
Learn Prolog Now!

Patric k Blackburn
Johan Bos

Kristina Striegnitz

Copyright c
�

by Patrick Blackburn,JohanBosandKristinaStriegnitz,2001
patrick@aplog.org

jbos@cogsci.ed.ac.uk
kris@coli.uni-sb.de

Thiscourseis alsoavailableonline:

http://www.coli.uni-sb.de/ kris/learn-prolog-now

Contents

1 Facts, Rules, and Queries 1

1.1 Some simple examples . 1

1.1.1 Knowledge Base 1 . 1

1.1.2 Knowledge Base 2 . 3

1.1.3 Knowledge Base 3 . 4

1.1.4 Knowledge Base 4 . 6

1.1.5 Knowledge Base 5 . 8

1.2 Prolog Syntax . 9

1.2.1 Atoms . 9

1.2.2 Numbers . 9

1.2.3 Variables . 10

1.2.4 Complex terms . 10

1.3 Exercises . 11

1.4 Practical Session 1 . 13

2 Matching and Proof Search 17

2.1 Matching . 17

2.1.1 Examples . 18

2.1.2 The occurs check . 21

2.1.3 Programming with matching 22

2.2 Proof Search . 24

2.3 Exercises . 27

2.4 Practical Session 2 . 29

3 Recur sion 33

3.1 Recursive definitions . 33

3.1.1 Example 1: More Expensive 33

3.1.2 Example 2: Descendant 36

3.1.3 Example 3: Successor . 39

3.2 Rule ordering, clause ordering, and termination 41

3.3 Exercises . 43

3.4 Practical Session 3 . 43

4 Lists 47

4.1 Lists . 47

4.2 Member . 51

4.3 Recursing down lists . 53

4.4 Exercises . 56

4.5 Practical Session 4 . 58

5 Arithmetic 61

5.1 Arithmetic in Prolog . 61

5.2 A closer look . 63

5.3 Arithmetic and lists . 65

5.4 Comparing integers . 66

5.5 Exercises . 70

5.6 Practical Session 5 . 71

6 More Lists 73

6.1 Append . 73

6.1.1 Defining append . 74

6.1.2 Using append . 76

6.2 Reversing a list . 78

6.2.1 Naive reverse using append 79

6.2.2 Reverse using an accumulator 79

6.3 Exercises . 80

6.4 Practical Session 6 . 82

7 Definite Clause Grammar s 85

7.1 Context free grammars . 85

7.1.1 CFG recognition using append 87

7.1.2 CFG recognition using difference lists 89

7.2 Definite clause grammars . 91

7.2.1 A first example . 92

7.2.2 Adding recursive rules . 94

7.2.3 A DCG for a simple formal language 95

7.3 Exercises . 96

7.4 Practical Session 7 . 97

8 More Definite Clause Grammar s 99

8.1 Extra arguments . 99

8.1.1 Context free grammars with features 99

8.1.2 Building parse trees . 104

8.1.3 Beyond context free languages 107

8.2 Extra tests . 108

8.2.1 Separating rules and lexicon 109

8.3 Concluding remarks . 111

8.4 Exercises . 112

8.5 Practical Session 8 . 112

9 A Closer Look at Terms 115

9.1 Comparing terms . 115

9.2 Terms with a special notation . 117

9.2.1 Arithmetic terms . 117

9.2.2 Lists as terms . 119

9.3 Examining Terms . 121

9.3.1 Types of Terms . 121

9.3.2 The Structure of Terms . 123

9.4 Operators . 126

9.4.1 Properties of operators . 126

9.4.2 Defining operators . 127

9.5 Exercises . 128

9.6 Practical Session . 130

10 Cuts and Negation 135

10.1 The cut . 135

10.2 Negation as failure . 141

10.3 Exercises . 144

10.4 Practical Session 10 . 145

11 Database Manipulation and Collecting Solutions 147

11.1 Database manipulation . 147

11.2 Collecting solutions . 152

11.2.1 findall/3 . 152

11.2.2 bagof/3 . 153

11.2.3 setof/3 . 155

11.3 Implementing findall/3 . 156

11.4 Exercises . 158

11.5 Practical Session 11 . 160

12 Working With Files 161

12.1 Splitting Programs Over Files . 161

12.1.1 Reading in Programs . 161

12.1.2 Modules . 162

12.1.3 Libraries . 164

12.2 Writing To and Reading From Files 164

12.3 Practical Session . 166

12.3.1 Step 1 . 166

12.3.2 Step 2 . 166

12.3.3 Step 3 . 166

12.3.4 Step 4 . 167

12.3.5 Step 5 . 167

12.3.6 Step 6 . 167

1

Facts, Rules, and Queries

This introductorylecturehastwo maingoals:

1. To givesomesimpleexamplesof Prologprograms.Thiswill introduceusto the
threebasicconstructsin Prolog: facts,rules,andqueries.It will alsointroduce
us to a numberof otherthemes,like therole of logic in Prolog,andtheideaof
performingmatchingwith theaid of variables.

2. To begin thesystematicstudyof Prologby definingterms,atoms,variablesand
othersyntacticconcepts.

1.1 Some simple examples

Thereareonly threebasicconstructsin Prolog: facts,rules,andqueries.A collection
of factsandrulesis calleda knowledgebase(or a database)andPrologprogramming
is all aboutwriting knowledgebases.Thatis, Prologprogramssimply are knowledge
bases,collectionsof factsandruleswhich describesomecollectionof relationships
thatwefind interesting.Sohow doweuseaPrologprogram?By posingqueries.That
is, by askingquestionsabouttheinformationstoredin theknowledgebase.Now this
probablysoundsratherstrange.It’s certainlynot obvious that it hasmuchto do with
programmingat all – afterall, isn’t programmingall abouttelling thecomputerwhat
to do? But aswe shall see,the Prologway of programmingmakesa lot of sense,at
leastfor certainkindsof applications(computationallinguisticsbeingoneof themost
importantexamples).But insteadof sayingmoreaboutPrologin generalterms,let’s
jump right in andstartwriting somesimpleknowledgebases;this is not just thebest
wayof learningProlog,it’s theonlyway ...

1.1.1 Kno wledg e Base 1

KnowledgeBase1 (KB1) is simply acollectionof facts.Factsareusedto statethings
that are unconditionallytrue of the domainof interest. For example,we can state
that Mia, Jody, andYolandaarewomen,andthat Jodyplaysair guitar, usingthe the
following four facts:

woman(mia).

woman(jody).

woman(yolanda).

playsAirGuitar(jody).

2 Chapter 1. Facts, Rules, and Queries

This collectionof factsis KB1. It is our first exampleof a Prologprogram.Notethat
thenamesmia, jody, andyolanda, andthepropertieswoman andplaysAirGuitar,
have beenwritten sothatthefirst letteris in lower-case.This is important;wewill see
why a little later.

How canwe useKB1? By posingqueries. That is, by askingquestionsaboutthe
informationKB1 contains.Herearesomeexamples.We canaskPrologwhetherMia
is awomanby posingthequery:

?- woman(mia).

Prologwill answer

yes

for the obvious reasonthat this is oneof the factsexplicitly recordedin KB1. Inci-
dentally, wedon’t typein the?-. This symbol(or somethinglike it, dependingon the
implementationof Prologyou areusing) is the promptsymbolthat the Prologinter-
preterdisplayswhenit is waiting to evaluatea query. We just typein theactualquery
(for examplewoman(mia)) followedby . (a full stop).

Similarly, we canaskwhetherJodyplaysair guitarby posingthefollowing query:

?- playsAirGuitar(jody).

Prologwill againanswer“yes”, becausethis is oneof the factsin KB1. However,
supposeweaskwhetherMia playsair-guitar:

?- playsAirGuitar(mia).

Wewill gettheanswer

no

Why? Well, first of all, this is not a fact in KB1. Moreover, KB1 is extremelysimple,
andcontainsnootherinformation(suchastheruleswewill learnaboutshortly)which
might helpPrologtry to infer (that is, deducewhetherMia playsair guitar. SoProlog
correctlyconcludesthatplaysAirGuitar(mia) doesnot follow from KB1.

Herearetwo importantexamples.Supposewe posethequery:

?- playsAirGuitar(vincent).

Again Prologanswers“no”. Why? Well, this queryis abouta person(Vincent)that it
hasno informationabout,soit concludesthatplaysAirGuitar(vincent) cannotbe
deducedfrom theinformationin KB1.

Similarly, supposeweposethequery:

?- tatooed(jody).

Again Prologwill answer“no”. Why? Well, this query is abouta property(being
tatooed)that it hasno informationabout,so onceagainit concludesthat the query
cannotbededucedfrom theinformationin KB1.

1.1. Some simple examples 3

1.1.2 Kno wledg e Base 2

Hereis KB2, oursecondknowledgebase:

listensToMusic(mia).

happy(yolanda).

playsAirGuitar(mia) :- listensToMusic(mia).

playsAirGuitar(yolanda) :- listensToMusic(yolanda).

listensToMusic(yolanda):- happy(yolanda).

KB2 containstwo facts,listensToMusic(mia) andhappy(yolanda). Thelastthree
itemsarerules.

Rulesstateinformationthat is conditionallytrueof thedomainof interest.For exam-
ple, thefirst rule saysthatMia playsair guitar if shelistensto music,andthelastrule
saysthat Yolandalistensto music if sheif happy. More generally, the:- shouldbe
readas“if ”, or “is implied by”. Theparton the left handsideof the:- is calledthe
headof therule, theparton theright handsideis calledthebody. Soin generalrules
say: if thebodyof therule is true, thentheheadof the rule is true too. And now for
thekey point:

if a knowledgebasecontainsa rule head :- body, andPrologknows thatbody fol-
lows from theinformationin theknowledgebase,thenPrologcaninfer head.

This fundamentaldeductionstepis whatlogicianscall modusponens.

Let’s consideranexample.Wewill askPrologwhetherMia playsair guitar:

?- playsAirGuitar(mia).

Prologwill respond“yes”. Why? Well, althoughplaysAirGuitar(mia) is not a fact
explicitly recordedin KB2, KB2 doescontaintherule

playsAirGuitar(mia) :- listensToMusic(mia).

Moreover, KB2 alsocontainsthefactlistensToMusic(mia). HencePrologcanuse
modusponensto deducethatplaysAirGuitar(mia).

Ournext exampleshowsthatPrologcanchaintogetherusesof modusponens.Suppose
we ask:

?- playsAirGuitar(yolanda).

Prologwouldrespond“yes”. Why?Well, usingthefacthappy(yolanda) andtherule

listensToMusic(yolanda):- happy(yolanda),

Prolog can deducethe new fact listensToMusic(yolanda). This new fact is not
explicitly recordedin theknowledgebase— it is only implicitly present(it is inferred
knowledge). Nonetheless,Prologcanthenuseit just like anexplicitly recordedfact.
Thus,togetherwith therule

4 Chapter 1. Facts, Rules, and Queries

playsAirGuitar(yolanda) :- listensToMusic(yolanda)

it candeducethatplaysAirGuitar(yolanda), which is whatwe asked it. Summing
up: any factproducedby anapplicationof modusponenscanbeusedasinputto further
rules. By chainingtogetherapplicationsof modusponensin this way, Prologis able
to retrieve informationthat logically follows from the rulesandfactsrecordedin the
knowledgebase.

