
GPU Programming
TP2 – RayTracer

Ray tracing is a technique of generating an image of a 3D scene. Such images typically have a high
degree of visual realism, usually higher than that of conventional rendering methods, but at a greater
computational cost.

The approach is the following: We choose a spot in our scene to place an imaginary camera. The
camera contains a light sensor, so to produce an image, we need to determine what light would hit
that sensor. For that purpose, we imagine shooting a ray from each pixel and into the scene. In this
way, each pixel behaves something like an eye that is “looking” into the scene:

Our ray tracer will be very simple. It will only support scenes of spheres, the camera is directed along
the z-axis and restricted to moving within the xy-plane. The incidence of light is equally fixed to be
parallel to the z-axis. The ray tracer will fire a ray from each pixel and keep track of which rays hit
which spheres at which distance. In the case where a ray passes through multiple spheres, only the
sphere closest to the camera can be seen.

We model our spheres with a data structure that stores its center coordinate (x, y, z), its radius, and
its color (r, g, b).

#define INF 2e10f
struct Sphere {

float r,g,b;
float radius;
float x,y,z;
__host__ __device__ float hit(float cx, float cy, float *sh) {

float dx = cx - x;
float dy = cy - y;
float dz2 = radius*radius - dx*dx - dy*dy;
if (dz2>0) {

float dz = sqrtf(dz2);
*sh = dz / radius;
return dz + z;

}
return -INF;

}
};

The structure has a method called “hit”. Given a ray shot from the coordinates (ox, oy), this method
determines whether the ray intersects the sphere. If the ray does intersect the sphere, it returns the
distance from the camera where the ray hits the sphere, as well as the shading intensity (*sh ϵ[0…1])
of the pixel. You can add ambient light (a ϵ [0…1]) to the scene. In that case, the final shading
intensity of a pixel is simply a+ (*sh) * (1-a).

Exercices (1 point per question)

You can reuse the base code provided for “TP1 – Julia sets” to get started.

1) Write a CPU version of the ray tracing algorithm. The user can change the number of spheres

by hitting special keys and use the mouse to move the camera within the xy-plane.

2) Write an GPU version of the ray tracing algorithm. Each thread is responsible for one pixel of

our output image. The user can toggle between the CPU mode and the GPU mode.

3) Accelerate your ray tracer by placing the sphere array into the constant memory of the GPU.

4) [Bonus for ray tracing enthusiasts] Implement the possibility of changing the incidence of

light.

