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Facts, Rules, and Queries

Thisintroductorylecturehastwo maingoals:

1. To give somesimpleexamplesof Prologprograms.Thiswill introduceusto the
threebasicconstructsn Prolog: facts,rules,andqueries.It will alsointroduce
usto a numberof otherthemeslike therole of logic in Prolog,andthe ideaof
performingmatchingwith theaid of variables.

2. To beagin the systematicstudyof Prologby definingterms,atoms variablesand
othersyntacticconcepts.

1.1 Some simple examples

Thereareonly threebasicconstructsn Prolog: facts,rules,andqueries.A collection
of factsandrulesis calleda knowvledgebase(or a databaseandPrologprogramming
is all aboutwriting knowledgebases.Thatis, Prologprogramssimply are knovledge
basescollectionsof factsand ruleswhich describesomecollection of relationships
thatwe find interesting.Sohow do we usea Prologprogram?By posingqueries.That
is, by askingquestionsabouttheinformationstoredin the knowledgebase.Now this
probablysoundsratherstrange.It’s certainlynot obviousthatit hasmuchto do with
programmingat all — afterall, isn’t programmingall abouttelling the computerwhat
to do? But aswe shall see,the Prologway of programmingmakesa lot of senseat
leastfor certainkinds of applicationgcomputationalinguisticsbeingoneof the most
importantexamples).But insteadof sayingmoreaboutPrologin generalterms,let’s
jump right in andstartwriting somesimpleknowledgebasesthis is not just the best
way of learningProlog,it'stheonlyway ...

1.1.1 Knowledg e Base 1

KnowledgeBasel (KB1) is simply a collectionof facts.Factsareusedto statethings
that are unconditionallytrue of the domain of interest. For example, we can state
that Mia, Jody and Yolandaarewomen,andthat Jodyplaysair guitar, usingthethe
following four facts:

worman(mi a) .

wonman(j ody) .
worman(yol anda) .

pl aysAi r Cui t ar (j ody) .
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This collectionof factsis KB1. It is our first exampleof a Prologprogram.Note that
thenamesni a, j ody, andyol anda, andthe propertieswonan andpl aysAi r Gui t ar,
have beenwritten sothatthefirst letteris in lower-case.This is important;we will see
why alittle later.

How canwe useKB1? By posingqueries. Thatis, by askingquestionsaboutthe
informationKB1 contains.Herearesomeexamples.We canaskPrologwhetherMia
isawomanby posingthequery:

?- woman(mi a).
Prologwill answer
yes

for the obvious reasorthat this is one of the factsexplicitly recordedin KB1. Inci-
dentally wedont typein the?-. This symbol(or somethindike it, dependingnthe
implementatiorof Prologyou areusing)is the promptsymbolthat the Prologinter
preterdisplayswhenit is waiting to evaluatea query We justtypein theactualquery
(for examplewonan( ni a) ) followedby . (afull stop).

Similarly, we canaskwhetherJodyplaysair guitarby posingthefollowing query:
?- playsAirCGuitar(jody).

Prologwill againanswer‘yes”, becausehis is one of the factsin KB1. However,
supposeave askwhetherMia playsair-guitar:

?- playsAirGuitar(ma).
We will gettheanswer
no

Why? Well, first of all, thisis notafactin KB1. Moreover, KB1 is extremelysimple,
andcontainsno otherinformation(suchastheruleswe will learnaboutshortly)which
might help Prologtry to infer (thatis, deducewvhetherMia playsair guitar SoProlog
correctlyconcludeghatpl aysAi r Gui t ar (i a) doesnotfollow from KB1.

Herearetwo importantexamples.Supposeve posethe query:
?- playsAirGuitar(vincent).

Again Prologanswersno”. Why? Well, this queryis abouta person(Vincent)thatit
hasno informationabout,soit concludeghatpl aysAi r Gui t ar (vi ncent) cannotbe
deducedrom theinformationin KB1.

Similarly, supposeve posethequery:
?- tatooed(jody).
Again Prologwill answer“no”. Why? Well, this queryis abouta property(being

tatooed)that it hasno informationabout,so onceagainit concludesthat the query
cannotbe deducedrom theinformationin KB1.
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1.1.2 Knowledg e Base 2

Hereis KB2, our secondknowledgebase:

i stensToMusic(nmi a).

happy(yol anda) .

playsAirCGuitar(ma) :- |listensToMusic(m a).

pl aysAi rCuitar(yolanda) :- |istensToMusic(yolanda).
| i stensToMusi c(yol anda): - happy(yol anda) .

KB2 containgwo facts,| i st ensToMusi c(mi a) andhappy(yol anda). Thelastthree
itemsarerules.

Rulesstateinformationthatis conditionallytrue of the domainof interest.For exam-
ple, thefirst rule saysthatMia playsair guitarif shelistensto music,andthelastrule
saysthat Yolandalistensto musicif sheif hapyy. More generally the: - shouldbe
readas"if ", or “is implied by”. The partontheleft handsideof the: - is calledthe
headof therule, the parton theright handsideis calledthe body Soin generalrules
say:if thebodyof therule is true,thenthe headof therule is truetoo. And now for
thekey point:

if aknowvledgebasecontainsarule head : - body, andPrologknows thatbody fol-
lows from theinformationin the knowledgebase thenPrologcaninfer head.

This fundamentatleductionstepis whatlogicianscall modusponens.

Let's consideranexample.We will askPrologwhetherMia playsair guitar:
?- playsAirGuitar(ma).

Prologwill respond'yes”. Why? Well, althoughpl aysAi r Gui t ar (ni a) is notafact
explicitly recordedn KB2, KB2 doescontaintherule

playsAirGuitar(ma) :- listensToMisic(ma).

Moreover, KB2 alsocontainsthefact! i st ensToMusi ¢( i a). HencePrologcanuse
modusponengo deducehatpl aysAi r Gui t ar (i a) .

Ournext exampleshavsthatPrologcanchaintogethemusesof modusponens Suppose
we ask:

?- playsAircGuitar(yolanda).
Prologwouldrespondyes”. Why? Well, usingthefacthappy(yol anda) andtherule
i stensToMusi c(yol anda): - happy(yol anda),

Prolog can deducethe new fact! i st ensToMusi c(yol anda) . This new factis not
explicitly recordedn theknowledgebase— it is only implicitly presentit is inferred
knowledge). NonethelessPrologcanthenuseit justlike an explicitly recordedfact.
Thus,togethewith therule
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pl aysAi rCGuitar(yolanda) :- |istensToMisic(yol anda)

it candeducethatpl aysAi r Gui t ar (yol anda) , whichis whatwe asledit. Summing
up: ary factproducedy anapplicationof modusponensanbeusedasinputto further
rules. By chainingtogetherapplicationsof modusponensn this way, Prologis able
to retrieve informationthatlogically follows from the rulesandfactsrecordedn the
knowledgebase.

Thefactsandrulescontainedn a knowledgebasearecalledclauses.ThusKB2 con-
tainsfive clausespamelythreerulesandtwo facts.Anotherway of looking at KB2 is
to saythatit consistf threepredicategor procedures)Thethreepredicatesre:

|l i stensToMusi ¢

happy
pl aysAi r Gui tar

Thehappy predicates definedusinga single clause(a fact). Thel i st ensToMusi ¢

andpl aysAi r Gui t ar predicatesireeachdefinedusingtwo clausegin bothcasestwo

rules). It is agoodideato think aboutPrologprogramsn termsof the predicateshey

contain.In essencethe predicatesrethe conceptave find important,andthe various
clausesve write dowvn concerninghemareour attemptgo pin down whatthey mean
andhow they areinter-related.

Onefinal remark. We canview a fact asa rule with an emptybody Thatis, we
canthink of factsas “conditionalsthat do not have ary antecedentonditions”, or
“degenerateules”.

1.1.3 Knowledg e Base 3

KB3, ourthird knovledgebase consistf five clauses:

happy(vi ncent).

i stensToMusi c(butch).

pl aysAi rCGuitar(vincent): -
i stensToMusi c(vi ncent),
happy(vi ncent).

pl aysAi r Gui tar (butch): -
happy(but ch)

pl aysAi r Gui tar (butch): -
i stensToMusi c(butch).

There are two facts, namely happy(vi ncent) andl i stensToMusi c(butch), and
threerules.

KB3 definesghe samethreepredicateasKB2 (namelyhappy, | i st ensToMisi ¢, and
pl aysAi r Gui tar) but it definesthemdifferently In particular the threerulesthat
definethe pl aysAi r Gui t ar predicateintroducesomenew ideas. First, notethatthe
rule
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pl aysAi rCGuitar(vincent): -
i stensToMusi c(vi ncent),
happy(vi ncent).

hastwo itemsin its body, or (to usethe standarderminology)two goals. Whatdoes
this rule mean? The importantthing to noteis the comma, that separateshe goal
l'i stensToMusi c(vi ncent) andthegoalhappy(vi ncent) intherule’sbody Thisis
theway logical conjunctionis expressedn Prolog(thatis, thecommameansand). So
thisrule says:“Vincentplaysair guitarif helistensto musicandheis happy”.

Thus,if we posedthequery

?- playsAirCGuitar(vincent).

Prologwould answer‘no”. Thisis becausevhile KB3 containshappy(vi ncent), it
doesnot explicitly containtheinformationl i st ensToMusi c(vi ncent ), andthisfact
cannotbe deduceckither SoKB3 only fulfils oneof the two preconditionsieededo
establishpl aysAi r Gui t ar (vi ncent ), andour queryfails.

Incidentally the spacingusedin this rule is irrelevant. For example,we could have
written it as

pl aysAi rCuitar(vincent):- happy(vincent), |istensToMisic(vincent).

andit would have meantexactly the samething. Prologoffersusa lot of freedomin
the way we setout knowledgebasesandwe cantake advantageof this to keepour
codereadable.

Next, notethatkKB3 containgwo ruleswith exactlythe samehead,namely:

pl aysAi r Gui tar (butch): -
happy(but ch).

pl aysAi r Gui tar (butch): -
l'i stensToMusi c(butch).

This is a way of statingthat Butch playsair guitarif either he listensto music, or if
heis happy. Thatis, listing multiple ruleswith the sameheadis a way of expressing
logical disjunction(thatis, it is away of sayingor. Soif we posecthequery

?- playsAirGuitar(butch).

Prologwould answer‘yes”. For althoughthe first of theseruleswill not help (KB3
doesnt allow Prologto concludehathappy( but ch), KB3 doescontaini i st ensToMusi c(butch))
andthis meansPrologcanapply modusponenausingtherule

pl aysAi r Gui tar (butch): -
i stensToMusi c(butch).
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to concludethatpl aysAi r Gui t ar (but ch) .

Thereis anothemway of expressingdisjunctionin Prolog. We couldreplacethe pair of
rulesgivenabove by thesinglerule

pl aysAi r Gui tar (butch): -
happy(but ch) ;
i stensToMusi c(butch).

Thatis, the semicolon; is the Prologsymbolfor or, sothis singlerule meansexactly
the samething asthe previous pair of rules. But Prolog programmersisually write
multiple rules,asextensve useof semicoloncanmake Prologcodehardto read.

It shouldnow be clearthat Prolog hasa somethingdo with logic: afterall, the : -
meansimplication, the, meansconjunction,andthe ; meansdisjunction. (What
aboutnggation?Thatis awhole otherstory We’'ll bediscussingt laterin thecourse.)
Moreover, we have seenthat a standardogical proof rule (modusponens)plays an
importantrolein Prologprogramming And in fact“Prolog” is shortfor “Programming
in logic”.

1.1.4 Knowledg e Base 4

Hereis KB4, our fourth knowledgebase:

wonman(m a) .
worman(j ody) .
worman(yol anda) .

| oves(vincent, ma).

| oves(marcel lus, ma).

| oves( punpki n, honey_bunny) .
| oves(honey_bunny, punpki n) .

Now, this is a pretty boring knowledgebase.Thereareno rules,only a collection of
facts. Ok, we areseeinga relationthat hastwo namesasamumentsfor thefirst time
(namelythel oves relation),but, let’s faceit, that's aratherpredictablddea.

No, the novelty this time lies not in the knowledgebase,it lies in the querieswe are
going to pose. In particular for the first time were going to male useof variables
Heresanexample:

?- wonman( X) .

The X is a variable(in fact, ary word beginning with a uppercaseletteris a Prolog
variable whichis why we hadto becarefulto uselower-casenitial lettersin ourearlier
examples). Now a variableisn’'t a name,ratherit’s a “placeholder”for information.
Thatis, this queryessentiallyasksProlog: tell me which of theindividualsyou know
aboutis awoman.
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Prologanswerghis queryby working its way throughKB4, from top to bottom,trying
to match(or unify) theexpressionwonman( X) with theinformationKB4 contains.Now
the first item in the knowledge baseis wonan(ni a). So, Prolog matchesx to i a,
thusmakingthe queryagreeperfectlywith this first item. (Incidentally theres a lot
of differentterminologyfor this processwe canalsosaythatProloginstantiates< to
mi a, or thatit bindsx to mi a.) Prologthenreportsbackto usasfollows:

X =ma

Thatis, it not only saysthatthereis information aboutat leastone womanin KB4,
it actuallytells uswho sheis. It didn't justsay“yes”, it actuallygave usthe variable
binding,or instantiationthatleadto success.

But that’s not the end of the story The whole point of variables— andnot just in
Prolog either— is that they can*“standfor” or “match with” differentthings. And
thereis information aboutotherwomenin the knowvledgebase. We canaccesghis
informationby typing thefollowing simplequery

Remembethat; meansor, so this query means:are there any more womar? So
Prologbeagins working throughthe knowledgebaseagain(it remembersvhereit got
up to lasttime andstartsfrom there)andseeghatif it matchesx with j ody, thenthe
queryagreegerfectlywith the secondentryin theknowledgebase.Soit responds:

X = jody

It' stelling usthatthereis informationabouta secondvomanin KB4, and(onceagain)
it actuallygivesusthevaluethatled to successAnd of course|jf we press asecond
time, Prologreturnstheanswer

X = yol anda

But whathappensf we press athird time?Prologrespondsno”. No othermatches
arepossible. Thereare no otherfactsstartingwith the symbolwonan. The lastfour

entriesin theknowledgebaseconcerrthel ove relation,andthereis no way thatsuch
entriescanmatcha queryof theform of theform man( x) .

Let'stry amorecomplicatedquery namely
| oves(marcel | us, X), woman( X)

Now, remembetthat, meansand sothis querysays:is there anyindividual X sud
that Marcelluslovesx and X is awomar? If youlook attheknowledgebaseyou’ll see
thatthereis: Mia is awoman(fact 1) andMarcelluslovesMia (fact5). And in fact,
Prologis capableof working this out. Thatis, it cansearchthroughthe knowvledge
baseandwork out thatif it matches< with Mia, thenboth conjunctsof the queryare
satisfiedwe’ll learnin laterlecturesexactly how Prologdoesthis). SoPrologreturns
theanswer
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X =mna

This businesof matchingvariablesto informationin the knowledgebaseis the heart
of Prolog. For sure,Prologhasmary otherinterestingaspects— but whenyou get
right down to it, it's Prologs ability to performmatchingandreturnthe valuesof the
variablebindingto usthatis crucial.

1.1.5 Knowledg e Base 5

Well, we've introducedvariables but sofar we've only usedthemin queries.In fact,
variablesnotonly canbeusedin knowledgebasesit’s only whenwe startto do sothat
we canwrite truly interestingorograms Heres a simpleexample theknowledgebase
KB5:

| oves(vincent, m a).

| oves(marcel lus, ma).

| oves( punpki n, honey_bunny) .
| oves( honey_bunny, punpki n) .

jealous(X Y) :- loves(X 2),!|oves(Y,Z2).

KB5 containsfour factsaboutthel oves relationandonerule. (Incidentally theblank
line betweenthe factsandthe rule hasno meaning:it's simply thereto increasethe
readability As we saidearlier Prologgivesus a greatdealof freedomin the way we
formatknowledgebases.But thisruleis by far the mostinterestingonewe have seen
sofar: it containghreevariablegnotethatXx, Y, andz areall uppercaseletters).What
doesit say?

In effect, it is defininga concepif jealousy It saysthatanindividual X will bejealous
of anindividual Y if thereis someindividual z that X loves, andY loves that same
individual Z too. (Ok, sojealouslyisn’t asstraightforvard asthis in therealworld ...)

Thekey thingto noteis thatthisis ageneal statementit is notstatedn termsof i a,

or punpki n, or aryonein particular— it's a conditionalstatemenabouteverybodyin

our little world.

Supposeave posethequery:
?- jealous(marcellus,W.

This query asks: canyou find an individual wsuchthat Marcellusis jealousof W?
Vincentis suchanindividual. If you checkthe definition of jealousy you'll seethat
Marcellusmustbejealousof Vincent,becauséhey bothlove thesamenvoman,namely
Mia. SoPrologwill returnthevalue

W = vi ncent

Now somequestiondor you, First, arethereary otherjealouspeoplein KB5? Fur-
thermore supposeve wantedPrologto tell usaboutall the jealouspeople:whatquery
would we pose?Do ary of theanswerssurpriseyou? Do ary seensilly?
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1.2 Prolog Syntax

Now thatwe’ve gotsomeideaof whatPrologdoes|t’ stimeto gobackto thebeginning
andwork throughthedetailsmorecarefully Let's startby askingaverybasicquestion:
we've seenall kinds of expressiongfor examplej ody, pl aysAi r Gui t ar (i a), and
X) in our Prologprogramsput thesehave just beenexamples.Exactly whatarefacts,
rules,andqueriesbuilt out of?

The answeris terms,and thereare four kinds of termsin Prolog: atoms,numbers,
variablesandcomple terms(or structures) Atomsandnumbersarelumpedtogether
underthe headingconstantsandconstantandvariablestogethemmake up the simple
termsof Prolog.

Let’s take a closerlook. To male thingscrystalclear let’s first get clear aboutthe
basiccharactergor symbols)at our disposal.Theuppercaseletters areA, B, ..., Z; the
lower-caseletters area, b, ..., z; thedigits are1, 2, ..., 9; andthe specialcharacters
are+, -, *,/,<,> = :,.,& ~, and_. The_ characters calledunderscore.The
blankspaceis alsoa characterbut aratherunusualone,beinginvisible. A stringis an
unbrolenstringsequencef characters.

1.2.1 Atoms

An atomis either:

1. A string of charactersnadeup of uppercaseletters,lower-caseletters,digits,
andthe underscoreharacterthatbegins with alower-caseletter For example:
but ch, bi g_kahuna_bur ger, andm nonr oe2.

2. An arbitrarysequencef characteenclosedn singlequotes.Forexample' Vi ncent’,
"The G np’, 'Five_Dol | ar _Shake', & %#@ &', and’ ’'. Thecharactebe-
tweenthe singlequotess calledtheatomname.Notethatwe areallowedto use
spacesn suchatoms— in fact,a commonreasorfor usingsinglequotesis so
we cando preciselythat.

3. A string of specialcharacters.For example: @ and====> and; and: - are
all atoms. As we have seen,someof theseatoms,suchas; and:- hae a
pre-definedneaning.

1.2.2 Numbers

Realnumbersarent particularlyimportantin typical Prologapplications Soalthough
mostPrologimplementationslo supportfloating point numbersor floats(thatis, rep-
resentationsf realnumberssuchas1657.3087r 1) we arenotgoingto discusghem
in this course.

Butintegers(thatis: ... -2,-1,0, 1, 2, 3, ...) areusefulfor suchtasksascountingthe
elementf alist, andwe’ll discusshow to manipulatethemin a later lecture. Their
Prologsyntaxis theobviousone: 23, 1001, 0, - 365, andsoon.
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1.2.3 Variables

A variableis a string of uppercaseletters,lower-caseletters, digits and underscore
charactershatstartseitherwith anuppercaseetteror with underscorefFor example,
X, Y, Variabl e, tag, X 526, andLi st, Li st 24, head, Tai |, _i nput andQut put
areall Prologvariables.

Thevariable_ (thatis, a singleunderscoreharacter)s ratherspecial.It’'s calledthe
anonymougyariable andwe discusst in alaterlecture.

1.2.4 Comple x terms

Constantspnumbersandvariablesarethe building blocks: now we needto knov how
to fit themtogethetto make complex terms.Recallthatcomplex termsareoftencalled
structures.

Comple termsare build out of a functor (or predicate)followed by a sequencef
arguments. The agumentsare put in ordinary braclets, separatedy commas,and
placedafter the functor The functor mustbe an atom. Thatis, variablescannotbe
usedasfunctors.Ontheotherhand,agumentscanbeary kind of term.

Now, we've alreadyseenlots of examplesof complex termswhenwe looked at KB1

— KB5. For example, pl aysAi r Gui tar (j ody) is a comple term: its functor is

pl aysAi r Gui t ar anditsagumentisj ody. Otherexamplesarel oves( punpki n, honey_bunny)
and,to give anexamplecontainingavariable,j eal ous(narcel | us, W.

But notethatthe definition allows far morecomplex termsthanthis. In fact, it allows
usto to keepnestingcomple termsinside complex termsindefinitely (thatis, it is a
recusisivedefinitior). For example

hi de( X, fat her (father (father(butch))))

is aperfectlyok comple term. Its functoris hi de, andit hastwo agumentsthevari-
ableX, andthecomplex termf at her (f at her (f at her (but ch))). Thiscomple term
hasf at her asits functor andthenanothercomplexterm,namelyf at her (f at her (but ch))
asit’ ssoleagument.And theargumentof thiscomplex term,namelyf at her (but ch),

is alsocomple. But thenthe nesting*bottomsout”, for theargumenthereis the con-
stantbut ch.

As we shall see,suchnested(or recursvely structuredtermsenableus to represent
mary problemsnaturally In factthe interplay betweenrecursve term structureand
variablematchingis the sourceof muchof Prologs power.

The numberof agumentsthat a complex term hasis calledits arity. For instance,
wonan(mi a) isacomples termwith arity 1, while | oves(vi ncent, ni a) isacomple
termwith arity 2.

Arity is importantto Prolog. Prologwould be quite hapyy for usto definetwo pred-
icateswith the samefunctor but with a differentnumberof aguments.For example,
we arefreeto definea knowledgebasethat definesa two placepredicate ove (this
might containsuchfactsasl ove(vi ncent, ni a)), andalsoathreeplacel ove predi-
cate(which might containsuchfactsasl! ove(vi ncent, mar cel | us, mi a) ). However,
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if wedid this, Prologwould treatthetwo placel ove andthethreeplacel ove ascom-
pletelydifferentpredicates.

Whenwe needto talk aboutpredicatesandhow we intendto usethem (for example,
in documentation)t is usualto usea suffix / followed by a numberto indicatethe
predicates arity. To returnto KB2, insteadof sayingthatit definespredicates

| i stensToMusi ¢

happy
pl aysAi r Cui t ar

we shouldreally saythatdefinespredicates

listensToMusic/1
happy/ 1
playsAirCuitar/1

And Prolog cant get confusedabouta knowvledgebasecontainingthe two different
love predicatesfor it regardsthel ove/ 2 predicateandthel ove/ 3 predicateascom-
pletelydistinct.

1.3 Exercises

Exercise 1.1 Whid of the following sequencesf characters are atoms,which are
variables,andwhich are neither?

. Foot massage
. vari abl e23

. Vari abl e2000

1

2

3

4

5. bi g_kahuna_bur ger
6. ' bi g kahuna burger’
7. bi g kahuna burger
8. ' Jules’

9

. Jules

10." Jules’

Exercise 1.2 Whid of the following sequencesf characters are atoms,which are
variables,which are comple terms,andwhich are nottermsat all? Givethefunctor
andarity of ead complex term.

1. I oves(Vi ncent, mi a)
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"l oves(Vincent,ma)’

But ch( boxer)

boxer ( But ch)

and( bi g( bur ger), kahuna( burger))

and( bi g( X), kahuna(X))

_and(bi g( X), kahuna( X))

(Butch kills Vincent)

kills(Butch Vincent)

. ki l'l s(Butch, Vi ncent

Exercise 1.3 How manyfacts,rules,clausesandpredicatesare there in thefollow-
ing knowledg base? What are the headsof the rules, and what are the goalsthey
contain?

worman(vi ncent) .

wonman(m a) .

man(j ul es).

person(X) :- man(X); woman(X).
loves(X,Y) :- knows(Y, X).

father(Y,2) :- man(Y), son(ZY).
father(Y,2) :- man(Y), daughter(ZY).

Exercise 1.4 Repesenthefollowingin Prolog:

o o0 A W N B

. Butdhis a killer.

. Mia andMarcellusare married.

. Zedis dead.

. Marcelluskills everyonewhogivesMia a footmassge.
. Mia loveseveryonewhois a gooddancer

. Juleseatsanythingthatis nutritiousor tasty

Exercise 1.5 Supposave are workingwith the following knowledg base:

wi zard(ron).

hasWand( harry).

qui ddi t chPl ayer (harry).

wi zard(X) :- hasBroon( X), hasWand( X) .
hasBroom( X) :- quidditchPl ayer(X).

How doesProlog respondo thefollowing queries?
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wi zard(ron).
wi tch(ron).

wi zar d( her m one) .

W zard(harry).

1.

2.

3.

4. witch(hernione).
5.

6. wi zard(Y).

7.

wi tch(Y).

1.4 Practical Session 1

Don't be fooled by the fact that the descriptionsof the practical sessionsare much
shorterthanthetext you have just read— the practicalpart of the courseis definitely
themostimportant. Yes,you needto readthe text anddo the exerciseshut that's not
enoughto becomea PrologprogrammerTo really masterthelanguageyou needto sit
down in front of acomputera play with Prolog— alot!

Thegoalof thefirst practicalsessioris for you to becomefamiliar with the basicsof
how to createandrun simplePrologprogramsNow, becaus¢herearemary different
implementationof Prolog,and mary differentoperatingsystemsyou canrun them
under we cant be too specifichere. Rathey whatwe’ll do is describein very gen-
eraltermswhatis involvedin runningProlog, list the practicalskills you will needto
masterandmalke somesuggestionsor thingsto do.

The simplestway to run a Prolog programis asfollows. You have a file with your
Prolog programin it (for example,you may have a file kb2. pI which containsthe
knowvledgebaseKB2). YouthenstartPrologrunning. Prologwill displayits prompt,
somethindike

whichindicatesthatit is readyto accepta query

Now, at this stage,Prologknows absolutelynothingaboutKB2 (or indeedarything
else). To seethis, type in the command i sti ng, followed by a full stop, and hit
return. Thatis, type

?- listing.

andpressthereturnkey.

Now, thel i sti ng commands aspecialin-built PrologpredicatehatinstructsProlog
to displaythe contentsof the currentknowledgebase.But we havent yettold Prolog
aboutary knowledgebasessoit will justsay

yes
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This is a correctanswer:asyet Prologknows nothing— soit correctly displaysall
this nothingandsaysyes. Actually, with moresophisticatedPrologimplementations
you may geta little more (for example,the namesof librariesthathave beenloaded)
but, oneway or anotheryou will receve whatis essentiallyan®“l know nothingabout
ary knowvledgebases!"answer

Solet’s tell PrologaboutKB2. Assumingyou've storedKB2 in thefile kb2. pl , and
thatthisfile is in thesamedirectorywhereyou're runningProlog,all you have to type
is

?- [kb2].

Thistells Prologto consultthefile kb2. pl , andloadthe contentsasits new knowledge
base.Assumingthatthekb2. pl containsno typos,Prologwill readit in, maybeprint
outamessagesayingthatit is consultingthefile kb2. pl , andthenanswer:

yes

Incidentally it is quite commonto storePrologcodein files with a. pl sufiix. It'sa
usefulindicationof whatthefile containgnamelyPrologcode)andwith mary Prolog
implementationyou don't actuallyhave to typein . pI suffix whenyou consultafile.

Ok, so Prolog shouldnowv know aboutall the KB2 predicates. And we can check
whethernt doesby usingthel i sti ng commandagain:

?- listing.
If youdothis, Prologwill list (somethindike) thefollowing onthescreen:

i stensToMusic(ni a).
happy(yol anda) .
playsAirGQuitar(ma) -
i stensToMusi c(m a).
pl aysAi r Gui t ar (yol anda)
| i stensToMusi c(yol anda) .
I i stensToMusi c(yol anda): -
happy(yol anda) .

yes

Thatis, it will list thefactsandrulesthatmalke up KB2, andthensayyes. Onceagain,
you maygetalittle morethanthis, suchasthelocationsof variouslibrariesthathave
beenloaded.

Incidentally | i sti ng canbeusedin otherways.For example,typing

?- listing(playsAirCuitar).
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simplylistsall theinformationin theknowvledgebaseaboutthepl aysAi r Gui t ar pred-
icate.Soin this casePrologwill display

playsAirGuitar(ma) -
i stensToMusi c(mi a).
pl aysAi r Gui t ar (yol anda)
l'i stensToMusi c(yol anda) .

yes

Well — now you're readyto go. KB2 is loadedandPrologis running,soyou can(and
should!) startmakingexactly the sortof inquirieswe discussedh thetext ...

But let’s backup a little, andsummarizea few of the practicalskills you will needto
masterto getthisfar:

¢ Youwill needo know somebasicfactsabouttheoperatingsystemyouareusing,
suchasthe directory structureit uses.After all, you will needto knov how to
save thefiles containingprogramswvhereyou wantthem.

e Youwill needto know how to usesomesortof text editor, in orderto write and
modify programs SomePrologimplementationsomewith in-built text editors,
but if you alreadyknow atext editor (suchasEmacs)it is probablya betteridea
to usethis to write your Prologcode.

e Youmaywantto take examplePrologprogramdrom theinternet.Somale sure
you knowv how to usea browserto find what you want, andto storethe code
whereyou wantit.

e Make sureyou know how to startProlog,andconsultfiles fromit.

The sooneryou pick up theseskills, the better With them out of the way (which
shouldnt take long) you canstartconcentratingon masteringProlog(which will take
alot longer).

But assuming/ou have masteredheseskills, whatnext? Quitesimply, play with Pro-

log! Consultthe variousknowledgebasesliscussedoday andcheckthatthe queries
discussedeally do work the way we saidthey did. In particular take a look at KB5

and make sureyou understandwvhy you getthosepeculiar‘jealousy” relations. Try

posingnew queries.Experimentwith thel i sti ng predicate(it’s a usefultool). Type
in theknowledgebaseusedin Exercise5, andcheckwhetheryour answersarecorrect.
Bestof all, think of somesimple domainthat interestsyou, and createa brand-nev

knowledgebasefrom scratch...
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Matching and Proof Search

Todays lecturehastwo maingoals:

1. To discusgheideaof matchingin Prolog,andto explain how Prologmatching
differs from standardunification. Along the way, we’ll introduce=, the inbuilt
Prologmatchingpredicate.

2. To explainthesearchstratgy Prologuseswhenit triesto prove something.

2.1 Matching

Recallthattherearethreetypesof term:

1. Constants.Thesecan eitherbe atoms(suchasvi ncent) or numbers(suchas
24).

2. Variables.

3. Compl terms.Thesehave theform: functor (term 1, ..., termn).

Wearenow goingto definewhentwo termsmatch.Thisis oneof themostfundamental
definitionsin Prolog. Therearetwo reasonsvhy it's soimportant.

Thefirst is this: becausave are allowed to build complex terms(thatis, recursively
structued terms),the idea of matchingtermsis automaticallyfairly rich. After all,
matchingwill have to take therecursve structureinto account.

Theseconds this: termsmaycontainvariables If wearecomparingwo termst er ni.
andt er n2, and(say)t er niL containsavariable(sayx), thenby giving X avalue,it may
be possibleto malke thetwo termsequal.In fact,we're really interestedn a definition
of matchingwhich not only tells uswhentwo termsareequal,but onewhich alsotells
uswhatwe haveto do to the variablesto make thetermsequal.As we saidlastweek,
this procesf makingtermsequalby instantiatingvariabless oneof thefundamental
ideasin Prolog.

Heres thedefinitionwe need:

1. If terni andt er n2 areconstantsthent er mi andt er n2 matchif andonly if
they arethe sameatom,or the samenumber
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2. If terml is avariableandt ern2 is ary type of term, thenterni. andt er n2
match,andt er ni is instantiatedto t er n2. Similarly, if tern2 is a variable
andternt is ary type of term, thenternt andtern2 match,andtern2 is
instantiatedo t er mi. (Soif they arebothvariablesthey’re bothinstantiatedo
eachother andwe saythatthey sharevalues.)

3. If ternl andt er n2 arecomplex terms,thenthey matchif andonly if:

(a) They have thesamefunctor
(b) All their corresponding@ugumentsmatch

(A reminder:for Prolog,two functorsarethe sameif andonly if they arethe
sameatomand they arefollowed by the samenumberof aguments.)

4. Two termsmatchif andonly if it follows from the previous threeclauseghat
they match.

Note the form of this definition. The first clausetells us whentwo constantanatch.
The secondterm clausetells us whentwo terms,one of which is a variable,match:
suchtermswill alwaysmatch(variablesmatchwith anything. Justasimportantly
this clausealsotells whatinstantiationsve have to performto make thetwo termsthe
same Finally, thethird clausetells uswhentwo complex termsmatch.

Thefourthclauses alsoveryimportant:it tellsusthatthefirst threeclausesompletely
definewhentwo termsmatch.If two termscant beshavn to matchusingClausedl -3,

thenthey dont match. For example,bat man doesnot matchwith daught er (i nk).

Why not? Well, thefirst termis a constantthe seconds a comple term. But none
of thefirst threeclausegell ushow to matchtwo suchterms,hence(by claused) they

don't match.

2.1.1 Examples

We'll now look at lots of examplesto male this definition clear In theseexamples
we’'ll make useof animportantinbuilt Prologpredicatethe=/ 2 predicatgrecallthat
the/ 2 attheendis to indicatethatthis predicatdakestwo arguments).

Quite simply, the=/ 2 predicatetestswhetherits two agumentsmatch. For example,
if we posethequery

=(ma,ma).
Prologwill respondyes’, andif we posethequery
=(m a, vincent).

Prologwill respondno’.

But we usuallywouldn't posethesequeriesn quitethisway. Let’'sfaceit, thenotation
=(ni a, m a) isratherunnatural.lt would be muchnicerif we coulduseinfix notation
(thatis, putthe = functorbetweerits agumentsandwrite thingslike:
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And in fact, Prologletsusdothis. Soin the exampleghatfollow we’ll usethe (much
nicer)infix notation.

Let’s returnto this example:

ma = na.
yes

Why doesPrologsay‘yes'? This may seemlike a silly question:surelyit’'s obvious
thatthetermsmatch! That's true, but how doesthis follow from the definition given
abore?lt is veryimportantthatyou learnto think systematicallyaboutmatching(it is
utterly fundamentato Prolog),and‘thinking systematicallymeangelatingthe exam-
plesto thedefinition of matchinggivenabove. Solet’s think this examplethrough.

The definition hasthree clauses. Clause? is for when one agumentis a variable,
andclause3 is for whenboth agumentsarecomplex terms,sotheseareno usehere.
However clausel is relevantto our example. This tells usthattwo constantsunify if

andonly if they areareexactly the sameobject. As ni a andni a arethe sameatom,
matchingsucceeds.

A similar agumentexplainsthefollowing responses:

ma = vincent.
no

Onceagain,clausel is relevanthere(afterall, 2, ni a, andvi ncent areall constants).
And as2 is thesamenumberas2, andasni a is notthesameatomasvi ncent , Prolog
respondsyes’ to thefirst queryand‘no’ to thesecond.

However clausel doeshold onesmallsurprisefor us. Considerthefollowing query:

'ma = ma.
yes

What's going here? Why do thesetwo termsmatch? Well, asfar asPrologis con-
cerned, ni a° andni a arethe sameatom. In fact, for Prolog,ary atomof the form
"symbol s’ is consideredhe sameentity asthe atomof the form synbol s. This can
bea usefulfeaturein certainkindsof programssodont forgetit.

Ontheotherhand,to thethequery
' = 2.

Prologwill respondno’. And if you think aboutthe definitionsgivenin Lecturel,
youwill seethatthis hasto bethewaythingswork. After all, 2 isanumbeybut’ 2’ is
anatom.They simply cannotbethesame.

Let'stry anexamplewith avariable:
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ma = X
X =ma
yes

Again, thisin aneasyexample:clearlythevariablex canbematchedwith theconstant
m a, andPrologdoesso,andtells usthatit hasmadethis matching.Fine,but how does
thisfollow from our definition?

Therelevantclausehereis clause2. Thistellsuswhathappensvhenatleastoneof the
argumentds avariable.ln our exampleit is thesecondermwhichis thevariable.The
definitiontells us unificationis possible andalsosaysthatthe variableis instantiated
to thefirst agument,namelyni a. And this, of coursejs exactly whatPrologdoes.

