
GPU Programming
TP4 – Nbody

An N-body simulation numerically approximates
the evolution of a system of bodies in which each
body interacts with every other body.

A typical example is an astrophysical simulation
in which each body represents a galaxy or an
individual star. The bodies attract each other
through the gravitational force.

The all-pairs approach to N-body simulation is a
brute-force technique that evaluates all pair-wise
interactions among the N bodies. It is a relatively
simple method, but it is rarely applied because of its
O(N²) computational complexity.

At each simulation step, the body i is accelerated by acci = Fi / mi. The force Fi acting on body i, due to
gravitational interactions with all other N-1 bodies, is obtained by the sum:

where mi and mj are the masses of bodies i and j, respectively, rij = xj - xi is the vector from body i to
body j, and G is the gravitational constant. ε is a softening factor in order to avoid singularities during
the simulation when two bodies get too close to each other.

This is the pseudo-code for an all-pairs N-body simulation:

// pos[N] = current position of the bodies
// vel[N] = current velocity of the bodies
// mass[N] = mass of the bodies

initialize pos, vel, mass
while (simulating)

for (i=0;i<N;i++) {
 acc = 0

 for (j=0;j<N;j++) {
 r = pos[j]-pos[i]
 d = ||r||² + EPS²;
 acc += G*r*mass[j]/sqrt(d*d*d);
 }

new_pos[i] = pos[i] + vel[i];
 new_vel[i] = vel[i] + acc;
 }
 pos = new_pos
 vel = new_vel
end while

Execute the provided base code.

- Random bodies are created: position, velocity and mass arrays are initialized.

- No acceleration: the bodies follow a constant velocity.

- The arrow keys up/down allow increasing/decreasing the number of bodies

- GPU mode = CPU mode

Exercices (1 point per question)

1) Write a CPU version of the N-body algorithm.

2) GPU version 1. Write a kernel which receives body masses, current positions and

current velocities, and which computes new pos/vel. Fetch the new data back to the

host.

3) GPU version 2. Stop copying current pos/vel to the device every time you run the

kernel. Copy the initial values once, then compute on the device from pos1/vel1 to

pos2/vel2, and next time from pos2/vel2 back to pos1/vel1 (“double buffer”). Fetch the

proper data back to the host.

4) GPU version 3: use shared memory for faster memory access. In each thread block,

preload the data of NBTHREADS bodies into shared memory and start summing up

partial accelerations. Then preload the next NBTHREADS bodies, continue summing

up the partial accelerations, etc., until all bodies are processed.

