
Android

V – Non Java: Web Services & JNI

Stefan BORNHOFEN
EISTI

Web Services

• Method of communication between
applications over the World Wide Web

• Exchange of structured data

• Written in various programming languages and
running on various platforms

• Web services combine the best aspects of
component-based development and the Web

• Complex web services: SOAP

• Lightweight web services: REST

SOAP
• Designed for complex distributed computing environments
• Uses XML for the message format
• Independent of the transport protocol (HTTP, FTP, TCP,

UDP, …)
• WSDL service description to describe how the web service

works: messages, bindings, operations and location.
• You can discover the service automatically and generate a

client proxy from that service description
• Verbose, lots of overhead
• Hard to develop, requires tools
• more heavy-weight than REST

REST
• Point-to-point communication over HTTP
• Invoked by a simple URL
• Human readable results (XML, JSON, plain text…)
• Easy to build, no toolkits required
• Completely stateless (interaction can survive a restart of the

server)
• Primary option for mobile applications, no SOAP runtime

necessary.
• No standards: the service producer and service consumer

need to have a common understanding of the context

HTTP CRUD Equivalent
==== ================
GET read
POST create
PUT create, update
DELETE delete

Example: SOAP vs REST
Querying a phonebook application for the details of a given user with ID=12345.

Using SOAP, the request would look something like this:
<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body pb="http://www.mysite.com/phonebook">

<pb:GetUserDetails>
<pb:UserID>12345</pb:UserID>

</pb:GetUserDetails>
</soap:Body>

</soap:Envelope>

The XML will be sent to the server using an HTTP POST request.
The result is typically an XML file embedded inside a SOAP response envelope.

With REST, the query will typically look like this:
http://www.mysite.com/phonebook/UserDetails/12345
This URL is sent to the server using an HTTP GET request.
The HTTP reply is the raw result data, not embedded inside anything, in a way you can directly use

Android REST Call
class HTTPTask extends AsyncTask<String, Void, String> {

@Override

protected String doInBackground(String... uri) {

try {

HttpURLConnection httpsURLConnection = (HttpURLConnection) new URL(url[0]).openConnection();

httpsURLConnection.setConnectTimeout(2000);

httpsURLConnection.setRequestMethod("GET");

httpsURLConnection.connect();

int mStatus = httpsURLConnection.getResponseCode();

if (mStatus == 200 || mStatus == 201)

return readResponse(httpsURLConnection.getInputStream()).toString();

} catch (IOException E) {}

return null;

}

private StringBuilder readResponse(InputStream inputStream) throws IOException, NullPointerException {

BufferedReader r = new BufferedReader(new InputStreamReader(inputStream));

StringBuilder stringBuilder = new StringBuilder();

String line;

while ((line = r.readLine()) != null) stringBuilder.append(line);

return stringBuilder;

}

@Override

protected void onPostExecute(String result) {

super.onPostExecute(result);

// do something with the response string

}

}

new HTTPTask().execute("http://my.restful.web.service/parameters");

An asynchronous task is a
computation that runs on
a background thread and
whose result is published
on the UI thread.

Set permissions

• Don’t forget to add internet permissions to the
AndroidManifest.xml

<uses-permission

android:name="android.permission.INTERNET" />

<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

JNI

Programming framework that enables Java applications to call
native code (typically C or C++)
• Native code runs faster than JVM code
• You might have some old legacy code written in C/C++ and

you don’t want to waste your time porting the code to Java
Caution
• An application that relies on JNI loses the platform portability
• The JNI framework does not provide any automatic garbage

collection for non-JVM memory resources
• Good candidates for JNI are self-contained, CPU-intensive

operations that don't allocate much memory

Android NDK

• Native Development Kit

• Toolset that helps implementing parts of your
app using native-code languages

Install NDK, CMake and LLDB

using the Android Studio SDK manager

Android NDK: howto I

• New Project => Include C++ support

public class MainActivity extends AppCompatActivity {

static {

System.loadLibrary("native-lib");

}

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

... some code

}

public native String stringFromJNI();

public native int hello(int n, int m);

}

Android NDK: howto II

• Native functions are implemented in *.c or *.cpp files.

• When the JVM invokes a native function, it passes

1. a JNIEnv pointer: contains the interface to the JVM. It includes
all of the functions necessary to interact with the JVM and to
work with Java objects (converting native arrays to/from Java
arrays, instantiating objects, throwing exceptions, etc.)

2. a jobject: a reference to the Java object inside which this native
method has been declared. You can use it to address variables or
call other methods of the Java object from the current JNI
function.

3. the Java arguments declared by the Java method.

Android NDK: howto III

#include <jni.h>

extern "C" {

JNIEXPORT jint JNICALL
Java_fr_eisti_android_tp5_MainActivity_hello
(JNIEnv *env, jobject instance, jint n, jint m)

{
return n + m;

}

}

Synchronize native-lib.cpp and run your app.

Add the native method to your cpp file.

Exercise

Compute Fibonacci by three different
methods (2p).

▫ Android Java
▫ JNI
▫ RESTful Web service:
http://i3.options.eisti.fr/
webservices/fibonacci/37

• For Java and JNI, use the naïve
Fibonacci algorithm:
fibo(n)=fibo(n-1)+fibo(n-2)

• Clock the time to see if JNI works
faster than Java code

Go back to the Currency Converter and
fetch the exchange rates from an online
JSON API (2p).