Thefactsandrulescontainedin a knowledgebasearecalledclauses.ThusKB2 con-
tainsfiveclauses,namelythreerulesandtwo facts.Anotherway of looking at KB2 is
to saythatit consistsof threepredicates(or procedures).Thethreepredicatesare:

listensToMusic

happy

playsAirGuitar

Thehappy predicateis definedusinga singleclause(a fact). ThelistensToMusic
andplaysAirGuitar predicatesareeachdefinedusingtwo clauses(in bothcases,two
rules).It is a goodideato think aboutPrologprogramsin termsof thepredicatesthey
contain.In essence,thepredicatesaretheconceptswe find important,andthevarious
clauseswe write down concerningthemareour attemptsto pin down whatthey mean
andhow they areinter-related.

One final remark. We can view a fact as a rule with an empty body. That is, we
can think of factsas “conditionalsthat do not have any antecedentconditions”, or
“degeneraterules”.

1.1.3 Kno wledg e Base 3

KB3, our third knowledgebase,consistsof fiveclauses:

happy(vincent).

listensToMusic(butch).

playsAirGuitar(vincent):-

listensToMusic(vincent),

happy(vincent).

playsAirGuitar(butch):-

happy(butch)

playsAirGuitar(butch):-

listensToMusic(butch).

Thereare two facts, namelyhappy(vincent) and listensToMusic(butch), and
threerules.

KB3 definesthesamethreepredicatesasKB2 (namelyhappy, listensToMusic, and
playsAirGuitar) but it definesthem differently. In particular, the threerules that
definetheplaysAirGuitar predicateintroducesomenew ideas.First, notethat the
rule

1.1. Some simple examples 5

playsAirGuitar(vincent):-

listensToMusic(vincent),

happy(vincent).

hastwo itemsin its body, or (to usethestandardterminology)two goals. Whatdoes
this rule mean?The importantthing to note is the comma, that separatesthe goal
listensToMusic(vincent) andthegoalhappy(vincent) in therule’sbody. This is
theway logical conjunctionis expressedin Prolog(thatis, thecommameansand). So
this rulesays:“V incentplaysair guitarif helistensto musicandheis happy”.

Thus,if we posedthequery

?- playsAirGuitar(vincent).

Prologwould answer“no”. This is becausewhile KB3 containshappy(vincent), it
doesnot explicitly containtheinformationlistensToMusic(vincent), andthis fact
cannotbededucedeither. SoKB3 only fulfils oneof thetwo preconditionsneededto
establishplaysAirGuitar(vincent), andourqueryfails.

Incidentally, the spacingusedin this rule is irrelevant. For example,we could have
written it as

playsAirGuitar(vincent):- happy(vincent), listensToMusic(vincent).

andit would have meantexactly thesamething. Prologoffersusa lot of freedomin
the way we setout knowledgebases,andwe cantake advantageof this to keepour
codereadable.

Next, notethatKB3 containstwo ruleswith exactly thesamehead,namely:

playsAirGuitar(butch):-

happy(butch).

playsAirGuitar(butch):-

listensToMusic(butch).

This is a way of statingthat Butchplaysair guitar if either he listensto music,or if
he is happy. That is, listing multiple ruleswith thesameheadis a way of expressing
logicaldisjunction(thatis, it is awayof sayingor. Soif weposedthequery

?- playsAirGuitar(butch).

Prologwould answer“yes”. For althoughthe first of theseruleswill not help (KB3
doesn’t allow Prologtoconcludethathappy(butch), KB3 doescontainlistensToMusic(butch))
andthismeansPrologcanapplymodusponensusingtherule

playsAirGuitar(butch):-

listensToMusic(butch).

6 Chapter 1. Facts, Rules, and Queries

to concludethatplaysAirGuitar(butch).

Thereis anotherwayof expressingdisjunctionin Prolog.Wecouldreplacethepairof
rulesgivenabove by thesinglerule

playsAirGuitar(butch):-

happy(butch);

listensToMusic(butch).

That is, thesemicolon; is thePrologsymbolfor or, sothis singlerule meansexactly
the samething as the previous pair of rules. But Prologprogrammersusuallywrite
multiple rules,asextensive useof semicoloncanmake Prologcodehardto read.

It shouldnow be clear that Prolog hasa somethingdo with logic: after all, the :-

meansimplication, the , meansconjunction,and the ; meansdisjunction. (What
aboutnegation?Thatis awholeotherstory. We’ll bediscussingit laterin thecourse.)
Moreover, we have seenthat a standardlogical proof rule (modusponens)playsan
importantrolein Prologprogramming.And in fact“Prolog” is shortfor “Programming
in logic”.

1.1.4 Kno wledg e Base 4

Hereis KB4, our fourthknowledgebase:

woman(mia).

woman(jody).

woman(yolanda).

loves(vincent,mia).

loves(marcellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

Now, this is a prettyboringknowledgebase.Thereareno rules,only a collectionof
facts.Ok, we areseeinga relationthathastwo namesasargumentsfor thefirst time
(namelytheloves relation),but, let’s faceit, that’s a ratherpredictableidea.

No, thenovelty this time lies not in theknowledgebase,it lies in thequerieswe are
going to pose. In particular, for the first time we’re going to make useof variables.
Here’s anexample:

?- woman(X).

The X is a variable(in fact, any word beginning with a upper-caseletter is a Prolog
variable,whichis whywehadto becarefulto uselower-caseinitial lettersin ourearlier
examples).Now a variableisn’t a name,ratherit’s a “placeholder”for information.
That is, this queryessentiallyasksProlog: tell mewhich of theindividualsyou know
aboutis awoman.

1.1. Some simple examples 7

Prologanswersthisqueryby working its waythroughKB4, from topto bottom,trying
to match(or unify) theexpressionwoman(X) with theinformationKB4 contains.Now
the first item in the knowledgebaseis woman(mia). So, PrologmatchesX to mia,
thusmakingthe queryagreeperfectlywith this first item. (Incidentally, there’s a lot
of differentterminologyfor this process:we canalsosaythatProloginstantiatesX to
mia, or thatit bindsX to mia.) Prologthenreportsbackto usasfollows:

X = mia

That is, it not only saysthat thereis informationaboutat leastonewomanin KB4,
it actuallytells uswho sheis. It didn’t just say“yes”, it actuallygave us thevariable
binding,or instantiationthatleadto success.

But that’s not the endof the story. The whole point of variables— andnot just in
Prologeither— is that they can“stand for” or “match with” different things. And
thereis informationaboutotherwomenin the knowledgebase. We canaccessthis
informationby typing thefollowing simplequery

?- ;

Rememberthat ; meansor, so this querymeans:are there any more woman? So
Prologbeginsworking throughtheknowledgebaseagain(it rememberswhereit got
up to last time andstartsfrom there)andseesthat if it matchesX with jody, thenthe
queryagreesperfectlywith thesecondentryin theknowledgebase.Soit responds:

X = jody

It’s telling usthatthereis informationaboutasecondwomanin KB4, and(onceagain)
it actuallygivesusthevaluethatled to success.And of course,if we press; a second
time,Prologreturnstheanswer

X = yolanda

But whathappensif we press; a third time?Prologresponds“no”. No othermatches
arepossible.Thereareno otherfactsstartingwith the symbolwoman. The last four
entriesin theknowledgebaseconcernthelove relation,andthereis no way thatsuch
entriescanmatchaqueryof theform of theform man(x).

Let’s try amorecomplicatedquery, namely

loves(marcellus,X),woman(X).

Now, rememberthat, meansand, so this querysays: is there any individual X such
thatMarcelluslovesX andX is a woman? If you look at theknowledgebaseyou’ll see
that thereis: Mia is a woman(fact 1) andMarcelluslovesMia (fact 5). And in fact,
Prolog is capableof working this out. That is, it cansearchthroughthe knowledge
baseandwork out that if it matchesX with Mia, thenbothconjunctsof thequeryare
satisfied(we’ll learnin later lecturesexactly how Prologdoesthis). SoPrologreturns
theanswer

8 Chapter 1. Facts, Rules, and Queries

X = mia

This businessof matchingvariablesto informationin theknowledgebaseis theheart
of Prolog. For sure,Prologhasmany other interestingaspects— but whenyou get
right down to it, it’s Prolog’s ability to performmatchingandreturnthevaluesof the
variablebindingto usthatis crucial.

1.1.5 Kno wledg e Base 5

Well, we’ve introducedvariables,but so far we’ve only usedthemin queries.In fact,
variablesnotonly canbeusedin knowledgebases,it’sonly whenwestartto dosothat
wecanwrite truly interestingprograms.Here’sasimpleexample,theknowledgebase
KB5:

loves(vincent,mia).

loves(marcellus,mia).

loves(pumpkin,honey_bunny).

loves(honey_bunny,pumpkin).

jealous(X,Y) :- loves(X,Z),loves(Y,Z).

KB5 containsfour factsabouttheloves relationandonerule. (Incidentally, theblank
line betweenthe factsandthe rule hasno meaning:it’s simply thereto increasethe
readability. As we saidearlier, Prologgivesusa greatdealof freedomin theway we
formatknowledgebases.)But this rule is by far themostinterestingonewe have seen
sofar: it containsthreevariables(notethatX, Y, andZ areall upper-caseletters).What
doesit say?

In effect, it is definingaconceptof jealousy. It saysthatanindividualX will bejealous
of an individual Y if thereis someindividual Z that X loves, andY loves that same
individual Z too. (Ok, sojealouslyisn’t asstraightforwardasthis in therealworld ...)
Thekey thing to noteis thatthis is ageneral statement:it is notstatedin termsof mia,
or pumpkin, or anyonein particular— it’s a conditionalstatementabouteverybodyin
our little world.

Supposeweposethequery:

?- jealous(marcellus,W).

This query asks: can you find an individual W suchthat Marcellusis jealousof W?
Vincentis suchan individual. If you checkthedefinition of jealousy, you’ll seethat
Marcellusmustbejealousof Vincent,becausethey bothlovethesamewoman,namely
Mia. SoPrologwill returnthevalue

W = vincent

Now somequestionsfor you, First, arethereany otherjealouspeoplein KB5? Fur-
thermore,supposewewantedPrologto tell usaboutall thejealouspeople:whatquery
wouldwe pose?Do any of theanswerssurpriseyou?Do any seemsilly?

1.2. Prolog Syntax 9

1.2 Prolog Syntax

Now thatwe’vegotsomeideaof whatPrologdoes,it’s timeto gobackto thebeginning
andwork throughthedetailsmorecarefully. Let’sstartby askingaverybasicquestion:
we’ve seenall kinds of expressions(for examplejody, playsAirGuitar(mia), and
X) in our Prologprograms,but thesehave just beenexamples.Exactlywhatarefacts,
rules,andqueriesbuilt outof?

