
GPU Programming
TP5 – Kmeans

In the field of data science, the Kmeans
algorithm is a simple approach that solves
the well-known clustering problem:
partition the points of a point cloud into k
distinct clusters (k predefined) such that
each data point belongs to the cluster with
the nearest mean value.

This is the Kmeans pseudo-code for N data
points and K clusters:

points[N] = array of data points (fixed)
centroids[K] = array of centroids
pointlabel[N] = array of point memberships
// pointlabel[i] = k means that point i belongs to cluster k

Procedure Kmeans
 initialize the K centroids
 while (centroid convergence not satisfying)

 // phase 1 (“assignment”):

// assign each data point to the closest centroid
 for i = 0 to N-1
 for j = 0 to K-1
 distance = |points[i]- centroids[j]|
 if (distance < dmin)
 dmin = distance
 n = j
 pointlabel[i] = n // point i assigned to cluster n

// phase 2 (“reduction”): recompute centroids
 for j=0 to K-1
 newcentroids[j] = 0;
 newcentroidSize[j] = 0;
 for i=0 to N-1
 newcentroids[pointlabel[i]] =

 newcentroids[pointlabel[i]] + points[i]
 newcentroidSize[pointlabel[i]]++
 for j=0 to K-1
 centroids[j] = newcentroids[j] / newcentroidSize[j]
 end while

Execute the provided base code.

- A sample data point cloud has been generated.

- The cluster centroids are already initialized but not used.

- Each cluster has its own random color.

- The current classification algorithm stupidly assigns the data point i to the cluster i%K.

- Current GPU mode = CPU mode

Exercices (1 point per question)

1) Write a CPU version of the Kmeans algorithm.

2) GPU version 1: write a kernel kernelAssign where phase 1 (assignment) is executed

on the GPU. Copy the resulting pointlabel array back to the host and continue phase

2 (reduction) on the CPU.

3) GPU version 2: Improve kernelAssign so that it computes the array of point colors at

the same time, and copy it back to the host

4) GPU version 3: Copy the array of centroids and the array of centroid colors to the

constant memory instead of the global memory.

5) GPU version 4: write a second kernel, kernelReduce where phase 2 (reduction) is

executed on the GPU and execute kernelAssign followed by kernelReduce