Now for animportantexample:whathappenswvith thefollowing query?
X =Y.
Well you mayjust getbackthe output
X =Y.
yes
Prologis simply agreeinghatthe two termsunify (afterall, variablesunify with ary-
thing, socertainlywith eachother)andmakinganotethatfrom now on, X andy denote

thesameobject. Thatis, if ever X is instantiatedy will beinstantiatedoo, andto the
samething.

Ontheotherhand,you maygetthefollowing output:

X
Y

5071
5071

Here,bothagumentsarevariables Whatdoesthis mean?

Well, thefirstthingto realizeis thatthesymbol 5071 is avariable(recallfrom Lecture
1 that stringsof lettersand numbersthat startwith a _ are variables). Now look at
clause2 of the definition. This tells us that whentwo variablesare matched,they
shae values SowhatPrologis doing hereis to createa new variable(namely_5071

) andsayingthat, from now on, both X andy sharethe valueof this variable. Thatis,
in effect, Prologis creatinga commonvariablenamefor the two original variables.
Incidentally theres nothingmagicaboutthenumbers071. Prologjustneedsyenerate
abrandnew variablename,andusingnumberds a handyway to do this. It might just
aswell generate 5075, or _6189, or whatever.

Let'slook atanexampleinvolving comple terms:
kill(shoot(gun),Y) = kill(X stab(knife)).

X
Y
yes

shoot (gun)
stab(knife)
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Clearly the two complex termsmatchif the statedvariableinstantiationsare carried
out. But how doesthis follow from the definition? Well, first of all, Clause3 hasto
beusedherebecausave aretrying to matchtwo complex terms. Sothefirst thing we
needto do is checkthat both complex termshave the samefunctor (thatis: they use
thesameatomasthefunctornameandhave the samenumberof aguments) And they

do. Clause3 alsotells usthatwe have to matchthe correspondin@rgumentsn each
comple term. Sodothefirstagumentsshoot ( gun) andx, match?By Clause2, yes,
andweinstantiatex to shoot ( gun) . Sodothesecondargumentsy andst ab(kni f e),

match?Again by Clause2, yes,andwe instantiatey to ki | | ( st ab).

Heresalastexample:

kill (shoot(gun), stab(knife)) = kill (X, stab(Y)).

X = shoot (gun)
Y = knife
yes

It shouldbe clearthatthe two termsmatchif theseinstantiationsarecarriedout. But
canyou explain, stepby step,how thisrelatesto thedefinition?

2.1.2 The occur s check

Insteadof sayingthatPrologmatchederms,you’ll find thatmary bookssaythatPro-
log unifiesterms.Thisis very commonterminology andwe will oftenuseit ourseles.
But while it doesnot really matterwhetheryou call what Prologdoes‘unification’ or
‘matching’,thereis onethingyoudoneedto know: Prologdoesnotuseastandardini-
fication algorithmwhenit performsunification/matchinglnstead,t takesa shortcut.
You needto know aboutthis shortcut.

Considetthefollowing query:
father(X) = X

Do you think thesetermsmatchor not? No, they don't. Let’s thinks this example
through.

Pickary termandinstantiatex to thetermyou picked. For example,if youinstantiatex

tof at her (f at her (but ch)) , theleft handsidebecomes at her (f at her (f at her (butch))),
andthe right handside becomeg at her (f at her (but ch)) . Obviously thesedont

match. Moreover, it makes no differencewhat you instantiatex to. No matterwhat

you choosethe two termscannotpossiblybe madethe same for the term on theleft

will alwaysbeonesymbollongerthanthetermontheright (thefunctorf at her onthe

left will alwaysgive it thatoneextralevel). Thetwo termssimply don't match.

NonethelessPrologwill try to matchthem. If you carry out this queryyou will geta
messagdike:

Not enough nmenory to conpl ete query!

andalong stringof symbolslike:
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X = father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father
(father(father(father(father(father(father(father(father(father

Prologis desperatelyrying to matchtheseterms,but it won't succeed.That strange
variableX, which occursasan argumentto a functor on the left handside,andon its
own ontheright handside,makesmatchingimpossible.

To be fair, what Prologis trying to do hereis reasonablyntelligent. Intuitively, the
only way the two termscould be madeto matchwould be if X wasinstantiatedto
‘a term containingan infinitely long string of f at her functors’, so that the effect of
theextraf at her functoron theleft handsidewascanceledout. But termsarefinite
entities.Thereis no suchthing asa ‘term containinganinfinitely long stringof f at her

functors’. Prologs searcHor a suitabletermis doomedo failure,andit learnsthisthe
hardway whenit runsout of memory

Now, a standardunification algorithm doesnot work this way. If we gave suchan
algorithmthe sameexample,it would look at it andtell us thatthe two termsdon't
unify. How doesit do this? By carryingout the occurscheck. Standardunification
algorithmsalwayspeekinsidethestructureof thetermsthey areasledto unify, looking
for strangevariable(like the X in our example)thatwould causeproblems.

To putit anothemway, standarcunificationalgorithmsare pessimistic They first look
for strangevariableg(usingthe occurscheck)andonly whenthey aresurethatthetwo
termsare ‘safe’ do they go aheadandtry and matchthem. So a standardunification
algorithmwill never getlocked into a situationwhereit is endlesslytrying to match
two unmatchabléerms.

Prolog, on the otherhand,is optimistic It assumeshat you arenot goingto give it
arything dangerousSoit doesnot make anoccurscheck.As soonasyou give it two
terms,it chagesfull steamaheadandtriesto matchthem.

As Prologis aprogrammindanguagethisis anintelligentstratgyy. Matchingis oneof
thefundamentaprocessethatmakesPrologwork, soit needgo be carriedoutasfast
aspossible.Carryingout an occurscheckevery time matchingwas calledfor would
slow it down considerablyPessimisnis safe,but optimismis alot faster!

Prolog canonly run into problemsif you, the programmeraskit to do something
impossiblelike unify X with f at her (X). And it is unlikely you will ever askit to
arything like thatwhenwriting arealprogram.

2.1.3 Programming with matc hing

As we've said, matchingis a fundamentabperationin Prolog. It playsa key role in
Prologproof search(aswe shall soonlearn),andthis alonemakesit vital. However,
asyou getto know Prologbetter it will becomeclearthatmatchingis interestingand
importantin its own right. Indeed,sometimes/ou canwrite usefulprogramssimply
by usingcomple termsto defineinterestingconcepts.Matchingcanthenbe usedto
pull outtheinformationyou want.

Heres asimpleexampleof this, dueto IvanBratko. Thefollowing two line knowvledge
basedefinessomebasicfactsaboutverticalandhorizontalline sggments:
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vertical (line(point(X Y),point(X 2))).
hori zontal (Iine(point(X Y),point(ZY))).

Now, at first glancethis knowledge basemay seemtoo simple to be interesting: it
containgjust two facts,andno rules. But wait a minute: the two factsareexpressed
using structuredtermswith threelevels of predicatenesting. Moreover, the deepest
level agumentsareall variables,so the conceptsare beingdefinedin a generalway:.
Maybeits not quiteassimpleasit seemsLet’s take a closerlook.

Rightdown atthe bottomlevel, we have thepoi nt / 2 predicatelts two agumentsare
intendedto be instantiatedo numbers:poi nt (X, Y) representshe Cartesiarcoordi-
natesof a point. Thatis, the X indicatesthe horizontaldistancethe pointis from some
fixedpoint, while theY indicatesthe vertical distancerom thatsamefixed point.

Now, oncewe've specifiedtwo distinctpoints,we've specifieda line, namelytheline
betweenthem. In effect, thel i ne/ 2 predicatetakes adwvantageof this. Its two amgu-
mentsarecomplex termsrepresentingoints. By bundlingthetwo pointstogethellike
this, | i ne/ 2 definegheline betweerthem.We're usingProlog’s ability to build com-
plex termsto work our way up a hierarchy of conceptsWe've alreadymovedup from
‘points’ to ‘lines’, andthe next stepwill take usupto ‘vertical’ and‘horizontal'.

The definition of verti cal / 1 simply says:a line that goesbetweentwo pointsthat
have the samex-coordinatds vertical. Note how we capturethe effect of ‘the samex-
coordinatein Prolog: we simply make useof the samevariablex asthefirst agument
in bothoccurrencesf thepoi nt s/ 2 predicate.

Similarly, the definition of hori zont al / 1 simply says:a line thatgoesbetweentwo
pointsthathave the samey-coordinatds horizontal. To capturethe effect of ‘the same
y-coordinate’ we usethe samevariabley asthe secondargumentin bothoccurrences
of thepoi nt s/ 2.

Whatcanwe do with this knowledgebase?. et’'s look at someexamples:

vertical (line(point(1,1),point(1,3))).
yes

This shouldbeclear:thequerymatcheswith thedefinitionof ver ti cal / 1 in our little
knowledgebasegandin particular thetwo occurrencesf thepoi nt s/ 2 predicatehave
the saméefirst agument)soPrologsays'yes’. Similarly we have:

vertical (line(point(1,1),point(3,2))).
no

This querydoesnot matchthe definition of verti cal / 1 (the two occurrencesf the
poi nt s/ 2 predicatehave differentfirst aguments)o Prologsaysno’.

But we canaskmoregeneralquestions:
hori zontal (Iine(point(1,1),point(2,Y)).
Y =1 ;

no
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Hereour queryis: if we wanta horizontalline betweena point at (1,1), and point
whosex-coordinates 2, whatshouldthe y-coordinateof thatsecondoointbe?Prolog
correctlytells usthatthey-coordinateshouldbe 2. If we thenaskPrologfor asecond
possibility (notethe; ) it tells usthatno otherpossibilitiesexist.

Now considerthefollowing:
hori zontal (line(point(2,3),P)).
P = point(_1972, 3)

This queryis: if we wanta horizontalline betweena point at (2,3), and someother
point,whatotherpointsarepermissible?Theanswels: ary pointwhosey-coordinate
is 3. Notethatthe 1972 in the first agumentof the answeris a variable,which is

Prologs way of telling tells usthatarny x-coordinateat all will do.

A generaremark:theanswerto our lastquery poi nt (_1972, 3), is structued That
is, the answeris a complex term, representing sophisticatedconcept(namely‘any

pointwhosey-coordinates 3’). This structurewasbuilt usingmatchingandnothing
else: no logical inferences(andin particular no usesof modusponens)were used
to produceit. Building structureby matchingturnsout to be a powerful ideain Pro-

log programming far more powerful thanthis rathersimple examplemight suggest.
Moreover, whena programis written thatmakesheary useof matching,it is likely to

be extremely efficient. We will studya beautifulexamplein a laterlecturewhenwe

discusdifferencelists, which are usedto implementProloginbuilt grammarsystem
Definite ClauseGrammargDCGS).

This style of programmingis particularlyusefulin applicationswherethe important
concepthave anaturalhierarchicaktructureg(asthey did in thesimpleknowledgebase
above), for we canthenusecomple termsto representhis structure andmatchingto

accesst. This way of working playsanimportantrole in computationalinguistics,
becausénformationaboutlanguagehasa naturalhierarchicalstructure(think of the

way we divide sentencemto noun phrasesandverb phrasesand nounphrasesnto

determinerandnouns,andsoon).

2.2 Proof Search

Now thatwe know aboutmatching,we arein a positionto learnhow Prologactually
searches knowledge baseto seeif a queryis satisfied. Thatis, we are now able
to learnaboutproof search. We will introducethe basicideasinvolved by working
througha simpleexample.

Supposeve areworking with thefollowing knovledgebase

f(a).
f(b).

g(a).
9(b).
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h(b).

kK(X) - 10X, 9(X),h(X).

Supposeave thenposethequery

k(X).

You will probablyseethatthereis only oneanswerto this query namelyk(b), but
how exactly doesPrologwork thisout? Let’s see.

Prologreadgheknowledgebase andtriesto matchk( X) with eitherafact,or thehead
of rule. It searcheshe knowledgebasetop to bottom,andcarriesout the matchingif
it can,atthefirst placepossible Herethereis only onepossibility: it mustmatchk( X)
to theheadof therulek(X) :- f(X),g(X),h(X).

WhenPrologmatcheghevariablein aqueryto avariablein afactor rule,it generates
a brandnew variableto representhat the variablesare now sharing. So the original
querynow reads:

k(_G348)
andPrologknows that
k(_G348) :- f(__G348),g(_G348), h(_G348),

Incidentally wheneer Prologinstantiatesa variablewhile carryingout proof search,
we sayit hasreachedachoicepoint. Thatis, it haschoserto matchthequerywith this
rule,andhaschoserto do soby instantiatinga variablein a certainway. Actually here
no real choiceis involved, sincethe rule is the only thing thatk( X) canmatchwith,
but technicallyspeakingt is a choicepoint, andwe will call it choicepoint1. Prolog
keepstrack of all the choicesthatit makes,sothatif it makesawrongchoice,it can
go backto thechoicepointandtry somethingelse.

Sowhat do we now hare? The query says: ‘I wantto find an individual that has
propertyk’. Therule says,‘arnindividual haspropertyk if it hasproperties , g, andn’.
Soif Prologcanfind anindividual with properties , g, andh, it will have satisfiedhe
original query SoPrologreplacegheoriginal querywith thefollowing list of goals:

f(__G348),g(_G348), h(_G348) .

Now, wheneer it hasa list of goals,Prologtriesto satisfythemoneby one,working
throughthe list in a left to right direction. The leftmostgoal is f (__G348), which
reads:‘l wantanindividual with propertyf . Canthis goal be satisfied?Prologtries
to do soby searchinghroughthe knowledgebasefrom top to bottom. Thefirst thing
it finds that matchesthis goalis thatfactf (a). It matchesthe goalto this fact by
instantiatingx to a. Becausea variableinstantiationhastaken place,this is a choice
point, andwe will call it choicepoint 2. In this case,of course,a genuinechoiceis
involved: thereis oneotherindividual with propertyf , namelyb. And in fact, Prolog
hasactually madethe wrong choicehere,andwill have to comebackto this choice
pointaswe shallsee.

WhenProloginstantiate to a, it instantiatesll occurrencesf X in thelist of goals,
sothelist of goalsnow lookslik e this:
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f(a),g(a),h(a).

And now thingsareeasy Thefactf(a) is in the knovledge base,so this goal is
satisfied.Onedown, two to go! Theremaininggoalsare

g(a), h(a).

And of coursethefactg( a) isin theknowledgebase sothis goalis satisfiedkoo. The
goallist is now:

h(a).

But thereis no way to satisfythis goal. The only informationh we have in the knowl-
edgebaseis h(b) andthiswon’t matchh( a) .

SoPrologdecidest hasmadea mistale andbacktrackgo the lastchoicepoint. This
waschoicepoint 2, whereit instantiatedX to a, to satisfythegoalf ( X) . Recallthatat
this stagethelist of goalswas:

f(_G348), g(_G348),h(_G348).

Prologhasto redoall this. Prologtriesto resatisfythe first goal, by searchingurther
in the knowledgebase. It seeghatit canmatchthefirst goalwith informationin the
knowledgebaseby matchingf (_G348) with f (b). Thusit instantiates< to b, sothe
new goallist is:

f(b).g(b), h(b).

Now, f (b) isin theknowledgebase sothisis satisfied)eaving thegoallist:
g(b), h(b).

Butg(b) is afactin theknowledgebase sothisis satisfiedtoo, leaving the goallist:
h(b) .

And thisfacttoois in theknowledgebase sothisgoalis alsosatisfy Important:Prolog
now hasan emptylist of goals. This meansthatit hasproved everythingit hadto to
establishthe original goal, namelyk( X) . So this queryis satisfiable,and moreoer,
Prologhasalsodiscoreredwnhatit hasto doto satisfyit, namelyinstantiatex to b. It is
interestingto considemwhathappensf we thenaskfor anothersolutionby typing:

ThisforcesPrologto backtracko thelastchoicepoint,to try andfind anotheipossibil-
ity. And thereis anearlierchoicepoint, namelychoicepoint 1, wherePrologmatched
theoriginal querywith the headof therule. But if it goesbackto this choicepointand
attemptsto resatisfyk( X) it will find thatit cant (aswe pointedout, no real choice
wasinvolved here).Soat this point Prologwould correctlyhave said‘no’. Of course,
if therehadbeenotherrulesinvolving k, Prologwould have goneoff andtried to use
themin exactly the way we have describedthatis, by searchingop to bottomin the
knowledgebase]eft to rightin goallists, andbacktrackingo the previouschoicepoint
wheneer it fails.
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2.3 Exercises

Exercise 2.1 Whid of thefollowing pairs of termsmatd? Whee relevant, givethe

variableinstantiationgthat leadto successfuinatting
. bread = bread
. 'Bread’ = bread
. "bread’ = bread
. Bread = bread

. food(bread) br ead

X

1

2

3

4

5. bread = sausage
6

7. food( bread)

8. food(X) = food(bread)

9. food(bread, X) = food(Y, sausage)

10. f ood( br ead, X, beer) = food(Y, sausage, X)

11. f ood( bread, X, beer) = food(Y, kahuna_bur ger)
12. food(X) = X

13. neal (food(bread), dri nk(beer)) = meal (X, Y)

14. neal (food(bread), X = neal (X drink(beer))

Exercise 2.2 We are workingwith thefollowing knowledg base:

house_el f (dobby) .

wi t ch(herm one).
witch(’ McCGonagal | ).
witch(rita_skeeter).
magi c( X) : - house_el f ( X).
magi c(X): -wi zard(X) .
magi c(X):-w tch(X).

Whidh of the following queriesare satisfied? Whee relevant, give all the variable

instantiationsthatleadto success.

?- magi c(house_el f).

?- w zard(harry).

1.
2.
3. ?- magi c(wi zard).
4. ?- magi c(’ McGonagal | 7).
5.

?- magi c(Herm one).
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Exercise 2.3 Hereis a tiny lexicon and mini grammarwith only onerule which de-
finesa sentenceas consistingof five words: an article, a noun,a verb, and again an
article anda noun.

word(article,a).
word(article,every).

wor d(noun, crim nal).

wor d( noun, ' bi g kahuna burger’).
wor d(ver b, eat s)

word(verb, likes).

sent ence(Wor d1, Wrd2, Wor d3, Wor d4, Wrd5) : -
word(article, Wrdl),
wor d( noun, Wor d2) ,
wor d(ver b, Wor d3),
word(articl e, Wrd4),
wor d( noun, Wor d5) .

What query do you haveto posein order to find out which sentenceshe grammar
cangeneante? List all sentenceshat this grammarcan genegate in the order Prolog
will geneate them.Make sure that youundestandwhy Prolog genertesthemin this
order

Exercise 2.4 Here are six Englishwords:
abalongabandopanagramconnectelegant enhance

They areto bearrangedin a crosswod puzzldike fashionin thegrid givenbelow

W1 W2 W3

H1

H3

Thefollowing knowledg baserepresentsa lexicon containingthesewords.

wor d( abal one, a, b, a,1,0,n,e).
wor d( abandon, a, b, a,n, d, 0, n).
wor d( enhance, e, n, h,a,n,c,e).
wor d(anagram a, n,a, g,r,a,n.
wor d(connect,c,o,n,n, e, c,t).
word(el egant,e,l,e g,a,n,t).
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Write a predicatecr osswd/ 6 thattells ushowto fill thegrid, i.e. thefirstthreeargu-
mentsshouldbethevertical wordsfromleft to right andthe following threearguments
the horizontalwordsfromtop to bottom.

2.4 Practical Session 2

By this stage,you shouldhave hadyour first tasteof running Prolog programs.The
purposeof the secondpracticalsessions to suggestwo setsof keyboardexercises
which will help you getfamiliar with the way Prologworks. The first sethasto do
with matching, the secondwith proof search.

First of all, startup your Prologinterpreter Thatis, geta screerdisplayingthe usual
‘I'm readyto start’ prompt,which is probablylooks somethindike:

?-

Now verify your answersto Exercisel.1, the matchingexamples. You dont need
to consultary knowledge bases,simply ask Prolog directly whetherit is possible
to unify the termsby usingthe inbuilt =/ 2 predicate. For example,to testwhether
f ood(bread, X) andf ood(Y, sausage) unify, justtypein

food(bread, X) = food(Y, sausage).

andhit return.

Youshouldalsolook atwhathappensvhenProloggetslockedinto anattempto match
termsthatcant bematchedecausdt doesnt carryoutanoccurscheck.For example,
seewhathappensvhenyou give it thefollowing query:

g(X, YY) = V.

Ah yes! Thisis the perfecttime to make sureyou know how to aborta programthatis
runningwild!

Well, onceyou've figuredthatout, it’ s time to move ontosomethingnew. Thereis an-
otherimportantinbuilt Prologpredicatdor answeringjueriesaboutmatchingnamely
\ =/ 2 (thatis: a 2-placepredicate =). Roughlyspeakingthis worksin the opposite
way to the=/ 2 predicateit succeedsvhenits two argumentsdo not unify. For exam-
ple,thetermsa andb do notunify, which explainsthefollowing dialogue:

a\=>b

yes
Make sureyou understandheway\ =/ 2 predicateworks by trying it outon (at least)
the following examples.But do this actively, not passively. Thatis, afteryou typein
anexample,pauseandtry to work out for yourselfwhat Prologis going to respond.

Only thenhit returnto seeif you areright.

l.a\= a
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A\= a

f(a) \= a

f(a) \= A

f(A) \=f(a)
g(a,B,c) \=g(Ab, O

g(a,b,c) \=g(A O

© © N o g bk~ W D

f(X) \= X

Thusthe\ =/ 2 predicates (essentiallyXhe negationof the=/ 2 predicate:a queryin-
volving oneof thesepredicatewill besatisfiedwhenthe correspondingjueryinvolv-
ing the otheris not, andvice versa(this is the first examplewe have seenof a Prolog
mechanisnfor handlingnegation).But notethatword‘essentially’. Thingsdon't work
out quite thatway, asyou will realiseif you think aboutthe trickier examplesyou've
justtried out...

It's time to move on andintroduceone of the mosthelpful tools in Prolog: t r ace.
Thisis aninbuilt Prologpredicatethatchangeshe way Prologruns: it forcesProlog
to evaluatequeriesonestepat a time, indicatingwhatit is doing at eachstep. Prolog
waitsfor youto presseturnbeforeit movesto thenext step,sothatyou canseeexactly
whatis going on. It wasreally designedo be usedasa dehuggingtool, but it’s also
really helpfulwhenyou're learningProlog: steppingthroughprogramsausingt r ace is
anexcellentway of learninghow Prologproof searchworks.

Let'slook atanexample.In thelecture,we looked at the proof searchinvolved when
we madethequeryk( X) to following knowledgebase:

f(a).
f(b).

9(a).
9(b).

h(b).
kK(X) - £(X),9(X),h(X).
Supposehis knowledgebaseis in afile pr oof . pl . Wefirst consultit:

1 ?- [proof].
% proof compiled 0.00 sec, 1,524 bytes

yes

We thentype ‘trace. andhit return:
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2 ?- trace.
Yes

Prologis now in tracemode,andwill evaluateall queriesstepby step. For example,
if we posethequeryk( X) , andthenhit returnevery time Prologcomesbackwith a2,
we obtain(somethindik e) thefollowing:

[trace] 2 ?- k(X).
Call: (6) k(_G348) 2
Call: (7) f(_G348) 2
Exit: (7) f(a) ?
Call: (7) g(a)
Exit: (7) 9(a)
Call: (7) h(a)
Fail: (7) h(a)
Fail: (7) g(a) ?
Redo: (7) f(_G&348) 2
Exit: (7) f(b) ?
Call: (7) g(b)
Exit: (7) g(b)
Call: (7) h(b)
Exit: (7) h(b)
Exit: (6) k(b)

NN NN

NN N ) N

X=b
Yes

Studythis carefully Thatis, try doing the samething yourself,andtry to relatethis
outputto thediscussiorof theexamplein thetext. To getyou startedwe’ll remarkthat
thethird line is wherethe variablein the queryis (wrongly) instantiatedo a, andthat
theline markedr edo is whenPrologrealizest' stakenthewrongpath,andbacktracks
to instantiatethe variableto b.

While learningProlog,usetrace,anduseit heaily. It'sagreatwayto learn.

Ohyes: you alsoneedto know how to turntraceoff. Simply type ‘notrace. andhit
return:

notrace.
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Recursion

Thislecturehastwo maingoals:

1. Tointroducerecursve definitionsin Prolog.

2. To shav that there can be mismatchedetweenthe declaratie meaningof a
Prologprogram,andits proceduralmeaning.

3.1 Recursive definitions

Predicatesan be definedrecursvely. Roughly speaking,a predicateis recursvely
definedif oneor morerulesin its definitionrefersto itself.

3.1.1 Example 1: More Expensive

Considerthefollowing knowledgebase:

nor e_expensive(X VY): -
costs_a little_nore(XY).

nor e_expensive(X VY): -
costs_a little_nmore(X 2),
nor e_expensive(Z,Y).

costs_a_little_nore(royal e_w th_cheese, bi g_kahuna_burger).
costs_a little_nore(five_doll ar_shake, royal e_w th_cheese).

At first glancethis seemspretty ordinary: it's just a knowvledge basecontainingtwo

factsandtwo rules. But the definition of the nor e_expensi ve/ 2 predicates recur

sive Notethatnore_expensi ve is (at leastpartially) definedin termsof itself, for

the nor e_expensi ve functoroccurson both the left andright handsidesof the sec-
ondrule. Crucially, however, thatthereis an ‘escape’from this circularity. This is

providedby thecosts_a_little_nore predicatewhich occursin boththefirst and
secondules. (Significantly the right handside of thefirst rule makesno mentionof

mor e_expensi ve.) Let’'s now considerboththe declaratre andproceduraimeanings
of thisrule.
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The word declative is usedto talk aboutthe logical meaningof Prologknowledge
bases.Thatis, the declaratre meaningof a Prolog knowledgebaseis simply ‘what
it says’,or ‘what it means,f we readit asa collectionof logical statements’.And

the declaratie meaningof this recursve definitionis fairly straightforvard. The first
clause(the ‘escape’clause the onethatis not recursve, or aswe shallusuallycall it,

the baseclause),simply saysthat: if X costsa little bit morethany, thenX is more
expensve thany. Thisis olbviously a sensibledefinition.

Sowhataboutthe seconctlausetherecursve clause?This saysthat: if X costsalittle
bit morethanz andz is moreexpensve thany, thenx is moreexpensve thany. Again,
thisis obviously a sensibledefinition.

Sonow we know whatthis recursve definition says but whathappensvhenwe pose
a querythat actually needsto usethis definition? Thatis, what doesthis definition
actuallydo? To usethe normalPrologterminology whatis its procedual meaning?

Thisis alsoreasonablytraightforvard. Thebaseruleis like all the earlierruleswe've
seen.Thatis, if we askwhetherx is moreexpensve thany, Prologcanusethis rule to
askinsteadthe question:doesx costalittle morethany?

What aboutthe recursve clause?This gives Prologanotherstrategy for determining
whetherx is moreexpensve thany: it cantry to find somez sud that X costsa little
morethanz, andz is more expensivahany. Thatis, thisrule letsPrologbreakthetask
apartinto two subtasks.Hopefully, doing sowill eventuallyleadto simpleproblems
which canbe solved by simply looking up the answersn the knowvledgebase. The
following picturesumsup the situation:

Base Recolmiah

Let's seehow thisworks. If we posethequery:

?- nore_expensi ve(five_dol | ar_shake, bi g_kahuna_burger).
thenProloggoesto work asfollows. First, it tries to make useof thefirst rule listed
concerningror e_expensi ve; thatis, thebaserule. Thistellsit thatX is moreexpen-
sivethany if X costsalittle morethany, By unifying X with fi ve_dol | ar _shake and

Y with bi g_kahuna_bur ger it obtainsthefollowing goal:

costs_a little_nore(five_doll ar_shake, bi g_kahuna_burger).
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But the knowledgebasedoesnt containthe informationthata five dollar shale costs
a little morethana big kahunaburger, so this attemptfails. So Prolognext tries to
make useof the secondrule. By unifying X with fi ve_dol | ar_shake andY with
bi g_kahuna_bur ger it obtainsthefollowing goals:

costs_a_little_nore(five_dollar_shake, 2),
nor e_expensi ve( Z, bi g_kahuna_bur ger).

Thatis,toshav nore_expensi ve(five_dol | ar_shake, bi g_kahuna_burger)}, Pro-
log needdo find avaluefor z suchthat,firstly,

costs_a little_more(five_dollar_shake, Z).
andsecondly
nor e_expensi ve( Z, bi g_kahuna_bur ger).
And thereis suchavaluefor z, namelyr oyal e_wi t h_cheese. It isimmediatethat
costs_a little_nore(five_dollar_shake, royal e_w th_cheese).
will succeedfor thisfactis listedin theknowvledgebase And deducing
nor e_expensi ve(royal e_wi t h_cheese, bi g_kahuna_burger).

is almostas simple, for the first clauseof nor e_expensi ve/ 2 reducesthis goal to
deducing

costs_a_little_nore(royal e_w t h_cheese, bi gkahunBur ger) .

andthisis afactlistedin theknowledgebase.

Well, that's our first exampleof arecursve rule definition. We're goingto learnalot

moreaboutthemin the next few weeks but onevery practicalremarkshouldbe made
right away. Hopefully it’s clearthat whenyou write a recursve predicate,t should
alwayshave at leasttwo clauses:a baseclause(the clausethat stopsthe recursionat
somepoint),andonethatcontaingherecursion.f youdon't dothis, Prologcanspiral
off into anunendingsequencef uselessomputationsFor example,heres extremely
simpleexampleof arecursve rule definition:

p - p

That'sit. Nothingelse.It's beautifulin its simplicity. And from adeclaratie perspec-
tive it's anextremelysensible(if ratherboringdefinition): it says'if propertyp holds,
thenpropertyp holds’. You cant amguewith that.

Butfrom aprocedurapersepctie, thisis awildly dangerousule. In fact,we have here
theultimatein dangerousecursve rules: exactly the samething on bothsides,andno
baseclauseto let us escape For considerwhat happensvhenwe posethe following

query:
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?- p.

Prologasksitself: how do| prove p? And it realizes,Hey, I've gotarule for that! To
prove p | just needto prove p!. Soit asksitself (again): how do | prove p? And it

realizes,'Hey, I've got arule for that! To prove p | justneedto prove p!’. Soit asks
itself (yetagain):how do| prove p? And it realizes,Hey, I've gotarule for that! To
prove p | just needto prove p!” Sothenit asksitself (for the fourth time): how do |

prove p? And it realizesthat...

If youmake this query Prologwon’t answelryou: it will headoff, loopingdesperately
away in anunendingsearch.Thatis, it won't terminate andyou’ll have to interruptit.
Of coursejf youuset r ace, you canstepthroughonestepatatime, until you getsick
of watchingPrologloop.

3.1.2 Example 2: Descendant

Now thatwe know somethingaboutwhatrecursionin Prologinvolves,it is time to ask
why it is soimportant. Actually, this is a questionthat canbe answereddn a number
of levels, but for now, let’s keepthingsfairly practical. So: whenit comesto writing

usefulPrologprogramsarerecursve definitionsreally soimportant?And if so,why?

Let’s consideranexample. Supposeve have a knowledgebaserecordingfactsabout
thechild relation:

child(charlotte, caroline).
child(caroline, |l aura).

Thatis, Carolineis achild of Charlotte andLaurais a child of Caroline.Now suppose
we wishedto definethe descendamtelation;thatis, the relationof beinga child of, or
achild of achild of, or achild of achild of achild of, or.... Heres afirst attemptto do
this. We could addthefollowing two nonrecursve rulesto the knowledgebase:

descend(X, Y) :- child(XY).

descend(X, Y) :- child(X 2),
child(zY).

Now, fairly obviously thesedefinitionswork up to a point, but they are clearly ex-
tremelylimited: they only definethe conceptof descendant-dior two generation®r
less.That's ok for theabove knowledgebase put supposeve getsomemoreinforma-
tion aboutthe child-of relationandwe expandour list of child-of factsto this:

child(martha, charlotte).
child(charlotte, caroline).
child(caroline, | aura).
chil d(laura,rose).

Now our two rulesareinadequateFor example,if we posethe queries

?- descend(martha, | aura).
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or
?- descend(charlotte,rose).

we getthe answer'No!’, which is not what we want. Sure,we could ‘fix’ this by
addingthefollowing two rules:

descend(X, Y) :- child(X 2Z_1),
child(z_1,z 2),
child(z_2,Y).

descend(X,Y) :- child(X Z_1),
child(z_1,z 2),
child(z_2,z_3),
child(Z_3,Y).

But, let's faceit, thisis clumsyandhardto read.Moreover, if we addfurtherchild-of
facts,we could easilyfind ourseheshaving to addmoreandmorerulesasour list of
child-of factsgrow, ruleslike:

descend(X,Y) :- child(X Z_1),
child(z_1,2z_2),
child(z_ 2,z 3),

child(z_17,z_18).
child(z_18,z 19).
child(z_19,V).

Thisis nota particularlypleasantor sensibleay to go!

But we don't needto do this at all. We can avoid having to useever longer rules
entirely Thefollowing recursve rule fixeseverythingexactly the way we want:

descend(X,Y) :- child(XY).

descend(X, Y) :- child(X 2),
descend(Z,Y).

Whatdoesthis say?The declaratre meaningof the baseclauseis: if Y isachild of v,
theny is adescendarnf X. Obviously sensible.

Sowhatabouttherecursve clause?t' s declaratre meanings: if z is achild of X, and
Y is adescendantf z, theny is adescendamf X. Again, thisis obviously true.

Solet’'s now look at the proceduralmeaningof this recursve predicate by stepping
throughanexample.Whathappensvhenwe posethequery:

descend(nartha, | aur a)
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Prologfirst tries the first rule. The variableXx in the headof the rule is unified with
mar t ha andY with lauraandthe next goal Prologtriesto proveis

child(martha, | aura)

Thisattempfails, however, sincetheknowvledgebaseneithercontainghefactchi | d( mar t ha, | aur a)

nor ary rulesthatwould allow to infer it. So Prologbacktracksandlooks for anal-
ternatve way of proving descend(martha, | aura). It finds the secondrule in the
knowledgebaseandnow hasthefollowing subgoals:

chil d(martha, _633)
descend(_633, | aura)

Prologtakesthe first subgoalandtries to matchit onto somethingn the knowvledge
base.lt findsthefactchi | d(nart ha, charl ot t ) andthe Variable 633 getsinstan-
tiatedto char | ot t e. Now thatthefirst subgoals satisfied Prologmovesto thesecond
subgoallt hasto prove

descend(charlotte, | aura)

Thisis therecursve call of the predicatelescend/ 2. As before,Prologstartswith the
first rule, but fails, becaus¢hegoal

child(charlotte, | aura)

cannotbe proved. Backtracking,Prologfinds thatthereis a secondpossibility to be
checled for descend(charlotte, | aura), viz. the secondrule, which againgives
Prologtwo new subgoals:

child(charlotte, 1785),
descend(_1785, | aura).

The first subgoalcan be unfied with the factchi | d(charl otte, caroline) of the
knowvledgebase sothatthevariable 1785 is instantiatedvith car ol i ne. Next Prolog
triesto prove

descend(caroline, laura).

This is the secondrecursve call of predicatedescend/ 2. As before,it triesthe first
rule first, obtainingthe following new goal:

child(caroline,laura)

This time Prologsucceedssincechi | d(carol i ne, | aur a) is afactin the database.
Prologhasfounda proof for thegoaldescend(carol i ne, | aura) (thesecondecur
sive call). But this meansthatchi | d(charl otte, laura) (thefirst recursve call) is
alsotrue, which meansthat our original query descend( nart ha, | aura) is true as
well.
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It shouldbe obvious from this examplethatno matterhow mary generation®f chil-

drenwe add,we will alwaysbeableto work out the descendantelation. Thatis, the
recursve definitionis bothgeneralandcompact:it containsall theinformationin the
previousrules,andmuchmorebesidesin particular thepreviouslists of non-recursie

rulesonly definedthe descendantoncepiup to somefixed numberof generationswe

would needto write down infinitely manynon-recursie rulesif we wantedto capture
this concepftully, andof coursethat's impossible But, in effect, that's whattherecur

sive rule doesfor us: it bundlesup all this informationinto just threelinesof code.

Recursve rules arereally important. They enableto pack an enormousamountof
informationinto a compactform andto definepredicatesn a naturalway. Most of the
work youwill doasaPrologprogrammemvill involve writing recursve rules.

3.1.3 Example 3: Successor

In the previouslectureswe remarledthatbuilding structue throughmatding is akey
ideain Prologprogramming.Now thatwe knowv aboutrecursionwe cangive more
interestingllustrationsof this.