The answeris terms,and thereare four kinds of termsin Prolog: atoms,numbers,
variables,andcomplex terms(or structures).Atomsandnumbersarelumpedtogether
undertheheadingconstants,andconstantsandvariablestogethermake up thesimple
termsof Prolog.

Let’s take a closerlook. To make thingscrystalclear, let’s first get clearaboutthe
basiccharacters(or symbols)atourdisposal.Theupper-caseletters areA, B, ...,Z; the
lower-caseletters area, b, ..., z; thedigits are1, 2, ..., 9; andthespecialcharacters
are+, -, *, /, <, >, =, :, ., &, ~, and_. The _ characteris calledunderscore.The
blankspaceis alsoacharacter, but a ratherunusualone,beinginvisible. A stringis an
unbrokenstringsequenceof characters.

1.2.1 Atoms

An atomis either:

1. A string of charactersmadeup of upper-caseletters,lower-caseletters,digits,
andtheunderscorecharacter, thatbeginswith a lower-caseletter. For example:
butch, big_kahuna_burger, andm_monroe2.

2. An arbitrarysequenceof characterenclosedin singlequotes.Forexample’Vincent’,
’The Gimp’, ’Five_Dollar_Shake’ , ’&^%&#@$ &*’, and’ ’. Thecharacterbe-
tweenthesinglequotesis calledtheatomname.Notethatweareallowedto use
spacesin suchatoms— in fact,a commonreasonfor usingsinglequotesis so
we candopreciselythat.

3. A string of specialcharacters.For example: @= and====> and; and:- are
all atoms. As we have seen,someof theseatoms,suchas ; and :- have a
pre-definedmeaning.

1.2.2 Number s

Realnumbersaren’t particularlyimportantin typicalPrologapplications.Soalthough
mostPrologimplementationsdo supportfloatingpoint numbersor floats(that is, rep-
resentationsof realnumberssuchas1657.3087or π) wearenotgoingto discussthem
in thiscourse.

But integers(that is: ... -2, -1, 0, 1, 2, 3, ...) areusefulfor suchtasksascountingthe
elementsof a list, andwe’ll discusshow to manipulatethemin a later lecture. Their
Prologsyntaxis theobviousone:23, 1001, 0, -365, andsoon.

10 Chapter 1. Facts, Rules, and Queries

1.2.3 Variab les

A variableis a string of upper-caseletters,lower-caseletters,digits andunderscore
charactersthatstartseitherwith anupper-caseletteror with underscore.For example,
X, Y, Variable, _tag, X_526, andList, List24, _head, Tail, _input andOutput
areall Prologvariables.

Thevariable_ (that is, a singleunderscorecharacter)is ratherspecial.It’s calledthe
anonymousvariable, andwe discussit in a laterlecture.

1.2.4 Comple x terms

Constants,numbers,andvariablesarethebuilding blocks:now we needto know how
to fit themtogetherto makecomplex terms.Recallthatcomplex termsareoftencalled
structures.

Complex termsare build out of a functor (or predicate)followed by a sequenceof
arguments. The argumentsareput in ordinarybrackets, separatedby commas,and
placedafter the functor. The functor mustbe an atom. That is, variablescannotbe
usedasfunctors.On theotherhand,argumentscanbeany kind of term.

Now, we’ve alreadyseenlots of examplesof complex termswhenwe looked at KB1
– KB5. For example, playsAirGuitar(jody) is a complex term: its functor is
playsAirGuitar anditsargumentisjody. Otherexamplesareloves(pumpkin,honey_bunny)
and,to give anexamplecontainingavariable,jealous(marcellus,W).

But notethat thedefinitionallows far morecomplex termsthanthis. In fact,it allows
us to to keepnestingcomplex termsinsidecomplex termsindefinitely (that is, it is a
recursivedefinition). For example

hide(X,father(father(father(butch))))

is aperfectlyok complex term. Its functoris hide, andit hastwo arguments:thevari-
ableX, andthecomplex termfather(father(father(butch))). Thiscomplex term
hasfather asits functor, andthenanothercomplex term,namelyfather(father(butch))
asit’ssoleargument.And theargumentof thiscomplex term,namelyfather(butch),
is alsocomplex. But thenthenesting“bottomsout”, for theargumenthereis thecon-
stantbutch.

As we shall see,suchnested(or recursively structured)termsenableus to represent
many problemsnaturally. In fact the interplaybetweenrecursive term structureand
variablematchingis thesourceof muchof Prolog’s power.

The numberof argumentsthat a complex term hasis called its arity. For instance,
woman(mia) is acomplex termwith arity 1, while loves(vincent,mia) is acomplex
termwith arity 2.

Arity is importantto Prolog. Prologwould bequitehappy for us to definetwo pred-
icateswith thesamefunctorbut with a differentnumberof arguments.For example,
we arefree to definea knowledgebasethat definesa two placepredicatelove (this
might containsuchfactsaslove(vincent,mia)), andalsoa threeplacelove predi-
cate(whichmight containsuchfactsaslove(vincent,marcellus,mia)). However,

1.3. Exercises 11

if wedid this,Prologwould treatthetwo placelove andthethreeplacelove ascom-
pletelydifferentpredicates.

Whenwe needto talk aboutpredicatesandhow we intendto usethem(for example,
in documentation)it is usualto usea suffix / followed by a numberto indicatethe
predicate’s arity. To returnto KB2, insteadof sayingthatit definespredicates

listensToMusic

happy

playsAirGuitar

we shouldreally saythatdefinespredicates

listensToMusic/1

happy/1

playsAirGuitar/1

And Prologcan’t get confusedabouta knowledgebasecontainingthe two different
love predicates,for it regardsthelove/2 predicateandthelove/3 predicateascom-
pletelydistinct.

1.3 Exercises

Exercise 1.1 Which of the following sequencesof characters are atoms,which are
variables,andwhich are neither?

1. vINCENT

2. Footmassage

3. variable23

4. Variable2000

5. big_kahuna_burger

6. ’big kahuna burger’

7. big kahuna burger

8. ’Jules’

9. _Jules

10. ’_Jules’

Exercise 1.2 Which of the following sequencesof characters are atoms,which are
variables,which are complex terms,andwhich are not termsat all? Givethefunctor
andarity of each complex term.

1. loves(Vincent,mia)

12 Chapter 1. Facts, Rules, and Queries

2. ’loves(Vincent,mia)’

3. Butch(boxer)

4. boxer(Butch)

5. and(big(burger),kahuna(burger))

6. and(big(X),kahuna(X))

7. _and(big(X),kahuna(X))

8. (Butch kills Vincent)

9. kills(Butch Vincent)

10. kills(Butch,Vincent

Exercise 1.3 How manyfacts,rules,clauses,andpredicatesare there in thefollow-
ing knowledge base? Whatare the headsof the rules, and what are the goals they
contain?

woman(vincent).

woman(mia).

man(jules).

person(X) :- man(X); woman(X).

loves(X,Y) :- knows(Y,X).

father(Y,Z) :- man(Y), son(Z,Y).

father(Y,Z) :- man(Y), daughter(Z,Y).

Exercise 1.4 Representthefollowing in Prolog:

1. Butch is a killer.

2. Mia andMarcellusare married.

3. Zedis dead.

4. Marcelluskills everyonewhogivesMia a footmassage.

5. Mia loveseveryonewhois a gooddancer.

6. Juleseatsanythingthat is nutritiousor tasty.

Exercise 1.5 Supposeweareworkingwith thefollowingknowledge base:

wizard(ron).

hasWand(harry).

quidditchPlayer(harry).

wizard(X) :- hasBroom(X),hasWand(X).

hasBroom(X) :- quidditchPlayer(X).

HowdoesProlog respondto thefollowingqueries?

1.4. Practical Session 1 13

1. wizard(ron).

2. witch(ron).

3. wizard(hermione).

4. witch(hermione).

5. wizard(harry).

6. wizard(Y).

7. witch(Y).

1.4 Practical Session 1

Don’t be fooled by the fact that the descriptionsof the practicalsessionsaremuch
shorterthanthetext you have just read— thepracticalpartof thecourseis definitely
themostimportant.Yes,you needto readthetext anddo theexercises,but that’s not
enoughto becomeaPrologprogrammer. To reallymasterthelanguageyouneedto sit
down in front of acomputeraplaywith Prolog— a lot!

Thegoalof thefirst practicalsessionis for you to becomefamiliar with thebasicsof
how to createandrunsimplePrologprograms.Now, becausetherearemany different
implementationsof Prolog,andmany differentoperatingsystemsyou canrun them
under, we can’t be too specifichere. Rather, what we’ll do is describein very gen-
eral termswhat is involved in runningProlog,list thepracticalskills you will needto
master, andmake somesuggestionsfor thingsto do.

The simplestway to run a Prologprogramis as follows. You have a file with your
Prologprogramin it (for example,you may have a file kb2.pl which containsthe
knowledgebaseKB2). You thenstartPrologrunning.Prologwill displayits prompt,
somethinglike

?-

which indicatesthatit is readyto accepta query.

Now, at this stage,Prologknows absolutelynothingaboutKB2 (or indeedanything
else). To seethis, type in the commandlisting, followed by a full stop, and hit
return.Thatis, type

?- listing.

andpressthereturnkey.

Now, thelisting commandis aspecialin-built PrologpredicatethatinstructsProlog
to displaythecontentsof thecurrentknowledgebase.But we haven’t yet told Prolog
aboutany knowledgebases,soit will just say

yes

14 Chapter 1. Facts, Rules, and Queries

This is a correctanswer:asyet Prologknows nothing— so it correctlydisplaysall
this nothingandsaysyes. Actually, with moresophisticatedPrologimplementations
you maygeta little more(for example,thenamesof librariesthathave beenloaded)
but, oneway or another, you will receive whatis essentiallyan“I know nothingabout
any knowledgebases!”answer.

So let’s tell PrologaboutKB2. Assumingyou’ve storedKB2 in thefile kb2.pl, and
thatthis file is in thesamedirectorywhereyou’re runningProlog,all youhave to type
is

?- [kb2].

This tellsPrologto consultthefile kb2.pl, andloadthecontentsasits new knowledge
base.Assumingthatthekb2.pl containsno typos,Prologwill readit in, maybeprint
outamessagesayingthatit is consultingthefile kb2.pl, andthenanswer:

yes

Incidentally, it is quite commonto storePrologcodein files with a .pl suffix. It’s a
usefulindicationof whatthefile contains(namelyPrologcode)andwith many Prolog
implementationsyoudon’t actuallyhave to typein .pl suffix whenyouconsultafile.

Ok, so Prolog shouldnow know aboutall the KB2 predicates.And we can check
whetherit doesby usingthelisting commandagain:

?- listing.

