GPU Programming
TP5 — Kmeans

In the field of data science, the Kmeans
algorithm is a simple approach that solves
the well-known clustering problem:
partition the points of a point cloud into k
distinct clusters (k predefined) such that
each data point belongs to the cluster with
the nearest mean value.

This is the Kmeans pseudo-code for N data
points and K clusters:

points[N] = array of data points (fixed)

centroids[K] = array of centroids

pointlabel[N] = array of point memberships

// pointlabel[i] = k means that point i belongs to cluster k

Procedure Kmeans
initialize the K centroids
while (centroid convergence not satisfying)

// phase 1 (“assignment”):
// assign each data point to the closest centroid
for 1 = © to N-1
for j = @ to K-1
distance = |points[i]- centroids[j]]|
if (distance < dmin)
dmin = distance
n=7j
pointlabel[i] = n // point i assigned to cluster n

// phase 2 (“reduction®): recompute centroids
for j=0 to K-1
newcentroids[j] = ©;
newcentroidSize[j] = ©;
for i=0 to N-1
newcentroids[pointlabel[i]] =
newcentroids[pointlabel[i]] + points[i]
newcentroidSize[pointlabel[i]]++
for j=0 to K-1
centroids[j] = newcentroids[j] / newcentroidSize[j]
end while

Execute the provided base code.

A sample data point cloud has been generated.

The cluster centroids are already initialized but not used.

Each cluster has its own random color.

The current classification algorithm stupidly assigns the data point i to the cluster i%K.
Current GPU mode = CPU mode

Exercices (1 point per question)

1)
2)
3)
4)

5)

Write a CPU version of the Kmeans algorithm.

GPU version 1: write a kernel kernelAssign where phase 1 (assignment) is executed
on the GPU. Copy the resulting pointlabel array back to the host and continue phase
2 (reduction) on the CPU.

GPU version 2: Improve kernelAssign so that it computes the array of point colors at
the same time, and copy it back to the host

GPU version 3: Copy the array of centroids and the array of centroid colors to the
constant memory instead of the global memory.

GPU version 4: write a second kernel, kernelReduce where phase 2 (reduction) is
executed on the GPU and execute kernelAssign followed by kernelReduce