Nowadayswhenhumanbeingswrite numeralsthey usuallyusedecimalnotation(O,

1,2,3,4,5,6,7,8,9, 10, 11, 12, andso on) but asyou probablyknow, thereare
mary other notations. For example, becausecomputerhardware is generallybased
on digital circuits, computerausuallyusebinary notationto representhumeralg0, 1,

10, 11, 100, 101, 110, 111, 1000, and so on), for the O can be implementedas as
switchbeingoff, the 1 asa switchbeingon. Otherculturesusedifferentsystems For

example,the ancientBabyloniansuseda base64 system,while the ancientRomans
useda ratherad-hocsystem(l, II, Ill, 1V, V, VI, VII, VIII, IX, X). This lastexample
shavsthatnotationalissuesanbeimportant.If youdont believe this, try figuring out

a systematiavay of doinglong-dvision in Romannotation. As you'll discover, it'sa
frustratingtask. In fact,the Romanshada groupof professionalganalogsof modern
accountantsyvho specializedn this.

Well, heres yet anotherway of writing numeralswhich is sometimesisedin mathe-
maticallogic. It makesuseof justfour symbols:0, sucg andtheleft andright braclets.
This style of numeralis is definedby thefollowing inductive definition:

1. Oisanumeral.

2. If Xisanumeralthensois succ(X)

Asis probablyclear succcanbereadasshortfor successorThatis, succ(X)epresents
the numberobtainedby addingoneto the numberrepresentethy X. Sothisis avery
simplenotation:it simply saysthatO is anumeralandthatall othernumeralsarebuilt
by stackingsuccsymboilsin front. (In fact, it's usedin mathematicalogic because
of this simplicity. Although it wouldnt be pleasanto to do householdaccountsin
this notation,it is a very easynotationto prove thingsabout) Now, by this stageit
shouldbe clearthatwe canturn this definitioninto a Prologprogram. The following
knowledgebasedoesthis:

nurrer al (0) .

nurer al (succ(X)) :- nuneral (X).
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Soif we posequeriedike
nurer al (succ(succ(succ(0)))).

we getthe answeryes’. But we cando somemoreinterestingthings. Considerwhat
happensvhenwe posethefollowing query:

nuner al ( X) .

Thatis, we’re saying‘Ok, shav me somenumerals’.Thenwe canhave the following
dialoguewith Prolog:

X=0;

X = succ(0)

X = succ(succ(0))

X = succ(succ(succ(0)))

X = succ(succ(succ(succ(0))))

X = succ(succ(succ(succ(succ(0)))))

X = succ(succ(succ(succ(succ(succ(0))))))

X = succ(succ(succ(succ(succ(succ(succ(0)))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(0))))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(0)))))))))

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))))
Yes,Prologis counting:but what'sreallyimportantis howit’ sdoingthis. Quitesimply,
it' s backtrackinghroughtherecursve definition,andactuallybuilding numeralausing

matching. This is aninstructive example,andit is importantthat you understandt.
Thebestwayto do sois to sit down andtry it out, with t r ace turnedon.

Building andbinding. Recursionmatching,andproof search.Theseareideasthatlie

atthe heartof Prologprogramming.Wheneer we have to generateor analyzerecur

sively structuredobjects(suchasthesenumerals)he interplay of theseideasmales
Prolog a powerful tool. For example,in the next lecturewe introducelists, an ex-

tremely importantrecursve datastructure,and we will seethat Prologis a natural
list processindanguage.Many applicationgcomputationalinguisticsis a prime ex-

amples)male heary useof recursvely structuredobjects,suchastreesand feature
structures. Soit’s not particularly surprisingthat Prolog has proved usefulin such
applications.
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3.2 Rule ordering, clause ordering, and termination

Prologwasthe first reasonablysuccessfuattemptto make a logic programminglan-

guage.Underlyinglogic programmings a simple (andseductie) vision: the task of

the programmeis simply to describeproblems.The programmeishouldwrite down

(in thelanguageof logic) a declaratve specificationthatis: a knowledgebase)which

describeghesituationof interest.Theprogrammeshouldnt have to tell thecomputer
whatto do. To getinformation,he or shesimply asksthe asksquestionsit’' s up to the

logic programmingsystento figure outhow to gettheanswer

Well, that's theidea,andit shouldbeclearthatProloghastakensomeinterestingsteps
in this direction. But Prologis not, repeatnot, a full logic programminglanguage.
If you only think aboutthe declaratvte meaningof a Prologprogram,you arein for
avery toughtime. As we learnedin the previous lecture,Prologhasa very specific
way of working out the answerto queries:it searcheshe knowledgebasefrom top to
bottom,clausedrom left to right, andusesbacktrackingo recover from badchoices.
Theseprocedurabspecthave animportantinfluenceon whatactuallyhappensvhen
you make a query We have alreadyseena dramaticexampleof a mismatchbetween
proceduraland declaratre meaningof a knowledgebase(remembeitthe p: - p pro-
gram?),andaswe shallnow see,it is easyto defineknowvledgebaseswith the same
declaratre meaningput very differentprocedurameanings.

Recallour earlierdescendantrogram(let’s call it descend1. pl ):

child(martha, charlotte).
child(charlotte, caroline).
child(caroline, |l aura).
chil d(laura,rose).

descend(X,Y) :- child(XY).

descend(X, Y) :- child(X 2),
descend(Z,Y).

We'll make two changedo it, andcall theresultdescend?2. pl :

child(martha, charlotte).
child(charlotte, caroline).
child(caroline,laura).
child(laura,rose).

descend( X, Y) :- descend(ZY),
child(X 2).

descend(X, Y) :- child(XY).

From a declaratve perspectie, what we have doneis very simple: we have merely
reversedthe order of the two rules, and reversedthe order of the two goalsin the
recursve clause.So, viewed asa purely logical definition, nothinghaschanged.We
have not changedhe declaratre meaningof the program.



42

Chapter 3. Recursion

But the proceduraimeaninghaschangeddramatically For example,if you posethe
query

descend(mart ha, r ose).

you will getanerrormessagé€‘out of local stack’, or somethingsimilar). Prologis
looping. Why? Well, to satisfythe querydescend(nart ha, rose). Prologusesthe
first rule. This meanghatits next goalwill beto satisfythequery

descend(W, r ose)

for somenew variablews. But to satisfythis new goal, Prologagainhasto usethefirst
rule, andthis meanghatits next goalis goingto be

descend( W2, r ose)

for somenew variableve. And of coursethisin turn meanghatits next goalis going
tobedescend( W8, rose) andthendescend( W, rose), andsoon.

In short,descendl. pI anddescend2. pl arePrologknownledgebaseswith the same
declaratie meaningout differentprocedurameaningsfrom a purelylogical perspec-
tive they areidentical,but they behae very differently

Let's look at anotherexample. Recall out earlier successoprogram(let's call it
nuner al 1. pl ):

nuneral (0).
nurer al (succ(X)) :- nuneral (X).

Let’s simply swapthe orderof thetwo clausesandcall theresultnuner al 2. pl :

nuneral (succ(X)) :- numeral (X).
nuneral (0).

Clearly the declaratie, or logical, contentof this programis exactly the sameasthe
earlierversion.But whataboutits behaior?

Ok, if we posea queryaboutspecificnumeralspuner al 2. pl will terminatewith the
answermwe expect. For example,if we ask:

nuner al (succ(succ(succ(0)))).

we will gettheansweryes’. But if we try to geneate numeralsthatis, if we give it
thequery

nuner al ( X) .

theprogramwon’t halt. Make sureyou understanavhy not. Onceagain,we have two
knowledgebasesvith thesamedeclaratve meaningout differentprocedurameanings.

Because¢hedeclaratie andprocedurameaning®f a Prologprogramcandiffer, when
writing Prologprogramsyou needto bearbothaspectsn mind. Oftenyou cangetthe
overall idea(‘the big picture’) of how to write the programby thinking declaratiely,
thatis, by thinking simply in termsof describingthe problemaccuratelyBut thenyou
needto think abouthow Prologwill actuallyevaluatequeries.Are the rule orderings
sensibleHow will the programactuallyrun? Learningto flip backandforth between
proceduraland declaratve questionss an importantpart of learningto programin
Prolog.
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3.3 Exercises

Exercise 3.1 We havea knowledg basecontainingthefollowing facts:

bi gger (cat, nouse) .

bi gger (dog, cat) .

bi gger (sheep, dog) .

bi gger (hor se, sheep).

bi gger (el ephant, hor se) .

Writearecussivepredicatebi gger Than/ 2 which cancorrectlyworkoutall thebigger-
than relationswhich hold betweentheseanimals. Thatis, your predicateshouldbe
able to work out that an elephantis bigger than a cat, that a sheepis bigger than a
mouseandsoon.

Exercise 3.2 We havethefollowing knowledg base:

di rect Trai n(f or bach, saar bruecken).
di rect Trai n(freymning, f or bach)

di rect Trai n(f ahl quenont, st Avol d) .

di rect Trai n(st Avol d, f or bach).

di rect Trai n(saar bruecken, dudwei | er) .
di rect Trai n(met z, fahl quenont) .

di rect Trai n( nancy, net z) .

Thatis, this knowledg baseholdsfactsabouttownsit is possibleto travelbetweerby
takinga directtrain. But of course we cantravelfurther by ‘chainingtogether’ direct
train journeys. Write a recursive predicatet r avel Bet ween/ 2 that tells us whenwe
cantravelby train betweenwo towns.For example whengiventhe query

travel Bet ween( nancy, saar br uecken).

it shouldreply‘yes’.

Furthermoe, let's assumahat wheneer it is possibleto take a directtrain fromA to
B, it is also possibleto take a directtrain from B to A. Add a rule which allows this
possibility To ched it, male sure your programanswes ‘yes’ to thefollowing query:

travel Bet ween( saarbr uecken, nancy).

3.4 Practical Session 3

By now, you shouldfeel more at homewith writing andrunnningbasicProlog pro-
grams. The purposeof PracticalSession3 is twofold. First we suggesta seriesof
keyboardexercisesjnvolving t r ace, which will helpyou getfamiliar with recursve
definitionsin Prolog. We thengive a numberof programmingproblemsfor you to
sohe.

Firstthekeyboardexercises As recursve programmings sofundamentato Prolog,it
is importantthatyou have afirm graspof whatit involves. In particular it is important
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thatyou understandhe processof variableinstantionwhenrecursve definitionsare
used,andthat you understandvhy both the orderof the clausesn a recursve defi-
nition, andthe orderof goalsin rules,canmake the differencebetweena knowledge
basethatis usefulandonethatdoesnotwork atall. So:

1. Loaddescend1l. pl , turnont r ace, andposethequerydescend( nart ha, | aur a) .
Thisis the querythatwasdiscussedn the notes.Stepthroughthetrace,andre-
late whatyou seeonthe screerto the discussiorin thetext.

2. Still with trace on, posethe querydescend(nart ha, rose) andcounthow
mary stepsit takes Prologto work out the answer(that is, how mary times
do you have to hit the returnkey). Now turn trace off and posethe query
descend( X, Y). How mary answersarethere?

3. Loaddescend2. pl . This, rememberis the variantof descend1. pl in which
the orderof bothclausegs switched,andin addition,the orderof thetwo goals
in the recursve goalsis switchedtoo. Becauseof this, even for suchsimple
qgueriesasdescend( nart ha, | aura), Prologwill notterminate. Stepthrough
anexample,usingt r ace, to confirmthis.

4, Butwait! Therearetwo morevariantsof descend1. pl thatwe have notconsid-
ered.For a start,we could have written therecursve clauseasfollows:

descend(X,Y) :- child(XY).

descend( X, Y) :- descend(ZY),
child(X 2).

Let uscall this variantdescend3. pl . And onefurther possibility remains:we
couldhave written the recursve definitionasfollows:

descend(X, Y) :- child(X 2),
descend(Z,Y).

descend(X,Y) :- child(XY).
Let uscall thisvariantdescend4. pl .

5. Creatgor loadfrom theinternet)thefile descend3. pl . Now considetthequery
descend(nart ha, rose). Do you think Prologwill be ableto succesfullyan-
swerthis query?Try, andseeif you areright. Thenturnont r ace andseehow
mary stepdt tookto find theanswer Is this betteror worsethandescendl. pl ?

6. Creatgorloadfrom theinternet)thefile descend4. pl . Now considetthequery
descend(mart ha, rose). Do you think Prologwill be ableto succesfullyan-
swerthis query?Try, andseeif you areright. Thenturnont r ace andseehow
mary stepsit took to find the answer Is this betteror worsethandescend1. pl
anddescend3. pl ?

7. Now switchoff t r ace. First,seenow descend3. pl handlegshequerydescend(X, Y).
Thenseehow descend4. pl handleshe samequery Is everythingasit should
be?If not,doyou understanavhy?
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8. Finally, loadthefile numer al 1. pl . Turnontrace, andmake surethatyou un-
derstandhow Prologhandlesothspecificquerieqsuchasnuner al (succ(succ(0))))
andqueriesnvolving variables(suchasnuner al ( X)).

Now for someprogramming We arenow attheendof thethird sessionwhich means
we have coveredaboutaquarterof thematerialwe aregoingto. Moreover, thematerial
we have coveredsofar is the basisfor everythingthatfollows, soit is vital thatyou

understandt properly And the only way to really getto gripswith Prologis to write

programglotsof them!),runthem,fix themwhenthey dont work, andthenwrite some
more.Learninga programmindanguages alot like learningaforeignlanguageyou

have to getoutthereandactuallyuseit if youwantto make genuineprogress.

Soherearethreeexercisedor youto try your handon.

1. We aregiventhefollowing knowvledgebaseof travel information:

byCar (auckl and, hami | t on) .
byCar (hami | t on, ragl an) .
byCar (val nont, saar bruecken) .
byCar (val nont , netz).

byTrai n(metz, frankfurt).

byTrai n( saar bruecken, frankfurt).
byTrai n(met z, paris).

byTr ai n( saar br uecken, pari s).

byPl ane(frankfurt, bangkok) .
byPl ane(frankfurt, si ngapore).
byPl ane( pari s, | osAngel es).
byPl ane( bangkok, auckl and) .
byPl ane(| osAngel es, auckl and) .

Write a predicatet r avel / 2 which determineswvhetherit is possibleto travel
from oneplaceto anotherby ‘chaining together’car, train, andplanejourneys.
Forexample yourprogramshouldansweryes’ tothequeryt r avel (val nmont, r agl an) .

2. So,by usingtravel / 2 to querythe above databaseyou canfind out thatit is
possibleto go from Vamontto Raglan.In caseyou areplanningatravel, that's
alreadyvery goodinformation,but whatyou would thenreally wantto know is
how exactly to getfrom Valmontto Raglan.Write a predicate r avel / 3 which
tells you how to travel from oneplaceto another The programshould,e.g.,an-
swer'yes’ tothequeryt r avel (val nont, paris, go(val nont, et z, go(net z, paris)))
andx = go(val nont, net z, go( met z, pari s, go(pari s, | osAngel es))) tothe
querytravel (val nont, | osAngel es, X) .

3. Extendthepredicate r avel / 3 sothatit notonly tells youvia which othercities
you have to go to getfrom oneplaceto anotherbut alsohow; i.e. by car, train,
or plane,you getfrom onecity to the next.
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Lists

Thislecturehastwo maingoals:

1. To introducelists, animportantrecursie datastructurewidely usedin compu-
tationallinguistics.

2. To definemembey a fundamentaPrologtool for manipulatinglists, andto in-
troducetheideaof recursingdown lists.

4.1 Lists

As its namesuggestsalist is justaplain old list of items. Slightly morepreciselyit is
afinite sequencef elementsHerearesomeexamplesof listsin Prolog:

[ma, vincent, jules, yolanda]
[ma, robber(honey_bunny), X 2, ma]

[]
[ma, [vincent, jules], [butch, girlfriend(butch)]]

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]]
We canlearnsomeimportantthingsfrom theseexamples.

1. We canspecifylists in Prolog by enclosingthe elementsof the list in square
braclets(thatis, thesymbols[ and]). Theelementsareseparatethy commas.
For example, our first example[ mi a, vincent, jules, yolanda] is alist
with four elementspnamelyni a, vi ncent, j ul es, andyol anda. Thelengthof
alist is thenumberof elementst has,soourfirst exampleis alist of lengthfour.

2. Fromour secondexample,[ ni a, r obber (honey_bunny), X, 2, ni a] , we learn
thatall sortsof Prologobjectscanbe elementsf alist. Thefirst elementof this
list is mi a, anatom;the secondelementis r obber ( honey_bunny), a comple
term;thethird elemenis X, avariable;thefourth elements 2, anumber More-
over, we alsolearnthat the sameitem may occurmorethanoncein the same
list: for example,thefifth elementof this list is ni a, which is sameasthe first
element.
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3. Thethird exampleshaws that thereis a very speciallist, the emptylist. The
emptylist (asits namesuggestsis thelist thatcontainsno elementsWhatis the
lengthof theemptylist? Zero,of course(for thelengthof alist is the numberof
memberst containsandthe emptylist containsnothing).

4. Thefourth exampleteachesis somethingextremelyimportant:lists cancontain
otherlists aselementsFor example the seconcelemeniof

[ma, [vincent, jules], [butch,girlfriend(butch)]]

isthelist[ vi ncent, j ul es], andthethird elemenisthelist[ but ch, girl friend(butch)]].

In short, lists are examplesof recursve datastructures:lists can be madeout

of lists. Whatis the length of the fourth list? The answeris: three. If you

thoughtit wasfive (or indeed,arnything else)you're not thinking aboutlists in

the right way. The elementsof the list are the things betweenthe outermost
squarebraclets separatedby commas.Sothis list containsthree elementsithe
first elementis ni a, the secondelementis [ vi ncent, jul es], andthe third

elements[butch, girlfriend(butch)].

5. Thelastexamplemixesall theseideastogether We have herea list which con-
tainsthe emptylist (in fact, it containsit twice), the comple termdead( zed),
two copiesof thelist [2, [b, chopper]], andthe variablez. Note that that
thethird (andthelast) elementsarelists which themselescontainlists (namely
[b, chopper]).

Now for averyimportantpoint. Any non-emptylist canbethoughtof asconsistingof
two parts:the headandthetail. The headis simply thefirstitemin thelist; thetail is
everythingelse.For example,the headof

[ma, vincent, jules, yol anda]
ism a andthetail is [vincent, jules, yol anda]. Similarly, theheadof
[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]]

is[], andthetail is [ dead(zed), [2,[b, chopper]],[].Z, [2,[b, chopper]]].
Notethatonly non-emptylists have headsandtails. Thatis, theemptylist containsno
internalstructure For Prolog,theemptylist [ ] is a special particularlysimple,list.

Prologhasa specialinbuilt operatory which canbe usedto decomposa list into its
headandtail. It is very importantto getto know how to use|, for it is a key tool for
writing Prologlist manipulationprograms.

Themostobvioususeof | isto extractinformationfrom lists. We dothis by using| to-
gethemwith matching.For example to gethold of theheadandtail of [ mi a, vi ncent,
j ul es, yol anda] we canposethefollowing query:

?- [Head| Tail] = [ma, vincent, jules, yolanda].
Head = mia
Tail = [vincent,jules, yol anda]

yes
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Thatis, theheadof thelist hasbecoméoundto Head andthetail of thelist hasbecome
boundto Tai | . Notethatthereis nothingspecialaboutHead andTai | , they aresimply
variables We couldjustaswell have posedthe query:

?- [XY] = [ma, vincent, jules, yolanda].
X =ma
Y = [vincent,jules, yol anda]

yes

As we mentionedabore, only non-emptylists have headsandtails. If we try to use|
topull [ 1 apart,Prologwill fail:

2 (XY =[]
no

Thatis, Prologtreats| | is aspeciallist. Thisobserationis veryimportant.We’'ll see
why later

Let’s look at someotherexamples.We canextractthe headandtail of the following
list justaswe saw above:

?- [XY] =[[], dead(zed), [2, [b, chopper]], [], Z].

X = 1]

Y = [dead(zed),[2,[b,chopper]],[],_7800]
Z = _7800

yes

Thatis: the headof thelist is boundto X, the tail is boundto Y. (We also get the
informationthatProloghasboundz to theinternalvariable _1457.)

But we cancando a lot morewith | ; it really is a very flexible tool. For example,
supposeve wantedto knowv whatthefirst two elementsof thelist were,andalsothe
remaindeof thelist afterthe secondelement.Thenwe’'d posethefollowing query:

?2- [XXY] W =[], dead(zed), [2, [b, chopper]], [], Z].

X =1l

Y = dead(zed)

W= [[2,[b,chopper]],[],_8327]
Z = 8327

yes

Thatis: the headof thelist is boundto X, the seconcelemenis boundto v, andthere-
mainderof thelist afterthe seconcelemenis boundto w (We alsogettheinformation
thatProloghasboundz to theinternalvariable_2035.)

Thisis agoodtime to introducethe anorymousvariable. Supposeve wereinterested
in gettinghold of the secondandfourth elementsf thelist:
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[[], dead(zed), [2, [b, chopper]], [], Z].

Now, we couldfind outlike this:

7].

?- [ XL, X2, X3, X4 | Tail] =[[], dead(zed), [2, [b, chopper]], [],

X1 =11

X2 = dead(zed)

X3 = [2,[b, chopper]]

X4 =[]

Tail = [_8910]

Z = _8910

yes
OK, we have gottheinformationwe wanted:the valueswe areinterestedn arebound
to the variablesx2 andx4. But we've got a lot of otherinformationtoo (namelythe
valuesboundto X1, X3 andTai | ). And perhapswve’re notinterestedn all this other
stuff. If so,it’s abit silly having to explicitly introducevariablesx1, X3 andTai | to
dealwith it. And in fact,thereis asimplerwayto obtainonly theinformationwe want:
we canposethefollowing queryinstead:

?2- [X_, Y] =1[], dead(zed), [2, [b, chopper]], []1, Z].

X = dead(zed)

Y =[]

Z = 9593

yes
The _ symbol(thatis, undestroke) is the anorymousvariable. We useit whenwe
needto usea variable,but we're not interestedn what Prologinstantiatest to. As
you canseein the abose example,Prologdidn’t bothertelling uswhat_ wasbound
to. Moreover, notethateachoccurrenceof _ is independenteachis boundto some-
thing different. This couldnt happenwith anordinaryvariableof course but thenthe
anorymousvariableisn’t meantto be ordinary It's simply way of telling Prologto
bind somethingo a givenposition,completelyindependentlyf ary otherbindings.
Let’s look at one last example. The third elementof our working exampleis a list
(namely[ 2, [b, chopper]]). Supposave wantedto extractthetail of thisinternal
list, andthatwe arenotinterestedn ary otherinformation.How couldwe dothis? As
follows:

- [ [X ] =

[[], dead(zed), [2, [b, chopper]], [], Z [2, [b, chopper]]].
X = [[b, chopper]]

N
1

10087
yes
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4.2 Member

It's time to look at our first exampleof a Prologprogramfor manipulatinglists. One
of the mostbasicthingswe would like to know is whethersomethingis an element
of alist or not. Solet’s write a programthat, whengivenasinputsanarbitraryobject
X andalist L, tellsuswhetheror not X belongsto L. The programthatdoesthis is

usuallycalledmemberandit is thesimplestexampleof a Prologprogramthatexploits

therecursve structureof lists. Hereit is:

menber (X, [ X| T]) .
menber (X, [H T]) :- menber (X T).

Thatsall thereis to it: one fact (namelynenber (X, [ X| T])) and onerule (namely
menber (X, [H T]) :- nenber (X, T)). But notethat the rule is recursie (after all,
the functormenmber occursin boththe rule’s headandtail) andit is this thatexplains
why suchashortprogramis all thatis required.Let’s take a closerlook.

We'll startby readingthe programdeclaratiely. And readthis way; it is obviously
sensible.Thefirst clause(the fact) simply says:anobjectx is amemberof alist if it
is theheadof thatlist. Notethatwe usedtheinbuilt | operatorto statethis (simplebut
important)principle aboutlists.

Whataboutthe secondclause therecursve rule? This says:anobjectx is memberof
alistif it isamemberof thetail of thelist. Again, notethatwe usedthe| operatorto
statethis principle.

Now, clearlythis definition makes gooddeclaratie sense.But doesthis programac-

tually do whatit is supposedo do? Thatis, will it really tell us whetheran objectx

belongsto alist L? And if so,how exactly doesit do this? To answersuchquestions,
we needto think aboutits proceduralmeaning. Let’'s work our way througha few

examples.

Supposeave posedthefollowing query:
?- nmenber (yol anda, [ yol anda, t rudy, vi ncent, jul es]).
Prologwill immediatelyanswer'Yes’. Why? Becausdt can unify yol anda with

both occurrence®f X in thefirst clause(the fact) in the definition of nenber/ 2, soit
succeedénmediately

Now considerthefollowing query:

?- menber (vi ncent, [yol anda, trudy, vi ncent, jul es]).
Now thefirstrulewon’t help(vi ncent andyol anda aredistinctatoms)soProloggoes
tothesecondtlausetherecursive rule. This givesProloganew goal: it now hasto see
if

menber (vi ncent, [trudy, vi ncent,jul es]).

Now, onceagainthe first clausewon’t help, so Prolog goes(again)to the recursve
rule. This givesit anew goal,namely
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menber (vi ncent, [vincent,jul es]).

Thistime, thefirst clausedoeshelp,andthequerysucceeds.

Sofarsogood,but we needto askanimportantquestion Whathappensvhenwe pose
aquerythatfails? For example whathappensf we posethequery

menber (zed, [ yol anda, t rudy, vi ncent, jul es]).

Now, this shouldobviously fail (afterall, zed is noton thelist). Sohow doesProlog
handlethis?In particular how canwe besurethatPrologreallywill stop andsay no,
insteadgoinginto anendlessecursve loop?

Let’s think this throughsystematically Onceagain,the first clausecannothelp, so
Prologusestherecursve rule, which givesit a new goal

menber (zed, [t rudy, vi ncent, jul es]).

Again, thefirst clausedoesnt help,soPrologreusesherecursve rule andtriesto shav
that

menber (zed, [ vi ncent, jul es]).

Similarly, the first rule doesnt help, so Prolog reuseghe secondrule yet againand
triesthegoal

menber (zed, [j ul es]).

Again thefirst clausedoesnt help, so Prologusesthe secondrule, which givesit the
goal

menber (zed, [])

And thisis wherethingsgetinteresting.Obviously thefirst clausecant helphere.But
note:therecussiverule can't doanythingmore either. Why not? Simple:therecursve
rule relieson splitting the list into a headanda tail, but aswe have alreadyseenthe
emptylist cant besplitupin thisway. Sotherecursve rule cannotbe appliedeither
andPrologstopssearchingor moresolutionsandannounce&No’. Thatis, it tells us
thatzed doesnot belongto thelist, whichis, of coursewhatit oughtto do.

We could summarizethe menmber / 2 predicateasfollows. It is a recursve predicate,
which systematicallysearcheslown thelengthof thelist for therequireditem. It does
this by stepwisebreakingdown thelist into smallerlists, andlooking at thefirst item
of eachsmallerlist. This mechanisnthatthatdrivesthis searchis recursion,andthe
reasonthatthis recursionis safe(thatis, the reasonit doesnot go on forever) is that
attheendof theline Prologhasto aska questionaboutthe emptylist. The emptylist
cannotbebrokendown into smallerparts,andthis allows away out of therecursion.

Well, we've now seenwhy nenber / 2 works, but in factit’s far more usefulthat the
previousexamplemightsuggestUp till now we've only beenusingit to answelryes/no
questions But we canalsoposequestionscontainingvariables.For example,we can
have thefollowing dialogwith Prolog:
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menber ( X, [ yol anda, t rudy, vi ncent, jul es]).

X = yol anda ;
X = trudy ;
X = vincent ;
X =jules ;
no

Thatis, Prologhastold uswhatevery memberof alist is. Thisis avery commonuseof
menber / 2. In effect, by usingthe variablewe aresayingto Prolog: ‘Quick! Give me
someelemenf thelist!’. In mary applicationsve needto beableto extractmembers
of alist, andthisis theway it is typically done.

Onefinal remark. Theway we definednenber / 2 above is certainlycorrect,but in one
respecit is alittle messy

Think aboutit. Thefirst clauseis thereto dealwith the headof thelist. But although
thetail is irrelevantto thefirst clause we namedhetail usingthevariableT. Similarly,
the recursve rule is thereto dealwith the tail of the list. But althoughthe headis
irrelevant here,we namedit usingthe variableH. Theseunnecessaryariablenames
aredistracting:it's betterto write predicatesn a way thatfocusesattentionon what
is really importantin eachclause andthe anorymousvariablegivesus a nice way of
doingthis. Thatis, we canrewrite menber / 2 asfollows:

menber (X, [ X] _]).
menber (X, [ _| T]) :- menber (X T).

This versionis exactly the same pothdeclaratiely andprocedurally But it's just that
little bit clearer:.whenyou readit, you areforcedto concentraten whatis essential.

4.3 Recursing down lists

Memberworks by recursvely working down alist, doing somethingo the head,and
thenrecursvely doing the samething to the tail. Recursingdown a list (or indeed,
severallists) in this way is extremely commonin Prolog: socommon,in fact, thatit

is importantthat you really masterthe idea. Solet’s look at anotherexampleof the
techniqueat work.

Whenworking with lists, we often wantto compareonelist with anotheror to copy
bits of onelist into another or to translatethe contentsof onelist into another or
somethingsimilar. Heres anexample. Let's supposeve needa predicatea2b/ 2 that
takestwo lists asalgumentsandsucceed# thefirst agumentis a list of as, andthe
secondargumentis alist of bs of exactly the sameength. For example,if we posethe
following query

a2b([a,a,a,a],[b, b, b,b]).
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we wantPrologto say‘yes’. Ontheotherhand,if we posethequery
a2b([a,a,a,a],[b,b b]).

orthequery
a2b([a,c,a,a],[b, b5, 4]).

we wantPrologto say‘no’.

Whenfacedwith suchtasks,often the bestway to setaboutsolving themis to start
by thinking aboutthe simplestpossiblecase .Now, whenworking with lists, ‘thinking
aboutthe simplestcase’often meansthinking aboutthe emptylist’, andit certainly
meanghis here.After all: whatis the shortespossibldist of as?Why, theemptylist:
it containsno as atall! And whatis the shortespossiblelist of bs? Again, the empty
list: nobs whatsoger in that! Sothe mostbasicinformationour definition needsto
containis

azb([],[]).

Thisrecordgheohlviousfactthattheemptylist containsexactly asmary asasas. But
althoughobvious, this factturnsout to play a very importantrole in our program,as
we shallsee.

Sofarsogood: but howv dowe proceed™Heres theidea: for longerlists, think recur
sively So: whenshoulda2b/ 2 decidethattwo non-emptylists area list of asanda
list of bs of exactly the samelength? Simple: whenthe headof thefirst list is ana,
andthe headof the secondist is ab, anda2b/ 2 decideghatthetwo tails arelists of
as andbs of exactly the samedength! Thisimmediatelygivesusthefollowing rule:

az2b([a| Ta],[b| Tb]) :- a2b(Ta, Th).
Thissays:thea2b/ 2 predicateshouldsucceedf its first agumentis alist with heada,

its secondargumentis alist with headb, anda2b/ 2 succeedsn thetwo tails.

Now, this definitionmake goodsensealeclaratiely. It is asimpleandnaturalrecursve

predicatethe baseclausedealingwith the emptylist, therecursve clausedealingwith

non-emptylists. But how doesit work in practice? Thatis, whatis its procedural
meaningor example,if we posethequery

a2b([a,a,a],[b, b, b]).

Prologwill say‘yes’, whichis whatwe want,by why exactly doesthis happen?

Let's work the examplethrough. In this query neitherlist is empty sothe factdoes
not help. ThusProloggoesonto try therecursve rule. Now, the querydoesmatchthe
rule (afterall, the headof thefirst list is a andthe headof the secondn b) soProlog
now hasanew goal,namely

a2b([a,a],[b,b]).
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Onceagain,the factdoesnot helpwith this, but the recursie rule canbe usedagain,
leadingto the following goal:

az2b([a],[b]).

Yet againthe fact doesnot help, but the recursve rule does,so we getthe following
goal:

azb([],[]).

At lastwe canusethe fact: thistells usthat, yes,we really do have two lists herethat
containexactly the samenumberof as andbs (namely noneatall). And becausehis
goalsucceedshis meanghatthegoal

az2b([a],[b]).
succeed$oo. Thisis turn meanghatthe goal
a2b([a,a]l,[b,b]).
succeedsandthusthatthe original goal
a2b([a,a, a],[b,b,b]).

is satisfied.

We could summarizethis processasfollows. Prologstartedwith two lists. It peeled
the headoff eachof them, andchecled thatthey wereana andab asrequired. It

thenrecursvely analyzedthe tails of both lists. Thatis, it worked down both tails
simultaneouslycheckingthatat eachstagethetails wereheadedy ana andab. Why

did the processstop?Becauset eachrecursve stepwe hadto work with shorterlists
(namelythe tails of the lists examinedat the previous step)and eventuallywe ended
up with empty lists. At this point, our rathertrivial looking fact wasableto play a
vital role: it said'yes!’. This haltedtherecursionandensuredhatthe original query
succeeded.

It'sis alsoimportantto think aboutwhathappenswith queriesthatfail. For example,
if we posethequery

a2b([a,a,a,a],[b,b,b]).

Prologwill correctlysay‘no’. Why? becauseaftercarryingoutthe ‘peel off the head
andrecursvely examinethetail’ procesghreetimes,it will beleft with thequery

azb([a],[]).
But this goalcannotbe satisfied.And if we posethequery

a2b([a,c,a,a]l,[b, b, 5,4]).
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aftercarryingoutthe ‘peel off theheadandrecursvely examinethetail’ procesnce,
Prologwill have thegoal

a2b([c,a,a],[b,5,4]).

andagain,this cannotbe satisfied.

Well, that'show a2b/ 2 worksin simplecasesbut we haven't exhaustedts possibilities
yet. As alwayswith Prolog,it’sagoodideato investigatavhathappensvhenvariables
asusedasinput. And with a2b/ 2 somethingnterestinghappensit actsasatranslator
translatindists of as to lists of bs, andvice versa.For examplethe query

a2b([a, a,a, a],X).
yieldstheresponse
X = [b, b, b, b].

Thatis, thelist of as hasbeentranslatedo a list of bs. Similarly, by usinga variable
in thefirst agumentposition,we canuseit to translatdists of bsto lists of as:

a2b(X, [b, b, b, b]).
X =[a,a,a,al

And of coursewe canusevariablesin bothagumentpositions:
a2b(X, ).

Canyou work outwhathappensn this case?

To sumup: a2b/ 2 is an extremely simple exampleof a programthat works by re-
cursingits way down a pair of lists. But don't befooledby its simplicity: thekind of
programmingt illustratesis fundamentato Prolog. Both its declaratre form (a base
clausedealingwith theemptylist, arecursve clausedealingwith non-emptylists) and
theproceduraldeait tradeson (do somethingo theheadsandthenrecursvely dothe
samething to thetails) comeup againandagainin Prologprogrammingln fact,in the
courseof your Prologcareeryou’ll find thatyou'll write whatis essentialljthea2b/ 2
predicate pr amorecomple variantof it, mary timesoverin mary differentguises.

4.4 Exercises

Exercise 4.1 How doesProlog respondo thefollowing queries?

1. [a,b,c,d] [a,[b,c,d]].

2.[a,b,c,d]

[al[b,c, d]].

3.[a,b,c,d =[a,b,[c,d]].
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4.[ab,c,d] =[abl[c,d]].
5.[a b,c,d] =[ab,c [d]].
6.[a b, c,d =[ab,c|[d]].
7.la,b,c,d =[ab,c,d[]].
8.[a b,c,d] =[ab,cd[]].
9.1] = _.

10. 11 =1_1.

11. 11 = [_I[]].

Exercise 4.2 Supposeaveare givena knowledg basewith thefollowing facts:

tran(eins, one).
tran(zwei, t wo)
tran(drei,three)
tran(vier,four).
tran(fuenf,five).
tran(sechs, six).
tran(si eben, seven).
tran(acht, ei ght).
tran(neun, ni ne).

Write a predicatel i sttran( G E) which translatesa list of Germannumberwordsto
the correspondindist of Englishnumberwords. For example:

listtran([eins, neun, zwei], X)
shouldgive:
X = [one, nine, two].

Your program shouldalsowork in the otherdirection. For example if yougiveit the
query

listtran(X [one, seven, six, two]).
it shouldreturn:
X = [eins, sieben, sechs,zwei].
Hint: to answerthis question first askyourself ‘How do shouldl translatethe empty

list of numberwords?’. That's the basecase For non-emptylists, first translatethe
headof thelist, thenuserecussionto translatethetail.
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Exercise 4.3 Write a predicatet wi ce( 1 n, cut) whoseleft argumentis a list, and
whoseright argumentis a list consistingof every elemenin theleft list written twice
For example thequery

twi ce([a, 4, buggl e], X).
shouldreturn

X = [a,a, 4,4, buggl e, buggl e]).
Andthequery

twice([1,2,1,1],X).
shouldreturn

X=1011,2,2,1,1,1,1].

