
Android

II – Activities and Intents

Stefan BORNHOFEN
EISTI

Principles

• Applications can launch other applications

• Application can be interrupted by the system
(e.g. incoming call)

• On single application is visible to the user
(activity stack)

• Save memory and battery

Activity Lifecycle

An activity can exist in essentially three states:

Resumed (Running)
• The activity is in the foreground and the user can interact with it.

Paused
• The activity is partially obscured by another activity—the other

activity that's in the foreground is semi-transparent or doesn't cover
the entire screen. The paused activity does not receive user input
and cannot execute any code.

Stopped
• The activity is completely hidden and not visible to the user; it is

considered to be in the background. While stopped, the activity
instance and all its state information such as member variables is
retained, but it cannot execute any code. It can be killed by the
system when memory is needed elsewhere.

Activity Lifecycle

Callbacks

The two most important callback methods are:

onCreate()
• You must implement this method. This is where you call

setContentView() to define the layout
• One parameter: Bundle. Null if first creation, previous state if

the activity has been destroyed by the system (e.g. for memory)
onPause()
• The system calls this method as the first indication that the user

is leaving your activity (though it does not always mean the
activity is being destroyed). This is usually where you should
commit any changes that should persist beyond the current user
session (because the user might not come back).

Instance state
• The system uses the Bundle instance state to save information about each View object in

the activity layout (such as the text value entered into an EditText object). So, if your
activity instance is destroyed and recreated, the state of the layout is automatically
restored to its previous state.

• In order for you to add additional data to the saved instance state for your activity, there
are two additional callbacks:

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {

savedInstanceState.putInt("score", currentScore);

super.onSaveInstanceState(savedInstanceState);

}

@Override

public void onRestoreInstanceState(Bundle savedInstanceState) {

super.onRestoreInstanceState(savedInstanceState);

currentScore = savedInstanceState.getInt("score");

// you can choose to do this in onCreate() instead of here

}

Intents

• Messages between Activities

• Activities are started by intents

• Explicit intent: you specify the exact Activity
class to launch

• Implicit intent: the system matches Intent with
the activity that can best provide the service

• Activities, Services and BroadcastReceivers
describe what Intents they can service
(IntentFilters)

Intents

GMail

Contacts

Home BloggerChat

Client component makes a request for a specific action
Think of Intents as a verb and object; a description of what you want done

e.g. VIEW, CALL, PLAY etc..

Android picks best component for that action
Advantage: New components can use existing functionality

“Pick photo”

Blogger

Photo
Gallery

Other Native Android Actions

• ACTION_ANSWER – handle incoming call
• ACTION_DIAL – bring up dialer with phone
• ACTION_PICK – pick item (e.g. from contacts)
• ACTION_INSERT – add item (e.g. to contacts)
• ACTION_SENDTO – send message to

More:
http://developer.android.com/guide/appendix/
g-app-intents.html

http://developer.android.com/guide/appendix/g-app-intents.html

Implicit Intents

// view contact list

Intent i = new Intent(Intent.ACTION_VIEW,
android.provider.ContactsContract.Contacts.CONTENT_URI);

// make a call

Intent i = new Intent(Intent.ACTION_CALL_BUTTON,null);

// view picture gallery

Intent i = new
Intent(Intent.ACTION_VIEW,android.provider.MediaStore.Im
ages.Media.INTERNAL_CONTENT_URI);

startActivity(i);

Explicit Intents

Intent i = new Intent(this,
fr.eisti.android.SecondActivity.class);

Dont forget to register the second activity in the AndroidManifest.xml:

<activity android:name=".SecondActivity"
android:label="@string/title_snd_activity">

</activity>

Implicit Intents of own activities

Intent i = new Intent("android.intent.action.MYACTION");

Dont forget to register the second activity in the AndroidManifest.xml:

<activity android:name=".SecondActivity"
android:label="@string/title_snd_activity">
<intent-filter>

<action android:name="android.intent.action.MYACTION" />
<category android:name="android.intent.category.DEFAULT" />

</intent-filter>
</activity>

Intents with extra values
Calling Activity Called Activity

…
Intent i = new Intent(this, SecondActivity.class);
i.putExtra(“key”, value);
startActivityForResult (i, MYREQUEST);

protected void onActivityResult (int
requestCode, int resultCode, Intent data) {

if (requestCode == MYREQUEST) {
if(resultCode == RESULT_OK){
String result=data.getStringExtra("result");

}
}

// get calling intent
Intent i = getIntent();
String s = i.getStringExtra(“key”);
…
// create return intent
Intent returnIntent = new Intent();
returnIntent.putExtra("result", result);
setResult(RESULT_OK, returnIntent);
finish();
or
Intent returnIntent = new Intent();
setResult(RESULT_CANCELED,
returnIntent);
finish();

Service

• Application component representing an
application's desire to perform a longer-running
operation while not interacting with the user.

• Services run in the background.
• They do not have any user interface.
• Unbound services run in the background

indefinitely, even if the activity which started
this service ends.

• Bound services run until the end of the activity
which started this service.

Example SoundService
public class BackgroundSoundService extends Service {

MediaPlayer player;
@Override
public void onCreate() {

super.onCreate();
player = MediaPlayer.create(this, R.raw.mysong);
player.setLooping(true);
player.setVolume(100,100);

}
public int onStartCommand(Intent intent, int flags, int startId) {

player.start();
return 1;

}
public IBinder onBind(Intent intent) { return null; }
public IBinder onUnBind(Intent intent) { return null; }
public void onStart(Intent intent, int startId) { }
public void onStop() { }
public void onPause() { }
@Override
public void onDestroy() { player.stop(); player.release(); }

}

Service

Declare the service in the manifest

<service

android:name=".MyService">
<intent-filter>

<action android:name="android.intent.action.MYSERVICE" />

</intent-filter>

</service>

Service
Start and stop the service in your activity (unbound)

@Override
protected void onStart() {

super.onStart();
Intent serviceIntent = new Intent(this,

fr.eisti.android.BackgroundSoundService.class);
this.startService(serviceIntent);

}

@Override
protected void onDestroy() {

super.onDestroy();
Intent serviceIntent = new Intent(this,

fr.eisti.android.BackgroundSoundService.class);
this.stopService(serviceIntent);

}

Exercise

Implicit
intent

Menu

Write the Colorpicker with explicit and
implicit intents (2p).

Add the following extensions (1p):
- Splash screen
- Background music
- Restore color data if restart

Explicit
intent

