPEC AG AF ! button_2.pressed
SPEC AG AF ! button_3.pressed
SPEC AG AF ! button_4.pressed

-- REQ: No pressed button can be reset until the cabin stops at the
- corresponding floor and opens the door.
SPEC AG (button_1.pressed ->

A [button_1.pressed U (cabin.floor = 1 & door.status = open)])
SPEC AG (button_2.pressed ->

A [button_2.pressed U (cabin.floor = 2 & door.status = open)])
SPEC AG (button_3.pressed ->

A [button_3.pressed U (cabin.floor = 3 & door.status = open)])
SPEC AG (button_4.pressed ->

A [button_4.pressed U (cabin.floor = 4 & door.status = open)])

-- REQ: A button must be reset as soon as the cabin stops at the
- corresponding floor with the door open.

SPEC AG ((button_l.pressed & cabin.floor = 1 & door.status = open) ->
AX ! button_1.pressed)

SPEC AG ((button_2.pressed & cabin.floor = 2 & door.status = open) ->
AX ! button_2.pressed)

SPEC AG ((button_3.pressed & cabin.floor = 3 & door.status = open) ->
AX ! button_3.pressed)

SPEC AG ((button_4.pressed & cabin.floor = 4 & door.status = open) ->

AX ! button_4.pressed)

-- REQ: The cabin can move only when the door is closed.

INVARSPEC (door.status = open -> cabin.direction = standing)

-- REQ: If no button is pressed, the controller must issue no commands
-- and the cabin must be standing.
INVARSPEC (((! button_1.pressed) & (! button_2.pressed) &
(! button_3.pressed) & (! button_4.pressed))
-> (ctrl.door_cmd = nop & ctrl.move_cmd = nop))