Hint: to answerthis question,first askyourself ‘What shouldhappenwhenthe first
argumentis theempty?’. That's the basecase For non-emptylists, think aboutwhat
youshoulddo with the head,and userecursionto handlethetail.

45 Practical Session 4

Thepurposeof PracticalSessiord is to helpyou getfamiliar with theideaof recursing
down lists. We first suggessometracesfor youto carry out, andthensomeprogram-
ming exercises.

First, systematicallycarry out a numberof traceson a2b/ 2 to make sureyou fully
understandhow it works. In particular:

1. Tracesomeexamplesnotinvolving variablesthatsucceedFor example,trace
thequerya2b([a, a, a, a], [ b, b, b, b] ) andrelatethe outputto the discussion
in thetext.

2. Tracesomesimpleexamplesthatfail. Try examplesinvolving lists of different
lengths(suchasa2b([ a, a, a, a], [ b, b, b] ) ) andexamplesinvolving symbols
otherthana andb (suchasa2b([a, c, a,a],[b, b, 5, 4])).

3. Tracesomeexamplesnvolving variables.Forexample try tracinga2b([ a, a, a, a] , X)
anda2b( X, [b, b, b, b]).

4. Make sureyou understandvhat happenwhenboth agumentsin the queryare
variables.For example,carryoutatraceonthequerya2b( X, v).

5. Carryout a seriesof similar tracesinvolving nenber . Thatis, carry out traces
involving simple queriesthat succeedsuchasnenber (a, [ 1, 2, a, b])), Sim-
ple queriesthat fail (suchasmenber (z,[1, 2, a, b])), and queriesinvolving
variables(suchasnenber (X, [ 1, 2, a, b]))). In all casesmale surethat you
understandvhy therecursionhalts.
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Having donethis, try thefollowing.

1. Write a 3-placepredicateconbi nel which takes threelists as agumentsand
combinegheelementof thefirst two lists into the third asfollows:

conmbinel([a, b,c],[1,2,3],X).
X =1T1]a1,b,2c,3]
conbi nel([f oo, bar, yi p, yup],[glub, gl ab, glib, glob], Result).

Result = [foo, gl ub, bar, gl ab,yip, glib, yup, gl ob]

2. Now write a 3-placepredicateconbi ne2 which takesthreelists asamguments
andcombineghe elementof thefirst two listsinto the third asfollows:

conbinel([a, b,c],[1,2,3],X).
X =1[[a1],[b,2],[c,3]]
conbi nel([f oo, bar, yi p, yup], [ gl ub, gl ab, glib,glob], Result).

Result = [[foo, gl ub],[bar,glab],[yip,glib],[yup,glob]]

3. Finally, write a 3-placepredicatezonbi ne2 whichtakesthreelists asarguments
andcombineghe elementof thefirst two listsinto the third asfollows:

conbinel([a, b, c],[1,2,3],X).

X =[join(a,1),join(b,?2),join(c,3)]

conbi nel([f oo, bar, yip, yup], [ gl ub, gl ab, glib, gl ob], Result).

Result = [join(foo,glub),join(bar,glab),join(yip,glib),join(yup,glob)]

All threeprogramsarepretty muchthe sameasa2b/ 2 (thoughof coursethey manip-
ulatethreelists, nottwo). Thatis, all threecanbe written by recursingdown thelists,
doing somethingto the headsandthenrecursvely doing the samething to the tails.
Indeed,onceyou have written conbi nel, youjustneedto changehe‘something’you
dototheheadgo getconbi ne2 andconbi ne3.

Now, you shouldhave a pretty goodideaof whatthe basicpatternof predicatedor
processindists lookslike. Herearea coupleof list processingxerciseghatarea bit
moredifficult.

1. Write apredicateanysubset/Zhattakestwo listsasargumentsandcheckswhether
thefirst list is a subsebf thesecond.

2. Write a predicatemyintersection/3wvhich takesthreelists asamguments(myin-
tersection(+List,+List,+Listjandcheckswhetherthefirst agumentis theinter
sectionof the secondandthethird.



60

Chapter 4. Lists

3. Write a predicatemysuperset/2hat takes two lists as agumentsand checks,
whetherthe first list is a supersebf the second.Hint: Which of the two lists
doestherecursiorhave to go over?



Arithmetic

Thislecturehastwo maingoals:

1. TointroducePrologs inbuilt abilitiesfor performingarithmetic,and

2. To applythemto simplelist processingproblemsusingaccumulators.

5.1 Arithmetic in Prolog

Prologprovidesa numberof basicarithmetictools for manipulatingintegers(thatis,
numbersof the form ...-3,-2, -1, 0, 1, 2, 3, 4...). Most Prologimplementatioralso
provide tools for handlingreal numbers(or floating point numbers)suchas 1.53 or
6.35 x 10°, but we’re not going to discussthesefor they are not particularly useful
for the symbolicprocessindgasksdiscussedh this course.Integers,onthe otherhand,
areusefulfor varioustasks(suchasfinding the lengthof alist), soit is importantto
understandhow to work with them. We'll startby looking at how Prologhandleshe
four basicoperationf addition,multiplication, subtractionanddivision.

Arithmetic examples Prolog Notation
6+2=28 8 is 6+2.
6x2=12 12 is 6*2.
6-2=4 4 is 6-2.
6-8=-2 -2 is 6-8.
6+-2=3 3is 6/2.
7+2=3 3is 7/2.

listheremaindewhen7is dividedby2 1 is nod(7,2).

(Note thataswe areworking with integers,division givesus backan integer answer
Thus7 -+ 2 gives3 asanansweyleaving areminderof 1.)

Posingthefollowing queriesyieldsthefollowing responses:

?- 8 is 6+2.
yes

?- 12 is 6*2.
yes
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?- -2 1is 6-8.
yes

?- 3 is 6/2.
yes

?- 11is nmod(7,2).
yes

More importantly we canwork outthe answergo arithmeticquestiongy usingvari-
ables.For example:

?- Xis 6+2.

?- Ris nmod(7,2).

R=1
Moreover, we canusearithmeticoperationsvhenwe definepredicatesHeresasimple
example. Let’s definea predicateadd_3_and_doubl e2/ whoseargumentsare both
integers. This predicatetakesits first agument,addsthreeto it, doublesthe result,

andreturnsthe numberobtainedasthe secondargument. We definethis predicateas
follows:

add_3_and_double(X Y) :- Y is (X+3)*2.
And indeed this works:

?- add_3_and_doubl e( 1, X).

X =28

?- add_3_and_doubl e( 2, X).

X = 10
Oneotherthing. Prologunderstandshe usualcorventionswe usefor disambiguating
arithmeticalexpressions For example,whenwe write 3+ 2 x 4 we mean3+ (2 x 4)
andnot (3+ 2) x 4, andPrologknows this convention:

?- Xis 3+2*4.

X =11
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5.2 A closer look

That's the basics but we needto know more. The mostimportantto graspis this: +,
*, -, + andnod do notcarryoutary arithmetic.In fact,expressionsuchas3+2, 3- 2
and3*2 aresimply terms The functorsof thesetermsare+, - and* respectrely,
andtheamgumentsare3 and2. Apartfrom thefactthatthe functorsgo betweenrtheir
amgumentginsteadof in front of them)theseareordinaryPrologterms,andunlesswve
do somethingspecial,Prologwill not actuallydo any arithmetic. In particular if we
posethequery

?- X = 3+2
we don't getbacktheanswerx=5. Insteadwe getback

X = 3+2
yes

Thatis, Prologhassimply boundthevariablex to thecomplex term3+2. It hasnotcar
ried outary arithmetic.It hassimply donewhatit usuallydoes:performedunification
Similarly, if we posethequery

?- 342*5 = X
we gettheresponse

X = 3+2*5
yes

Again, Prolog hassimply boundthe variable X to the complex term 3+2*5. It did
not evaluatethis expressionto 13. To force Prologto actually evaluatearithmetic
expressionsve have to use

is

justaswe did in ourin our earlierexamples.In fact,i s doessomethingvery special:
it sendsa signalto Prologthatsays‘Hey! Don't treatthis expressionasan ordinary
comple term! Call up your inbuilt arithmeticcapabilitiesand carry out the calcula-
tions!’

In short,i s forcesPrologto actin anunusualvay. Normally Prologis quitehapypy just
unifying variablesto structuresthat’s its job, afterall. Arithmeticis somethingextra
thathasbeenboltedonto thebasicPrologenginebecausdt is useful. Unsurprisingly
therearesomerestrictionson this extra ability, andwe needto know whatthey are.

For astart,thearithmeticexpressiongo be evaluatedmustbeon theright handsideof
i s. In ourearlierexampleswe carefullyposedhe query

?- Xis 6+2.

X =28
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whichis theright way to doit. If insteadwe hadasled
6+2 is X

we would have got an error messagesayingi nst anti ati on_error, or something
similar.

Moreover, althoughwe arefree to usevariableson the right handside of i s, when
we actually carry out evaluation, the variable mustalreadyhavebeeninstantiated
to an integer. If the variableis uninstantiatedor if it is instantiatedto something
otherthananinteger, we will getsomesortofi nstanti ati on_error messageAnd

this makesperfectsense.Arithmetic isn't performedusing Prologusualunification
andknowledgebasesearchmechanismsit’s doneby calling up a special’black box’

which knows aboutinteger arithmetic. If we handthe black box the wrong kind of

data,naturallyits goingto complain.

Heres anexample.Recallour ‘add 3 anddoubleit’ predicate.
add_3_and_double(X Y) :- Y is (X+3)*2.

Whenwe describedhis predicatewe carefullysaidthatit added3 to its first agument,

doubledthe result, and returnedthe answerin its secondargument. For example,

add_3_and_doubl e(3, X) returnsx = 12. We didn't sayarything aboutusingthis

predicaten thereversedirection. For example,we might hopethatposingthe query
add_3_and_doubl e( X 12).

wouldreturntheanswerx=3. Butit doesnt! Insteadvegetthei nstanti ation_error

messageWhy? Well, whenwe posethe querythis way round,we areaskingProlog
toevaluate12 is (X+3)*2,whichit cant doasXis notinstantiated.

Two final remarks. As we've alreadymentionedfor Prolog3 + 2 isjustaterm. In
fact, for Prolog, it really is theterm +(3,2). The expression3 + 2 is just a user
friendly notationthat’s nicer for usto use. This meanghatif you really wantto, you
cangive Prologqueriedike

Xis +(3,2)
andPrologwill correctlyreply

X=5
Actually, you canevengivenPrologthequery

is(X +(3,2))

andPrologwill respond

X =5
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This is becausefor Prolog,the expressionx i s +(3, 2) isthetermis(X, +(3,2)).
The expressionX is +(3,2) is justuserfriendly notation. Underneathas always,
Prologis justworking away with terms.

Summingup, arithmeticin Prologis easyto use.Prettymuchall you haveto remember
is to usei s to force evaluation,thatstuff to be evaluatedmustgoesto theright of i s,
andto take carethatary variablesarecorrectlyinstantiatedBut thereis adeepetesson
thatis worthreflectingon. By ‘bolting on’ the extra capabilityto do arithmeticwe have
furtherwidenedthe distancebetweerthe procedurabnddeclaratie interpretationof
Prologprocessing.

5.3 Arithmetic and lists

Probablythe mostimportantuseof arithmeticin this courseis to tell us usefulfacts
aboutdata-structuresuchaslists. For example,it canbe usefulto know how long a
listis. We'll give someexamplesof usinglists togethemwith arithmeticcapabilities.

How longis alist? Heres arecursve definition.

1. Theemptylist haslengthzero.

2. A non-emptylist haslengthl + len(T), wherelen(T) is thelengthof its tail.
This definitionis practicallya Prologprogramalready Heres the codewe need:

len([],0).
len([_|T],N :- len(T,X), Nis X+1.

This predicatework in the expectedway. For example:
?- len([a,b,c,d,e,[a,b],g], X).
X=7

Now, this is quite a good program: it’s easyto understandand efficient. But there
is anothermethodof finding the lengthof a list. We’'ll now look at this alternatve,
becausd introducegheideaof accumulatorsa standard”rologtechniquewve will be
seeindots moreof.

If you're usedto other programminglanguagesyou'’re probablyusedto the idea of
usingvariablesto hold intermediateresults. An accumulatoiis the Prologanalogof
thisidea.

Heres how to usean accumulatotto calculatethe lengthof alist. We shall definea
predicateacclLeng3/ which takesthefollowing aguments.

accLeng(Li st, Acc, Lengt h)
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HerelLi st isthelist whosdengthwewantto find, andLengt h isits length(aninteger).

Whataboutacc? Thisis avariablewe will useto keeptrackof intermediatesaluesfor

length(soit will alsobeaninteger). Heres whatwe do. Whenwe call this predicate,
we aregoingto give Acc aninitial valueof 0. Wethenrecursvely work ourway dowvn

thelist, adding1 to Acc eachtime we find a headelement,until we reachthe empty
list. Whenwe doreachtheemptyset,Acc will containthelengthof thelist. Heresthe

code:

accLeng([_|T],A L) :- Anewis A+l, accLeng(T, Anew,L).
accLeng([],A A).

The basecaseof the definition, unifiesthe secondandthird aguments.Why? There
areactually two reasons.Thefirst is becausavhenwe reachthe endof the list, the
accumulatothe secondvariable)containsthelengthof thelist. Sowe give this value
(via unification)to thelengthvariable(thethird variable). Theseconds thatthis trivial

unificationgivesa nice way of stoppingthe recursionwhenwe reachthe emptylist.

Heresanexample:

accLeng([a, b, c], 0,_988)
accLeng([b, c], 1, _988)
accLeng([c], 2,_988)
accLeng([], 3, _988)

accLeng([], 3, 3)

As afinal step,we’ll definea predicatewhich callsaccLeng for us,andgivesit the
initial valueof O:

| eng(List,Length) :- accLeng(List,O0,Length).
Sonow we canposequeriedike this:
leng([a,b,c,d, e [ab]l,g],X.

We'll seeanotheraccumulatobasedorogramlaterin thislecture.

5.4 Comparing integers

SomePrologarithmeticpredicatesactuallydo carry out arithmeticall by themseles
(thatis, without the assistancef i s). Thesearethe operatorghatcomparentegers.

Arithmetic examples Prolog Notation

X<y X <.
x<y X =< Y.
X=y X == V.
X#Y X =\=Y.
X>y X >=Y
X>y X >Y
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Theseoperatorshave the obviousmeaning:

2 < 4.
yes

2 =< 4.
yes

4 =< 4,
yes

4=: =4,
yes

4=\ =5,
yes

4=\ =4,
no

4 >= 4.
yes

4 > 2.
yes

Moreover, they force boththeir right-handandleft-handargumentgo be evaluated:

2 < 4+1.
yes

2+1 < 4.
yes

2+1 < 3+2
yes

Notethat=: = really is differentfrom =, asthefollowing examplesshow:

4=4.
yes

2+2 =4,
no

2+2 == 4.
yes

Thatis, = triesto unify its arguments;it does not force arithmeticevaluation. That's
=: ='sjob.
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Wheneer we usetheseoperatorsyve have to take carethatary variablesareinstanti-
ated.For example,all thefollowing queriedeadto instantiationerrors.

X < 3.

X ==X

Moreover, variableshave to beinstantiatedo integers. Thequery
X =3, X< 4.

succeedsBut thequery
X =h, X< 4.

fails.

OK, let’s now look at an examplewhich puts Prologs abilities to comparenumbers
to work. We're going to definea predicatewhich takestakes a list of non-ngatve

integersasits first agument,and returnsthe maximuminteger in the list asits last
argument. Again, we’ll usean accumulatar As we work our way down the list, the

accumulatowill keeptrack of the highestinteger found so far. If we find a higher
value,the accumulatomwill be updatedo this new value. Whenwe call the program,
we setaccumulatoto aninitial valueof 0. Here’s the code. Note thatthereare two

recursve clauses:

accMax([H T], A Max) : -
H> A
acchvax(T, H, Max) .

accMax([H T], A Max) : -
H=< A
accMax (T, A Max) .

accMax([],A A .

Thefirst clausetestsif the headof thelist is largerthanthe largestvaluefound sofar.

If it is, we setthe accumulatotto this new value,andthenrecursvely work through
the tail of thelist. The secondclauseapplieswhenthe headis lessthanor equalto

the accumulatorjn this casewe recursvely work throughthe tail of thelist usingthe
old accumulatowalue.Finally, thebaseclauseunifiesthe secondandthird alguments;
it givesthe highestvaluewe found while going throughthe list to the lastamgument.
Heres how it works:

accMax([1,0,5,4],0,_5810)

accMax([0,5,4],1, _5810)
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accMax([5, 4], 1, 5810)

accMax([4],5,_5810)

accMax([],5, _5810)

accvax([],5,5)
Again, it's nice to definea predicatewhich calls this, andinitializes the accumulatar
But wait: whatshouldwe initialize the accumulatotoo? If you say0, this meansyou
areassuminghatall thenumbersn thelist arepositive. But supposeve give alist of

negatie integersasinput. Thenwe would have

accMax([-11,-2,-7,-4,-12], 0, Max) .

Thisis notwhatwe want: thebiggesinumberonthelist is -2. Ouruseof 0 astheinitial
value of the accumulatohasruinedeverything, becauset’s biggerthanarny number
onthelist.

Theres aneasyway aroundthis: sinceour input list will alwaysbe a list of integers,
simply initialize the accumulatorto the headof the list. Thatway we guarante¢hat
theaccumulators initialized to anumberonthelist. Thefollowing predicatedoesthis
for us:
max( Li st, Max)

List = [H _],

accMax( Li st, H, Max).
Sowe cansimply say:

max([ 1, 2, 46, 53, 0] , X) .

X = 53
yes

And furthermorewe have:
max([-11,-2,-7,-4,-12], X).

X =-2
yes
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55 Exercises

Exercise 5.1 How doesProlog respondo thefollowing queries?

is 1+2.

w

is +(1,2).
3 is X+2.

. X is 1+2.

© © N o g »~ w N P
w

L 1+2 s 1+2.

[EnY
o

Lis(X +(1,2)).

=
=

.3+2 = +(3,2).

=
N

.*(7,5) = 7*5.

=
w

¥ (7,+(3,2)) = 7*(3+2).

'_\
N

(7, (342)) = 7*(3+2).

15. % (7, (3+2)) 7(+(3,2)).

Exercise 5.2 1. Definea 2-place predicateincrementthat holds only whenits
secondargumentis an integer onelarger thanits first argument.For example
i ncrenent (4, 5) shouldhold, buti ncrenent (4, 6) shouldnot.

2. Definea 3-placepredicatesumthat holds only whenits third argumentis the
sumof the first two arguments. For example sun( 4, 5, 9) shouldhold, but
i ncrenent (4, 6, 12) should not.

Exercise 5.3 Write a predicateaddone2/ whosefirst argumentis a list of integers,
andwhosesecondarguments thelist of integers obtainedby addingl to ead integer
in thefirstlist. For example the query

addone([1,2,7,2],X.

shouldgive

X =1[23,8,3].
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5.6 Practical Session 5

The purposeof PracticalSessiorb is to helpyou getfamiliar with Prologs arithmetic
capabilitiesandto give you somefurtherpracticein list manipulation.To this end,we
suggesthefollowing programmingexercises:

1. In thetext we discussedhe 3-placepredicateaccax which which returnedthe
maximumof a list of integers. By changingthe codeslightly, turn this into a
3-placepredicateaccM n whichreturnsthe minimumof alist of integers.

2. In mathematicsan n-dimensionalectoris a list of numbersof lengthn. For
example,[ 2, 5, 12] is a 3-dimensionalvector and| 45, 27, 3, - 4, 6] is a 5-
dimensionalvector One of the basicoperationson vectorsis scalar multipli-
cation In this operationevery elementof a vectoris multiplied by somenum-
ber For example,if we scalarmultiply the 3-dimensionalector[ 2, 7, 4] by
3 theresultis the 3-dimensionalector| 6, 21, 12] . Write a 3-placepredicate
scal ar Mul t whosefirst agumentis an integer, whosesecondargumentis a
list of integers,andwhosethird argumentis the resultof scalarmultiplying the
secondargumentby thefirst. For example the query

scalarMul t (3,[2,7,4], Resul t).
shouldyield
Result = [6, 21, 12]

3. Anotherfundamentalbperationon vectorsis the dot product This operation
combinestwo vectorsof the samedimensionandyields a numberasa result.
The operationis carriedout asfollows: the correspondingelementsof the two
vectorsare multiplied, andthe resultsadded. For example,the dot productof
[2,5,6] and[3, 4, 1] is 6+20+6, thatis, 32. Write a 3-placepredicatedot
whosefirst agumentis a list of integers, whosesecondargumentis a list of
integers of the samelength as the first, and whosethird agumentis the dot
productof thefirst alumentwith the second For example thequery

dot([2,5,6],[3,4,1],Result).
shouldyield

Result = 32
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More Lists

Thislecturehastwo maingoals:

1. To defineappenda predicatefor concatenatingwo lists, andillustratewhatcan
bedonewith it.

2. Todiscusgwo waysof reversingalist: anave methodusingappendandamore
efficientmethodusingaccumulators.

6.1 Append

Weshalldefineanimportantpredicateappend/ 3 whoseargumentsareall lists. Viewed
declaratiely, append(L1, L2, L3) will hold whenthelist L3 is theresultof concate-
natingthelists L1 andL2 together(‘concatenatingimeansjoining the lists together
endto end’). For example,if we posethequery

?- append([a,b,c],[21,2,3],[a,b,c, 1,2, 3]).

or thequery

?- append([a,[foo,gibble],c],[1,2,[[],b]],
[a,[foo,gibble],c,1,2,[1,2,[[],b]]).

we will gettheresponseéyes’. Ontheotherhand,if we posethequery
?- append([a,b,c],[1,2,3],[a, b,c,1,2]).

orthequery
?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will gettheanswerno’.

Froma proceduraperspectie, the mostolvious useof append is to concatenatévo
lists together We cando this simply by using a variableasthe third agument: the

query
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?- append([a,b,c],[1,2,3],L3).
yieldstheresponse

L3 =[a,b,c, 1,2, 3]
yes

But (aswe shallsoonsee)we canalsouseappend to splitup alist. In fact,append is
arealworkhorse.Theres lots we cando with it, andstudyingit is agoodway to gain
abetterunderstandingf list processingn Prolog.

6.1.1 Defining append

Heres how append/ 3 is defined:

append([],L,L).
append([H T],L2,[HL3]) :- append(T,L2,L3).

Thisis arecursve definition. The basecasesimply saysthatappendinghe emptylist
to ary list whatsoger yieldsthatsamelist, whichis obviously true.

But what aboutthe recursve step? This saysthatwhenwe concatenata non-empty
list [ H T] with alist L2, we end up with the list whoseheadis H and whosetail is

the resultof concatenating with L2. It may be usefulto think aboutthis definition

pictorially:

tnput: [ I - SN
what L3 [ S
Resutt: [ S

But whatis the procedurameaningof this definition? Whatactuallygoeson whenwe
useappend to gluetwo liststogether? et’s take a detailedook atwhathappensvhen
we posethequeryappend([a, b,c],[1,2,3], X).

Whenwe posethis query Prologwill matchthis queryto the headof the recursve
rule, generatinga new internalvariable(say_G518) in the processlf we carriedouta
traceon whathappensext, we would getsomethindik e thefollowing:

append([a, b, c], [1, 2, 3], _Gb1l8)
append([b, c], [1, 2, 3], _GB87)
append([c], [1, 2, 3], _Gb90)
append([], [1, 2, 3], _G593)
append([], [1, 2, 3], [1, 2, 3])
append([c], [1, 2, 3], [c, 1, 2, 3])
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append([b, c], [21, 2, 3], [b, c, 1, 2, 3])
append([a, b, c], [21, 2, 3], [a, b, ¢, 1, 2, 3])

X=1l]a, b, c, 1, 2, 3]
yes

Thebasicpatternshouldbeclear:in thefirst four lineswe seethat Prologrecursests
way down thelist in its first algumentuntil it canapply the basecaseof therecursve
definition. Then,asthenext four linesshaw, it thenstepwiséfills in’ theresult.How is
thisfilling in’" processcarriedout? By successkly instantiatingthe variables G593,
_G590, G587, and_G518. Butwhile it’ simportantto graspthisbasicpattern,t doesnt
tell usall we needio know aboutthewayappend works,solet’sdig deeperWe’ll work
carefully throughthe stepsin this trace,makinga carefulnote of whatour goalsare,
andwhatthevariablesareinstantiatedo.

1. Goall: append([a, b, c], [1, 2, 3], _G518). Prologmatchesghistothe
headof therecursve rule (thatis, append([H T], L2, [H L3])). Thus_G518 is
matchedo[ a| L3] , andProloghasthenew goalappend([ b, c¢],[1, 2, 3], L3).
It generateanew variable G587 for L3, thuswehavethat_G518 = [a| _G587].

2. Goal 2: append([b, c], [1, 2, 3], _G587). Prologmatchesthis to the
headof the recursve rule, thus_G587 is matchedto [ b| L3], and Prologhas
thenew goalappend([c],[1, 2, 3], L3). It generatesheinternalvariable
_ G590 for L3, thuswe havethat_G587 = [b]| _G590].

3. Goal 3: append([c], [1, 2, 3], _G590). Prologmatcheghis to the head
of therecursve rule, thus_G590 is matchedo [ ¢| L3], andProloghasthe new
goalappend([],[1, 2, 3], L3). It generatetheinternalvariable G593 for
L3, thuswehavethat G590 = [c| _G593].

4. Goal4: append([], [1, 2, 3], _G593). At last: Prologcanusethe base
clause(thatis, append([], L, L)). And in the four successie matchingsteps,
Prologwill obtainanswergo Goal4, Goal3, Goal2, andGoall. Heres how.

5. Answerto Goal 4. append([], [1, 2, 3], [1, 2, 3]). Thisis because
whenwe matchGoal4 (thatis, append([], [1, 2, 3], _G593) tothebase
clause, G593 is matchedo [1, 2, 3].

6. Answerto Goal 3: append([c], [1, 2, 3], [c, 1, 2, 3]). Why? Be-
causdsoal3isappend([c], [1, 2, 3], _G590]),and G590 = [c|_G593],
andwehavejustmatched Gs93to[ 1, 2, 3].So_Gs90ismatchedo[c, 1, 2, 3].

7. Answerto Goal2: append([b, c], [1, 2, 3], [b, ¢, 1, 2, 3]).Why?
Becausé&soal2isappend([b, c], [1, 2, 3], _G87]),and G587 = [b| _G590],
andwe have just matched G590 to[c, 1, 2, 3]. So_Gh587 is matchedto
[b, ¢, 1, 2, 3].

8. Answerto Goall: append([a, b, c], [1, 2, 3], [b, ¢, 1, 2, 3]).Why?
Becaus&soal2isappend([a, b, c], [1, 2, 3], _G518]),and G518 = [a| _G587],
andwe have justmatched G87to[b, ¢, 1, 2, 3].So_G518 is matchedo
[a, b, ¢, 1, 2, 3].
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9. ThusProlognow knows how to instantiatex, the original queryvariable.lIt tells
usthatx = [a, b, ¢, 1, 2, 3], whichiswhatwewant.

Work throughthis examplecarefully andmake sureyou fully understandhe pattern
of variableinstantiationsnamely:

518

[a] _G587]
[al [b] _G590]]
[al[b][c| _G593]]]

For a start,this type of patternlies atthe heartof theway append works. Moreover, it
illustratesa moregeneratheme:the useof matchingto build structure.In anutshell,
the recursve callsto appendbuild up this nestedpatternof variableswhich codeup
therequiredanswer WhenPrologfinally instantiategheinnermostvariable_G593 to
[1, 2, 3], theanswercrystallizesout, like a snavflake forming arounda grain of
dust.But it is matching,not magic,thatproducegheresult.

6.1.2 Using append

Now thatwe understandhow append works, let’'s seehow we canputit to work.

Oneimportantuseof append isto splitupalist into two consecutie lists. For example:
append(X Y, [a, b,c,d]).

X =1l
Y = [a, b, c,d]

X =[a]
Y = [b,c,d]
X = [a,b]
Y = [c,d]
X =[a,b,c]
Y = [d]

X =[a,b,c,d]
Y =[]

no

Thatis, we give thelist we wantto splitup (herg a, b, c, d] ) to append asthethird ar
gumentandwe usevariabledor thefirsttwo aguments Prologthensearchefor ways
of instantiatingthe variablesto two lists that concatenat¢o give the third agument,
thus splitting up the list in two. Moreover, asthis exampleshaws, by backtracking,
Prologcanfind all possiblewaysof splitting up a list into two consecutie lists.

This ability meanst is easyto definesomeusefulpredicatesvith append. Let’s con-
sidersomeexamples.First, we candefinea programwhich finds prefixesof lists. For
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example,the prefixesof [ a, b, ¢, d] are[],[a], [a,b], [a, b, c], and[a, b, c,d].
With thehelpof append it is straightforvardto definea programpr ef i x/ 2, whosear
gumentsarebothlists, suchthatpr ef i x( P, L) will holdwhenp is aprefixof L. Here’s
how:

prefix(P,L) :- append(P, _,L).

This saysthatlist P is a prefix of list L whenthereis somelist suchthatL is theresult
of concatenatin@ with thatlist. (We usethe anorymousvariablesincewe dont care
whatthatotherlist is: we only carethattheresomesuchlist or other) This predicate
successfullyfinds prefixesof lists,andmorewer, via backtrackingfindsthemall:

prefix(X[a,b,c,d]).

X =[]

X = [a]

X = [a, b]

X = [a,b,c]
X = [a,b,c,d]
no

In asimilarfashionwe candefinea programwhichfindssufixesof lists. For example,
thesuffixesof[ a, b, ¢, d] are[],[d],[c,d],[b,c,d],and] a, b, c, d]. Again,using
append it is easyto definesuf f i x/ 2, apredicatevhoseargumentsarebothlists, such
thatsuf fi x(S, L) will holdwhens is asuffix of L:

suffix(S, L) :- append(_, S, L).
Thatis, list s is asuffix of list L if thereis somelist suchthatL is theresultof concate-
natingthatlist with S. This predicatesuccessfullffinds sufixesof lists,andmoreawer,

via backtrackingfindsthemall:

suffix(X [a, b,c,d]).

X = [a, b, c,d]
X = [b,c,d]
X = [c,d]

X = [d]

X =11

no
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Make sureyou understandavhy theresultscomeoutin this order

And now it's very easyto definea programthat finds sublistsof lists. The sublists
of [a,b,c,d] are[], [a],[b],[c],[d],[a b],[b,c],[c,d],[d e],[a b, c],
[b,c,d],and[a, b, c, d]. Now, alittle thoughtrevealsthatthe sublistsof alist L are
simply the prefixesof sufixesof L. Think aboutit pictorially:

s [
rake st |
Takeprefix toget subist: | [N
And of coursewe have boththe predicatesve needto pin thisideasdown: we simply
define

sublist(SubL,L) :- suffix(S,L),prefix(SubL,S).

Thatis, subL is asublistof L if thereis somesuffix S of L of which SubL is a prefix.
This programdoesnt explicitly useappend, but of course,underthe surface,that’s
what's doingthework for us,asbothpr ef i x andsuf f i x aredefinedusingappend.

6.2 Reversing alist

Appendis ausefulpredicateandit is importantto know how to useit. But it is justas
importantto know thatit canbe a sourceof inefficiengy, andthatyou probablydon't
wantto useit all thetime.

Why is append a sourceof inefficiengy? If you think aboutthe way it works, you'll
noticeaweaknessappend doesnt join two listsin onesimpleaction.Ratheyit needs
to work its way down its first agumentuntil it finds the endof thelist, andonly then
canit carryouttheconcatenation.

Now, oftenthis causesio problems For example,if we have two listsandwe justwant
to concatenat¢hem,it’s probablynot too bad. Sure,Prologwill needto work down
thelengthof thefirst list, but if thelist is not too long, that's probablynot too high a
priceto payfor the easeof working with append.

But mattersmay be very differentif thefirst two agumentsaregivenasvariables.As
we'vejustseenijt canbeveryusefulto give append variablesn its firsttwo arguments,
for thislets Prologsearchor waysof splitting up thelists. But thereis a priceto pay:
alot of searchs goingon, andthis canleadto very inefficient programs.

To illustratethis, we shallexaminethe problemof reversingalist. Thatis, we will ex-
aminethe problemof defininga predicatewvhich takesalist (say]| a, b, c, d] ) asinput
andreturnsalist containingthe sameelementsn thereverseorder(here[ d, c, b, a] ).
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6.2.1 Naive

Now, areverse predicateis a useful predicateto have around. As you will have
realizedby now, lists in Prologarefar easierto accessrom the front thanfrom the
back. For example,to pull outthe headof alist L, all we have to do is performthe
unification[ H _] = L; thisresultsin Hbeinginstantiatedo the headof L. But pulling
outthelastelemenof anarbitrarylist is harder:we cant doit simplyusingunification.
Ontheotherhand,if we hadapredicatewvhichreversedists, we couldfirst reversethe
inputlist, andthenpull out the headof the reversedlist, asthis would give usthelast
elementof the original list. Soar ever se predicatecould be a usefultool. However,
aswe may have to reverselarge lists, we would lik e this tool to be efficient. Sowe
needto think aboutthe problemcarefully

And that's whatwe're goingto do now. We will definetwo reversepredicatesa nave
one,definedwith the help of append, anda moreefficient (andindeed,morenatural)
onedefinedusingaccumulators.

reverse using append

Heres arecursve definition of whatis involvedin reversingalist:

1. If we reversetheemptylist, we obtainthe emptylist.

2. If wereversethelist [ H T], we endup with thelist obtainedby reversingT and
concatenatingvith [ H] .

To seethattherecursve clauseis correct,considerthelist [ a, b, c, d] . If we reverse
thetail of thislist we obtain[ d, c, b] . Concatenatinghiswith [ a] yields[d, c, b, a],
whichis thereverseof [ a, b, c, d].

With thehelpof append it is easyto turn this recursve definitioninto Prolog:

nai verev([],[]).
naiverev([H T],R) :- naiverev(T, RevT), append(RevT,[H ,R).

Now, this definitionis correct,but it is doesanawful lot of work. It is veryinstructve
tolook atatraceof this program.This shavs thatthe programis spendingalot of time
carryingoutappendsThisshouldnt betoosurprising:after, all, wearecallingappend
recursvely, andwe aretelling it to instantiateavariabler evT in its first agument.The
resultis veryinefficient (if yourunatrace,youwill find thatit takesabout90 stepsto
reversean eightelementlist) andhardto understandthe predicatespendsmnostof it
timein therecursve callsto append, makingit very hardto seewhatis goingon).

Not nice. And aswe shallnow see thereis abetterway.

6.2.2 Reverse using an accum ulator

The betterway is to usean accumulatar The underlyingideais simpleandnatural.
Our accumulatowill bealist, andwhenwe startit will be empty Supposeve want
toreverse] a, b, c, d] . At thestart,ouraccumulatowill be[]. Sowe simply take the
headof thelist we aretrying to reverseandaddit asthe headof the accumulatarWe
thencarryon processinghetail, thuswe arefacedwith thetaskof reversing[ b, c, dJ,

andour accumulatois [ a] . Againwe take the headof thelist we aretrying to reverse
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andaddit asthe headof theaccumulatofthusour new accumulators [b,a]) andcarry
ontrying to reverse] c, d] . Againwe usethesameidea,sowe getanew accumulator
[c, b, a], andtry to reverse[ d] . Needlesgo say the next stepyieldsanaccumulator
[d, c, b, a] andthenew goalof trying to reverse[] . Thisis wherethe processstops:
and our accumulatorcontainsthe reversedlist we want To summarize:the ideais
simply to work our way throughthelist we wantto reverse, andpusheachelementn
turn ontothe headof theaccumulatarlike this:

List: [a,b,c,d] Accumulator: []

List: [b,c,d] Accumul ator: [a]

List: [c,d] Accunul ator: [b, a]
List: [d] Accumul ator: [c, b, a]
List: [] Accunul ator: [d,c, b, a]

Thiswill beefficient becausave simply blastour way throughthelist once:we dont
have to wastetime carryingout concatenatioir otherirrelevantwork.

It's alsoeasyto putthisideain Prolog.Heres theaccumulatocode:

accRev([H T],A R :- accRev(T,[HA],R.
accRev([],AA.

Thisis classicaccumulatocode:it follows thesamepatternasthearithmeticexamples
we examinedin the previouslecture. Therecursve clauseis responsibldor chopping
of the headof the input list, andpushingit ontothe accumulatar The basecasehalts
the program,andcopiesthe accumulatoto thefinal algument.

As is usualwith accumulatoicode,it’s a goodideato write a predicatewhich carries
outtherequiredinitialization of theaccumulatofor us:

rev(L,R) :- accRev(L,[],R.