If youdo this,Prologwill list (somethinglike) thefollowing on thescreen:

listensToMusic(mia).

happy(yolanda).

playsAirGuitar(mia) :-

listensToMusic(mia).

playsAirGuitar(yolanda) :-

listensToMusic(yolanda).

listensToMusic(yolanda):-

happy(yolanda).

yes

Thatis, it will list thefactsandrulesthatmakeupKB2, andthensayyes. Onceagain,
you maygeta little morethanthis, suchasthelocationsof variouslibrariesthathave
beenloaded.

Incidentally, listing canbeusedin otherways.For example,typing

?- listing(playsAirGuitar).

1.4. Practical Session 1 15

simplylistsall theinformationin theknowledgebaseabouttheplaysAirGuitar pred-
icate.Soin thiscasePrologwill display

playsAirGuitar(mia) :-

listensToMusic(mia).

playsAirGuitar(yolanda) :-

listensToMusic(yolanda).

yes

Well — now you’re readyto go. KB2 is loadedandPrologis running,soyoucan(and
should!)startmakingexactly thesortof inquirieswe discussedin thetext ...

But let’s backup a little, andsummarizea few of thepracticalskills you will needto
masterto getthis far:

� Youwill needtoknow somebasicfactsabouttheoperatingsystemyouareusing,
suchasthedirectorystructureit uses.After all, you will needto know how to
save thefilescontainingprogramswhereyouwantthem.

� You will needto know how to usesomesortof text editor, in orderto write and
modify programs.SomePrologimplementationscomewith in-built text editors,
but if youalreadyknow a text editor(suchasEmacs)it is probablyabetteridea
to usethis to write yourPrologcode.

� Youmaywantto takeexamplePrologprogramsfrom theinternet.Somakesure
you know how to usea browser to find what you want, and to storethe code
whereyouwantit.

� Make sureyouknow how to startProlog,andconsultfiles from it.

The sooneryou pick up theseskills, the better. With them out of the way (which
shouldn’t take long) you canstartconcentratingon masteringProlog(which will take
a lot longer).

But assumingyouhave masteredtheseskills, whatnext? Quitesimply, play with Pro-
log! Consultthevariousknowledgebasesdiscussedtoday, andcheckthat thequeries
discussedreally do work theway we saidthey did. In particular, take a look at KB5
andmake sureyou understandwhy you get thosepeculiar“jealousy” relations. Try
posingnew queries.Experimentwith thelisting predicate(it’s a usefultool). Type
in theknowledgebaseusedin Exercise5, andcheckwhetheryouranswersarecorrect.
Bestof all, think of somesimpledomainthat interestsyou, andcreatea brand-new
knowledgebasefrom scratch...

16 Chapter 1. Facts, Rules, and Queries

2

Matching and Proof Search

Today’s lecturehastwo maingoals:

1. To discussthe ideaof matchingin Prolog,andto explain how Prologmatching
differs from standardunification. Along theway, we’ll introduce=, the inbuilt
Prologmatchingpredicate.

2. To explain thesearchstrategy Prologuseswhenit triesto prove something.

2.1 Matching

Recallthattherearethreetypesof term:

1. Constants.Thesecaneitherbe atoms(suchasvincent) or numbers(suchas
24).

2. Variables.

3. Complex terms.Thesehave theform: functor(term_1,...,term_n).

Wearenow goingto definewhentwo termsmatch.Thisisoneof themostfundamental
definitionsin Prolog.Therearetwo reasonswhy it’s soimportant.

The first is this: becausewe areallowed to build complex terms(that is, recursively
structured terms),the ideaof matchingtermsis automaticallyfairly rich. After all,
matchingwill have to take therecursive structureinto account.

Thesecondis this: termsmaycontainvariables. If wearecomparingtwo terms,term1
andterm2, and(say)term1 containsavariable(sayX), thenby giving X avalue,it may
bepossibleto make thetwo termsequal.In fact,we’re really interestedin a definition
of matchingwhichnotonly tellsuswhentwo termsareequal,but onewhichalsotells
uswhatwehaveto do to thevariablesto make thetermsequal.As we saidlastweek,
thisprocessof makingtermsequalby instantiatingvariablesis oneof thefundamental
ideasin Prolog.

Here’s thedefinitionwe need:

1. If term1 andterm2 areconstants,thenterm1 andterm2 matchif andonly if
they arethesameatom,or thesamenumber.

18 Chapter 2. Matching and Proof Search

2. If term1 is a variableandterm2 is any type of term, thenterm1 andterm2
match,and term1 is instantiatedto term2. Similarly, if term2 is a variable
and term1 is any type of term, then term1 and term2 match,and term2 is
instantiatedto term1. (Soif they arebothvariables,they’re bothinstantiatedto
eachother, andwe saythatthey sharevalues.)

3. If term1 andterm2 arecomplex terms,thenthey matchif andonly if:

(a) They have thesamefunctor.

(b) All their correspondingargumentsmatch

(A reminder: for Prolog,two functorsarethe sameif andonly if they arethe
sameatomand they arefollowedby thesamenumberof arguments.)

4. Two termsmatchif andonly if it follows from the previous threeclausesthat
they match.

Note the form of this definition. The first clausetells us whentwo constantsmatch.
The secondterm clausetells us whentwo terms,oneof which is a variable,match:
suchtermswill alwaysmatch(variablesmatchwith anything). Justas importantly,
this clausealsotellswhatinstantiationswe have to performto make thetwo termsthe
same.Finally, thethird clausetellsuswhentwo complex termsmatch.

Thefourthclauseisalsoveryimportant:it tellsusthatthefirst threeclausescompletely
definewhentwo termsmatch.If two termscan’t beshown to matchusingClauses1-3,
thenthey don’t match. For example,batman doesnot matchwith daughter(ink).
Why not? Well, thefirst term is a constant,the secondis a complex term. But none
of thefirst threeclausestell ushow to matchtwo suchterms,hence(by clause4) they
don’t match.

2.1.1 Examples

We’ll now look at lots of examplesto make this definition clear. In theseexamples
we’ll make useof animportantinbuilt Prologpredicate,the=/2 predicate(recall that
the/2 at theendis to indicatethatthispredicatetakestwo arguments).

Quitesimply, the=/2 predicatetestswhetherits two argumentsmatch.For example,
if we posethequery

=(mia,mia).

Prologwill respond‘yes’, andif we posethequery

=(mia,vincent).

Prologwill respond‘no’.

But weusuallywouldn’t posethesequeriesin quitethisway. Let’s faceit, thenotation
=(mia,mia) is ratherunnatural.It wouldbemuchnicerif we coulduseinfix notation
(thatis, put the= functorbetweenits arguments)andwrite thingslike:

mia = mia .

2.1. Matching 19

And in fact,Prologletsusdo this. Soin theexamplesthatfollow we’ll usethe(much
nicer)infix notation.

Let’s returnto thisexample:

mia = mia.

yes

Why doesPrologsay‘yes’? This mayseemlike a silly question:surelyit’s obvious
that the termsmatch! That’s true,but how doesthis follow from thedefinitiongiven
above?It is very importantthatyou learnto think systematicallyaboutmatching(it is
utterly fundamentalto Prolog),and‘thinking systematically’meansrelatingtheexam-
plesto thedefinitionof matchinggivenabove. Solet’s think thisexamplethrough.

The definition hasthreeclauses. Clause2 is for when one argumentis a variable,
andclause3 is for whenbothargumentsarecomplex terms,sotheseareno usehere.
However clause1 is relevant to our example.This tells us that two constantsunify if
andonly if they areareexactly thesameobject. As mia andmia arethesameatom,
matchingsucceeds.

A similar argumentexplainsthefollowing responses:

2 = 2

yes

mia = vincent.

no

Onceagain,clause1 is relevanthere(afterall, 2, mia, andvincent areall constants).
And as2 is thesamenumberas2, andasmia is not thesameatomasvincent, Prolog
responds‘yes’ to thefirst queryand‘no’ to thesecond.

Howeverclause1 doeshold onesmallsurprisefor us.Considerthefollowing query:

’mia’ = mia.

yes

What’s going here? Why do thesetwo termsmatch? Well, as far asProlog is con-
cerned,’mia’ andmia arethesameatom. In fact, for Prolog,any atomof the form
’symbols’ is consideredthesameentity astheatomof theform symbols. This can
bea usefulfeaturein certainkindsof programs,sodon’t forget it.

On theotherhand,to thethequery

’2’ = 2.

Prologwill respond‘no’. And if you think aboutthe definitionsgiven in Lecture1,
youwill seethatthishasto bethewaythingswork. After all, 2 is anumber, but ’2’ is
anatom.They simply cannotbethesame.

Let’s try anexamplewith a variable:

20 Chapter 2. Matching and Proof Search

mia = X.

X = mia

yes

Again,this in aneasyexample:clearlythevariableX canbematchedwith theconstant
mia, andPrologdoesso,andtellsusthatit hasmadethismatching.Fine,but how does
this follow from ourdefinition?

Therelevantclausehereis clause2. Thistellsuswhathappenswhenat leastoneof the
argumentsis avariable.In ourexampleit is thesecondtermwhich is thevariable.The
definitiontells usunificationis possible,andalsosaysthat thevariableis instantiated
to thefirst argument,namelymia. And this,of course,is exactlywhatPrologdoes.

Now for animportantexample:whathappenswith thefollowing query?

X = Y.

Well youmayjust getbacktheoutput

X = Y.

yes

Prologis simply agreeingthatthetwo termsunify (afterall, variablesunify with any-
thing,socertainlywith eachother)andmakinganotethatfrom now on,X andY denote
thesameobject.That is, if ever X is instantiated,Y will be instantiatedtoo,andto the
samething.

On theotherhand,youmaygetthefollowing output:

X = _5071

Y = _5071

Here,bothargumentsarevariables.Whatdoesthismean?

Well, thefirst thingto realizeis thatthesymbol_5071 is avariable(recallfrom Lecture
1 that stringsof lettersandnumbersthat startwith a _ arevariables). Now look at
clause2 of the definition. This tells us that when two variablesare matched,they
share values. SowhatPrologis doinghereis to createa new variable(namely_5071
) andsayingthat,from now on, bothX andY sharethevalueof this variable.That is,
in effect, Prolog is creatinga commonvariablenamefor the two original variables.
Incidentally, there’s nothingmagicaboutthenumber5071. Prologjustneedsgenerate
abrandnew variablename,andusingnumbersis ahandyway to do this. It might just
aswell generate_5075, or _6189, or whatever.

Let’s look atanexampleinvolving complex terms:

kill(shoot(gun),Y) = kill(X,stab(knife)).

X = shoot(gun)

Y = stab(knife)

yes

2.1. Matching 21

Clearly the two complex termsmatchif the statedvariableinstantiationsarecarried
out. But how doesthis follow from thedefinition? Well, first of all, Clause3 hasto
beusedherebecausewe aretrying to matchtwo complex terms.Sothefirst thing we
needto do is checkthatbothcomplex termshave thesamefunctor (that is: they use
thesameatomasthefunctornameandhavethesamenumberof arguments).And they
do. Clause3 alsotells usthatwe have to matchthecorrespondingargumentsin each
complex term.Sodothefirst arguments,shoot(gun) andX, match?By Clause2, yes,
andweinstantiateX to shoot(gun). Sodothesecondarguments,Y andstab(knife),
match?Againby Clause2, yes,andwe instantiateY to kill(stab).