Again, it isinstructive to runsometracesonthis programandcomparet with nai ver ev.
Theaccumulatobasedversionis clearly better For example,it takesabout20 steps
to reversean eight elementlist, asopposedo 90 for the naive version. Moreover,
thetraceis far easierto follow. Theideaunderlyingthe accumulatobasedversionis
simplerandmorenaturalthantherecursve callsto append.

Summingup, append is a usefulprogram,andyou certainly shouldnot be scaredof
usingit. Howeveryou alsoneedto be awarethatit is a sourceof inefficiency, sowhen
you useit, askyourselfwhetherthereis a betterway. And oftenthereare. The useof
accumulatorss oftenbetter and(asther ever se exampleshav) accumulatorganbe
anaturalway of handlinglist processindasks.Moreover, aswe shalllearnlaterin the
course thereare more sophisticatedvaysof thinking aboutlists (namelyby viewing
themasdifferencelists) which canalsoleadto dramatidmprovementsn performance.

6.3 Exercises

Exercise 6.1 Let’s call alist doubledif it is madeof two consecutivédlodks of ele-
mentsthat are exactly the same For example [ a, b, c, a, b, c] is doubled(it's made
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up of [ a, b, c] followedby [ a, b, c]) andsois [ f oo, gubbl e, f 0o, gubbl e] . Onthe
otherhand,[ f oo, gubbl e, f oo] is not doubled. Write a predicatedoubl ed(Li st)
which succeedsvhenLi st is a doubledlist.

Exercise 6.2 A palindromeis a word or phrasethat spellsthe sameforwards and
badkwards. For example ‘rotator’, ‘eve’, and‘nursesrun’ are all palindromes.Write
a predicatepal i ndrone(Li st), which chedks whetherLi st is a palindrome For
example to thequeries

?- palindrone([r,o,t,a,t,o0,r]).
and

?- palindrone([n,u,r,s,e,s,r,u,n]).
Prolog shouldrespondyes’, but to the query

?- palindrone([n,o,t,h,i,s]).

Prolog shouldrespondno’.

Exercise 6.3 1. Write a predicatesecond( X, Li st) which chedks whetherx is
theseconcelemenbf Li st .

2. Write a predicateswap12( Li st 1, Li st 2) which che&kswhetherLi st 1 isiden-
tical to Li st 2, exceptthatthefirsttwo elementsire exchanged.

3. Writea predicatef i nal ( X, Li st) which chekswhetherX is thelastelemenbf
List.

4. Write a predicatet opt ai | (I nLi st, Qutlist) which says'’no’ if inlist isa
list containingfewer than 2 elementsand which deletesthe first and the last
elementf | nl i st and returnstheresultascut 1i st, whenlinli st is a list
containingat least2 elementsFor example:

toptail([a],T).
no

toptail ([a,b],T).
T=[]

toptail([a,b,c],T).
T=[ b]

Hint: her’swheme append comesn useful.

5. Write a predicateswapf | (Li st 1, Li st 2) which checkswhetherLi st 1 isiden-
tical to Li st 2, exceptthatthefirstandlastelementsre exchanged. Hint: here’s
whele append comesn usefulagain.
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Exercise 6.4 Andheris anexercisefor thoseof youwho,like me like logic puzzles.

Theris a streetwith threeneighboringhouseghatall havea differentcolor. They are
red, blug and green. Peopleof different nationalitieslive in the different housesand
they all havea differentpet. Here are somemote factsaboutthem:

e TheEnglishmarlivesin theredhouse
e Thejaguar is the petof the Spanistfamily.
e TheJapanesdivesto theright of the snail keeper

e Thesnail keeperlivesto theleft of the bluehouse

Whokeepsthe zeba?
Definea predicatezebr a/ 1 thattells youthe nationality of the ownerof the zeba.

Hint: Thinkof arepresentatiorfor thehousesindthestreet. Codethefour constaints
in Prolog. nenber andsubl i st mightbeusefulpredicates.

6.4 Practical Session 6

Thepurposeof PracticalSessiort is to helpyou getmoreexperiencewith list manip-
ulation. We first suggessometracesor you to carryout,andthensomeprogramming
exercises.

Thefollowing traceswill helpyou getto gripswith thepredicatesliscussedh thetext:

1. Carryouttracesf append with thefirsttwo argumentsnstantiatedandthethird
argumentuninstantiated. For example, append([a, b, c],[[]1,[2, 3], b], X)
Make surethebasicpatternis clear

2. Next, carryouttraceonappend asusedo splitupalist, thatis, with thefirsttwo
agumentsgiven asvariables,andthe lastagumentinstantiated.For example,
append(L, R [foo, wee, bl up]).

3. Carry out sometraceson pref i x andsuf fi x. Why doespr ef i x find shorter
listsfirst, andsuf f i x longerlists first?

4. Carryoutsometracesonsubl i st. A we saidin thetext, via backtrackinghis
predicategeneratesll possiblesublists,but asyou’ll see,it generateseveral
sublistsmorethanonce.Do you understanavhy?

5. Carryouttracesonbothnai ver ev andr ev, andcompareheir behaior.
Now for someprogrammingwork:

1. It is possibleto write aoneline definitionof themenber predicatdoy makinguse
of append. Do so. How doesthis new versionof nenber comparen efficiency
with thestandarcdne?



6.4. Practical Session 6 83

2. Write apredicateset (I nLi st, Qut Li st) whichtakesasinputanarbitrarylist,
andreturnsallist in which eachelementof the input list appearsnly once.For
example thequery

set([2,2,fo0,1,foo, [],[]],X).

shouldyield theresult

X=1[2,fo0,1,[]].

Hint: usethenenber predicateto testfor repetitionsof itemsyou have already
found.

3. Weflatten’ alist by removing all thesquarebracletsaroundary listsit contains
aselementsandaroundary lists thatits elementgontainaselementandsoon
for all nestedists. For example , whenwe flattenthelist

[a,b,[c,d],[[1,2]],foo]
we getthelist

[a, b, c,d, 1,2, f00]
andwhenwe flattenthelist

la, b, [[[[[[[c,dl1]II11],[[2 2]],fo0,[]]
we alsoget

[a, b, c,d, 1,2, fo00].

Write apredicaté | at t en(Li st, Fl at) thatholdswhenthefirstagumentLi st
flattensto the secondargumentr! at . This exercisecanbe donewithout making
useof append.
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Definite Clause Grammars

Thislecturehastwo maingoals:

1. Tointroducecontet freegrammargCFGs)andsomerelatedconcepts.

2. To introducedefinite clausegrammargDCGSs), an in-built Prologmechanism
for working with context freegrammargandotherkinds of grammairtoo).

7.1 Context free grammar s

Prolog hasbeenusedfor mary purposeshut its inventor Alain Colmerauerwasa
computationalinguist, andcomputationalinguisticsremainsa classicapplicationfor
the language.Moreover, Prolog offers a numberof tools which male life easierfor
computationalinguists,andtodaywe aregoingto startlearningaboutoneof the most
usefulof these:DefiniteClausesGrammas, or DCGsasthey areusuallycalled.

DCGsareaspecialnotationfor defininggrammarsSo, beforewe go ary further, we'd
betterlearnwhata grammaris. We shall do so by discussingcontect free grammars
(or CFGs).Thebasicideaof contet free grammargs simpleto understandbut don't
befooledinto thinking that CFGsaretoys. They're not. While CFGsarent powerful
enoughto copewith thesyntacticstructureof all naturallanguagesthatis, thekind of
languageshathumanbeingsuse) they cancertainlyhandlemostaspect®f thesyntax
of mary naturallanguages¢for example English,GermanandFrench)in areasonably
naturalway.

Sowhatis a context free grammar?In essencea finite collectionof ruleswhich tell
usthatcertainsentencearegrammaticalthatis, syntacticallycorrect)andwhattheir
grammaticalstructureactuallyis. Heres a simple contect free grammarfor a small
fragmentof English:

S -> np vp
np -> det n
vp -> Vv np
vp -> Vv
det ->a
det ->the
n ->woman
n ->man
v -> shoots
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Whatarethe ingredientsof this little grammar?Well, first notethatit containsthree
typesof symbol. Theres - >, which is usedto definethe rules. Thentherearethe
symbolswritten like this: s, np, vp, det, n, v. Thesesymbolsarecallednon-terminal
symbols;we’ll soonlearnwhy. Eachof thesesymbolshasa traditional meaningin

linguistics: s is shortfor sentencenp is shortfor nounphraseyp is shortfor verb
phraseanddet is shortfor determinerThatis, eachof thesesymbolsis shorthandor

agrammaticakategory. Finally therearethe symbolsin italics: a, the woman,man

andshoots A computerscientistwould probablycall theseterminalsymbols(or: the
alphabet)andlinguistswould probablycall themlexical items. We'll usetheseterms
occasionallybut oftenwe’ll male life easyfor oursehesandjust call themwords.

Now, this grammarcontainsnine rules. A contet free rule consistsof a single non-
terminalsymbol, followed by - >, followed by a finite sequencenadeup of terminal
and/ornon-terminalsymbols. All nineitemslisted abose have this form, sothey are
all legitimatecontext freerules. Whatdo theserulesmean?They tell ushow different
grammaticakategyoriescanbe built up. Read- > ascan consistof, or canbe built out
of. For example,the first rule tells us that a sentencecan consistof a nounphrase
followed by a verb phrase. The third rule tells us that a verb phrasecan consistof a
verbfollowed by a nounphrasewhile the fourth rule tells usthatthereis anothemway
to build averb phrase:simply useaverh Thelastfive rulestell usthata andtheare
determinersthatmanandwomanarenouns,andthatshootss averh

Now, considerthe string of wordsa womanshootsa man Is this grammaticabccord-
ing to our little grammar?And if it is, whatstructuredoesit have? Thefollowing tree
answersothquestions:

=

N

np ¥p

~N ST

det n ¥ np

/\

g  waman shoaofr  det n

r) MR

Right at the top we have a nodemarkeds. This nodehastwo daughterspnemarked
np, andonemarkedvp. Notethatthis partof thediagramagreeswith thefirst rule of
thegrammarwhich saysthatans canbebuilt outof annp andavp. (A linguistwould
saythatthis partof thetreeis licensedby thefirst rule.) In fact,asyou cansee every
partof thetreeis licensedoy oneof ourrules. For example,thetwo nodesmarkednp
arelicensedoy therule thatsaysthatannp canconsistof adet followedby ann. And,
right atthe bottomof the diagram all thewordsin a womanshootsa manarelicensed
by arule. Incidentally notethattheterminalsymbolsonly decoratehe nodesright at
the bottomof the tree (the terminalnodes)while non-terminalsymbolsonly decorate
nodeghatarehigherupin thetree(the non-terminahodes).
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Suchatreeis calleda parsetree,andit givesustwo sortsof information:information
aboutstringsandinformationaboutstructure.Thisis animportantdistinctionto grasp,
solet’s acloserlook, andlearnsomeimportantterminologywhile we aredoing so.

First,if wearegivenastringof words,andagrammayandit turnsoutthatwe canbuild
aparsetreeliketheoneabove (thatis, atreethathass atthetop node,andevery node
in thetreeis licensedby the grammay andthe string of wordswe weregivenis listed
in thecorrectorderalongtheterminalnodesYhenwe saythatthestringis grammatical
(accordingto the given grammar).For example,the string a womanshootsa manis
grammaticalhccordingto our little grammar(andindeed,ary reasonablgrammarof
Englishwould classifyit asungrammatical)On the otherhand.,if thereisn’'t ary such
tree,the stringis ungrammatica{accordingto the given grammar).For example,the
stringwomana womanmana shootss ungrammaticaaccordingo our little grammar
(and ary reasonablggrammarof Englishwould classify it as ungrammatical). The
languagegeneratedy a grammarconsistsof all the stringsthat grammarclassifies
asgrammatical. For example,a womanshootsa man also belongsto the language
generatedby our little grammayandsodoesa manshootsthewoman A contet free
recognizeris programwhich correctlytells us whetheror not a string belongsto the
languagegeneratedby a context freegrammar To putit anothemway, arecognizeis a
programthat correctly classifiesstringsasgrammaticalor ungrammatica(relatve to
somegrammar).

But often, in both linguistics and computerscience we are not merelyinterestedn
whethera stringis grammaticabr not, we wantto know why it is grammatical . More
precisely we oftenwantto know whatits structureis, andthis is exactly theinforma-
tion a parsdreegivesus. For example theabove parsetreeshavs ushow thewordsin
a womanshootsa manfit togethey pieceby piece,to form the sentenceThis kind of
informationwould beimportantif we wereusingthis sentencén someapplicationand
neededo saywhatit actuallymeant(thatis, if we wantedto do semantics)A context
free parseris a programwhich correctly decidesvhethera string belongsto the lan-
guagegeneratedy a contet free grammar and alsotells us a whatits structue is.
Thatis, whereasarecognizemerelysays'Y es,grammatical’or ‘No, ungrammatical’
to eachstring,a parseractuallybuilds the associategarsetreeandgivesit to us.

It remaingo explain onefinal conceptnamelywhatacontext freelanguagss. (Don't

get confused: we've told you what a context free grammaris, but not what a con-
text freelanguage is.) Quite simply, a contet freelanguages a languagehatcanbe
generatedy a contet free grammar Somelanguagesrecontet free,andsomeare
not. For example,it seemslausiblethat Englishis a contet free language.Thatis,

it is probablypossibleto write a contet free grammarthat generatesll (and only)

the sentenceshat natve speakrsfind acceptable.On the otherhand,somedialects
of Swiss-Germararenot contet free. It canbe proved mathematicallythat no con-
text free grammarcangenerateall (andonly) the sentenceshat native spealkrsfind

acceptableSoif youwantedto write agrammairfor suchdialects,you would have to

employ additionalgrammaticamechanismsyot merelycontet freerules.

7.1.1 CFG recognition using append

That's thetheory but how dowe work with context freegrammarsn Prolog?To make
thingsconcrete:supposewve aregiven a contet free grammar How canwe write a
recognizeffor it? And how canwe write a parserfor it? This weekwe’ll look atthe
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firstquestionn detail. We'll first shav how (rathemawe) recognizerganbewrittenin
Prolog,andthenshav how moresophisticatedecognizerganbewrittenwith thehelp
of differencelists. This discussiorwill leadusto definiteclausegrammarspPrologs
inbuilt grammartool. Next weekwe’ll look atdefiniteclausegrammarsn moredetail,
andlearn(amongotherthings)how to usethemto defineparsers.

So: givena contet free grammay how do we definea recognizerin Prolog? In fact,
Prologoffersa very directanswerto this question:we cansimply write dovn Prolog
clausesthat correspondjn an obvious way, to the grammarrules. Thatis, we can
simply ‘turn thegrammatinto Prolog’.

Heres a simple (thoughas we shall learn, inefficient) way of doing this. We shall
uselists to represenstrings. For example,the string a womanshootsa manwill be
representedby thelist [ a, wonan, shoot s, a, man] . Now, we have alreadysaidthat
the- > symbolusedin contect free grammarsneanscanconsistof, or canbebuilt out
of, andthis ideais easilymodeledusinglists. For example,therules -> np vp can
be thoughtof assaying: a list of wordsis ans list if it is the resultof concatenating
annp list with avp list. Aswe know how to concatenatdists in Prolog(we canuse
append), it shouldbe easyto turn thesekinds of rulesinto Prolog. And what about
the rulesthattell us aboutindividual words? Even easier:we cansimply view n - >
womanassayingthatthelist [ wonan] is ann list.

If weturntheseideasinto Prolog,thisis whatwe get:
s(2) :- np(X), vp(Y), append(XY,Z2).
np(2Z) :- det(X), n(Y), append(XY,Z).
vp(Z) - v(X), np(Y), append(XY,2Z).
vp(2) - Vv(2).

det([the]).
det([a]).

n([woman] ).
n([man] ).

v([shoots]).

Thecorrespondendeetweerthe CFGrulesandthe Prologshouldbeclear Andto use
this programasarecognizerwe simply posethe obvious queries.For example:

s([ a, woman, shoot s, a, man] ) .
yes

In fact, becausehis is a simple declaratre Prolog program,we can do more than
this: we canalsogenerateall the sentencethis grammarproduces.In fact, our little
grammargenerate20 sentenced-erearethefirst five:
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s(X).

X = [t he, woman, shoot s, the, woman] ;
X = [t he, woman, shoot s, the, man] ;
X = [t he, woman, shoot s, a, wonman] ;
X = [t he, woman, shoot s, a, man] ;

X = [t he, woman, shoot s]

Moreover, we're not restrictedto posingquestionsaboutsentenceswe canaskabout
othergrammaticakcateyories.For example:

np([ a, woman] ).
yes

And we cangeneratsounphrasesvith thefollowing query

np(X).

Now this is rathernice. We have a simple, easyto understangrogramwhich corre-
spondswith our CFGin anobviousway. Moreover, it shouldthatif we addedmore
rulesto our CFG, it would be easyto alterthe programto copewith thenew rules.

But thereis a problem: the programhasan obvious inefficiengy, namelythe use of
append. Notethatthedangeisignwe spole of lastweekis there:we areusingappend
heaiily whenits first two agumentsare instantiatedto variables. And indeed,the
performancef thisrecognizeis verybad.t is revealingto tracethoughwhatactually
happenwhenthis programanalysesa sentencesuchasa womanshootsa man As
you will seerelatively few of the stepsaredevotedto therealtaskof recognizingthe
sentencesmostaredevotedto usingappend to decomposdists. Thisisn’t muchof
a problemfor our little grammay but it certainlywould be if we wereworking with a
morerealisticgrammarcapableof generatingalarge numberof sentencesiNe needto
do somethingaboutthis.

7.1.2 CFG recognition using diff erence lists

A more efficient implementationcan be obtainedby making use of differencelists.
This is a sophisticatedand, onceyou've understoodt, beautiful) Prologtechnique
thatcanbeusedfor avariety of purposesWewon't discusgheideaof differencedlists
in ary depth:we’ll simply shov how they canbe usedto rewrite our recognizemore
efficiently.

Thekey ideaunderlyingdifferencedistsis to representheinformationaboutgrammat-
ical catgyoriesnotasasinglelist, but asthedifferencebetweertwo lists. For example,
insteadbf representingwomanshootsamanas[ a, wonan, shoot s, a, man] wemight
represenit asthepair of lists



90

Chapter 7. Definite Clause Grammars

[ a, woman, shoot s, a,man] [].

Think of thefirst list aswhatneedsto be consumedor if you prefer: theinput list),
andthe secondist aswhatwe shouldleavebehind(or: the outputlist). Viewedfrom
this (ratherproceduralperspectie the differencedist

[ a, woman, shoot s, a,man] [].

representshe sentencea womanshootsa manbecausat says:If | consumaeall the
symbolontheleft, andleavebehindthesymbolontheright, | havethesentencé am
interestedin.

Thatis: thesentenceve areinterestedn is thedifferencebetweerthecontentof these
two lists.

Differencerepresentationarenot unique.In fact, we couldrepresena womanshoots
a manin infinitely mary ways. For example,we couldalsorepresenit as

[ a, wonan, shoot s, a, man, pl oggl e, woggl e] [ pl oggl e, woggl €] .

Again the pointis: if we consumeall the symbolson the left, andleave behindthe
symbolsontheright, we have the sentencave areinterestedn.

That's all we needto know aboutdifferencelists to rewrite our recognizer If we bear
theideaof ‘consumingsomethingandleaving somethingoehindin mind’, we obtain
thefollowing recognizer:

s(X,2Z2) :- np(XY), vp(Y,2).

np(X,2) :- det(X, Y), n(Y,2).

vp(X, 2) - v(XY), np(Y,2).

vp(X 2) - V(X 2).

det ([the| W, W .
det ([al W, W.

n([woman| W, W.
n([man| W, W.

v([shoots| W, W.

Thes rule says:| knowthatthe pair of lists X and z representsa sentencef (1) | can
consume< andleavebehinda Y, andthepair X andY represents nounphrase and
(2) I canthengo onto consumer leavingZ behind andthepair Y z representsa verb
phrase

Theideaunderlyingthe way we handlethewordsis similar. Thecode

n([man| W, W.
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meansne arehandlingmanasthe differencebetweern] man| Vi andw Intuitively, the
differencebetweerwhat| consumeandwhat! leave behindis preciselytheword nan.

Now, atfirst thisis probablyharderto graspthanour previousrecognizerBut we have
gainedsomethingimportant: we havent usedappend. In the differencelist based
recognizerthey simply arent neededandaswe shallsee this makesabig difference.

How do we usesuchgrammarsMeres how to recognizesentences:

s([ a, woman, shoots,a, man],[]).
yes

Thisaskswhethemwe cangetans by consuminghesymbolsin [ a, wonan, shoot s, a, nan] ,
leaving nothingbehind.

Similarly, to generatall thesentences thegrammaywe ask

s(X.[1).
This asks: what valuescanyou give to X, suchthatwe getans by consumingthe
symbolsin X, leaving nothingbehind?

Thequeriedor othergrammaticatateyoriesalsowork the sameway. For example,to
find outif a womanis anounphrasewe ask:

np([a, woman], []).
And we generatall the nounphrasesn thegrammarasfollows:

np(X [1)-

Youshouldtracewhathappensvhenthis programanalyses sentenceuchasawoman
shootsaman Asyouwill seeijt isalot moreefficientthanourappend basedorogram.
Moreover, asno useis madeof append, thetraceis alot easierto grasp.Sowe have
madea big stepforward.

On the otherhand, it hasto be admittedthat the secondrecognizeris not aseasyto
understandat leastat first, andit’s a pain having to keeptrack of all thosedifference
list variables.If only it werepossibleto have arecognizerassimpleasthefirst andas
efficientasthesecond And in fact,it is possible:thisis whereDCGscomein.

7.2 Definite clause grammar s

So,whatareDCGs?Quitesimply, a nice notationfor writing grammas that hidesthe
underlyingdifferencelist variables Let'slook atthreeexamples.
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7.2.1 A first example
As ourfirst example,heres our little grammamwrittenasaDCG:

s --> np,vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [wonman].
n -->[mn].

vV --> [shoots].

Thelink with theoriginal context freegrammarshouldbeutterly clear:thisis definitely
the mostuserfriendly notationwe have usedyet. But how do we usethis DCG?In
fact,we useit in exactlythe sameway aswe usedour differencelist recognizer For
example,to find out whethera womanshootsa manis a sentenceywe posethe query:

s([a, woman, shoot s, a, man], []).
Thatis, just asin the differencelist recognizer we askwhetherwe cangetans by

consuminghesymbolsin [ a, woman, shoot s, a, nan] , leaving nothingbehind.
Similarly, to generatall the sentences thegrammaywe posethequery:

s(X [1).

Thisaskswhatvalueswe cangiveto X, suchthatwe getans by consuminghesymbols
in X, leaving nothingbehind.

Moreover, the queriesfor othergrammaticakateyoriesalsowork the sameway. For
example,to find outif a womanis anounphrasewe posethequery:

np([a, woman], []).
And we generatall the nounphrasesn thegrammarasfollows:

np(X [1)-

What's going on? Quite simply, this DCG is our differencelist recognizer! Thatis,
DCG notationis essentiallysyntacticsugar: userfriendly notationthat lets us write
grammarsn a naturalway. But Prologtranslateshis notationinto the kinds of differ-
encelists discussedbefore.Sowe have the bestof bothworlds: a nice simplenotation
for working with, andthe efficiency of differencdlists.

Thereis a easyway to actually seewhat PrologtranslateDCG rulesinto. Suppose
you areworking with this DCG (thatis, Prologhasalreadyconsultedherules). Then
if you posethequery:
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listing(s)
youwill gettheresponse
s(A B)
np(A Q),

vp(C, B).

Thisis whatProloghastranslateds -> np, vp into. Notethat (apartfrom the choice
of variables}hisis exactly thedifferencdlist rule we usedin our secondecognizer

Similarly, if you posethequery
l'i sting(np)
youwill get
np( A B)
det (A O,

n(C, B).

Thisis whatProloghastranslatechp -> det, n into. Again (apartfrom the choiceof
variables)hisis thedifferencelist rule we usedin our secondrecognizer

To getacompletdisting of thetranslationsf all therules,simply type
listing.

Thereis onethingyoumayobsene. SomePrologimplementationsranslateulessuch
as

det --> [the].
notinto
det ([the| W, W.
which wastheform we usedin our differencelist recognizerbut into

det (A B)
"C (A the, B).

Althoughthenotationis different,theideais the same Basically this saysyou canget
aBfrom anA by consumingat he. Notethat’ C' is anatom.
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7.2.2 Adding recur sive rules

Our original context free grammargenerateanly 20 sentencesHowever it is easyto
write context free grammarghatgeneratenfinitely mary sentenceswe needsimply
userecursve rules. Heres an example. Let’'s add the following rulesto our little
grammar:

S ->s conj s

conj ->and
conj ->o0r
conj ->but

Thisrule allows usto join asmary sentencesogetheraswe like usingthewordsand
but andor. Sothis grammarclassifiessentencesuchasThewomanshootsghe manor
thamanshootsthewomanasgrammatical.

It is easyto turnthis grammaiinto DCG rules. In fact,we just needto addtherules

s --> s,conj,s.

conj --> [and].
conj --> [or].
conj --> [but].

But we needto becareful! It makesabig differencewherewe placetherule
s --> s,conj,s.

in theknowledgebase If we placeit befoe therule
S --> np,vp

andthenposethequery
s([ a, wonman, shoots],[]).

thenPrologwill gointo aninfinite loop.

Canyou seewhy? Thepointis this. PrologtranslateDCG rulesinto ordinaryProlog
rules,If we placetherecursverules -> s, conj, s in theknowledgebasebeforethe
non-recursie rule s -> np, vp thenthe knowvledge basewill containthe following
two Prologrules,in thisorder:

s(A B) :-
s(A O,
conj (C, D,
s(D, B).

s(A B) :-
np(A O,
vp(C, B).
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Now, from a declaratie perspectie thisis fine, but from a proceduraperspectie the
rule orderingis fatal. Whenit triesto usethefirst rule, Prologimmediatelyencoun-
tersthe goals( A, ©), which it thentries to satisfy usingthe first rule, whereuponit

immediatelyencountershegoals(A, C), whichit thentriesto satisfyusingthefirst

rule, whereuporit immediatelyencountergshegoals(A, C)... In short,it goesinto

infinite loop anddoesno usefulwork. Sowe really needto addtherecursve rule after
the non-recursie rule, for with this orderingPrologalways ecounterghe translation
of thenon-recursie rule first, andthis preventslooping.

The moralis: DCGsarent magic. They are a nice notation, but you cant always
expectjust to ‘write down the grammarasa DCG’ andhave it work. DCG rulesare
really ordinaryPrologrulesin disguise andthis meanghatyou mustpay attentionto
the proceduratonsequncesf theway therulesareordered.

7.2.3 A DCG for a simple formal language

As ourlastexample, we shalldefinea DCG for theformal languagea™b". Whatis this
languageAnd whatis aformallanguagearnyway?

A formallanguagas simply asetof strings.Theterm‘formal languageis intendedo

contraswith theterm‘naturallanguage’whereasaturallanguagearelanguageshat
humanbeingsactually use,fomal languagesre mathematicabbjectsthat computer
scientists|ogicians,andmathematiciangefineandstudyfor variouspurpose.

A simple exampleof a formal languages a'b". Thereareonly two ‘words’ in this

language:the symbola andthe symbolb. The languagea™b" consistof all strings
madeup from thesetwo symbolsthathave thefollowing form: the stringmustconsist
of anunbrolenblock of as of lengthn, followed by anunbrolen block of bs of length
n, andnothingelse.Sothe stringsab, aabh aaabbbandaaaabbblall belongto a"b".

(Notethattheemptystringbelongsto a"b" too: afterall, the emptystring consistf a
block of as of lengthzerofollowedby ablock of as of lengthzero.)Ontheotherhand,
aaabbandaaabbbado not belongto a"b".

Now, it is easyto write a contect free grammarthatgenerateshis language:

s -> &
s ->1| sr
| -> a
r ->b

Thefirst rule saysthatans canberealizedasnothingat all. The secondule saysthat
ans canbemadeup of anl (for left) elementfollowed by ans, followedby anr (for
right) element.Thelasttwo rulessaythatl elementsandr elementsanberealizedas
asandbsrespecitrely. It shouldbeclearthatthisgrammareally doesgeneratall and
only theelementsf a"b", includingthe emptystring.

Moreover, it is trivial to turn this grammaiinto DCG. We cando soasfollows:

S - -

\%

\Y

l,s,r.

\Y

[a].
[b].

q
'
\%
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And this DCG works exaclty aswe would hope.For example,to thequery
s([a,a,a, b,b,b],[]).

we gettheansweryes’, while to thequery
s([a,a,a, b,b,b,b],[]).

we gettheanswerno’. And thequery
s(X [1)-

enumeratethe stringsin thelanguagestartingfrom[] .

7.3 Exercises

Exercise 7.1 Supposave are workingwith the following DCG:

s --> foo, bar, wi ggl e.
foo --> [choo].

foo --> foo, foo.

bar --> mar, zar.

mar --> e, ny.

me -->1[i].

ny -->[an.

zar --> blar, car.
blar --> [a].

car --> [train].
wiggle --> [toot].
wi ggle --> wggle, wggle.

Write downthe ordinary Prolog rulesthat correspondio theseDCG rules. Whatare
thefirstthreeresponsethat Prolog givesto thequerys(X, []1) ?

Exercise 7.2 Theformallanguage a"b" — {€} consistsof all the stringsin a"b" ex-
cepttheemptystring Write a DCG that genertesthis language.

Exercise 7.3 Leta"b®" betheformal language which containsall stringsof the fol-
lowing form: an unbroken blod of as of lengthn followedby an unbroken blodk of bs
of length2n, and nothingelse For example abh aabbbband aaabbbbblbelongto
a"b®", andsodoesthe emptystring Write a DCG that geneatesthis language.
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7.4 Practical Session 7

The purposeof PracticalSessior is to help you getfamiliar with the DCGs, differ-
encelists, andthe relationbetweerthem,andto give you someexperiencen writing
basicDCGs. As you will learnnext week,thereis moreto DCGsthanthe ideasjust
discussedNonethelessyhatyou have learnedearnedsofaris certainlythe core,and
it is importantthatyou arecomfortablewith the basicideasbeforemoving on.

Firstsomekeyboardexercises:

1. First, typein or downloadthe simpleappend basedecognizeriscussedn the
text, andthenrun sometraces.As you will seewe werenotexaggeratingvhen
we saidthatthe performancef theappend basedyrammamwasvery poor Even
for suchsimplesentencesas Thewomanshota manyou will seethatthetrace
is very long, andvery difficult to follow.

2. Next, typein or download our secondrecognizerthe one basedon difference
lists,andrun moretraces.As youwill seethereis adramaticgainin efficiency.
Moreover, evenif you find theideaof differencelists a bit hardto follow, you
will seethatthetracesareverysimpleto understandgspeciallywhencompared
with themonstergproducedy the differencedlist implementation!

3. Next, typein or downloadthe DCG discussedn thetext. Typel i sti ng sothat
you canseewhatPrologtranslatesherulesto. How doesyour systemtranslate
rulesof theform Det -> [the] ? Thatis, doesit translatethemto ruleslike
det ([the| X], X), or doesis make useof rulescontainingthe’ C predicate?

4. Now run sometraces. Apart from variablenamesthe tracesyou obsere here
shouldbe very similar to the tracesyou obsened whenrunningthe difference
list register In fact,youwill only obsere ary realdifferencesf yourversionof
Prologusesa’ C basedranslation.

And now it'stime to write someDCGs:

1. Theformal languageaEvenis very simple: it consistsof all stringscontaining
anevennumberof as, andnothingelse.Notethatthe emptystring e belongsto
aEven Write a DCG thatgeneratesEven

2. The formal languagea"b®™c®™d" consistsof all stringsof the following form:
an unbrolen block of as followed by an unbrolen block of bs followed by an
unbrolen block of cs followed by anunbrolenblock of ds, suchthatthea and
d blocksareexactly the sameength,andthe c andd blocksarealsoexactly the
samdengthandfurthermoreconsistof anevennumberof cs andds respecirely.
For example g, abbced andaaabbbbcecccdddll belongto a"b?Mc?™d". Write a
DCG thatgenerateshis language.

3. Thelanguagehatlogicianscall ‘propositionallogic overthe propositionakym-
bolsp, g, andr’ canbedefinedby thefollowing contect freegrammar:
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prop ->p

prop ->4q

prop ->r

prop ->- prop

prop ->(prop A prop)
prop ->(prop V prop)
prop ->(prop — prop)

Write a DCG that generateghis language. Actually, becauseve dont know
aboutPrologoperatorsyet, you will have to make a few ratherclumsylooking
compromiseskor example,insteadof gettingit to recognize

—~(p — q)
youwill have to getit recognizehingslike
[not, "(’, p, inplies, g, ')’']

instead.But we will learnlaterhow to make the outputnicer, sowrite the DCG
that acceptsa clumsylooking versionof this language.Useor for v, andand
for A.



More Definite Clause Grammars

Thislecturehastwo maingoals:

1. To examinetwo importantcapabilitiesoffered by DCG notation: extra argu-
mentsandextratests.

2. To discusghestatusandlimitationsof DCGs.

8.1 Extra arguments

In the previous lecturewe only scratchedhe surface of DCG notation: it actually
offersalot morethanwe've seensofar. For a start, DCGsallow usto specifyextra
amguments Extraagumentscanbe usedfor mary purposeswe’ll examinethree.

8.1.1 Context free grammar s with features

As afirstexample let’'s seehow extraagumentanbeusedo addfeatuesto context-
freegrammars.

Heres the DCG we worked with lastweek:
S --> np, vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [woman].
n -->[mn].

vV --> [shoots].

Supposeve wantedto dealwith sentenceBk e “Sheshootshim”, and“He shootsher”.
What shouldwe do? Well, obviously we shouldadd rules sayingthat “he”, “she”,
“him”, and“her” arepronouns:
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pro --> [he].
pro --> [she].
pro --> [hin].
pro --> [her].

Furthermorewe shouldadda rule sayingthatnounphrasesanbe pronouns:
np--> pro.
Up to a point, thisnew DCG works. For example:

s([she,shoots, him,[]).
yes

But theres anobvious problem. The DCG will alsoacceptalot of sentenceghatare
clearlywrong, suchas“A womanshootsshe”, “Her shootsa man”, and“Her shoots
she”:

s([ a, wonman, shoot s, she],[]) .
yes

s([ her, shoots,a, man],[]).
yes

s([ her, shoot s, she],[]).
yes

Thatis, the grammardoesnt know that “she” (and “he”) are subjectpronounsand
cannotbeusedin objectposition;thus“A womanshootsshe”is badbecausé violates
this basicfact aboutEnglish. Moreover, the grammardoesnt know that “her” (and
“him”) areobjectpronounsandcannotbe usedin subjectposition;thus“Her shootsa
man”is badbecauset violatesthis constraint.As for “Her shootsshe”, this manages
to getbothmattersnrongatonce.

Now, it’'s pretty obvious what we have to do to put this right: we needto extendthe
DCG with informationaboutwhich pronounscanoccurin subjectpositionandwhich
in objectposition. Theinterestinggquestion:how exactly arewe to do this? Firstlet’s
look ata naive way of correctingthis, namelyaddingnew rules:

S --> np_subject, vp

np_subj ect --> det,n.

np_object --> det,n.
np_subj ect --> pro_subject.
np_object --> pro_object.

vp --> v, np_object.
vp --> V.
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det --> [the].
det -->[a].

n --> [woman].
n -->[mn].

pro_subject --> [he].
pro_subject --> [she].
pro_object -->[him.
pro_object --> [her].

vV --> [shoots].
Now this solution“works”. For example,

?- s([her,shoots, she],[]).
no

But neithercomputerscientistaor linguistswould considerthis a goodsolution. The
troubleis, a small additionto the lexicon hasled to quite a big changein the DCG.
Let's faceit: “she” and“her” (and“he” and“him”) arethe samein alot of respects.
But to dealwith the propertyin which they differ (namely in which positionin the
sentencehey canoccur)we've hadto make big changego thegrammar:in particular
we've doubledthe numberof nounphraserules. If we hadto make further changes
(for example,to copewith plural noun phrases}hingswould get even worse. What
we really needis amoredelicateprogrammingmechanisnhatallows usto copewith
suchfactswithout beingforcedto addrulesall thetime. And heres wherethe extra
amgumentscomeinto play. Look atthefollowing grammar:

S --> np(subject),vp

np(_) --> det,n.
np(X) --> pro(X).

vp --> v, np(object).
vp --> V.

det --> [the].
det -->[a].

n --> [woman].
n -->[mn].

pro(subject) --> [he].
pro(subject) --> [she].
pro(object) -->[him.
pro(object) --> [her].

vV --> [shoots].
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Thekey thing to noteis thatthis new grammarcontainsno new rules It is exactly the
sameasthefirst grammarthatwe wrote above, exceptthatthe symbolnp is associated
with a newv argument,either(subj ect), (obj ect), (_) and (X). A linguistwould
saythatwe've addedafeatureto distinguishvariouskindsof nounphraseln particular
note the four rules for the pronouns. Here we've usedthe extra agumentto state
which pronounscan occur in subjectposition, and which occurin object position.
Thustheserulesarethe mostfundamentalfor they give usthe basicfactsabouthow
thesepronounscanbeused.

Sowhatdotheotherrulesdo?Well, intuitively, therule

np(X) --> pro(X).

usesthe extra agument(the variable X) to passthesebasicfactsaboutpronounsup
to noun phrasesbuilt out of them: becausehe variable X is usedas the extra ar
gumentfor both the np andthe pronoun,Prologunificationwill guaranteehat they
will be giventhe samevalue. In particular if the pronounwe useis “she” (in which
casex=subj ect), thenthe extra agumentassociatedvith the np will be marked
X=subj ect) too. On the otherhand,if the pronounwe useis “her” (in which case
X=obj ect ), thenthe extra agumentnp will be marked X=obj ect) too. And this, of
coursejs exactly the behaiour we want.

Ontheotherhand,althoughnounphrasesuilt usingtherule
np(_) --> det,n.

alsohave an extra agument,we've usedthe anorymousvariableasits value. Essen-
tially this meanscan be either, which is correct,for expressiongouilt usingthis rule
(suchas“the man”and“a woman”) canbe usedin both subjectandobjectposition.

Now considertherule
vp --> v, np(object).

This saysthatto applythis rule we needto usean nounphrasewhoseextra agument
unifieswith obj ect. This canbe either nounphrasesuilt from objectpronounsor
nounphrasesuchas“the man” and“a woman” which have the anorymousvariable
asthevalueof the extra agument. Crucially, pronounsmarked hashaving subj ect
asthevalueof theextraagumentcant beusedhere:theatomsobj ect andsubj ect
don't unify. Notethattherule

S --> np(subject), vp.

worksin ananalogougashionto preventnounphrasesnadeof objectpronoundrom
endingup in subjectposition.

Thisworks. You cancheckit out by posingthe query:

?- s(X[1).
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Asyoustepthroughtheresponsesgjou’ll seethatonly acceptablé&nglishis generated.

But while the intuitive explanationjust givenis correct,what’s really goingon? The
key thing to remembeis thatDCG rulesarereally arejust a corvenientabbreiation.
For example,therule

S --> np,vp.
is really syntacticsugarfor

s(A B)
np(A O,
vp(C, B).

Thatis, aswe learnedin the previous lecture,the DCG notationis a way of hiding
the two agumentsresponsibldor the differencelist representationso thatwe don't
have to think aboutthem. We work with the nice userfriendly notation,and Prolog
translatest into the clausegustgiven.

Ok, sowe obviously needto askwhat
S --> np(subject), vp.
translatesnto. Heres theanswer:

s(A B)
np(subject, A O,
vp(C, B).

As shouldnow be clear the name“extra algument”is a goodone: asthis translation
makesclear the (subj ect) symbolreally is just one moreargumentin an ordinary
Prologrule! Similarly, our nounphraseDCG rulestranslatento

np(A B, C :-
det (B, D),
n(D, O).

np(A B, C :-
pro(A B, O .

Note thatbothruleshave threeaguments.Thefirst, A, is the extra agument,andthe
lasttwo aretheordinary hiddenDCG amgumentgthetwo hiddenagumentsarealways
thelasttwo arguments).

Incidentally how doyou think we would usethegrammatto list thegrammaticahoun
phrases®Vell, if we hadbeernworkingwith theDCGrulenp -> det, n (thatis, arule
with no extra agumentsve would have madethe query

np(NP, []).

Soit’s nottoo surprisingthatwe needto posethe query
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np(X, NP, [1).

whenworking with ournev DCG. Here’s whattheresponsevould be.

X = 2625
NP = [the, wonan] ;
X = _2625

NP = [the, man] ;

X = 2625

NP = [a, woman] ;
X = 2625

NP = [a, man] ;

X = subj ect
NP = [ he] ;

X = subj ect

NP = [she] ;
X = obj ect
NP = [hin] ;
X = obj ect
NP = [her] ;
no

Onefinal remark: don't be misledby this simplicity of our example Extraamguments
canbe usedto copewith somecomplex syntacticproblems.DCGsareno longerthe

state-of-artgrammardevelopmenttools they oncewere, but they’re not toys either

Onceyou know aboutwriting DCGswith extra agumentsyou canwrite somefairly

sophisticatedrammars.

8.1.2 Building parse trees

Sofar, theprogramswe have discussedhave beenableto recanizegrammaticaktruc-
ture (thatis, they could correctlyanswer‘yes” or “no” whenasled whethertheinput

wasa sentencea nounphraseandso on) andto geneate grammaticaloutput. This

is pleasantpbut we would alsolike to be ableto parse Thatis, we would like our

programsnot only to tell uswhich sentencesre grammatical but alsoto give usan

analysisof their structure. In particular we would like to seethe treesthe grammar
assigngo sentences.

Well, usingonly standardProlog tool we cant actually drav nice picturesof trees,
but we can build datastructureswhich describetreesin a clearway. For example,
correspondingo thetree
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we couldhave thefollowing term:
s(np(det(a), n(worman) ), vp(v(shoots))).

Sure:it doesnt look asnice, but all theinformationin the pictureis there. And, with
theaid of adecengraphicgpackageit would be easyto turnthisterminto a picture.

But how do we getDCGsto build suchterms?Actually, it's pretty easy After all, in
effecta DCG hasto work out whatthe tree structureis whenrecognizinga sentence.
Sowe just needto find away of keepingtrack of the structurethatthe DCG finds. We
dothis by addingextra amguments Here’s how:

s(s(NP,VP)) --> np(NP), vp(VP).
np(np(DET, N)) --> det (DET), n(N).

vp(vp(V,NP)) --> v(V), np(NP).
vp(vp(V)) --> Vv(V).

det (det(the)) --> [the].
det (det(a)) -->[a].

n(n(woman)) --> [woman].
n(n(man)) --> [man].

v(v(shoots)) --> [shoots].
What'sgoingonhere?Essentiallywe arebuilding the parsdreesfor thesyntacticcate-
goriesontheleft-handsideof therulesout of the parsetreesfor the syntacticcategories
ontheright-handsideof therules.Considetherulevp(vp(V, NP)) -> v(V), np(NP).
Whenwe make a queryusingthisDCG, theVvin v(V) andtheNPin np(NP) will bein-
stantiatedo termsrepresentingarserees.For example,perhaps/ will beinstantiated
to

v(shoot s)

andNP will beinstantiatedo

np(det (a), n(worman)).
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Whatis thetermcorrespondindgo avp madeout of thesetwo structuresbviously it
shouldbethis:

vp(v(shoots), np(det(a), n(wonan))).

And thisis preciselywhatthe extraagumentvp( Vv, NP) in therulevp(vp(V, NP)) ->

v(V), np(NP) givesus:it formsatermwhosefunctorisvp, andwhosefirstandsecond
argumentsarethe valuesof v andNP respectrely. To putit informally: it plugsthev

andthe NP termstogethermnderavp functor

To parsethesentencéA womanshoots”we posethe query:
s(T, [a, woman, shoots],[]).

Thatis, we askfor the extra agumentT to beinstantiatedo a parsetreefor the sen-
tence.And we get:

T = s(np(det(a), n(woman)), vp(v(shoots)))
yes

Furthermorewe cangeneratall parsetreesby makingthe following query:
s(T, S [1)-
Thefirst threeresponseatre:

T = s(np(det(the), n(wonan)), vp(v(shoots), np(det (the), n(worman))))
S = [t he, woman, shoot s, t he, worman]

T = s(np(det(the), n(wonan)), vp(v(shoots), np(det(the),n(man))))
S = [the, woman, shoot s, the, man]

T = s(np(det(the), n(wonan)), vp(v(shoots), np(det(a), n(worman))))
S = [t he, woman, shoot s, a, woman]

This codeshouldbe studiedclosely: it's a classicexampleof building structureusing
unification.

Extra argumentscanalsobe usedto build semanticrepresentationsWe did not say
anything aboutwhatthewordsin our little DCG mean.In fact,nowadaysalot is now
known aboutthe semanticof naturallanguagesandit is surprisinglyeasyto build
to computesemantiaepresentationshich partially capturethe meaningof sentences
or entirediscoursesSuchrepresentationare usuallyexpression®f someformal lan-
guage(for examplefirst-orderlogic, discoursaepresentatiostructurespr a database
querylanguage)ndthey areusuallybuilt up compositionally Thatis, the meaning
of eachword is expressedn the formal languagejthis meaningis given asan extra
argumentin the DCG entriesfor theindividual words. Then,for eachrule in thegram-
mar, anextraargumentshavs how to combinethe meaningof thetwo subcomponents.
For exampletotherules -> np, vp wewouldaddanextraamgumentstatinghow to
combinethenp meaningandthevp meaningto form thes meaning.Althoughsome-
what more comple, the semanticconstructionprocesss quite like the way we built
up the parsetreefor the sentencdrom the parsetreeof its subparts.
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8.1.3 Beyond conte xt free langua ges

In the previous lecturewe introducedDCGs as a useful Prologtool for representing
andworking with context freegrammarsNow, thisis certainlyagoodway of thinking
aboutDCGs, but it's not the whole story For the fact of the matteris: DCGscan
dealwith alot morethanjust contect free languages.The extra algumentswe have
beendiscussing(and indeed, the extra testswe shall introduceshortly) give us the
toolsfor copingwith ary computabldanguagevhatsoger. We shallillustratethis by
presentinga simpleDCG for theformallanguagea™b"c" — {€}.

The formal languageab"c" — {€} consistsof all non-null stringsmadeup of as, bs,
andcs which consistof an unbrolen block of as, followed by an unbrolen block of
bs, followed by anunbrolenblock of cs, all threeblockshaving the samelength. For
example,abc, andaabbcc andaaabbbccc all belongto ab"c" — {e}.

Theinterestinghing aboutthislanguages thatit is not contet free. Try whateveryou
like, you will not succeedn writing a context free grammarthatgenerategrecisely
thesestrings.Proving this would take ustoo far afield, but the proofis not particularly
difficult, andyou canfind it in mary bookson formal languageheory

Ontheotherhand,aswe shallnow see,it is very easyto write a DCG thatgenerates
thislanguageJustaswe did in the previous lecture we shallrepresenstringsaslists;
for example, the string abc will be representedisingthelist [ a, b, c]. Given this
corvention,heres the DCG we need:

s(Count) --> abl ock(Count), bbl ock( Count), cbl ock(Count).

abl ock(1) --> a(1l).
abl ock(succ(Count)) --> a(l), abl ock(Count).

bbl ock(1) --> b(1).
bbl ock(succ(Count)) --> b(1), bbl ock(Count).

cblock(1) --> c(1).
cbl ock(succ(Count)) --> c(1), cbl ock(Count).

a(l) -->1[a].
b(1) -->[Db].
c(l) -->1]c].

Theideaunderlyingthis DCGis fairly simple:we useanextraagumentto keeptrack
of thelengthof theblocks. Thes rule simply saysthatwe wanta block of as followed
by a block of bs followed by block of cs, andall threeblocksareto have the same
length,namelyCount .

But what shouldthe valuesof count be? The obvious answeris: 1, 2, 3, 4,..., and
soon. But asyetwe don't know how to mix DCGsandarithmetic,sothisisn’t very
helpful. Fortunatelytheres aneasier(fandmoreelegant)way. Representhe number
1by1, thenumber2 by succ( 1), thenumber3 by succ(succ(1)), thenumberd by
succ(succ(succ(1))),...,andsoon. (Youcanreadsucc as“successonf”.) Using
this simplenotationwe can“count usingmatching”.
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This is preciselywhat the abore DCG does,andit works very neatly For example,
supposeve posethefollowing query:

s(Count,L,[]).

which asksPrologto generatehelists L of symbolsthatbelongto this languageand
to give thevalueof Count neededo produceeachitem. Thenthefirst threeresponses
are:

Count =1
L =1[a, b, c]

Count = succ(1)
L=1[a a b, b, c, c]

Count = succ(succ(1))
L=1[a a a b, b, b, ¢, c, c]

Thevalueof Count clearlycorrespondso thelengthof the blocks.

So: DCGsarenotjustatoolsfor workingwith context freegrammarsThey arestrictly
more powerful thanthat,and(aswe've just seen)part of the extra powver comesfrom
theuseof extraamguments.

8.2 Extra tests

Any DCGruleis really syntacticsugarfor anordinaryPrologrule. Soit’snotreallytoo
surprisingthat we're allowed to make useof extra aguments.Similarly, it shouldnt
comeastoo muchof asurprisehatwe canalsoaddon extraconditionsto Prologrules.
This canbe usefulfor all sortsof purposes.

For example,supposeyou’ve written a DCG for a fragmentof English,andthat the
sententiatule for theDCGis

s(X) --> np(X),vp(X).

And supposeghatin afew minutesyou have to demonstratéo your boss(a very short-
temperedperson,with no senseof humor) that this grammargenerategrammatical
sentences.You suddenlyheara nastyrumor Someof your colleaguesso-called
friends!) have tamperedwith the valuesassignedo the extra agumentX. It now

getsas valuesvery rude words suchas &%*%$#@, %$#*&%$, *%$"& and even

$@#"&%%! Horrors! In a cold sweatyou imaginethesewords appearingon the
screerin front of your boss,andyourjob goingstraightdovn thedrain!

Fortunatelyyou've heardthe rumor, and you quickly definea predicatepol i te/ 1
which checksfor the presenceof the offending words. You changethe DCG rule
to

s(X) --> np(X),vp(X),{polite(X)}.
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Soonly polite sentencewill begeneratedWhew! You're safe...

Ok, this is probablynot goingto happenjput still, how would this imaginaryprogram
work? Simple. WhenPrologtranslateghis DCG rule into an ordinaryPrologrule, it
simply addsthetermin bracesasanextratest:

s(A B, O
np(A B, D),
vp(A D, Q),
polite(A).

Soassumingyou definedpol i t e/ 1 correctly(andlet’s faceit, if you didn’t, you de-
seneto loseyour job) youwill successely filter outunacceptablsentences.

We're freeto addasmary extratestsaswe like. For example,heres a DCG rule with
two extraamgumentsandtwo extratests:

pi ng(foo, bar) --> pong(_, bar), pang(foo), {glu(foo, mo)},{gli(mar,2)}.
This translatego:

pi ng(f oo, bar, A B)
pong(C, bar, A D),
pang(f oo, D, B),
gl u(f oo, noo),
gli(mar, E).

8.2.1 Separating rules and lexicon

But whatareextratestsusefulfor? Actually, justaswith extraamgumentsyou canuse
themfor a tremendouwariety of purposes.Still, thereis oneclassicapplicationthat
every computationalinguist shouldknow about:separatingulesfrom lexicon. To see
whatis meantike this, let’s returnto our basicgrammaynamely:

np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det -->[a].

n --> [woman].
n -->[mn].

v --> [shoots].
We aregoingto separatehe rulesform the lexicon. Thatis, we aregoingto write a

DCG thatgenerategxactly the samelanguagebut in which no rule mentionsary in-
dividualword. All theinformationaboutindividual wordswill berecordedseparately
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As afirst step,let’s recordtheinformationaboutindividual words. In effect, we shall
build a (very simple)lexicon. We shalldo this by usinga predicate ex/ 2 whosefirst
amgumentis aword, andwhosesecondargumentis a syntacticcategory. Doing sofor
our basicgrammatyields:

| ex(the, det).
| ex(a, det).

| ex(woman, n) .
| ex(man, n).

| ex(shoot s, v).

The secondstepis to changethe rules so they make use of the informationin the
lexicon. Of course not all therulesneedto bechangedThes, np, andvp rulesdon't
mentionspecificwords, so they remainthe same. The oneswe needto changeare
therulesfor det, n, andv, for thesedo mentionspecificwords. We rewrite themas
follows:

det --> [Det], {l ex(Det, det)}.
n --> [Noun], {l ex(Noun,n)}.
v --> [Verb], {l ex(Verb,v)}.

Considerthenew det rule. Thisrule partsays“a det canconsistof alist containing
asingleelementoet ” (notethatDet is avariable). Thentheextratestaddsthecrucial
stipulation: “so long asDet matcheswith somethingthatis listedin the lexicon asa
determiner”. With our presentlexicon, this meansthat Det mustbe matchedeither
with theword“a” or “the”. Sothis singlerule replaceghetwo previousDCG rulesfor
det .

This explainsthe “how” of separatingulesfrom lexicon, but it doesnt explain the
“why”. Is it really soimportant?Is this new way of writing DCGsreally that much
better?

Theanswelis anunequvocal “yes”! It's mud better andfor atleasttwo reasons.

Thefirstreasoris theoretical Arguablyrulesshouldnotmentionspecificlexical items.
Thepurposeof rulesis to list generl syntacticfacts,suchasthefactthatsentencean
be madeup of a noun phrasefollowed by a verb phrase. The rulesfor s, np, and
vp describesuchgeneralsyntacticfacts, but the old rulesfor det, n, andv dont.
Instead the old rulessimply list particularfacts:that“a” is a determinerthat“the” is
adeterminerandsoon. Fromtheoreticaperspectie it is muchneatetto have asingle
rule thatsays‘anythingis adetermineior anoun,or averb,...)if it is listedassuchin
thelexicon”. And this, of coursejs preciselywhatour new DCG rulessay

The secondreasonis more practical. One of the key lessonscomputationalinguists
have learntover thelasttwenty or soyearsis thatthelexicon is by far the mostinter

esting,important(andexpensve!) repositoryof linguistic knowledge. Bluntly, if you

wantto getto gripswith naturallanguagdrom a computationaperspectie, you need
to know alot of words,andyou needto know alot aboutthem.

Now, our little lexicon, with its simpletwo-placel ex entries,is atoy. But areallex-
icon is (mostemphatically!) not. A reallexicon is likely to be very large (it may
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containhundredsf thousandspr evenmillions, of word) andmoreaver, theinforma-
tion associatedvith eachword is likely to beveryrich. Ourl ex entriesgive only the
syntacticalcategyory of eachword, but areallexicon will give muchmore,suchasin-
formationaboutits phonologicalmorphological semanticandpragmaticproperties.

Becauseeallexiconsarebig andcomple, from a softwareengineeringperspectie it
is bestto write simplegrammarghat have a simple,well-definedway, of pulling out
theinformationthey needfrom vastlexicons. Thatis, grammarshouldbe thoughtof
asseparatentitieswhich canaccesgheinformationcontainedn lexicons. Blending
thetwo togetheris simply notsensibleasthey eachhave a separateywell-definedrole
to play.

Our newv DCG rules,thoughsimple,illustratethe basicidea. The new rulesreally do
justlist generakyntacticfacts,andtheextratestsactasaninterfaceto our (admittedly
simple)lexiconthatletstherulesfind exactly theinformationthey need.

8.3 Concluding remarks

We now have afairly usefulpictureof whatDCGsareandwhatthey cando for us. To
conclude]et’s think aboutthemfrom a somevhathigherlevel, from bothaformaland
alinguistic perspectie.

Firstthe formal remarks.For the mostpart, we have presenteddCGsasa simpletool
for encodingcontet free grammargor contet free grammarsenrichedwith features
suchassubjectandobjec). But DCGsgo beyondthis. We sawv thatit waspossibleto
write a DCG thatgeneratedh non contet free language.In fact, any program what-
soerer canbewritten in DCG notation. Thatis, DCGsarefull-fledged programming
languagen their own right (they are Turing-completeto usethe properterminology).
And althoughDCGs are usually associatedvith linguistic applicationsthey canbe
usefulfor otherpurposes.

So how goodare DCGsfrom a linguistic perspectie? Well, mixed. At one stage
(in the early 1980s)they were pretty much stateof the art. They madeit possibleto
codecomplex grammarsn a clearway, andto explore the interplay of syntacticand
semanticideas. Certainlyary history of parsingin computationalinguistics would
give DCGsanhonorablemention.

Nonethelessfrom a contemporaryperspectie, DCGs have dravbacks. For a start,
theirtendenyg to loop whentherule orderingis wrong (we saw anexamplein thelast
lecturewhenwe addeda rule for conjunctions)is annging; we don't wantto think
aboutsuchissueswhenwriting seriousgrammars.Furthermorewhile the ability to
addextraamumentss useful,if we needto uselots of them(andfor big grammarswve
will) it is aratherclumsymechanism.

Nowadaysijts probablybestto view DCGsasa corvenienttool for testingnewv gram-
maticalideas,or for implementingreasonablycomplex grammargfor particularap-
plications. DCGsare not perfect,but they arevery useful. Evenif you have never
programmedefore,simply usingwhatyou have learnedso far you arereadyto start
experimentingwith reasonablysophisticatedyrammarwriting. With a corventional
programmindanguaggsuchasC++ or Java) it simply wouldn't be possibleto reach
this stagesosoon.Thingswould beeasielin functionallanguage¢suchasLISP, SML,
or Haslell), but evenso, it is doubtfulwhetherbeginnerscoulddo somuchsoearly
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8.4 Exercises
Exercise 8.1 Here'sour basicDCG.
S --> np, vp.
np --> det,n.

vp --> Vv, np.
vp --> V.

det --> [the].
det --> [a].

n --> [wonman].
n -->[mn].

vV --> [shoots].

Supposeve add the noun“men” (which is plural) and the verb “shoot”. Thenwe
would wanta DCG which saysthat “The menshoot” is ok, ‘The manshoots”is ok,
“The menshoots” is not ok, and “The manshoot” is not ok. Change the DCG so
that it correctly handlesthesesentences.Use an extra argumentto cope with the
singular/plual distinction.

Exercise 8.2 Translatethefollowing DCG rule into theform Prolog uses:

kanga(V,R Q -->roo(V,R),jums(QQ,{marsupial (VR Q}.

Exercise 8.3 In our DCG for a"b"c" — {¢}, we gavethe Count variable the values
1, succ(1), succ(succ(1)), andsoon. But nowthat we knowaboutextra tests,it
is possibleto mix DCGsandarithmetic. So,chang the DCG for a"b"c" — {€} sothat
Count takesthevaluest, 2, 3, 4,...,andsoon. Useextra teststo carry outtherequired
arithmetic.

8.5 Practical Session 8

The purposeof PracticalSessior8 is to help you get familiar with DCGsthat make
useof additionalagumentsandtests.

Firstsomekeyboardexercises:

1. Tracesomeexamplesusingthe DCG which usesextra agumentgo handlethe
subject/objecdistinct, the DCG which producesparses,and the DCG which
usesxtrateststo separatdéexicon andrules.Make sureyouarefully understand
theway all threeDCGswork.
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2. Carryouttracesonthe DCG for a"b"c" — {€} thatwasgivenin thetext (thatis,
the DCG thatgave the Count variablethevaluesi, succ(1), succ(succ(1)),
andsoon). Firstgive thetheDCG queriesn which Count isinstantiatedo apar
ticular value(for example,succ( 1) ) andthe middleargumentis the specificlist
which goeswith thisvalue(here,[ a, a, b, b, c, c]). Thengive queriesn which
thevalueof Count is wrongfor thelist (for example,with [ a, a, b, b, ¢, c], try
Count = 1 andCount = succ(succ(1)). Finally, try queriesin which Count
is givenasavariable.

Now for someprogrammingWe suggestwo exercises.

1. First, bringtogetherall thethingswe have learnedaboutDCGsfor Englishinto
oneDCG. In particular todaywe sayhow to useextra agumentsto dealwith
the subject/objectlistinction,andin the exercisesyou were asled to useaddi-
tionalargumentgo dealwith thesingular/pluradistinction. Write aDCG which
handleshoth. Moreover, write the DCG in sucha way thatit will produceparse
trees,andmakesuseof a separatdéexicon.

2. Onceyou have donethis, extendthe DCG sothatnounphrasesanbe modified
by adjectvesandsimpleprepositionaphrasegthatis, it shouldbeableto handle
nounphrasesuchas“the smallfrightenedwomanon the table” or “the big fat
cow undertheshaver”). Then,furtherextendit sothatthe distinctionbetween
first, secondandthird persormpronounss correctlyhandledbothin subjectand
objectform).
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A Closer Look at Terms

Thislecturehasthreemaingoals:

1. Tointroducethe== predicate.
2. Totake acloserlook attermstructure.

3. Tointroduceoperators.

9.1 Comparing terms

Prolog containsan importantpredicatefor comparingterms,namely==. This tests
whethertwo termsareidentical It doesnot instantiatevariables thusit not the same
astheunificationpredicate-.

Let'slook at someexamples:

?= a == a.
yes

?- a ==
no

?- a=="a.
yes

TheseanswersProlog gives hereshouldbe obvious, thoughpay attentionto the last
one. It tells usthat, asfar asPrologis concerneda and’ a’ areliterally the same
object.

Now let’s look at examplesinvolving variables,and explicitly compare== with the
unificationpredicate-.

?- X==Y.
no

2. X=V.
X = 2808
Y = 2808

yes
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In thesequeriesx andY areuninstantiatedzariableswe havent giventhemary value.
Thusthe first answeris correct: X andY arenot identicalobjects,sothe == testfails.
Ontheotherhand,theuseof = succeeddpr X andY canbeunified.

Let’'s now look at queriesnvolving instantiatedvariables:

?- a=X, a==X

Thefirst conjunct,a=X, bindsx to a. Thuswhena==X is evaluated the left-handside
andright-handsidesareexactly the samePrologobject,anda==x succeeds.

A similar thing happensn thefollowing query:

?- X=Y, X==Y.

X = _4500
Y = 4500
yes

The conjunctx=Y first unifiesthe variablesx and Y. Thuswhenthe secondconjunct
==V is evaluatedthetwo variablesareexactly the samePrologobject,andthesecond
conjunctsucceedsswell.

It shouldnow beclearthat= and== areverydifferent,nonethelesthereis animportant
relationbetweenthem. Namelythis: == canbe viewed asa stronger testfor equality
betweentermsthan=. Thatis, if ternil andt er mare Prologterms,andthe query
terml == tern2 succeedshenthequeryternmi = tern? will succeedoo.

Another predicateworth knowing aboutis \ ==. This predicateis definedso that it
succeedpreciselyin thosecasewhere== fails. Thatis, it succeedsvhen&er two
termsarenotidentical,andfails otherwise For example:

?- a\== a.
no

a \==bh.
yes

al\=="a.
no

Theseshouldbeclear;they aresimply the oppositeof theanswersve gotabove when
we used==. Now consider:

?- X\ ==a.

X = 3719
yes
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Why this responseWell, we know from above that the query X==a fails (recall the
way == treatsuninstantiatedariables).Thusx\ ==a shouldsucceegdandit does.

Similarly:
?- X\ ==V.
X = _798
Y = _799
yes

Again,we know from abore thatthe queryx==Y fails, thusx\ ==Y succeeds

9.2 Terms with a special notation

Sometimegermslook differentto us, but Prologregardsthemasidentical. For exam-
ple, whenwe comparea and’ a’ , we seetwo distinct stringsof symbols,but Prolog
treatsthemasidentical. And in factthereare mary othercaseswvherePrologregards
two stringsas being exactly the sameterm. Why? Becausdat makes programming
morepleasantSometimeshe notationProloglikesisn’t asnatural,asthe notationwe

would like. Soit is niceto beableto to write programsn the notationwe like, andto

let Prologrun themin the notationit findsnatural.

9.2.1 Arithmetic terms

The arithmeticpredicatesntroducedearlierarea goodexampleof this. As wasmen-
tionedin Chapter5, /, -, *, and\ arefunctoss, and arithmeticexpressionssuchas

2+3 areterms And this is not an analogy Apart from the fact thatwe caneval-
uatethemwith the help of i s, for Prolog stringsof symbolssuchas2+3 really are
i denti cal with ordinarycomplec terms:

?- 243 == +(2,3).
yes

?- +(2,3) == 2+3.
yes

?- 2-3 == -(2,3).
yes

?- *(2,3) == 2*3,
yes

2. 2%(7+2) == *(2,+(7,2)).
yes

In short,the familiar arithmeticnotationis therefor our convenience.Prologdoesnt
regardit asdifferentfrom theusualtermnotation.

Similar remarksto the arithmeticcomparisorpredicates:, =<, =: =, =\ =, > and>=:
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?- (2 <3) ==<(2,3).
yes

?- (2 =< 3) == =<(2,3).
yes

?2- (2
yes

1= 3) == =1=(2,3).

?- (2 =\= 3) == =\=(2,3).
yes

2- (2 > 3) == >(2,3).
yes

?- (2 >= 3) == >=(2,3).
yes

Two remarks.Firsttheseexampleshav why it’s niceto have the usefriendly notation
(would you wantto have to work with expressiondike =: =( 2, 3) ?). Secondnotethat
we enclosedheleft handargumentin braclets. For example we didn't ask

2 ==3 == =2,3).
we asled

(2 == 3) == =:x=(2,3).
Why? Well, Prologfindsthe query2 =:= 3 == =:=(2, 3) confusing(andcanyou
blameit?). It' snotsurewhetherto braclettheexpressiongs(2 =:= 3) == =:=(2, 3)
(which is whatwe want),or 2 =:= (3 == =:=(2,3)). Sowe needto indicatethe

groupingexplicitly.

One final remark. We have now introducedthree rather similar looking symbols,
namely=, ==, and=: = (andindeedtheres also\ =, \ ==, and=\ =). Heresasummary:

= Theunificationpredicate.

Succeed# it canunify its agumentsfails otherwise.
\=  Theneggationof theunificationpredicate.

Succeed§ = fails, andvice-versa.
== Theidentity predicate.

Succeed§ its agumentsareidentical,fails otherwise.

== Thenegationof theidentity predicate.

Succeed§# == fails,andvice-\versa.
=: = Thearithmeticequalitypredicate.

Succeed§ its amgumentsvaluateto the sameinteger.
=\ = Thearithmeticinequalitypredicate.

Succeed§ its amgumentsvaluateto differentintegers.



9.2. Terms with a special notation 119

9.2.2 Lists as terms

Lists areanothergood examplewherePrologworks with oneinternalrepresentation,
andgivesusanothemoreuserfriendly notationto work with. Let’s startwith aquick
look at the userfriendly notation(thatis, the useof the squarebraclet[ and]). In
fact, becausdPrologalsooffersthe| constructortherearearemary waysof writing
thesamdist, evenattheusefriendly level:

?- [a,b,c,d] ==[a [[b,c,d]].
yes
?- [a,b,c,d] ==[ab |[c,d]].
yes
?- [a,b,c,d] ==[ab,c [[d]].
yes
?- [a,b,c,d] ==[ab,c,d|[]].
yes

But how doesPrologview lists?In fact,Prologseedists astermswhich arebuilt outof
two specialterms,namely[ ] , whichrepresenttheemptylist, and. , afunctorof arity
2 whichis usedto build non-emptylist (theterms[ ] and. arecalledlist constructors).

Heres how theseconstructorsareusedto build lists. Needlesgo say the definitionis
recursve:

e Theemptylistis theterm[] . Theemptylist haslengthO.

e A non-emptylistis ary termof theform. (term | i st), wheret er mcanbeary
Prologterm,andl i st is ary list. If Ii st haslength$n$,then. (termlist)
haslength$n+1$.

?- (a[]) ==1[a].

yes

?- .(f(d,e),[]) == [f(d, e)].

?2- .(a .(b,[])) ==[a b].

2- .(a, .(b,.(f(d,e),[1))) ==[ab,f(d e)].

?- (. (a[]).[1) ==[lal].

- (G (a D), [, [1) == [lalll.



120 Chapter 9. A Closer Look at Terms

?- . (.(a.(b,[1)),[1) == [[ab]].

yes

?- .(.(a, . (b, []))..(c,[1)) == [la b],c].

yes

?- .(.(a[]),.(b,.(c,[1))) == [[a],b,c].

yes

?- (. (a[]),.(.(b,.(c,[1)),[1)) == [[a],[b, c]].

yes

Again, it is clearthat Prologs internalnotationfor lists is not asuserfriendly asthe
useof thesquarebraclet notation.But actually it's notasbadasit seemsatfirst sight.
It is very similar to the | notation. It represents list in two parts: its first element
or head,anda list representindghe restof thelist. Thetrick is to readthesetermsas
trees The internalnodesof this tree are labeledwith . andall have two daughter
nodes.The subtreeunderthe left daughteiis representinghe first elementof the list
andthe subtreeundertheright daughtettherestof thelist. So,thetreerepresentation
of . (a,.(.(b,.(c,[1)),.(d, [1))),ie.[a, [b,c], d],lookslikethis:

-7 S, el 1 AL 1)

T T

F | '-—. o _Ih-(-(hi ‘(Ei[ ].}.}i .l:d._.[]ﬂ
(b i1y T . e 4d, )
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Onefinal remark.Prologis very polite. Not only areyou freeto talk to it in your own
userfriendly notation,it will replyin the sameway.

2- .(f(d,e),[]) = V.
Y = [f(d e)]

yes

22 (a.(b[1)) =X Z=.(.(c.[1).I1), W=1[1,2,X2].
X = [a, b]

Z =[[c]]

W=1[1,2[ab],[[c]]]
yes
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9.3 Examining Terms

In this section,we will learnabouta coupleof inbuilt predicateghatlet us examine
termsmoreclosely First,we will look at predicateghattestwhethertheir aguments
aretermsof a certaintype,whetherthey are,for instanceanatomor a number Then,
we will seepredicateshattell ussomethingaboutthe structureof complex terms.

9.3.1 Types of Terms

Remembemwhatwe saidabouttermsin Prologin the very first lecture. We saw that
therearedifferentkindsof terms,namelyvariables atoms numbes andcomple terms
andwhatthey look like. Furthermorewe saidthatatomsand numbersare grouped
togetherunderthe nameconstantsand constantsand variablesconstitutethe simple
terms Thefollowing picturesummarizeshis:

terms

TN

stmple terms comiplex terms

N

variahles constoants

2N

atomns nmmibers

Sometimest is usefulto know of which typeagiventermis. You might, for instance,
wantto write a predicatehathasto dealwith differentkinds of terms,but hasto treat
themin differentways. Prologprovidesa coupleof inbuilt predicateshattestwhether
agiventermis of acertaintype. Herethey are:

atom 1 Testswhetherthe agumentis anatom.

integer/1 Testswhethertheamumentis aninteger, suchas4, 10, or - 6.

float/1 Testswhethertheamgumentis a floating pointnumbey suchas1. 3 or 5. 0.
nunber/1  Testswhethertheamumentis anumbeyi.e. anintegeror afloat
atomic/1  Testswhethertheaguments a constant.

var/ 1 Testswhetherthe agumentis uninstantiated.

nonvar/1  Testswhethertheamumentis instantiated.

So,let’'s seehow they behae.

?- atoma).

yes

?- atom(7).

no

?- atom(l oves(vincent,ma)).
no
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Thesehreeexampledor thebehaior of at om 1 is prettymuchwhatonewould expect
of a predicatefor testingwhethera termis anatom. But what happenswhenwe call
at om 1 with avariableasagument?

?- atom(X).
no

This makes sense sincean uninstantiatedsariableis not an atom. If we, however,
instantiatex with anatomfirst andthenaskat on( X) , Prologanswersyes'.

?- X = a, atom(X).
X =a
yes

But it is importantthattheinstantiations donebefole thetest:

?- atom X), X = a.
no

nunber/ 1, i nt eger/ 1, andf | oat / 1 behae analogouslyTry it!

atoni c/ 1 testswhethera giventermis a constantj.e. whetherit is eitheranatomor
avariable. Soat oni c/ 1 will evaluateto true wheneer eitherat on’ 1 or nunber/ 1
evaluateto true andit fails whenbothof themfail.

?- atomic(ma).

yes

?- atomic(8).

yes

?- atom c(loves(vincent,ma)).
no

?- atonmi c(X)

no

Finally therearetwo predicatedo testwhetherthe agumentis an uninstantiatecr
instantiatedrariable.So:

?- var (X)

yes

?- var(loves(vincent,ma)).

no

?- nonvar (| oves(vincent,ma)).
yes

?- nonvar ( X).

no

Note thata complex termwhich containsuninstantiatedvariables,is of coursenot an
uninstantiatedvariableitself (but a comple term). Therefore:
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?- var(loves(_,ma)).

no

?- nonvar (loves(_,ma)).
yes

And again,whenthe variablex getsinstantiated/ar ( X) andnonvar (X) behae dif-
ferentlydependingon whetherthey arecalledbeforeor aftertheinstantiation.