Here’s a lastexample:

kill(shoot(gun), stab(knife)) = kill(X,stab(Y)).

X = shoot(gun)

Y = knife

yes

It shouldbeclearthat the two termsmatchif theseinstantiationsarecarriedout. But
canyouexplain,stepby step,how this relatesto thedefinition?

2.1.2 The occur s check

Insteadof sayingthatPrologmatchesterms,you’ll find thatmany bookssaythatPro-
log unifiesterms.This is verycommonterminology, andwewill oftenuseit ourselves.
But while it doesnot really matterwhetheryou call whatPrologdoes‘unification’ or
‘matching’,thereis onethingyoudoneedto know: Prologdoesnotuseastandarduni-
ficationalgorithmwhenit performsunification/matching.Instead,it takesa shortcut.
Youneedto know aboutthis shortcut.

Considerthefollowing query:

father(X) = X.

Do you think thesetermsmatchor not? No, they don’t. Let’s thinks this example
through.

Pickany termandinstantiateX to thetermyoupicked.Forexample,if youinstantiateX
tofather(father(butch)), theleft handsidebecomesfather(father(father(butch))),
and the right handside becomesfather(father(butch)). Obviously thesedon’t
match. Moreover, it makesno differencewhat you instantiateX to. No matterwhat
you choose,thetwo termscannotpossiblybemadethesame,for thetermon the left
will alwaysbeonesymbollongerthanthetermontheright (thefunctorfather onthe
left will alwaysgive it thatoneextra level). Thetwo termssimplydon’t match.

Nonetheless,Prologwill try to matchthem. If you carryout this queryyou will geta
messagelike:

Not enough memory to complete query!

anda longstringof symbolslike:

22 Chapter 2. Matching and Proof Search

X = father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

(father(father(father(father(father(father(father(father(father

Prologis desperatelytrying to matchtheseterms,but it won’t succeed.That strange
variableX, which occursasanargumentto a functoron the left handside,andon its
own on theright handside,makesmatchingimpossible.

To be fair, what Prologis trying to do hereis reasonablyintelligent. Intuitively, the
only way the two termscould be madeto matchwould be if X was instantiatedto
‘a term containingan infinitely long string of father functors’, so that the effect of
theextra father functoron the left handsidewascanceledout. But termsarefinite
entities.Thereis nosuchthingasa‘term containinganinfinitely longstringof father
functors’.Prolog’s searchfor asuitabletermis doomedto failure,andit learnsthis the
hardwaywhenit runsoutof memory.

Now, a standardunification algorithm doesnot work this way. If we gave suchan
algorithmthe sameexample,it would look at it andtell us that the two termsdon’t
unify. How doesit do this? By carryingout the occurscheck. Standardunification
algorithmsalwayspeekinsidethestructureof thetermsthey areaskedto unify, looking
for strangevariables(like theX in ourexample)thatwouldcauseproblems.

To put it anotherway, standardunificationalgorithmsarepessimistic. They first look
for strangevariables(usingtheoccurscheck)andonly whenthey aresurethatthetwo
termsare‘safe’ do they go aheadandtry andmatchthem. So a standardunification
algorithmwill never get locked into a situationwhereit is endlesslytrying to match
two unmatchableterms.

Prolog,on the otherhand,is optimistic. It assumesthat you arenot going to give it
anything dangerous.Soit doesnot make anoccurscheck.As soonasyou give it two
terms,it chargesfull steamaheadandtriesto matchthem.

As Prologis aprogramminglanguage,thisis anintelligentstrategy. Matchingis oneof
thefundamentalprocessesthatmakesPrologwork, soit needsto becarriedoutasfast
aspossible.Carryingout an occurscheckevery time matchingwascalledfor would
slow it down considerably. Pessimismis safe,but optimismis a lot faster!

Prolog can only run into problemsif you, the programmer, ask it to do something
impossiblelike unify X with father(X). And it is unlikely you will ever ask it to
anything like thatwhenwriting a realprogram.

2.1.3 Programming with matc hing

As we’ve said,matchingis a fundamentaloperationin Prolog. It playsa key role in
Prologproof search(aswe shall soonlearn),andthis alonemakesit vital. However,
asyou getto know Prologbetter, it will becomeclearthatmatchingis interestingand
importantin its own right. Indeed,sometimesyou canwrite usefulprogramssimply
by usingcomplex termsto defineinterestingconcepts.Matchingcanthenbeusedto
pull out theinformationyouwant.

Here’sasimpleexampleof this,dueto IvanBratko. Thefollowing two line knowledge
basedefinessomebasicfactsaboutverticalandhorizontalline segments:

2.1. Matching 23

vertical(line(point(X,Y),point(X,Z))).

horizontal(line(point(X,Y),point(Z,Y))).

Now, at first glancethis knowledgebasemay seemtoo simple to be interesting: it
containsjust two facts,andno rules. But wait a minute: the two factsareexpressed
usingstructuredtermswith threelevels of predicatenesting. Moreover, the deepest
level argumentsareall variables,so theconceptsarebeingdefinedin a generalway.
Maybeits notquiteassimpleasit seems.Let’s take a closerlook.

Rightdown at thebottomlevel, wehave thepoint/2 predicate.Its two argumentsare
intendedto be instantiatedto numbers:point(X,Y) representstheCartesiancoordi-
natesof a point. Thatis, theX indicatesthehorizontaldistancethepoint is from some
fixedpoint,while theY indicatestheverticaldistancefrom thatsamefixedpoint.

Now, oncewe’ve specifiedtwo distinctpoints,we’ve specifieda line, namelytheline
betweenthem. In effect, theline/2 predicatetakesadvantageof this. Its two argu-
mentsarecomplex termsrepresentingpoints.By bundlingthetwo pointstogetherlike
this,line/2 definestheline betweenthem.We’reusingProlog’s ability to build com-
plex termsto work our wayup a hierarchy of concepts. We’ve alreadymovedup from
‘points’ to ‘lines’, andthenext stepwill take usup to ‘vertical’ and‘horizontal’.

The definition of vertical/1 simply says:a line that goesbetweentwo pointsthat
have thesamex-coordinateis vertical.Notehow we capturetheeffect of ‘the samex-
coordinate’in Prolog:wesimplymakeuseof thesamevariableX asthefirst argument
in bothoccurrencesof thepoints/2 predicate.

Similarly, thedefinitionof horizontal/1 simply says:a line thatgoesbetweentwo
pointsthathave thesamey-coordinateis horizontal.To capturetheeffectof ‘the same
y-coordinate’,we usethesamevariableY asthesecondargumentin bothoccurrences
of thepoints/2.

Whatcanwe do with thisknowledgebase?Let’s look atsomeexamples:

vertical(line(point(1,1),point(1,3))).

yes

Thisshouldbeclear:thequerymatcheswith thedefinitionof vertical/1 in our little
knowledgebase(andin particular, thetwo occurrencesof thepoints/2 predicatehave
thesamefirst argument)soPrologsays‘yes’. Similarly we have:

vertical(line(point(1,1),point(3,2))).

no

This querydoesnot matchthedefinitionof vertical/1 (the two occurrencesof the
points/2 predicatehave differentfirst arguments)soPrologsays‘no’.

But we canaskmoregeneralquestions:

horizontal(line(point(1,1),point(2,Y)).

Y = 1 ;

no

24 Chapter 2. Matching and Proof Search

Here our query is: if we want a horizontal line betweena point at (1,1), and point
whosex-coordinateis 2, whatshouldthey-coordinateof thatsecondpoint be?Prolog
correctlytells usthatthey-coordinateshouldbe2. If we thenaskPrologfor a second
possibility(notethe;) it tellsusthatno otherpossibilitiesexist.

Now considerthefollowing:

horizontal(line(point(2,3),P)).

P = point(_1972,3) ;

This query is: if we want a horizontalline betweena point at (2,3), andsomeother
point,whatotherpointsarepermissible?Theansweris: any pointwhosey-coordinate
is 3. Note that the _1972 in the first argumentof the answeris a variable,which is
Prolog’s wayof telling tellsusthatany x-coordinateat all will do.

A generalremark:theanswerto our lastquery, point(_1972,3), is structured. That
is, the answeris a complex term, representinga sophisticatedconcept(namely‘any
point whosey-coordinateis 3’). This structurewasbuilt usingmatchingandnothing
else: no logical inferences(and in particular, no usesof modusponens)were used
to produceit. Building structureby matchingturnsout to bea powerful ideain Pro-
log programming,far morepowerful thanthis rathersimpleexamplemight suggest.
Moreover, whena programis written thatmakesheavy useof matching,it is likely to
be extremelyefficient. We will studya beautifulexamplein a later lecturewhenwe
discussdifferencelists, which areusedto implementProloginbuilt grammarsystem
DefiniteClauseGrammars(DCGs).

This style of programmingis particularlyuseful in applicationswherethe important
conceptshaveanaturalhierarchicalstructure(asthey did in thesimpleknowledgebase
above), for wecanthenusecomplex termsto representthis structure,andmatchingto
accessit. This way of working playsan importantrole in computationallinguistics,
becauseinformationaboutlanguagehasa naturalhierarchicalstructure(think of the
way we divide sentencesinto nounphrasesandverb phrases,andnounphrasesinto
determinersandnouns,andsoon).

2.2 Proof Search

Now thatwe know aboutmatching,we arein a positionto learnhow Prologactually
searchesa knowledgebaseto seeif a query is satisfied. That is, we are now able
to learnaboutproof search.We will introducethe basicideasinvolved by working
througha simpleexample.

Supposeweareworkingwith thefollowing knowledgebase

f(a).

f(b).

g(a).

g(b).

2.2. Proof Search 25

h(b).

k(X) :- f(X),g(X),h(X).

Supposewethenposethequery

k(X).

You will probablyseethat thereis only oneanswerto this query, namelyk(b), but
how exactlydoesPrologwork thisout?Let’s see.

Prologreadstheknowledgebase,andtriesto matchk(X) with eitherafact,or thehead
of rule. It searchestheknowledgebasetop to bottom,andcarriesout thematching,if
it can,at thefirst placepossible.Herethereis only onepossibility: it mustmatchk(X)
to theheadof therulek(X) :- f(X),g(X),h(X).

WhenPrologmatchesthevariablein aqueryto avariablein a factor rule, it generates
a brandnew variableto representthat the variablesarenow sharing. So the original
querynow reads:

k(_G348)

andPrologknows that

k(_G348) :- f(__G348),g(_G348),h(_G348),

Incidentally, whenever Prologinstantiatesa variablewhile carryingout proof search,
wesayit hasreachedachoicepoint. Thatis, it haschosento matchthequerywith this
rule,andhaschosento dosoby instantiatingavariablein acertainway. Actually here
no real choiceis involved, sincethe rule is theonly thing thatk(X) canmatchwith,
but technicallyspeakingit is a choicepoint, andwe will call it choicepoint 1. Prolog
keepstrackof all thechoicesthat it makes,so that if it makesa wrongchoice,it can
go backto thechoicepoint andtry somethingelse.

So what do we now have? The query says: ‘I want to find an individual that has
propertyk’. Therulesays,‘anindividualhaspropertyk if it haspropertiesf, g, andh’.
Soif Prologcanfind anindividual with propertiesf, g, andh, it will have satisfiedthe
originalquery. SoPrologreplacestheoriginalquerywith thefollowing list of goals:

f(__G348),g(_G348),h(_G348).

Now, whenever it hasa list of goals,Prologtries to satisfythemoneby one,working
throughthe list in a left to right direction. The leftmostgoal is f(__G348), which
reads:‘I wantan individual with propertyf’. Canthis goalbesatisfied?Prologtries
to do soby searchingthroughtheknowledgebasefrom top to bottom.Thefirst thing
it finds that matchesthis goal is that fact f(a). It matchesthe goal to this fact by
instantiatingX to a. Becausea variableinstantiationhastaken place,this is a choice
point, andwe will call it choicepoint 2. In this case,of course,a genuinechoiceis
involved: thereis oneotherindividual with propertyf, namelyb. And in fact,Prolog
hasactuallymadethe wrong choicehere,andwill have to comebackto this choice
point aswe shallsee.

WhenProloginstantiatesX to a, it instantiatesall occurrencesof X in thelist of goals,
sothelist of goalsnow lookslike this:

26 Chapter 2. Matching and Proof Search

f(a),g(a),h(a).

And now things are easy. The fact f(a) is in the knowledgebase,so this goal is
satisfied.Onedown, two to go! Theremaininggoalsare

g(a),h(a).

And of course,thefactg(a) is in theknowledgebase,sothisgoalis satisfiedtoo. The
goallist is now:

h(a).

But thereis no way to satisfythis goal.Theonly informationh we have in theknowl-
edgebaseis h(b) andthiswon’t matchh(a).

SoPrologdecidesit hasmadea mistake andbacktracksto the lastchoicepoint. This
waschoicepoint 2, whereit instantiatedX to a, to satisfythegoalf(X). Recallthatat
this stagethelist of goalswas:

f(_G348),g(_G348),h(_G348).

Prologhasto redoall this. Prologtries to resatisfythefirst goal,by searchingfurther
in theknowledgebase.It seesthat it canmatchthefirst goalwith informationin the
knowledgebaseby matchingf(_G348) with f(b). Thusit instantiatesX to b, so the
new goallist is:

f(b),g(b),h(b).

Now, f(b) is in theknowledgebase.sothis is satisfied,leaving thegoallist:

g(b),h(b).

But g(b) is a factin theknowledgebase,sothis is satisfiedtoo, leaving thegoallist:

h(b).

And thisfacttoois in theknowledgebase,sothisgoalis alsosatisfy. Important:Prolog
nowhasan emptylist of goals. This meansthat it hasproved everythingit hadto to
establishthe original goal, namelyk(X). So this query is satisfiable,andmoreover,
Prologhasalsodiscoveredwhatit hasto doto satisfyit, namelyinstantiateX to b. It is
interestingto considerwhathappensif we thenaskfor anothersolutionby typing:

;

ThisforcesPrologto backtrackto thelastchoicepoint,to try andfind anotherpossibil-
ity. And thereis anearlierchoicepoint,namelychoicepoint1, wherePrologmatched
theoriginalquerywith theheadof therule. But if it goesbackto thischoicepointand
attemptsto resatisfyk(X) it will find that it can’t (aswe pointedout, no real choice
wasinvolvedhere).Soat this point Prologwould correctlyhave said‘no’. Of course,
if therehadbeenotherrulesinvolving k, Prologwould have goneoff andtried to use
themin exactly theway we have described:that is, by searchingtop to bottomin the
knowledgebase,left to right in goallists,andbacktrackingto thepreviouschoicepoint
whenever it fails.

2.3. Exercises 27

2.3 Exercises

Exercise 2.1 Which of thefollowing pairs of termsmatch? Where relevant,givethe
variableinstantiationsthat leadto successfulmatching.

1. bread = bread

2. ’Bread’ = bread

3. ’bread’ = bread

4. Bread = bread

5. bread = sausage

6. food(bread) = bread

7. food(bread) = X

8. food(X) = food(bread)

9. food(bread,X) = food(Y,sausage)

10. food(bread,X,beer) = food(Y,sausage,X)

11. food(bread,X,beer) = food(Y,kahuna_burger)

12. food(X) = X

13. meal(food(bread),drink(beer)) = meal(X,Y)

14. meal(food(bread),X) = meal(X,drink(beer))

Exercise 2.2 Weareworkingwith thefollowingknowledge base:

house_elf(dobby).

witch(hermione).

witch(’McGonagall’).

witch(rita_skeeter).

magic(X):-house_elf(X).

magic(X):-wizard(X).

magic(X):-witch(X).

Which of the following queriesare satisfied? Where relevant, give all the variable
instantiationsthat leadto success.

1. ?- magic(house_elf).

2. ?- wizard(harry).

3. ?- magic(wizard).

4. ?- magic(’McGonagall’).

5. ?- magic(Hermione).

28 Chapter 2. Matching and Proof Search

Exercise 2.3 Here is a tiny lexiconandmini grammarwith only onerule which de-
finesa sentenceasconsistingof fivewords: an article, a noun,a verb,andagain an
article anda noun.

word(article,a).

word(article,every).

word(noun,criminal).

word(noun,’big kahuna burger’).

word(verb,eats).

word(verb,likes).

sentence(Word1,Word2,Word3,Word4,Word5) :-

word(article,Word1),

word(noun,Word2),

word(verb,Word3),

word(article,Word4),

word(noun,Word5).

What querydo you haveto posein order to find out which sentencesthe grammar
cangenerate? List all sentencesthat this grammarcangenerate in theorder Prolog
will generate them.Make sure that youunderstandwhyProlog generatesthemin this
order.

Exercise 2.4 Hereare six Englishwords:

abalone, abandon, anagram, connect, elegant, enhance.

They are to bearrangedin a crossword puzzlelike fashionin thegrid givenbelow.

Thefollowingknowledge baserepresentsa lexiconcontainingthesewords.

word(abalone,a,b,a,l,o,n,e).

word(abandon,a,b,a,n,d,o,n).

word(enhance,e,n,h,a,n,c,e).

word(anagram,a,n,a,g,r,a,m).

word(connect,c,o,n,n,e,c,t).

word(elegant,e,l,e,g,a,n,t).

2.4. Practical Session 2 29

Write a predicatecrosswd/6 that tells ushowto fill thegrid, i.e. thefirst threeargu-
mentsshouldbetheverticalwordsfromleft to right andthefollowingthreearguments
thehorizontalwordsfromtop to bottom.

2.4 Practical Session 2

By this stage,you shouldhave hadyour first tasteof runningPrologprograms.The
purposeof the secondpracticalsessionis to suggesttwo setsof keyboardexercises
which will help you get familiar with the way Prologworks. The first sethasto do
with matching, thesecondwith proof search.

First of all, startup your Prologinterpreter. That is, geta screendisplayingtheusual
‘I’m readyto start’ prompt,which is probablylookssomethinglike:

?-

Now verify your answersto Exercise1.1, the matchingexamples. You don’t need
to consultany knowledge bases,simply ask Prolog directly whetherit is possible
to unify the termsby using the inbuilt =/2 predicate. For example,to testwhether
food(bread,X) andfood(Y,sausage) unify, just typein

food(bread,X) = food(Y,sausage).

andhit return.

Youshouldalsolook atwhathappenswhenProloggetslockedintoanattemptto match
termsthatcan’t bematchedbecauseit doesn’t carryoutanoccurscheck.For example,
seewhathappenswhenyou give it thefollowing query:

g(X,Y) = Y.

Ah yes! This is theperfecttimeto makesureyouknow how to abortaprogramthatis
runningwild!

Well, onceyou’ve figuredthatout, it’s time to moveontosomethingnew. Thereis an-
otherimportantinbuilt Prologpredicatefor answeringqueriesaboutmatching,namely
\=/2 (that is: a 2-placepredicate\=). Roughlyspeaking,this works in theopposite
way to the=/2 predicate:it succeedswhenits two argumentsdo not unify. For exam-
ple, thetermsa andb do notunify, whichexplainsthefollowing dialogue:

a \= b

yes

Make sureyou understandtheway \=/2 predicateworksby trying it out on (at least)
the following examples.But do this actively, not passively. That is, after you type in
anexample,pause,andtry to work out for yourselfwhatPrologis going to respond.
Only thenhit returnto seeif youareright.

1. a \= a

30 Chapter 2. Matching and Proof Search

2. ’a’ \= a

3. A \= a

4. f(a) \= a

5. f(a) \= A

6. f(A) \= f(a)

7. g(a,B,c) \= g(A,b,C)

8. g(a,b,c) \= g(A,C)

9. f(X) \= X

Thusthe\=/2 predicateis (essentially)thenegationof the=/2 predicate:a queryin-
volving oneof thesepredicateswill besatisfiedwhenthecorrespondingqueryinvolv-
ing theotheris not, andvice versa(this is thefirst examplewe have seenof a Prolog
mechanismfor handlingnegation).But notethatword‘essentially’.Thingsdon’t work
out quite thatway, asyou will realiseif you think aboutthe trickier examplesyou’ve
just triedout...

It’s time to move on and introduceoneof the mosthelpful tools in Prolog: trace.
This is an inbuilt Prologpredicatethatchangestheway Prologruns: it forcesProlog
to evaluatequeriesonestepat a time, indicatingwhat it is doingat eachstep.Prolog
waitsfor youto pressreturnbeforeit movesto thenext step,sothatyoucanseeexactly
what is goingon. It wasreally designedto be usedasa debuggingtool, but it’s also
reallyhelpfulwhenyou’re learningProlog:steppingthroughprogramsusingtrace is
anexcellentwayof learninghow Prologproofsearchworks.

Let’s look at anexample.In thelecture,we lookedat theproof searchinvolved when
we madethequeryk(X) to following knowledgebase:

f(a).

f(b).

g(a).

g(b).

h(b).

k(X) :- f(X),g(X),h(X).

Supposethisknowledgebaseis in afile proof.pl. Wefirst consultit:

1 ?- [proof].

% proof compiled 0.00 sec, 1,524 bytes

yes

Wethentype‘trace.’ andhit return:

2.4. Practical Session 2 31

2 ?- trace.

Yes

Prologis now in tracemode,andwill evaluateall queriesstepby step.For example,
if we posethequeryk(X), andthenhit returnevery time Prologcomesbackwith a?,
we obtain(somethinglike) thefollowing:

[trace] 2 ?- k(X).

Call: (6) k(_G348) ?

Call: (7) f(_G348) ?

Exit: (7) f(a) ?