?- X = a, var(X).
no

?- var(X), X = a.
X =a

yes

9.3.2 The Structure of Terms

Givena comple termof which you dont know whatit lookslike, whatkind of infor-
mationwould beinterestingto get? Probably what's the functor, what's the arity and
whatdo the agumentdook like. Prologprovidesinbuilt predicategshatanswerthese
guestions.Thefirst two areansweredy the predicatef unct or/ 3. Givena comple
termf unct or/ 3 will tell uswhatthe functorandthearity of thistermare.

?- functor(f(a,b),F A.

A=2

F=f

yes

?- functor(a, F, A).
A=0

F=a

yes

?- functor([a,b,c],XY).
X=".

Y =2

yes

So,we canusethe predicatef unct or to find out the functorandthe arity of aterm,
but we canalsouseit to constructterms,by specifyingthe secondandthird argument
andleaving thefirst undeterminedThequery

?- functor(T,f,8).
for example,returnsthefollowing answer:

T = f(_G286, _G287, _(288, _G289, (90, (291, (292, _&293)
yes

Note,thateitherthefirstagumentor the secondandthird agumenthave to beinstanti-
ated.So,Prologwould answemwith anerrormessag#o thequeryf unct or (T, f, N). If
you think aboutwhatthe querymeanspPrologis reactingin asensiblevay. Thequery
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is askingPrologto construcia complex termwithouttelling it how mary agumentgo
provide andthatis somethingPrologcanjustnotdo.

In the previous section,we sav inbuilt predicatedor testingwhethersomethings an
atom, a numbey a constant,or a variable. So, to make the list complete,we were
actually missinga predicatefor testingwhethersomethingis a complex term. Now,

we candefinethatby makinguseof the predicatef unct or. All we have to dois to

checkthatthetermis instantiatecandthatit hasargumentsj.e. thatits arity is greater
thanzero.Hereis the predicatedefinition.

conpl exterm(X) :-
nonvar ( X) ,
functor(X, _, A,
A > 0.

In additionto the predicatef unct or thereis the predicatear g/ 3 which tells usabout
agumentsof comple terms. It takesa numberN anda complex term T andreturns
the Nth agumentof T in its third agument. It canbe usedto accesshe valueof an
argument

?- arg(2,loves(vincent,ma), X).
X =ma
yes

or to instantiateanarmgument.

?- arg(2,loves(vincent, X), mn a).
X =ma
yes

Trying to accesanargumentwhich doesnt exist, of coursefails.

?- arg(2, happy(yol anda), X) .
no

The third usefulinbuilt predicatefor analyzingterm structureis* =. .’ / 2. It takesa
comple termandreturnsa list that containsthe functor asfirst elementandthenall
the aguments. So, when asled the query’ =. .’ (1 oves(vi ncent, m a), X) Prolog
will answerx = [1oves, vi ncent, m a] . This predicateis alsocalleduniv andcan
beusedasaninfix operator Herearea coupleof examples.

?- cause(vincent, dead(zed)) =.. X
X = [cause, vincent, dead(zed)]
Yes

?- X =. [a,b(c),d].

X = a(b(c), d)

Yes

?- footmassage(Y,nma) =.. X

Y = _G303

X = [footmassage, _G303, mia]

Yes



9.3. Examining Terms 125

Univ (' =..") is alwaysusefulwhensomethinghasto be doneto all algumentsof a
comple term. Sinceit returnsthe amgumentsasa list, normallist processingstrate-
gies canbe usedto traversethe aguments. As an example, let's definethe predi-
cateuni fi abl e/ 2 which checkswhethertwo termscanbe unified. In contrastto =,
uni fi abl e shouldnt instantiateary variables. That meanswhile Prologwould an-
swerx = bi g_kahuna_bur ger tothequeryf ood(X) = food(bi g_kahuna_bur ger),
it shouldsimplyanswelyes tothequeryuni fi abl e(f ood( X), f ood( bi g_kahuna_bur ger).

So,whencantwo termsbeunified? In Lecture2, we gave threeconditions. The first
onewasthis:

e If terni andt er n2 areconstantsthent er ni. andt er n2 matchif andonly if
they arethe sameatom,or the samenumber

Translatinghis to Prolog,we get

uni fiable(XY) :-
atom c(X),
atomic(Y),
==Y.

Theseconcconditiondealtwith variables.

e If ternt is avariableandt ern2 is ary type of term, thent er ni andt er n2
match. Similarly, if tern? is a variableandt er n is ary type of term, then
t er ml andt er n2 match.

This givesustwo clausesonefor the casethatthefirst termis a variableandonefor
thecasethatthe secondneis avariable.

uni fiable(X _) :-

var (X).
unifiable(_,Y) :-

var (V).

Finally, therewasa conditiondealingwith comple terms.

e If t er nil andt er n2 arecomplex terms,thenthey matchif andonly if:

1. They have thesamefunctor
2. All theircorrespondin@rgumentanatch

Hereis the correspondindPrologcode:

uni fiable(XY) :-
nonvar ( X),
nonvar (YY),
functor (X F, A),
functor(Y,F, A,
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A > 0,
X=. [_IT],
Y =.[_|T0],

uni fiabl eArgs(T, TO).

uni fiabl eArgs([],[])-
uni fi abl eArgs([H T],[HO| TO])
uni fiabl e(H, HO),
uni fi abl eArgs(T, TO) .

So,wefirst checkwhetherthetwo termsarecomple termsandhave the samefunctor
Wethenuseunk to collecttheiragumentdnto lists. Finally, we have to checkthatall
correspondinglementsn thesdists unify. Wedefineasimplerecursve list processing
predicatecalleduni f i abl eAr gs for thistask.

9.4 Operator s

9.4.1 Properties of operator s

By now, we have seensereral times alreadythat, in certaincases,Prolog let's us
usea moreuserfriendly notationthanwhatit will useasits internalrepresentation.
The notationfor arithmetic operatorswas an example. Internally Prologwill use
is(11,+(2,*(3,3))), butwecanwrite 11 is 2 + 3 * 3. Suchfunctorsthatcan
bewritten in betweenheir agumentsarecalledinfix opemtors. Otherinfix operators
in Prologarefor example: -, ->,;,',’, =, =.., == andsoon. Infix operatorsare
calledinfix operatorshecausehey arewritten betweertheiraguments.Therearealso
prefixoperatorghatarewritten befoe their agument,andpostfixoperatoravhich are
writtenaftertheiragument.?- for exampleis aprefix operatorandsois theone-place
- whichis usedto represenhegatve numbersasin 1 is 3 + -2.

Whenwe learnedaboutarithmeticin Prolog,we sav thatPrologknows aboutthe con-
ventionsfor disambiguatingarithmeticexpressions.So, whenwe write 2 + 3 * 3
for example,Prologknows thatwe mean2 + (3 * 3) andnot(2 + 3) * 3. But
how doesProlog know this? Every operatorhasa certainprecedence The prece-
denceof + is greaterthan the precedenceof *. That’s why + is taken to be the
main functor of the expression2 + 3 * 3. (Note that Prologs internal representa-
tion +(2, *(3, 3)) is notambiguous.)Similarly, the precedencef i s is higherthan
theprecedencef +, sothat11 is 2 + 3 * 3isinterpretedasi s(11, +(2,*(3,3)))
andnotas+(is(11,2),*(3,3)) (whichwouldnt make ary sensepy theway). In
Prologprecedencés expressedy numbers.The higherthis number the greaterthe
precedence.

Butwhathappensvhenthereareseveraloperatorsith thesameprecedence oneex-
pression?Ve saidthatabove thatPrologfindsthequery2 == 3 == =:=(2, 3) con-
fusing,becausé@ doesnt know how to braclettheexpressior(isit =: =(2, ==(3, =: =(2, 3)))
orisit ==(=:=(2, 3),=:=(2,3)) ?). Thereasorfor why Prologis not ableto decide
whichis the correctbracletingis of coursethat== and=: = have thesameprecedence.

Whataboutthe following query though?
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?- Xis 2 + 3 + 4.

DoesPrologfind it confusing?No, Prologcorrectlyanswers< = 9. So,which brack-
etingdid Prologchoose:i s( X, +(2, +(3,4))) oris(X, +(+(2,3),4))? It chosethe
secondneascanbetestedwith thefollowing queries.

2 2+ 3+ 4 = +(2,+(3,4)).
No
22 2+ 3+ 4 = +(+(23),4).
Yes

Prologusesinformationaboutthe associativityof + hereto disambiguate¢he expres-
sions.+ is left associativewhich meanghatthe expressiorto theright of + musthave
alower precedencéhan+ itself, whereaghe expressiorontheleft mayhave the same
precedencas+. Theprecedencef anexpressions simply the precedencef its main
operatoror 0, if it is enclosedn braclets. The main operatorof 3 + 4 is +, sothat
interpreting2 + 3 + 4 as+(2, +(3, 4)) would meanthatthe expressiorto the right
of thefirst + hasthe sameprecedencas+ itself, whichis illegal. It hasto belower.

Theoperators-=, =: =, andi s aredefinedto benon-associativevhich meanghatboth
of their agumentamusthave alower precedenceTherefore2 == 3 == =:=(2, 3)
is illegal, sinceno matterhow you braclet it, you'll geta conflict: 2 =: = 3 hasthe
sameprecedencas==, and3 == =: =(2, 3) hasthesameprecedencas=: =.

Thetype of anoperator(infix, prefix, or postfix), its precedenceandits associatiity
arethethreethingsthatPrologneeddo know to be ableto translatethe userfriendly,
but potentiallyambiguousperatomotationinto Prologs internalrepresentation.

9.4.2 Defining operator s

In additionto providing a userfriendly operatomotationfor certainfunctors,Prolog
alsolet’s you defineyou own operators.So you could for exampledefinea postfix
operatori s_dead andthenPrologwould allow youto write zed i s_dead asafactin
your databasénsteadof i s_dead( zed).

Operatordefinitionsin Prologlook like this:
:- op(Precedence, Type, Nane).

Precedencés anumbermetweerD and1200. Theprecedencef =, for instanceijs 700,
theprecedencef + is 500,andthe precedencef * 400. Typeis anatomspecifyingthe
typeandassociatiity of the operatorIn thecaseof + thisatomis yf x, which saysthat
+ isaninfix operatorf representtheoperatoandx andy thearguments Furthermore,
x standsfor analgumentwhich hasa precedencevhich is lower thanthe precedence
of + andy standgor anargumentwhich hasa precedencevhich lower or equalto the
precedencef +. Therearethefollowing possibilitiesfor what Typemaylook like:

infix  xfx, xfy, yfx
prefix fx,fy
suffix  xf, yf
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So,your operatordefinitionfor i s_dead couldlook asfollows:
:- op(500, xf, is_dead).

Herearethe definitionsfor someof the inbuilt operators.You canseethat operators
with the samepropertiescan be specifiedin one statemenby giving a list of their
namesdnsteadof a singlenameasthird argumentof op.

:- op( 1200, xfx,
.- op( 1200, fx,
;- op( 1100, «xfy,
;- op( 1000, xfy,

- op( 700, xfx,

—_—————
fa—
~

-1).

;- op( 500, yfx, [ +,

.- op( 500, fx, [ + - 1]).

- op( 300, xfx, [ nod ]).
[

:- op( 200, xfy, Nl

Onefinal thing to noteis, that operatordefinitionsdon't specify the meaningof an
operatoy but only describewho it canbe usedsyntactically An operatordefinition
doesnt sayarything aboutwhena queryinvolving this operatorwill evaluateto true.
It is only a definition extendingthe syntaxof Prolog. So, if the operatori s_dead is
definedasabove andyou askthe queryzed i s_dead, Prologwon’t complainabout
illegal syntax(asit would without this definition), but it will try to prove the goal
i s_dead(zed), which is Prologs internalrepresentationf zed i s_dead. And this
is what operatordefinitionsdo. They just tell Prologhow to translatea userfriendly
notationinto real Prolog notation. So, what would be Prologs answerto the query
zed is_dead? It wouldbeno, becausd’rologwouldtry to provei s_dead( zed), but
not find ary matchingclausein the databaseUnless,of course your databasevould
look lik e this, for instance:

;- op(500, xf, is_dead).

kill (marsellus, zed).
is_dead(X) :- kill(_,X).

In this case Prologwould answelyes to thequeryzed i s_dead.

9.5 Exercises

Exercise 9.1 Whid of thefollowing queriessucceedandwhich fail?
?- 12 is 2*6
?- 14 =\= 2*6

?- 14 = 2*7
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?- 14 == 2*7

?- 14 \== 2*7

?- 14 == 2*7

N)
1
=

2,3|[d,e]] ==11,2,3,d,¢€]

?- 243 == 342

?- 243 == 3+2

?- == p
?- p =\ = p
?- vincent == VAR

?- vi ncent =VAR, VAR==vi ncent

Exercise 9.2 How doesProlog respondo thefollowing queries?

?- .(a,.(b,.(c,[1))) [a, b, c]

?- .(a,.(b,.(c,[]1))) =T[abl[c]]

- . C(a ), (b [1),. (. (e, [1),[1))) = X

?- . (a,.(b,.(.(c,[1).[1))) = [abl[c]]

Exercise 9.3 Write a two-placepredicatet er nt ype(+Ter m ?Type) that takes a
term and givesbad the type(s)of that term (atom, numbey constant,variable etc.).
Thetypesshouldbe givenbad in the order of their geneality. Thepredicateshould,
e.g., behaven thefollowing way:

?- termype(Vincent, variable).

yes
?- termtype(ma, X).
X = atom;

X = constant ;

X = sinmple_term;
X =term;

no

?- ternmtype(dead(zed), X).
X = conplex_term;

X term;

no
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Exercise 9.4 Write a programthatdefinegshepredicategr oundt er n{ +Ter m) which
testswhetherTer mis a groundterm. Groundtermsare termsthat dont containvari-
ables.Here are examplesf howthe predicateshouldbehave:

?- groundtermX).

no

?- groundterm(french(bic_nac,|e_bic_mac)).
yes

?- groundtermfrench(whopper, X)) .

no

Exercise 9.5 Assumehatwehavethefollowing opefator definitions.

:- op(300, xfx, [are, is_a]).
:- op(300, fx, likes).

:- op(200, xfy, and).

:- op(100, fy, fanous).

Whidh of the following is a wellformedterm? Whatis the main opeiator? Givethe
bradketing

?- Xis_a wtch.

?- harry and ron and hermione are friends.
?- harry is_a wizard and |ikes quidditch.
?- dunbl edore is_a fanmous fanobus w zard.

9.6 Practical Session

In this practicalsessionywe wantto introducesomeinbuilt predicategor printingterms
ontothe screen. Thefirst predicatewe wantto look at is di spl ay/ 1, which takesa
termandprintsit ontothescreen.

?- display(loves(vincent,ma)).
| oves(vincent, nia)

Yes
?- display('jules eats a big kahuna burger’).

jules eats a big kahuna burger

Yes
More strictly speakingdi spl ay printsPrologs internalrepresentationf terms.

?- display(2+3+4).
+(+(2, 3), 4)

Yes
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In fact,this propertyof di spl ay makesit avery usefultool for learninghow operators
work in Prolog. So, beforegoing on to learnmoreabouthow to write thingsontothe

screenfry thefollowing queries.Make sureyou understandvhy Prologanswerghe

way it does.

?- display([a, b,c]).

?- display(3is 4 + 5/ 3).
?- display(3is (4 +5) / 3).
?- display((a:-b,c,d)).

?- display(a:-b,c,d).

So, displayis nice to look at the internal representatiorof termsin operatornota-
tion, but usuallywe would probablypreferto print the userfriendly notationinstead.
Especiallywhen printing lists, it would be much nicer to get| a, b, c], insteadof
.(a.(b.(c,[1))). Thisis whattheinbuilt predicatew i t e/ 1 does. It takesa term
andprintsit to thescreenn theusefriendly notation.

?- wite(2+3+4).
2+3+4

Yes
?- wite(+(2,3)).
2+3

Yes
?- wite([a,b,c]).
[a, b, c]

Yes
?- wite(.(a,.(b,[1)))-
[a, b]

Yes
And hereis whathappenswhenthetermthatis to bewritten containsvariables.

?2- wite(X).

_QX04

X = _QX04

yes

?- X=a wite(X).

The following exampleshavs what happensvhenyou put two write commandne
aftertheother
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?- wite(a),wite(b).
ab

Yes
Prologjustexecutesoneaftertheotherwithoutputtingary spacen betweertheoutput
of the differentwrite commands.Of course,you cantell Prologto print spacesdy
telling it to write theterm’

?- wite(a), wite(’ "),wite(b).
ab

Yes

And if youwantmorethanonespacefor examplefive blanks,you cantell Prologto
write’

?- wite(a), wite(’ )Y,wite(b).
a b
Yes

Anotherway of printing spacess by usingthe predicatet ab/ 1. t ab takesa number
asamgumentandthenprintsasmary spacesasspecifiedby thathnumber

?- wite(a),tab(5),wite(b).
a b

Yes

Anotherpredicateusefulfor formattingis ni . nl tells Prologto make a linebreakand
to goon printing onthenext line.

?- wite(a),nl,wite(b).
a

b

Yes

Hereis anexercise whereyou canapplywhatyou justlearned.

In the lastlecture,we sawv how extra agumentsn DCGscanbe usedto build a parse
tree. For example,to the querys(T, [ a, man, shoot s, a, woman] , []) Prologwould
answers(np(det (a), n(man)), vp(v(shoots), np(det(a), n(wonan)))). Thisis
a representatiorof the parsetree. It is not a very readablerepresentationthough.
Wouldnt it benicerif Prologprintedsomethindike

s(
np(
det (a)
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n( man))
vp(
v(shoot s)
np(
det (a)
n(wonen))) )

for example?

Write a predicateppt r ee/ 1 that takes a complex term representinga tree, suchas
s(np(det (a), n(man)), vp(v(shoots), np(det(a), n(worman)))), asits agument
andprintsaniceandreadableoutputfor this tree.

Finally, hereis anexerciseto practicewriting operatordefinitions.

In the practicalsessiorof Chapter7, youwereaslkedto write aDCG generatingpropo-
sitionallogic formulas. Theinputyou hadto usewasa bit awkwardthough. The for-
mula—(p — q) hadto berepresenteds[not, ’ (', p, inplies, g, ')’ ]. Now,
that you know aboutoperatorsyou cando somethinga lot nicer Write the opera-
tor definitionsfor the operatorsiot, and, or, i npl i es, so that Prologacceptgand
correctlybraclets)propositionalogic formulas.For example:

?- display(not(p inplies q)).
not (i nplies(p,q)).

Yes
?- display(not p inplies q).
i nplies(not(p),q)

Yes
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10

10.1 The

Cuts and Negation

Thislecturehastwo maingoals:

1. To explain how to control Prologs backtrackingoehaior with the help of the
cutpredicate.

2. Toexplainhow cutcanbepackagednto morestructuredorms,notablynegation
asfailure.

cut

Automaticbacktrackings oneof the mostcharacteristideatureof Prolog. But back-
trackingcanleadto inefficiengy. SometimedProlog canwastetime exploring possi-
bilites thatleadnowhere.It would be pleasanto have somecontrol over this aspecof
its behaiour, but sofar we only have only seentwo (rathercrude)waysof doingthis:
changingthe orderof rules,andchangingthe orderof conjunctsin the body of rules.
Butthereis anothemway. Thereis aninbuilt Prologpredicate , calledcut,which offers
amoredirectway of exercisingcontrolover theway Prologlooksfor solutions.

What exactly is cut, andwhat doesit do? It's simply a specialatomthatwe canuse
whenwriting clause.For example,

P(X) - b(X),c(X),!,d(X),e(X).

is aperfectlygoodPrologrule. As for whatcutdoesfirst of all, it is agoalthatalways
succeedsSecondandmoreimportantly it hasa sideeffect. Supposehatsomegoal
makes useof this clause(we call this goal the parentgoal). Thenthe cut commits
Prologto ary choicesthat were madesincethe parentgoal was unified with the left

handsideof therule (including,importantly thechoiceof usingthatparticularclause).
Let'slook atanexampleto seewhatthis means.

Let'sfirst considerthe following pieceof cut-freecode:
p(X) - a(Xx).
P(X) - b(X),c(X),d(X),e(X.

p(x) - f(X).
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a(l).
b(1).
c(l).

b(2).
c(2).
d(2).
e(2).
f(3).

If we posethequeryp(X) wewill getthefollowing responses:

X=1;
X =2
X =3;
no

But now suppposeve inserta cutin thesecondlause:

pP(X) - b(X),c(X),!,d(X),e(X).

If we now posethequeryp(X) wewill getthefollowing responses:
X=1;
no

What's goingon here?Letsconsider

1. p(X) isfirstmatchedwith thefirstrule, sowe getanew goala( X) . By instantiat-
ing Xto 1, Prologmatches( X) with thefacta(1) andwe have foundasolution.
Sofar, thisis exactly whathappenedh thefirst versionof theprogram.

2. We thengo on andlook for a secondsolution. p( X) is matchedwith the sec-
ondrule, sowe getthe new goalsb(X), c(X),!, d(X), e(X). By instantiating
X to 1, Prolog matchesb( X) with the factb(1), sowe now have the goals
c(1),!,d(1),e(1). Butc(1) isinthedatabassothissimplifiesto!, d(1),e(1).

3. Now for thebig changeThe! goalsucceedg§asit alwaysdoes)andcommitsus
to all thechoicesve have madesofar. In particular we arecommittedto having
X = 1, andwe arealsocommittedto usingthe secondule.
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4. Butd(1) fails. And theres no way we canresatisfythegoalp( X) . Sure,if we
were allowed to try the value X=2 we could usethe sesondrule to generatea
solution (that's whathappenedn the original versionof the program). But we
cant dothis: the cuthascommittedusto the choiceX=1. And sure.if we were
allowedto try the third rule, we could generatehe solutionx=3. But we cant
dothis: thecuthascommittedusto usingthe secondule.

Onepoint is worth emphasizingithe cut only commitsus to choicesmadesincethe
parentgoal was unified with the left handside of the clausecontainingthe cut. For
example,in arule of theform

q:- pl,..., pn,!,rl, ..., rm
the cut will commitusto the choicesmadewhenevalautingpi, . . ., pn, but we are
freeto backtrackamongther 1, . . ., rm A concreteexamplewill make this clear

Firstconsiderthefollowing cut-freeprogram:

a(xXy) - (X, (V).

i(1).
i(2).
j(1).
i(2).
j(3).

Heres how it behaes:

?- (X Y).
X=1
Y =1;
X=1
Y =2
X=1
Y =
X =
Y=1
X =2
Y =2
X =2
Y =3

no
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Supposeve adda cutto thefirst line:

a(x,y) - i (X, (Y.

Now the programbehaesasfollows:

?- q(XY).

X =1

Y =1;

X=1

Y =2 ;

X=1

Y =3

no
Let'sseewhy.

1. q( X V) is first matchedwith thefirst rule, sowe getanew goali (X),!,j (Y).
By instantiatingx to 1, Prolog matches ( X) with thefacti (1). This leaves
uswith thegoal!,j (Y). The cut, of course,succeedsand commitsusto the
choicessofarmade.

2. Butwhatarethesechoices?Thesethatx = 1, andthatwe areusingthisclause.
But note: we have not yet chosera valuefor Y.

3. Prologthengoeson, andby instantiatingy to 1, Prologmatcheg (Y) with the
factj (1). Sowe have founda solution.

4. But we canfind more. Prologis freeto try anotherwaluefor Y. Soit backtracks
andsetsy to 2, thusfinding a secondsolution. And in factit canfind another
solution: on backtrackingagain,it setsy to 3, thusfinding athird solution.

5. Butthatsall. It cant backtrackio theleft of thecut, soit can't resetx to 2, soit

won't find thelastthreesolutionsthatthe cut-freeprogramfound.

Well, we now know what cut is. But howv do we useit in practice,and why is it
so useful? As a first example,let’s definea (cut-free)predicatenax/ 3 which takes
integersasargumentsandsucceed# the third agumentis the maximumof the first
two. For example thequeries

and

and

max(2, 3, 3)

max( 3, 2, 3)
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max(3, 3, 3)
shouldsucceedandthe queries
max(2, 3, 2)
and
max(2, 3, 5)

shouldfail. And of coursewe alsowantthe programto work whenthethird argument
is avariable.Thatis, we wantthe programto be ableto find the maximumof thefirst
two agumentdor us:

?- max(2, 3, Max) .

Max = 3
Yes

?- max(2, 1, Max).

Max = 2
Yes

Now, it is easyto write a programthatdoesthis. Heres afirst attempt:

max(X, Y,Y) - X =<Y.
max( X, Y, X) :- X>VY.

This is a perfectly correctprogram,and we might be temptedsimply to stop here.
But we shouldnt: it's not good enough. What's the problem? Thereis a potential
inefficiengy. Supposehisdefinitionis usedaspartof alargerprogramandsomavhere
alongthe way max( 3, 4, Y) is called. The programwill correctlysety=4. But now
considerwhathappensf at somestagebacktrackings forced. The programwill try
to resatisfymax( 3, 4, Y) usingthe secondclause. And of coursethis is completely
pointless:the maximumof 3 and4 is 4 andthat’s that. Thereis no secondsolution
to find. To put it anotherway: the two clausesn the abose programare mutually
exclusie: if thefirst succeedsthe secondmustfail andvice versa. So attemptingto
resatisfythis clauseis a completewasteof time.

With the helpof cut, this is easyto fix. We needto insistthatPrologshouldnever try
bothclausesandthefollowing codedoesthis:

max(X Y,Y) (- X =<Y,!.
max( X, Y, X) :- X>Y.

Note how this works. Prologwill reachthe cutif max(X, Y, Y) is calledandXx =< Y
succeedsln this case the secondargumentis the maximum,andthat’s that, andthe
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cut commitsus to this choice. On the otherhand,if X =< Y fails, thenProlog goes
ontotheseconctlauseinstead.

Note that this cut doesnot changethe meaningof the program. Our new codegives
exactly the sameanswersas the old one, it’s just a bit more efficient. In fact, the
programis exactly the sameasthe previous version,exceptfor the cut, andthisis a
pretty goodsignthatthe cut is a sensibleone. Cutslike this, which dont changethe
meaningof a program have a specialname:they’re calledgreencuts.

But thereis anotherkind of cut: cutswhich do changethe meaningof a program.
Thesearecalledredcuts,andareusuallybestavoided. Heres anexampleof aredcut.
Yetanothemway to write thenax predicatds asfollows:

max(X, VY,Y) (- X =<Y,!.
max( X, Y, X).

Thisis thesameasour earliergreencut nax, exceptthatwe have gotrid of the > test
in the seconcclause. Thisis badsign: it suggestshatwe're changingthe underyling
logic of the program.And indeedwe are: this program'w orks’ by relying on cut. How
goodis it?

Well, for somekindsof queryit’sfine. In particular it answersorrectlywhenwe pose
gueriesn which thethird agumentis a variable.For example:

?- max(100, 101, X) .

X = 101
Yes

and
?- max(3,2,X).

X =
Yes

Nonethelessit's not the sameas the greencut program: the meaningof nax has
changedConsidemwhathappensvhenall threeagumentsareinstantiated For exam-
ple,considetthequery

max(2, 3, 2).

Obviously this query shouldfail. But in the red cut version, it will succeed!Why?
Well, this querysimply won’t matchthe headof thefirst clause soProloggoesstraight
to thesecondclause.And the querywill matchwith the secondclause and(trivially)

thequerysucceedsDops! Gettingrid of that> testwasnt quite sosmartafterall...

This programis a classicred cut. It doesnot truly definethe max predicate ratherit
changest's meaningandonly getsthingsright for certaintypesof queries.

A sensibleway of usingcutis to try andgeta good,clear cut free programworking,
andonly thentry to improve its efficiency usingcuts. It’s not alwayspossibleto work
thisway, but its agoodidealto aim for.
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10.2 Negation as failure

Oneof Prologs mostusefulfeaturess the simpleway it lets us stategeneralizations.
To saythatVincentenjoys burgerswe justwrite:

enj oys(vincent, X) :- burger(X)

Butin reallife ruleshave exceptions.Perhap¥incentdoesnt like Big Kahunaburgers.
Thatis, perhapghe correctrule is really: Vincentenjoys burgers,exceptBig Kahuna
burgers.Fine. But how do we statethisin Prolog?

As afirst step,let’'sintroduceanothetbuilt in predicate ai | / 0. Asit’s namesuggests,
fail isaspecialsymbolthatwill immediatelyfail whenPrologencounter# asagoal.
Thatmay not soundtoo useful,but rememberwhenProlog fails, it tries to badtrack.
Thusf ai | canbe viewed as an instructionto force backtracking. And when used
in combinationwith cut, which blocks backtracking ai | enablesus to write some
interestingProgramsandin particular it letsusdefineexceptionsto generakule.

Considetthefollowing code:

enj oys(vincent, X) :- big_kahuna_burger(X,!,fail
enj oys(vincent, X) :- burger(X)

bur ger(a).
bur ger (b).
burger(c).
bur ger (d).

bi g_mac(c).
bi g_kahuna_bur ger (b).
bi g_mac(c).
whopper (d) .

Thefirst two linesdescribeVincents preferencesThe lastsix lines describea world
containingfour burgers,a, b, c, andd. We're alsogiveninformationaboutwhatkinds
of burgersthey are. Giventhatthefirst two linesreally do describeVincents prefer
enceqthatis, thathelikesall burgersexceptBig Kahunaburgers)thenhe shouldenjoy
burgersa, ¢ andd, but notb. And indeed thisis whathappens:

?- enjoys(vincent, a).
yes

?- enjoys(vincent,b).
no

?- enjoys(vincent,c).
yes

?- enjoys(vincent,d).
yes
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How doesthis work? The key is the combinationof ! andfail in the first line
(this even hasa name:its calledthe cut-fail combination). Whenwe posethe query
enj oys(vi ncent, b), thefirst rule applies,andwe reachthe cut. This commitsusto
thechoiceswe have made andin particular blocksaccesso thesecondule. Butthen
we hit f ai | . This triesto force backtrackingput the cut blocksit, andsoour query
fails.

This is interesting but it's notideal. For a start,notethatthe orderingof the rulesis
crucial: if we reversethefirst two lines,we don't getthe behaior we want. Similarly,
thecutis crucial: if weremoveit, the programdoesnt behae in the sameway (sothis
is ared cut). In short,we've got two mutually dependentlauseghat make intrinsic
useof theprocedurabspect®f Prolog. Somethingusefulis clearlygoingon here but
it would bebetterif we couldextracttheusefulpartandpackaget morerobustly way.

And we can. The crucial obseration is that the first clauseis essnetiallya way of
sayingthatVincentdoesnot enjoy X if X is aBig Kahunaburger Thatis, the cut-fail
combinationseemso be offering us someform of negation. And indeed,this is the
crucialgeneralizationthecut-fail combinatioret’s usdefineaform of negationcalled
negationasfailure. Here’s how:

neg(CGoal) :- Coal,!,fail.
neg( Goal ).

For any Prologgoal,neg( Goal ) will succeegreciselyif GCoal doesnotsucceed.

Usingour new neg predicatewe candescribeéVincents preferencegn amuchclearer
way:

enj oys(vincent, X) :- burger(X), neg(big_kahuna_burger(X)).

Thatis, Vincentenjoys X if X is a burger and X is not a Big Kahunaburger This
is quite closeto our original statement:Vincentenjoys burgers, exceptBig Kahuna
burgers.

Negation as failure is an importanttool. Not only doesit offer useful expressity
(notably theability to describesxceptions)t alsooffersit in arelatively safeform. By
working with negationasfailure (insteadof with thelower level cut-fail combination)
we have a betterchanceof avoiding the programmingerrorsthatoftenaccompan the
useof redcuts. In fact, negationasfailureis souseful,thatit comesbuilt in Standard
Prolog, we dont have to defineit atall. In StandardPrologthe operaton + means
negationasfailure,sowe coulddefineVincents preferenceasfollows:

enjoys(vincent, X) :- burger(X), \+ big_kahuna_burger(X.

Nonethelessa coupleof words of warningarein order: dont malke the mistale of
thinking that negationasfailure works just like logical negation. It doesnt. Consider
againour burgerworld:

burger(a).
bur ger (b).
burger(c).
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bur ger (d).

bi g_mac(c).
bi g_kahuna_bur ger (b).
bi g_mac(c).
whopper (d) .

If we posethequeryenj oys(vi ncent, X) we getthecorrectsequencef responses:

X =a;
X =c;
X=d;
no

But now supposeave rewrite thefirst line asfollows:
enjoys(vincent,X) :- \+ big_kahuna_burger(X, burger(X).

Note that from a declaratre point of view, this should make no difference: after
all, burger(x) and not big kahunaburger(x) is logically equvalentto not big kahuna
burger(x) and burger(x). Thatis, no matterwhatthe variablex denotesijt impossible
for oneof theseexpressiongo betrue,andthe otherexpressiorto befalse.Nonethe-
less,heres whathappensvhenwe posethe samequery:

enj oys(vincent, X)
no

What's going on? Well, in the modified databasethe first thing that Prolog hasto

checkis whethen + bi g_kahuna_bur ger (X) holds,which meanghatit mustcheck

whethemi g_kahuna_bur ger (X) fails. But this succeedsAfter all, thedatabaseon-
tainstheinformationbi g_kahuna_bur ger ( b) , whichmeanghatthequery\ + bi g_kahuna_bur ger ( X)
fails, and hencethe original querydoestoo. In a nutshell,the crucial differencebe-

tweenthe two programsis thatin the original version(the onethat works right) we

use\ + only after we have instantiatedhe variablex. In the new version(which goes

wrong)we use\ + beforewe have donethis. Thedifferences crucial.

Summingup, we have seenthat negation asfailure is not logical negation, and that
it hasa proceduraldimensionthat mustbe mastered.Nonethelessit is animportant
programmingconstruct:it is generallya betterideato try usenegationasfailurethan
to write codecontainingheary useof readcuts. Nonetheless{generally” doesnot
mean“always”. Thereare timeswhenit is betterto useredcuts.

For example,supposehatwe needto write codeto capturethe following condition: p
holdsif a andb hold, or if a doesnot hold and ¢ holdstoo. This canbe capturedwith
the helpof negationasfailure very directly:
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p:- ab.
p:- \+a, c.

But supposedhata is a very complicatedgoal, a goal thattakesa lot of time to com-
pute. Programmingt this way meanswve may have to computea twice, andthis may
meanthatwe have unacceptablglow performancelf so,it would be betterto usethe
following program:

p:- a!,b.

p:- c.

Notethatthis is a red cut: removing it changeghe meaningof the program.Do you
seewhy?

Whenall's saidanddone thereareno universalgusidelineshatwill coverall thesitu-
ationsyou arelikely to runacross Programmings asmuchandartasasciencethat’s
what makesit so interesting. You needto know as much aspossibleaboutthe lan-
guageyou areworking with (whetherit’s Prolog,Java, Perl, or whaterer) understand
the problemyou aretrying to solve, andknow what countsasan acceptablesolution.
And then:go aheadandtry your best!

10.3 Exercises

Exercise 10.1 Supposevehavethefollowing database:

p(1).
p(2) :- I.
p(3).

Write all of Prolog’s answes to thefollowing queries:

?- p(X).
?- p(X), p(Y).
?- p(X),I,p(Y)

Exercise 10.2 First, explain whatthe following programdoes:

cl ass(Nunber, positive) :- Nunmber > 0
cl ass(0, zero).
cl ass(Nunber, negative) :- Nunber < O

Secondimproveit by addinggreencuts.

Exercise 10.3 Without usingcut, write a predicatespl i t / 3 that splits a list of in-
tegers into twao lists: onecontainingthe positiveones(andzei), the other containing
the negativeones.For example:



10.4. Practical Session 10 145

split([3,4,-5-1,04,-9],P, N

shouldreturn:

U
1

[3,4,0,4]

N

[-5,-1,-9].

Thenimprove this program, withoutchangingits meaning with the helpof cut.

10.4 Practical Session 10

The purposeof PracticalSessionl0is to helpyou getfamiliar with cutsandnegation
asfailure.

Firstsomekeyboardexercises:

1. Firstof all, try outall threeversionsof the max/ 3 predicatedefinedin the text:
thecut-freeversion thegreencutversion,andtheredcutversion.As usual,“try
out” means‘run traceson”, andyou shouldmake surethat you tracequeries
in which all threeagumentsareinstantiatedo integers,andquerieswherethe
third amumentis givenasavariable.

2. OK, time for a burger Try out all the methodsdiscussedn the text for cop-
ing with Vincents preferencesThatis, try out the programthatusesa cut-fail
combination,the programthat usesnegation as failure correctly andalsothe
programthatgetsit wrongby usingnegationin thewrongplace.

Now for someprogramming:

1. Definea predicatenu/ 2 ("not unifiable") which takestwo termsasarguments
andsucceed$# thetwo termsdo notunify. For example:

nu(f oo, f 00).
no

nu (foo, bl ob).
yes

nu(f oo, X).
no

You shoulddefinethis predicaten threedifferentways:

(a) First(andeasiestyrite it with the helpof = and\ +.