Call: (7) g(a) ?

Exit: (7) g(a) ?

Call: (7) h(a) ?

Fail: (7) h(a) ?

Fail: (7) g(a) ?

Redo: (7) f(_G348) ?

Exit: (7) f(b) ?

Call: (7) g(b) ?

Exit: (7) g(b) ?

Call: (7) h(b) ?

Exit: (7) h(b) ?

Exit: (6) k(b) ?

X = b

Yes

Studythis carefully. That is, try doing the samething yourself,andtry to relatethis
outputto thediscussionof theexamplein thetext. To getyoustarted,we’ll remarkthat
thethird line is wherethevariablein thequeryis (wrongly) instantiatedto a, andthat
theline markedredo is whenPrologrealizesit’s takenthewrongpath,andbacktracks
to instantiatethevariableto b.

While learningProlog,usetrace,anduseit heavily. It’s agreatway to learn.

Oh yes: you alsoneedto know how to turn traceoff. Simply type ‘notrace.’ andhit
return:

notrace.

32 Chapter 2. Matching and Proof Search

3

Recur sion

This lecturehastwo maingoals:

1. To introducerecursive definitionsin Prolog.

2. To show that therecan be mismatchesbetweenthe declarative meaningof a
Prologprogram,andits proceduralmeaning.

3.1 Recur sive definitions

Predicatescan be definedrecursively. Roughly speaking,a predicateis recursively
definedif oneor morerulesin its definitionrefersto itself.

3.1.1 Example 1: More Expensive

Considerthefollowing knowledgebase:

more_expensive(X,Y):-

costs_a_little_more(X,Y).

more_expensive(X,Y):-

costs_a_little_more(X,Z),

more_expensive(Z,Y).

costs_a_little_more(royale_with_cheese,big_kahuna_burger).

costs_a_little_more(five_dollar_shake,royale_with_cheese).

At first glancethis seemspretty ordinary: it’s just a knowledgebasecontainingtwo
factsandtwo rules. But the definition of themore_expensive/2 predicateis recur-
sive. Note that more_expensive is (at leastpartially) definedin termsof itself, for
themore_expensive functoroccurson both the left andright handsidesof thesec-
ond rule. Crucially, however, that thereis an ‘escape’from this circularity. This is
providedby thecosts_a_little_more predicate,which occursin both thefirst and
secondrules. (Significantly, the right handsideof thefirst rule makesno mentionof
more_expensive.) Let’s now considerboth thedeclarative andproceduralmeanings
of this rule.

34 Chapter 3. Recursion

The word declarative is usedto talk aboutthe logical meaningof Prologknowledge
bases.That is, the declarative meaningof a Prologknowledgebaseis simply ‘what
it says’,or ‘what it means,if we readit asa collectionof logical statements’.And
thedeclarative meaningof this recursive definition is fairly straightforward. Thefirst
clause(the ‘escape’clause,theonethat is not recursive, or aswe shallusuallycall it,
the baseclause),simply saysthat: if X costsa little bit morethanY, thenX is more
expensive thanY. This is obviously asensibledefinition.

Sowhataboutthesecondclause,therecursive clause?Thissaysthat: if X costsa little
bit morethanZ andZ is moreexpensive thanY, thenX is moreexpensive thanY. Again,
this is obviously asensibledefinition.

Sonow we know what this recursive definitionsays, but whathappenswhenwe pose
a query that actuallyneedsto usethis definition? That is, what doesthis definition
actuallydo? To usethenormalPrologterminology, whatis its procedural meaning?

This is alsoreasonablystraightforward. Thebaserule is like all theearlierruleswe’ve
seen.Thatis, if we askwhetherX is moreexpensive thanY, Prologcanusethis rule to
askinsteadthequestion:doesX costa little morethanY?

What aboutthe recursive clause?This givesProloganotherstrategy for determining
whetherX is moreexpensive thanY: it cantry to find someZ such that X costsa little
morethanZ, andZ is moreexpensivethanY. Thatis, this rule letsPrologbreakthetask
apartinto two subtasks.Hopefully, doingso will eventuallyleadto simpleproblems
which canbe solved by simply looking up the answersin the knowledgebase.The
following picturesumsup thesituation:

Let’s seehow thisworks. If we posethequery:

?- more_expensive(five_dollar_shake,big_kahuna_burger).

thenProloggoesto work asfollows. First, it tries to make useof thefirst rule listed
concerningmore_expensive; that is, thebaserule. This tells it thatX is moreexpen-
sive thanY if X costsa little morethanY, By unifying X with five_dollar_shake and
Y with big_kahuna_burger it obtainsthefollowing goal:

costs_a_little_more(five_dollar_shake,big_kahuna_burger).

3.1. Recursive definitions 35

But theknowledgebasedoesn’t containthe informationthata five dollar shake costs
a little more thana big kahunaburger, so this attemptfails. So Prolognext tries to
make useof the secondrule. By unifying X with five_dollar_shake andY with
big_kahuna_burger it obtainsthefollowing goals:

costs_a_little_more(five_dollar_shake,Z),

more_expensive(Z,big_kahuna_burger).

Thatis, toshow more_expensive(five_dollar_shake,big_kahuna_burger)}, Pro-
log needsto find avaluefor Z suchthat,firstly,

costs_a_little_more(five_dollar_shake,Z).

andsecondly,

more_expensive(Z,big_kahuna_burger).

And thereis suchavaluefor Z, namelyroyale_with_cheese. It is immediatethat

costs_a_little_more(five_dollar_shake,royale_with_cheese).

will succeed,for this factis listedin theknowledgebase.And deducing

more_expensive(royale_with_cheese,big_kahuna_burger).

is almostas simple, for the first clauseof more_expensive/2 reducesthis goal to
deducing

costs_a_little_more(royale_with_cheese,bigKahunBurger).

andthis is a fact listedin theknowledgebase.

Well, that’s our first exampleof a recursive rule definition. We’re goingto learna lot
moreaboutthemin thenext few weeks,but onevery practicalremarkshouldbemade
right away. Hopefully it’s clear that whenyou write a recursive predicate,it should
alwayshave at leasttwo clauses:a baseclause(theclausethat stopsthe recursionat
somepoint),andonethatcontainstherecursion.If youdon’t dothis,Prologcanspiral
off into anunendingsequenceof uselesscomputations.For example,here’s extremely
simpleexampleof a recursive ruledefinition:

p :- p.

That’s it. Nothingelse.It’s beautifulin its simplicity. And from adeclarative perspec-
tive it’s anextremelysensible(if ratherboringdefinition): it says‘if propertyp holds,
thenpropertyp holds’. You can’t arguewith that.

But from aproceduralpersepctive, this is awildly dangerousrule. In fact,wehavehere
theultimatein dangerousrecursive rules:exactly thesamethingon bothsides,andno
baseclauseto let usescape.For considerwhathappenswhenwe posethe following
query:

36 Chapter 3. Recursion

?- p.

Prologasksitself: how do I prove p? And it realizes,‘Hey, I’ve got a rule for that! To
prove p I just needto prove p!’. So it asksitself (again): how do I prove p? And it
realizes,‘Hey, I’ve got a rule for that! To prove p I just needto prove p!’. So it asks
itself (yet again):how do I prove p? And it realizes,‘Hey, I’ve got a rule for that! To
prove p I just needto prove p!” So thenit asksitself (for the fourth time): how do I
provep? And it realizesthat...

If youmake this query, Prologwon’t answeryou: it will headoff, loopingdesperately
away in anunendingsearch.Thatis, it won’t terminate,andyou’ll have to interruptit.
Of course,if youusetrace, youcanstepthroughonestepata time,until yougetsick
of watchingPrologloop.

3.1.2 Example 2: Descendant

Now thatweknow somethingaboutwhatrecursionin Prologinvolves,it is timeto ask
why it is so important. Actually, this is a questionthatcanbeansweredon a number
of levels,but for now, let’s keepthingsfairly practical.So: whenit comesto writing
usefulPrologprograms,arerecursive definitionsreally soimportant?And if so,why?

Let’s consideranexample.Supposewe have a knowledgebaserecordingfactsabout
thechild relation:

child(charlotte,caroline).

child(caroline,laura).

Thatis, Carolineis achild of Charlotte,andLaurais achild of Caroline.Now suppose
we wishedto definethedescendantrelation;thatis, therelationof beinga child of, or
achild of achild of, or achild of achild of achild of, or.... Here’sa first attemptto do
this. Wecouldaddthefollowing two non-recursive rulesto theknowledgebase:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

child(Z,Y).

Now, fairly obviously thesedefinitionswork up to a point, but they are clearly ex-
tremelylimited: they only definetheconceptof descendant-offor two generationsor
less.That’s ok for theabove knowledgebase,but supposewegetsomemoreinforma-
tion aboutthechild-of relationandweexpandour list of child-of factsto this:

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

Now our two rulesareinadequate.For example,if we posethequeries

?- descend(martha,laura).

3.1. Recursive definitions 37

or

?- descend(charlotte,rose).

we get the answer‘No!’, which is not what we want. Sure,we could ‘fix’ this by
addingthefollowing two rules:

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Y).

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

child(Z_3,Y).

But, let’s faceit, this is clumsyandhardto read.Moreover, if we addfurtherchild-of
facts,we couldeasilyfind ourselveshaving to addmoreandmorerulesasour list of
child-of factsgrow, ruleslike:

descend(X,Y) :- child(X,Z_1),

child(Z_1,Z_2),

child(Z_2,Z_3),

.

.

.

child(Z_17,Z_18).

child(Z_18,Z_19).

child(Z_19,Y).

This is notaparticularlypleasant(or sensible)way to go!

But we don’t needto do this at all. We can avoid having to useever longer rules
entirely. Thefollowing recursive rulefixeseverythingexactly thewaywe want:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

Whatdoesthis say?Thedeclarative meaningof thebaseclauseis: if Y is achild of Y,
thenY is adescendantof X. Obviouslysensible.

Sowhatabouttherecursiveclause?It’sdeclarative meaningis: if Z is achild of X, and
Y is adescendantof Z, thenY is adescendantof X. Again, this is obviously true.

So let’s now look at the proceduralmeaningof this recursive predicate,by stepping
throughanexample.Whathappenswhenwe posethequery:

descend(martha,laura)

38 Chapter 3. Recursion

Prologfirst tries the first rule. The variableX in the headof the rule is unified with
martha andY with lauraandthenext goalPrologtriesto prove is

child(martha,laura)

Thisattemptfails,however, sincetheknowledgebaseneithercontainsthefactchild(martha,laura)
nor any rulesthat would allow to infer it. So Prologbacktracksandlooks for an al-
ternative way of proving descend(martha,laura). It finds the secondrule in the
knowledgebaseandnow hasthefollowing subgoals:

child(martha,_633),

descend(_633,laura).