(b) Secondwrite it with thehelpof =, but don't use\ +.

(c) Third, write it usinga cut-fail combination.Don’t use= anddon' use\+.
2. Defineapredicateuni fi abl e(Li st 1, Ter m Li st 2) whereLi st 2 is thelist of

all member®fLi st 1 thatmatchTer m , but arenotinstantiatedy thematching.
For example,
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uni fiable([X b,t(Y)],t(a), List]
shouldyield
List = [Xt(V].

Notethatx andy arestill notinstantiated Sothetricky partis: how dowe check
thatthey matchwith t (a) withoutinstantiatingthem?(Hint: considerusingthe
test\+ (ternl = tern®). Why? Think aboutit. You mightalsolike to think
aboutthetest\ +(\ + (ternl = tern2)).)
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Database Manipulation and Collecting
Solutions

Thislecturehastwo maingoals:

1. Todiscusdatabasenanipulationin Prolog.

2. To discussnbuilt predicateghatlet us collectall solutionsto a probleminto a
singlelist.

11.1 Database manipulation
Prologhasfour databasenanipulationcommandsassertyetract,assertaandassertz.
Let's seehow theseareused.Supposeve startwith anemptydatabaseSoif we give
thecommand:

I'isting.

we simply getayes thelisting (of course)s empty

Supposeve now give thiscommand:
assert (happy(ma)).

It succeedgassert commandsalwayssucceed).But whatis importantis not that it
succeedsyut theside-efect it hasonthedatabaself we now give thecommand:

listing.
we getthelisting:
happy(m a) .

Thatis, thedatabasés nolongerempty:it now containghefactwe asserted.

Supposeave thenmadefour moreassercommands:
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assert (happy(vincent)).
yes

assert (happy(marcel | us)).
yes

assert (happy(butch)).
yes

assert (happy(vincent)).
yes

Supposeave thenaskfor alisting:
I'isting.

happy(m a) .
happy(vi ncent).
happy(marcel | us).
happy(but ch).
happy(vi ncent).
yes

All thefactswe asserte@renow in the knowledgebase.Notethathappy(vi ncent)
is in theknowledgebasetwice. As we assertedt twice, this seemssensible.

Sofar, we have only assertedactsinto the databasebut we canasseriew rulesas
well. Supposeave wantto assertherule thateveryonewho is hapyy is naive. Thatis,
supposeave wantto asserthat:

nai ve(X) :- happy(X)

We cando this asfollows:

assert( (naive(X) :- happy(X)) )

Note the syntaxof this command:the rule we are assertingis enclosedn a pair of
bradeets If we now askfor alisting we get:

happy(m a) .
happy(vi ncent).
happy(mar cel | us).
happy(but ch).
happy(vi ncent).

nai ve(A) :-
happy (A) .
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Now thatwe know how to asserinew informationinto the databasewe needto know
how to remorve thingsform the databasevhenwe no longerneedthem. Thereis an
inversepredicateto asser t, namelyr et ract . For example,if we go straighton and
give thecommand:

retract (happy(marcel lus)).

andthenlist the databasave get:

happy(m a) .
happy(vi ncent).
happy(but ch).
happy(vi ncent).

nai ve(A) :-
happy (A) .

Thatis, thefacthappy( mar cel | us) hasbeenremoved. Supposeve goonfurther, and
say

retract (happy(vincent)).

andthenaskfor alisting. We get:

happy(mi a) .
happy(but ch).
happy(vi ncent).

nai ve(A) :-
happy (A) .

Note thatthefirst occurrencef happy(vi ncent) (andonly thefirst occurrencejvas
removed.

To remove all of our assertionsve canusea variable:

retract (happy(X)).

X

ma ;

X

butch ;

X = vincent ;
no
A listing revealsthatthe databasés now empty:

listing.
yes
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If we wanta more control over wherethe assertednaterialis placed,thereare two
variantsof assertpnamely:

1. assertzPlacesassertedanaterialatthe endof thedatabase.

2. assertaPlacesasserteanaterialat the beginning of the database.

For example,supposeve startwith anemptydatabaseandthenwe give thefollowing
command:

assert( p(b) ), assertz( p(c) ), asserta( p(a) ).

Thenalisting revealsthatwe now have thefollowing database:

p(a).
p(b).
p(c).
yes

Databasemanipulationis a usefultechnique. It is especiallyuseful for storingthe
resultsto computationssothatif we needto askthe sameqguestionin future,we don't
needto redothe work: we just look up the assertedact. This techniqueis called
‘memoization’,or ‘caching’.

Heres a simple example. We createan addition table for adding digits by using
databasenanipulation.

addi tiontabl e(A) :-
nmenber (B, A),
menber (C, A),
Dis B+C,
assert (sum B, C, D)),
fail.

(Herenenber / 2 is the standardnembershigpredicatewhich testsfor membershipn
alist.)

What doesthis programdo? It takesa list of numbersA, usesnmenber to selecttwo
numbersdB andC off thislist, andthenaddsB andC togethercallingtheresultD. Now
for the importantbit. It thenassertghe factthatit hasdiscovered(namelythatD is
thesumof A andB), andthenfails. Why do we wantit to fail? Becausave wantto
force backtracking!Becauset hasfailed, Prologwill backtrackio menber (C, A) and
choosea new valuefor C, addthis new C to B two createa new D, andthenassert
this new fact. it will thenfail again. This repeatedailurewill force Prologto find all
valuesfor menber (B, A) andnmenber (C, A), andaddtogetherand assertall possible
combinations.

For example ,whenwe give Prologthe command

additiontable([0,1,2,3,4,5,6,7,8,9])
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It will comebackandsayNo. But it's not this responsehatinterestsus, its the side-
effect on the databasehat’s important. If we now askfor a listing we seethat the
databas@ow contains

sun( 0, 0, 0).
sun(0,1,1).
sum(0, 2, 2).
sun(0, 3, 3).
sun( 0, 4, 4).
sun(0,5,5).
sun( 0, 6, 6).
sum(0,7,7).
sun( 0, 8, 8).
sun(0,9,9).
sun(1,0,1).
sum(1,1,2).
sunm(1, 2, 3).
sun(1l, 3,4).
sunm(1,4,5).
sun(1,5,6).
sunm(1,6,7).
sunm(1,7,8).
sun(1,8,9).
sun(1, 9, 10).

Question:how dowe remove all thesenew factswhenwe nolongerwantthem?After
all, if we simply give thecommand

retract (sum(X, Y, 2)).

Prologis goingto gothroughall 100factsandaskuswhetheme wantto remosethem!
But theres amuchsimplerway. Usethecommand

retract (sum(_, _, )),fail.

Again, the purposeof thef ai | is to force backtracking.Prologremovesthefirst fact
aboutsumin the databaseandthenfails. Soit backtracksandremovesthe next fact
aboutsum. Soit backtracksagain,removesthe third, andso on. Eventually (after it

hasremovedall 100items)it will fail completelyandsayNo. But we're notinterested
in what Prolog says,we're interestedn whatit does. All we careaboutis thatthe
databas@ow containsno factsaboutsum

To concludeour discussiorof databasenanipulationa word of warning. Althoughit
canbea usefultechniquedatabasenanipulationcanleadto dirty, hardto understand,
code.If youuseit heaily in a programwith lots of backtrackingunderstandingvhat
is goingon canbe a nightmare.It is a non-declaratie, nonlogical, featureof Prolog
thatshouldbe usedcautiously
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11.2 Collecting solutions

Theremay be mary solutionsto a query For example,supposave areworking with
thedatabase

child(martha, charlotte).
child(charlotte, caroline).
child(caroline, |l aura).
chil d(laura,rose).

descend(X,Y) :- child(XY).

descend(X, Y) :- child(X 2),
descend(Z,Y).

Thenif we posethequery
descend(mart ha, X) .

therearefour solutions(namelyx=char | ot t e, X=car ol i ne, X=I aur a, andx=r ose).

However Prolog generateshesesolutionsone by one. Sometimesve would like to
have all the solutionsto a query and we would like them handedto us in a neat,
usableform. Prologhasthreebuilt-in predicateshatdothis: findall, bagof,andsetof.
Basicallythesepredicate<ollectall the solutionsto aqueryandputthemin alist, but
thereareimportantdifferencedetweerthem,aswe shallsee.

11.2.1 findall/3
Thequery
findall (Qoject, Goal , List).
producesalist Li st of all theobjectsj ect thatsatisfythegoalGoal . Oftenoj ect

is simply avariable,in which casethe querycanbereadas: Give mea list containing
all theinstantiationsof j ect which satisfyGoal .

Heres anexample. Supposeave’re working with the above databaséthatis, with the
informationaboutchi | d andthedefinitionof descend). Thenif we posethequery

findall (X, descend(martha, X), Z).

weareaskingfor alist z containingall thevaluesof X thatsatisfydescend( nart ha, X).
Prologwill respond

X
z

7489
[charl otte, caroline, | aura,rose]

But oj ect doesnt haveto beavariable,it mayjustcontainavariablethatis in Goal .
For example,we might decidethatwe wantto build a nev predicatef r omvart ha/ 1
thatis trueonly of descendantsf Martha.We coulddo this with the query:
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findall (fromvartha(X), descend(martha, X), Z).

Thatis, we are askingfor a list z containingall the valuesof f r onvar t ha( X) that
satisfythegoaldescend(mart ha, X). Prologwill respond

X
z

_7616
[fromvartha(charl otte), fromvart ha(caroline),
fromvart ha(l aura), fromvart ha(rose) ]

Notethatfor fi ndal I to do usefulwork, its first two agumentshave to have (atleast
one)variablein common.For example,thequery

findall (Y, descend(martha, X), Z).

yields nothinguseful. Whenwe usef i ndal | (or indeed,bagof andset of ) thefirst
two aguments'talk to eachother”via their sharedvariables.

11.2.2 bagof/3

Thefindal | / 3 predicatds useful,butin certainrespectst is rathercrude.For exam-
ple, supposeve posethe query

findall (Child, descend( Mt her, Child), List).
We gettheresponse

Child = 6947
Mot her = _6951
List = [charlotte, caroline, | aura,rose,caroline,laura,rose,laura,rose,rose]

Now, thisis correct,but sometimest would be usefulif we hada separatdist for each
of thedifferentinstantiationsf Mot her .

Thisis whatbagof letsusdo. If we posethe query
bagof (Chi | d, descend( Mot her, Chi l d), Li st).
we gettheresponse

Child = 7736
Mot her = caroline
List = [laura,rose] ;

Child = 7736
Mot her = charlotte
List = [caroline,laura,rose]

Child = 7736
Mot her = |aura
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List = [rose] ;

Child = _7736
Mot her = mart ha
List = [charlotte, caroline, | aura,rose] ;

no

Thatis, bagof is morefinegrainedthanf i ndal |, it givesusthe opportunityto extract
theinformationwe wantin a morestructuredway. Moreover, bagof canalsodo the
samegob asf i ndal |, with thehelpof a specialpieceof syntax.If we posethequery

bagof (Chi | d, Mot her ~ descend( Mot her, Child), List).

Thissays:givemealist of all thevaluesof ¢hi | d sudthatdescend( Mot her, Chi | d),
and put theresultin a list, but dont worry aboutgeneating a sepaate list for eath
valueof Mot her. Soposingthis queryyields:

Child = _7870
Mot her = _7874
List = [charlotte, caroline, | aura,rose,caroline,laura,rose,laura,rose,rose]

Note that this is exactly the responsehatf i ndal I would have givenus. So, strictly
speakingwe don't really needf i ndal | atall: bagof canhandleall its work. Still, if
thisis thekind of queryyouwantto make (andit oftenis) it's simplerto usef i ndal | ,
becaus¢henyou dont have to botherexplicitly write down the conditionsusing”.

Onefinal remark.Consideragainthe query
bagof (Chi | d, descend( Mot her, Chi |l d), Li st).

As we sav above, this hasfour solutions.But, onceagain,Prologgenerateshemone
by one.Wouldnt it be niceif we couldcollectthemall into onelist?

And, of coursewe can.Thesimplestwayis to usef i ndal | . Thequery
findall (List, bagof (Child, descend( Mt her, Child), List), Z2).
collectsall of bagof ’s responsemto onelist:
List = _8293
Child = _8297
Mot her = 8301
Z = [[laura,rose],[caroline,|aura,rose],[rose],

[charlotte, caroline, | aura, rose]]

Anotherway to do it is with bagof :
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bagof (List,Child ~ Mther " bagof (Child, descend( Mt her, Child), List), 2).

List = _2648

Child = _2652

Mot her = _2655

Z = [[laura,rose],[caroline,|laura,rose],[rose],
[charlotte, caroline, | aura, rose]]

Now, this may not be the sortof thing you needto do very often, but it doesshaw the
flexibility andpower offeredby thesepredicates.

11.2.3 setof/3

Theset of / 3 predicatds basicallythe sameasbagof , but with oneusefuldifference:
thelistsit containsareordered andcontainnoredundanciegthatis, eachitemappears
in thelist only once).

For example,supposeve have thefollowing database

age(harry, 13).
age(draco, 14).
age(ron, 13).
age(herm one, 13).
age(dunbl edor e, 60).
age(hagrid, 30).

Now supposewne wanta list of everyonewhoseageis recordedn the database We
candothiswith thequery:

f

ndal | ( X, age( X, Y), CQut).

X = 8443
Y = _8448
Qut = [harry, draco, ron, her ni one, dunbl edor e, hagri d]

But maybewe wouldlik e thelist to be ordered We canachieve thiswith thefollowing
query:

setof (X, Y ~ age(X Y),Qut).

(Notethat,justlike withbagof , we have to tell set of notto generateseparatdists for
eachvalueof v, andagainwe do thiswith the” symbol.)

This queryyields:
X = _8711
Y = _8715

Qut = [draco, dunbl edor e, hagri d, harry, herm one, ron]
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11.3

Notethatthelist is alphabeticallyordered.

Now supposeve areinterestedn collectingtogetherall the ageswhich arerecorded
in thedatabaseOf coursewe cando this with thefollowing query:

findall (Y, age(X Y),Qut).

Y = 8847
X = 8851
Qut = [13, 14, 13, 13, 60, 30]

But this outputis rathermessy It is unorderedand containsrepetitions. By using
set of we getthesamenformationin anicerform:

setof (Y, X N age(X Y),Qut).
Y = _8981

X = 8985
out = [13, 14, 30, 60]

Betweenthem,thesethreepredicatesffer usa lot of flexibility. For mary purposes,
all we needis fi ndal | . Butif we needmore,bagof andset of aretherewaiting to
helpusout.

Implementing findall/3

In this lecturewe have discussedwo topics: databasenanipulationandcollectingso-
lutions. And if you think aboutit, youwill seethattheseideashave alot in common:
assertingstuff into the databaseés a way of collectingsolutions(exceptwe collectit
into the databasenot into a list). And aswe shallnow see,we canusethe database
manipulatiorpredicateso definef i ndal | . Actually, fi ndal | (andbagof andset of )
shouldcomehbuilt in aspartof ary Prologimplementationso you shouldnt have to
definethemyourself. But it is goodto understanchow you could implementthem
yourselfif you neededo: it will teachyou moreaboutPrologandhow to useit effec-
tively. Theprogrammingstyleinvolvedis quitedifferentfrom whatwe've seensofar:
it's a style of programminghatis often called metaprogrammingyecauset involves
alot of termmanipulation.

Heres whatwe’ll do. We’'ll implementa predicatecallednyfi ndal | . This will do
the samejob asthe inbuilt fi ndal | predicate. Now, in orderto defineit, we will
have to malke useof one otherinbuilt Prolog predicate,namelycal | / 1. Basically
cal | (CGoal ) succeedsf andonly if Goal succeeds.For example,in our previous
databas¢hegoal

age(herm one, 13).
succeedghussowill

cal | (age(herm one, 13)).
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Thatcal | predicateis often calleda metapredicatéecausets job is to take another
termasargument,andseewhetheror not thatothertermwill succeedvhenusedasa
goal.

With the helpof cal | , the databasenanipulationpredicatess=, and!, it is possible
to definenyf i ndal I quite elegantly Whenreadingthe following code,the mostim-
portantthing to bearin mind is that j ect is meantto be, or to contain,oneof the
variablesin Goal .

nmyfi ndal | (Cbj ect, Gal , List) :-
call (Goal),
assert z(queue(Object)),
fail.

nmyfi ndal | (Cbj ect, Gal , List) :-
assert z(queue(bottom),
col l ect(List).

col lect(List) :-
retract (queue( X)), % take itemoff queue, and
I, % i mediately cut to prevent backtracking.

== bottom %if at bottom of queue....
I, % cut, to stop backtracking, and
List =[] %return the enpty list.
List = [X|Rest], %else add X to head of |ist
col | ect (Rest) % and recursively collect tail.

Let'sgothroughit. Let'sfirst look atwhatthefirst partof thecodedoes thatis:

nyfindal | (Obj ect, Gal, List) :-
call (Goal),
assert z(queue(Object)),
fail.

We first usecal | to seeif Goal succeed®r not.. If Goal doessucceedwe getin-
stantiationfor Cbj ect (rememberwhenwe usenyfi ndal |, thenbj ect will either
beavariablein Goal , orit will containa variablethatoccursin Goal ). We asserthe
new factaboutnj ect attheendof the databaseWe've choserthefunctorqueue to
to mark this information, but theres nothingspecialaboutthis choice: we could use
f 0o, Or bl ob, or arythingwe like. Oncewe've assertedhis fact,we fail. Thefail isto
force backtrackingit forcesPrologtry andresatisfyGoal . If thisis possiblewe geta
secondsolution,andthisis alsoassertedAgain we fail, andtry to resatisfyGoal , and
soon,andsoon. In thisway, Prologwill eventuallygeneratall solutions.

Eventually we've generatedll thepossiblesolutionsfor Goal , sowefail onelasttime.
Prologthengoesinto this clause:
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nyfindal | (Obj ect, Gal, List) :-
assertz(queue(bottom),
col l ect(List).

This assertsa specialfact: queue(bot t om). This marksthe end of the list of newly
assertedacts. (Theres nothing specialaboutthe atom bot t onf we could useary
marker we like.) Thusatthis stagethe databaséooks somethindikee this:

queue(Ohj ect1).
queue( oj ect 2) .

queue( hj ect Last) .
queue(bottom

The predicatecol | ect is a neatbit of codewhich readsthroughthesefacts, puts
themin alist, andretractsthem(we wantto leave the databaseidy: we dont wantto
leave old stuff lying around!). Studythis carefully with the help of thecomments.In
particular think carefullyaboutthefollowing partof thecode:

X == bottom % if at bottom of queue....

I, % cut, to stop backtracking, and
List =[] %return the enpty Ilist.

List = [ X Rest], %else add X to head of Iist

col |l ect (Rest) % and recursively collect tail.

Thisis essentiallyanif ... then... elseconstructionNremembethat; meansor’).

11.4 Exercises
Exercise 11.1 Supposevestartwith anemptydatabaseWethengivethecommand:
assert(q(a, b)), assertz(qg(l,2)), asserta(q(foo,blug)).

Whatdoesthe databasenowcontain?

We thengivethe command:

retract(q(1,2)), assertz( (p(X) :- h(X)) ).
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Whatdoesthe databasenowcontain?

We thengivethecommand:
retract(q(_,_)),fal.

Whatdoesthe databasenowcontain?

Exercise 11.2 Supposeave havethefollowing database:

q( bl ob, bl ug) .
g( bl ob, bl ag) .
g(bl ob, blig).
g( bl af , bl ag) .
g(dang, dong) .
g(dang, bl ug) .
q(fl ab, bl ob) .

Whatis Prolog’s responséo the queries:

findall(X,q(blob,X),List).
findall(X,q(X,blug),List).

1.
2.
3. findall(X,q(X,Y),List).
4. bagof(X,q(X,Y),List).
5.

setof(X,Y*gq(X,Y),List).

Exercise 11.3 Writea predicatesi gna/ 2 thattakesaninteger n > 0 andcalculates
thesumof all intergers fromlton. E.g

?- sigma(3, X
X =26

yes

?- sigma(5, X
X =15

yes

Write the predicatesud thatresultsare storedin the databasgof coursethere should
alwaysbe no more than oneresultentry in the databasefor eat value)and reused
wheneer possible So,for example:

?- sigma(2, X)
X =3

yes

?- listing.
sigmares(2,3).

Whenwethenaskthe query
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?- sigma(3, X

Prolog will not calculateeverythingnew, but will gettheresultfor si gma( 2, 3) from
the databaseandonly add 3 to that. Prolog will answer:

X =6

yes

?- listing.
sigmares(2,3).
si gmares(3, 6).

11.5 Practical Session 11

Herearesomeprogrammingexercises:

1. Setscanbethoughtof aslists thatdont containary repeatedlements For ex-

ample,[ a, 4, 6] isaset,but[a, 4, 6, a] is not (asit containstwo occurrences
of a) . Write a Prolog programsubset / 2 thatis satisfiedwhenthe first argu-
mentis a subsebf the secondaigument(thatis, whenevery elementof thefirst
argumentis amemberof the secondargument).For example:

subset([a, b],[a, b, c])

yes

subset([c,b],[a, b, c])
yes

subset ([]1,[a, b, c])
yes.

Your programshouldbe capableof generatingall subsetsof an input set by
bactracking For example,if you give it asinput

subset (X, [a, b, c])

it shouldsuccesiely generatall eightsubset®f [ a, b, c] .

. Usingthesubset predicateyou have justwritten, andf i ndal | , write a predi-

catepowver set / 2 thattakesa setasits first amument,andreturnsthe powerset
of this setasthe secondamgument. (The powersetof a setis the setof all its
subsets.Jor example:

power set ([ a, b, c], P)

shouldreturn
P =[[].[a]l.[b].[c].[ab],[a c],[b,c],[a b, c]]

it doesnt matterif the setsarereturnedin someotherorder For example,
P =[[a],[b].[c].[a b,c].[].[a b],[a c],[b,c]]

is fine too.
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Working With Files

Thislectureis concernedvith differentaspecof file handling.We will see

1. how predicatedefinitionscanbe spreadacrosdifferentfiles

2. how to write resultsto files andhow to readinputfrom files

12.1 Splitting Programs Over Files

By now, you have seenandyou hadto write lots of programsthat usethe predicates
append andmenber. Whatyou probablydid eachtime you neededne of themwas
to go backto the definition andcopy it over into the file whereyou wantedto useit.
And maybe,after having donethata coupleof times,you startedthinking thatit was
actually quite annging thatyou hadto copy the samepredicatedefinitionsover and
overagainandthatit wouldbealot nicerif you coulddefinethemsomevhereonceand
for all andthenjust accesshatdefinition wheneer you neededt. Well, thatsounds
like a pretty sensiblething to askfor and, of course Prologoffers you waysof doing
it.

12.1.1 Reading in Programs

In fact, you alreadyknow a way of telling Prologto readin predicatedefinitionsthat
arestoredin afile. Right! [ Fi | eNanel, Fi | eNane2] . Youhave beenusingqueriesof
thatform all thetime to tell Prologto consultfiles. By putting

:- [Fil eNanel, Fi | eNane2] .

atthetop of afile, you cantell Prologto consultthefilesin the squarebracletsbefore
readingin therestof thefile.

So,supposehatyou keepall predicatedefinitionsthat have to do with basiclist pro-
cessingsuchasappend, menber, rever se etc.,in afile called! i st predi cat es. pl.
If youwantto usethem,you just put

:- [listpredicates].
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at the top of thefile you wantto usethemin. Prologwill consultl i st predi cat es,
whenreadingin thatfile, sothatall predicatedefinitionsin | i st pr edi cat es become
available.

On encounteringsomethingof theform : - [fil e, anotherfile], Prologjust goes
aheadandconsultsthe files without checkingwhetherthe file really needso be con-
sulted.If, for example thepredicatedefinitionsprovided by oneof thefilesarealready
available ,becausé alreadywasconsultednce Prologstill consultst again,overwrit-
ing the definitionsin the databaseTheinbuilt predicatesnsur e_| oaded/ 1 behaesa
bit morecleverin this caseandit is whatyou shouldusuallyuseto load predicatedef-
initions givenin someotherfile into your program.ensur e_| oaded basicallyworks
asfollows: On encounteringhefollowing directive

:- ensure_|l oaded([listpredicates]).

Prologcheckswhetherthefile | i st predi cat es. pl hasalreadybeenloaded.If not,
Prologloadsit. If it alreadyis loadedin, Prologcheckswhetherit haschangedsince
lastloadingit andif thatis the case Prologloadsit, if not, it doesnt do arything and
goeson processinghe program.

12.1.2 Modules

Now, imaginethat you are writing a programthat needstwo predicates et’'s say
predl/ 2 andpred2/ 2. You have a definition for pred1 in thefile predsi1. pI and
adefinitionof pr ed2 in thefile preds2. pl . No problem,you think, I'll justloadthem
into my programby putting

:- [predsl, preds?].

at the top of thefile. Unfortunately thereseemto be problemsthis time. You geta
messagé¢hatlooks somethindik e thefollowing:

{consulting /altroll/export/home/ MP/ kris/predsl.pl...}
{laltroll/export/home/ MP/ kris/predsl.pl consulted, 10 nmsec 296 bytes}
{consulting /altroll/export/home/ MP/ kri s/ preds2.pl...}
The procedure hel perpred/2 is being redefined.

ad file: /altroll/export/home/ MP/ kri s/ predsl. pl

New file: /altroll/export/home/ MP/ kris/preds2. pl
Do you really want to redefine it? (y, n, p, or ?)

So what hashappened?Well, it looks asif both files preds1. pl andpreds2. pl
aredefiningthe predicatenel per pred. And what's worse,you cant be surethatthe
predicatas definedin thesamewayin bothfiles. So,youcant justsay"yes,override”,
sincepr ed1l dependwon the definition of hel per pred givenin file preds1. pl and
pr ed2 depend®on the definitiongivenin file preds2. pl . Furthermorenotethatyou
arenotreally interestedn the definition of hel per pred atall. Youdon't wantto use
it. Thepredicateshatyou areinterestedn, thatyouwantto usearepr ed1 andpr ed2.
They needdefinitionsof hel per pr ed, but therestof your programdoesit.
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A solutionto this problemis to turnpr eds1. pl andpreds2. pl into modulesHereis
whatthis meansandhow it works:

Modulesessentiallyallow youto hide predicatedefinitions.You areallowedto decide
which predicateshouldbe public, i.e. callablefrom otherpartsof the program,and
which predicateshouldbeprivate, i.e. callableonly from within themodule.Youwill
notbeableto call privatepredicate$rom outsidethemodulein whichthey aredefined,
but therewill alsobeno conflictsif two modulesinternally definethe samepredicate.
In our example. hel per pred is a good candidatefor becominga private predicate,
sinceit is only usedasa helperpredicatdan thedefinitionof pr ed1 andpr ed2.

You canturnafile into amoduleby puttinga moduledeclaratioratthetop of thatfile.
Moduledeclarationsreof theform

;- nodul e( Mbdul eNane, Li st _of _Predi cates_t o_be_Exported)

They specify the nameof the moduleandthe list of public predicates.That s, the
list of predicateghat onewantsto export Thesewill bethe only predicateshatare
accessiblérom outsidethemodule.

So,by putting
:- nodul e(predsl, [predl/2]).

at the top of file preds1. pI you candefinethe modulepreds1 which exportsthe
predicatepr ed1/ 2. And similarly, you candefinethe modulepr eds2 exporting the
predicatepr ed2/ 2 by putting

:- nodul e(preds2, [pred2/3]).

atthetop of file preds2. pl . hel per pred is now hiddenin the modulespr eds1 and
preds2, sothatthereis no clashwhenloadingbothmodulesat the sametime.

Modulescanbeloadedwith theinbuilt predicateise_nodul e/ 1. Putting: - use_nodul e(predsl).
atthetop of afile will importall predicateshatweredefinedaspublic by themodule.
Thatmeansall public predicatesill beaccessibleccessible.

If you dont needall public predicatef a module,but only someof them,you can
usethe two-placeversionof use_nodul e, which takesthelist of predicateghatyou
wantto importasits secondargument.So, by putting

:- use_nodul e(predsl,[predl/2]),
use_nodul e(preds2,[pred2/3]).

atthetop of your file, you will be ableto usepredl andpred2. Of course,you can
only import predicateshatarealsoexportedby therelevantmodule.
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12.1.3 Libraries

Many of the very commonpredicatesare actually predefinedn mostPrologimple-
mentationgn oneway or another If you have beenusing SWI Prolog,for example,
youwill probablyhave noticedthatthingslike append andmenber arebuilt in. That's
a specialtyof SWI, however. Other Prologimplementations|ike Sicstusfor exam-
ple, dont have thembuilt in. But they usually comewith a setof |i brari es, i.e.
modulesdefiningcommonpredicatesTheselibrariescanbeloadedusingthe normal
commanddor importing modules.Whenspecifyingthe nameof the library thatyou
wantto use,you have to tell Prologthatthis moduleis alibrary, sothat Prologknows
whereto look for it (hamely notin the directorywhereyour othercodeis, but at the
placewherePrologkeepsits libraries). Putting

;- use_nodul e(library(lists)).

at the top of your file, for instancetells Prologto load a library called!ists. In
Sicstusthislibrary providesbasiclist processingredicates.

So, libraries can be pretty usefuland they cansafeyou a lot of work. Note, how-
ever, thattheway librariesare organizedandthe inventoryof predicategprovided by
libraries are by no meansstandardizedicrossdifferent Prologimplementations.In
fact, the library systemamay differ quite a bit. So, if you wantyour programto run
with differentPrologimplementationsit might be easierandfasterto defineyour own
library modules(using the techniqueghat we saw in the last section)thanto try to
work aroundall theincompatibilitiesbetweenthe library systemsof differentProlog
implementations.

12.2 Writing To and Reading From Files

Now, thatwe have learnedhow to load programdrom differentfiles, we wantto look
atwriting resultsto files andreadingin inputfrom files in this section.

Beforewe cando ary readingof or writing to thefile, we have to openit andassociate
ast reamwith it. Youcanthink of streamsasconnectiongo files. Stream$iave names
thatlook like this, for instance:’ $stream (183368). You heedthesenameswhen
specifyingwhich streamto write to or readfrom. Luckily, you never really have to
worry aboutthe exact namesof streams.Prolog assignghemthesenamesandyou
usuallyjust bind themto a variableandthen passthis variablearound. We’'ll seean
examplesoon.

Theinbuilt predicateopen/ 3 opensafile andconnectst to a stream.
open( +Fi | eNane, +Mode, - St r eam)

The first agumentof open is the nameof the file, andin the last agument,Prolog
returnsthe namethatit assigngo the stream.Modeis oneof read, wri t e, append.
r ead meanghatthefile is openedor reading,andwr i t e andappend both openthe
file for writing. In bothcasesthefile is createdif it doesnt exist, yet. If it doesexist,
however, wri t e will causehefile to be overwritten,while append appendverything
attheendof thefile.
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Whenyou arefinishedwith thefile, you shouldcloseit again. Thatis donewith the
following predicatewhereStreamis the nameof a Streamasassignedy Prolog.

cl ose(Stream

So,programghatarewriting to or readingfrom files will typically have thefollowing
structure:

open(nyfile, wite, Stream,
do sonet hi ng

cl ose(Stream,

The predicategor actuallywriting thingsto a streamarealmostthe sameasthe ones
we saw in Chapter9 for writing to thescreenWe havewri t e, t ab, andnl . Theonly
thing that’s differentis that we alwaysgive the streamthatwe wantto write to asthe
firstagument.

Hereis a pieceof codethatopensafile for writing, writes somethingo it, andcloses
it again.

?- open(hogwarts,wite, 0S),
tab(Cs, 7),wite(CS gryffindor),nl (0S),
wite(CS, hufflepuff),tab(C0s,5),wite(CS, ravencl aw), nl (0OS),
tab(Cs, 7),wite(CS, slytherin),
cl ose(0S).

Thefile hogwar t s shouldafterwardslook lik e this:

gryffindor
huf f | epuf f ravencl aw
slytherin

Finally, thereis atwo-placepredicatefor readingin termsfrom astream. ead always
looksfor the next termon the streamandreadsit in.

read(+Stream +Term

The inbuilt predicateat _end_of _st r eam checkswhetherthe end of a streamhas
beenreached.at _end_of stream(Stream will evaluateto true, whenthe end of
the streamst r eamis reachedj.e. whenall termsin the correspondindile have been
read.

Note,thatr ead only readdn Prologterms.If youwantto readin arbitraryinput, things
becomea bit more ugly. You have to readit charactery character The predicate
thatyou needis get 0( +St r eam - Char). It readsthe next characterfrom the stream
+St ream Char is theinteger codeof the character Thatmeanghatget 0 returns97,
if thenext characteis a, for instance.

Usually we are not interestedn theseinteger codes,but in the charactersor rather
the atomsthat are madeup of a list of characters.Well, you can usethe predicate
at om char s/ 2 to corvert alist of integersinto the correspondingtom. The first ar

gumentof at om char s/ 2 is theatomandthe secondhelist of integers.For example:
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?- atomchars(W/[ 113,105, 100, 100, 105, 116, 99, 104]).
W = quidditch

Hereis the codefor readingin aword from a stream.It readsin a characteandthen
checkswhetherthis characteis a blank, a carriagereturnor the endof the stream.In
ary of thesecasea completeword hasbeenread,otherwisethe next characteis read.

readWrd(I nStreamWw : -
get O(I nStream Char),
checkChar AndReadRest ( Char, Chars, I nStrean),
atom chars(W Chars).

checkChar AndReadRest (10,[],_) :- !. % Return
checkChar AndReadRest (32,[],_) :- !. % Space
checkChar AndReadRest (-1,[],_) :- !. %End of Stream

checkChar AndReadRest (end_of _file,[],_) :- I.

checkChar AndReadRest ( Char, [ Char| Chars], InStream) : -
get O( I nSt r eam Next Char),
checkChar AndReadRest ( Next Char, Chars, I nStrean).

12.3 Practical Session

In this practicalsessionye wantto combinewhatwe learnedodaywith somebitsand
piecesthatwe metearlierin the course.The goalis to write a programfor runninga
DCG grammaron a testsuite sothatthe performancef the grammarcanbe checled.
A testsuitds afile thatcontaindots of possibleinputsfor a program,in our caseafile
thatcontaindots of listsrepresentingrammaticabr ungrammaticatentencesuchas
[t he, worman, shoot s, the, cow, under, t he, shower] or[ hi m shoot s, wonan]. The
testprogramshouldtake this file, run the grammaron eachof the sentenceandstore
the resultsin anotherfile. We canthenlook at the outputfile to checkwhetherthe
grammaransweredverywherethe way it should. Whendevelopinggrammarstest-
suiteslike this are extremely useful to make surethat the changesve male to the
grammardon't have ary unwantedeffects.

12.3.1 Step 1

Take the DCG that you built in the practicalsessionof Chapter8 andturn it into a
module,exporting the predicates/ 3, i.e. the predicatethatlet’s you parsesentences
andreturnsthe parsetreein its first agument.

12.3.2 Step 2

In the practicalsessiornof Chapter9, you hadto write a programfor pretty printing
parsetreesontothescreen.Turnthatinto amoduleaswell.

12.3.3 Step 3

Now, modify the program,so that it prints the tree not to the screenbut to a given
stream. That meansthat the predicateppt r ee shouldnow be a two-placepredicate
takingthe Prologrepresentationf a parsetreeanda streamasarguments.
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12.3.4 Step 4

Importbothmodulednto afile anddefineatwo-placepredicate est whichtakesalist
representing sentencésuchas| a, woman, shoot s]), parsest andwritesthe result
to thefile specifiedby the secondargumentof t est . Checkthateverythingis working

asit should.

12.35 Step 5

Finally, modify t est / 2, sothatit takes a filenameinsteadof a sentenceasits first
amgumentandthenreadsin the sentencegivenin thefile oneby one,parsegshemand
writesthe sentencaswell asthe parsingresultinto the outputfile. If, e.g,yourinput

file lookedlik e this:

[t he, cow, under,t he, t abl e, shoot s] .
[ a, dead, worman, | i kes, he] .
the outputfile shouldlook similarto this:

[the, cow, under, the, table, shoots]

s(

np(
det (t he)

nbar (
n(cow))

pp(
prep(under)

np(
det (t he)
nbar (

n(table)))))
vp(

v(shoots)))
[a, dead, woman, |ikes, he]
no

12.3.6 Step 6

Now, if you arein for somereal Prolog hacking,try to write a modulethat readsin
sentenceterminatedy afull stopor aline breakfrom afile, sothatyou cangive your

testsuiteas

the cow under the table shoots

a dead wonan |i kes he
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insteadof

[t he, cow, under,t he, t abl e, shoot s] .

[ a, dead, wonan, | i kes, he] .