Prologtakes the first subgoalandtries to matchit onto somethingin the knowledge
base.It findsthefactchild(martha,charlotte) andtheVariable_633 getsinstan-
tiatedto charlotte. Now thatthefirst subgoalis satisfied,Prologmovesto thesecond
subgoal.It hasto prove

descend(charlotte,laura)

This is therecursive call of thepredicatedescend/2. As before,Prologstartswith the
first rule,but fails,becausethegoal

child(charlotte,laura)

cannotbe proved. Backtracking,Prologfinds that thereis a secondpossibility to be
checked for descend(charlotte,laura), viz. the secondrule, which againgives
Prologtwo new subgoals:

child(charlotte,_1785),

descend(_1785,laura).

The first subgoalcan be unfied with the fact child(charlotte,caroline) of the
knowledgebase,sothatthevariable_1785 is instantiatedwith caroline. Next Prolog
triesto prove

descend(caroline,laura).

This is the secondrecursive call of predicatedescend/2. As before,it tries the first
rulefirst, obtainingthefollowing new goal:

child(caroline,laura)

This time Prologsucceeds,sincechild(caroline,laura) is a fact in thedatabase.
Prologhasfounda proof for thegoaldescend(caroline,laura) (thesecondrecur-
sive call). But this meansthatchild(charlotte,laura) (thefirst recursive call) is
also true, which meansthat our original querydescend(martha,laura) is true as
well.

3.1. Recursive definitions 39

It shouldbeobvious from this examplethatno matterhow many generationsof chil-
drenwe add,we will alwaysbeableto work out thedescendantrelation. That is, the
recursive definitionis bothgeneralandcompact:it containsall theinformationin the
previousrules,andmuchmorebesides.In particular, thepreviouslistsof non-recursive
rulesonly definedthedescendantconceptup to somefixednumberof generations:we
would needto write down infinitely manynon-recursive rulesif we wantedto capture
thisconceptfully, andof coursethat’s impossible.But, in effect, that’s whattherecur-
sive rule doesfor us: it bundlesup all this informationinto just threelinesof code.

Recursive rules are really important. They enableto pack an enormousamountof
informationinto acompactform andto definepredicatesin anaturalway. Mostof the
work youwill doasaPrologprogrammerwill involve writing recursive rules.

3.1.3 Example 3: Successor

In thepreviouslecturesweremarkedthatbuilding structure throughmatching is akey
ideain Prologprogramming.Now that we know aboutrecursion,we cangive more
interestingillustrationsof this.

Nowadays,whenhumanbeingswrite numerals,they usuallyusedecimalnotation(0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, andso on) but asyou probablyknow, thereare
many othernotations. For example,becausecomputerhardware is generallybased
on digital circuits,computersusuallyusebinary notationto representnumerals(0, 1,
10, 11, 100, 101, 110, 111, 1000, and so on), for the 0 can be implementedas as
switchbeingoff, the1 asa switchbeingon. Otherculturesusedifferentsystems.For
example,the ancientBabyloniansuseda base64 system,while the ancientRomans
useda ratherad-hocsystem(I, II, III, IV, V, VI, VII, VIII, IX, X). This lastexample
showsthatnotationalissuescanbeimportant.If youdon’t believe this,try figuringout
a systematicway of doing long-division in Romannotation.As you’ll discover, it’s a
frustratingtask. In fact, theRomanshada groupof professionals(analogsof modern
accountants)whospecializedin this.

Well, here’s yet anotherway of writing numerals,which is sometimesusedin mathe-
maticallogic. It makesuseof just four symbols:0,succ, andtheleft andright brackets.
Thisstyleof numeralis is definedby thefollowing inductive definition:

1. 0 is anumeral.

2. If X is anumeral,thensois succ(X).

As is probablyclear, succcanbereadasshortfor successor. Thatis,succ(X)represents
thenumberobtainedby addingoneto thenumberrepresentedby X. So this is a very
simplenotation:it simplysaysthat0 is anumeral,andthatall othernumeralsarebuilt
by stackingsuccsymbolsin front. (In fact, it’s usedin mathematicallogic because
of this simplicity. Although it wouldn’t be pleasantto to do householdaccountsin
this notation,it is a very easynotationto prove thingsabout.) Now, by this stageit
shouldbeclearthatwe canturn this definition into a Prologprogram.The following
knowledgebasedoesthis:

numeral(0).

numeral(succ(X)) :- numeral(X).

40 Chapter 3. Recursion

Soif we posequerieslike

numeral(succ(succ(succ(0)))).

we get theanswer‘yes’. But we cando somemoreinterestingthings.Considerwhat
happenswhenwe posethefollowing query:

numeral(X).

That is, we’re saying‘Ok, show mesomenumerals’.Thenwe canhave thefollowing
dialoguewith Prolog:

X = 0 ;

X = succ(0) ;

X = succ(succ(0)) ;

X = succ(succ(succ(0))) ;

X = succ(succ(succ(succ(0)))) ;

X = succ(succ(succ(succ(succ(0))))) ;

X = succ(succ(succ(succ(succ(succ(0)))))) ;

X = succ(succ(succ(succ(succ(succ(succ(0))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(0)))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))) ;

X = succ(succ(succ(succ(succ(succ(succ(succ(succ(succ(0))))))))))

yes

Yes,Prologiscounting:but what’sreallyimportantis howit’sdoingthis. Quitesimply,
it’sbacktrackingthroughtherecursivedefinition,andactuallybuilding numeralsusing
matching. This is an instructive example,andit is importantthat you understandit.
Thebestway to do sois to sit down andtry it out,with trace turnedon.

Building andbinding. Recursion,matching,andproof search.Theseareideasthat lie
at theheartof Prologprogramming.Whenever we have to generateor analyzerecur-
sively structuredobjects(suchasthesenumerals)the interplayof theseideasmakes
Prolog a powerful tool. For example,in the next lecturewe introducelists, an ex-
tremely importantrecursive datastructure,and we will seethat Prolog is a natural
list processinglanguage.Many applications(computationallinguisticsis a primeex-
amples)make heavy useof recursively structuredobjects,suchas treesand feature
structures. So it’s not particularly surprisingthat Prolog hasproved useful in such
applications.

3.2. Rule ordering, clause ordering, and termination 41

3.2 Rule ordering, clause ordering, and termination

Prologwasthefirst reasonablysuccessfulattemptto make a logic programminglan-
guage.Underlyinglogic programmingis a simple(andseductive) vision: the taskof
theprogrammeris simply to describeproblems.Theprogrammershouldwrite down
(in thelanguageof logic) adeclarative specification(thatis: aknowledgebase),which
describesthesituationof interest.Theprogrammershouldn’t have to tell thecomputer
what to do. To getinformation,heor shesimply askstheasksquestions.It’s up to the
logic programmingsystemto figureouthow to gettheanswer.

Well, that’s theidea,andit shouldbeclearthatProloghastakensomeinterestingsteps
in this direction. But Prolog is not, repeatnot, a full logic programminglanguage.
If you only think aboutthe declarative meaningof a Prologprogram,you arein for
a very toughtime. As we learnedin the previous lecture,Prologhasa very specific
way of working out theanswerto queries:it searchestheknowledgebasefrom top to
bottom,clausesfrom left to right, andusesbacktrackingto recover from badchoices.
Theseproceduralaspectshave animportantinfluenceon whatactuallyhappenswhen
you make a query. We have alreadyseena dramaticexampleof a mismatchbetween
proceduralanddeclarative meaningof a knowledgebase(rememberthe p:- p pro-
gram?),andaswe shall now see,it is easyto defineknowledgebaseswith the same
declarative meaning,but very differentproceduralmeanings.

Recallourearlierdescendantprogram(let’s call it descend1.pl):

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

We’ll make two changesto it, andcall theresultdescend2.pl:

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

descend(X,Y) :- child(X,Y).

From a declarative perspective, what we have doneis very simple: we have merely
reversedthe order of the two rules, and reversedthe order of the two goals in the
recursive clause.So,viewed asa purely logical definition,nothinghaschanged.We
have not changedthedeclarative meaningof theprogram.

42 Chapter 3. Recursion

But the proceduralmeaninghaschangeddramatically. For example,if you posethe
query

descend(martha,rose).

you will get an error message(‘out of local stack’, or somethingsimilar). Prologis
looping. Why? Well, to satisfythequerydescend(martha,rose). Prologusesthe
first rule. This meansthatits next goalwill beto satisfythequery

descend(W1,rose)

for somenew variableW1. But to satisfythisnew goal,Prologagainhasto usethefirst
rule,andthismeansthatits next goalis goingto be

descend(W2,rose)

for somenew variableW2. And of course,this in turn meansthatits next goalis going
to bedescend(W3,rose) andthendescend(W4,rose), andsoon.

In short,descend1.pl anddescend2.pl arePrologknowledgebaseswith thesame
declarative meaningbut differentproceduralmeanings:from apurelylogicalperspec-
tive they areidentical,but they behave verydifferently.

Let’s look at anotherexample. Recall out earlier successorprogram(let’s call it
numeral1.pl):

numeral(0).

numeral(succ(X)) :- numeral(X).

Let’s simply swaptheorderof thetwo clauses,andcall theresultnumeral2.pl:

numeral(succ(X)) :- numeral(X).

numeral(0).

Clearly thedeclarative, or logical, contentof this programis exactly thesameasthe
earlierversion.But whataboutits behavior?

Ok, if we posea queryaboutspecificnumerals,numeral2.pl will terminatewith the
answerwe expect.For example,if weask:

numeral(succ(succ(succ(0)))).

we will get theanswer‘yes’. But if we try to generatenumerals,that is, if we give it
thequery

numeral(X).

theprogramwon’t halt. Make sureyou understandwhy not. Onceagain,we have two
knowledgebaseswith thesamedeclarativemeaningbut differentproceduralmeanings.

Becausethedeclarativeandproceduralmeaningsof aPrologprogramcandiffer, when
writing Prologprogramsyou needto bearbothaspectsin mind. Oftenyoucangetthe
overall idea(‘the big picture’) of how to write theprogramby thinking declaratively,
thatis, by thinkingsimply in termsof describingtheproblemaccurately. But thenyou
needto think abouthow Prologwill actuallyevaluatequeries.Are therule orderings
sensible?How will theprogramactuallyrun?Learningto flip backandforth between
proceduraland declarative questionsis an importantpart of learningto programin
Prolog.

3.3. Exercises 43

3.3 Exercises

Exercise 3.1 Wehavea knowledge basecontainingthefollowing facts:

bigger(cat,mouse).

bigger(dog,cat).

bigger(sheep,dog).

bigger(horse,sheep).

bigger(elephant,horse).

Writea recursivepredicatebiggerThan/2whichcancorrectlyworkoutall thebigger-
than relationswhich hold betweentheseanimals. That is, your predicateshouldbe
able to work out that an elephantis bigger than a cat, that a sheepis bigger than a
mouse, andsoon.

Exercise 3.2 Wehavethefollowingknowledge base:

directTrain(forbach,saarbruecken).

directTrain(freyming,forbach).

directTrain(fahlquemont,stAvold).

directTrain(stAvold,forbach).

directTrain(saarbruecken,dudweiler).

directTrain(metz,fahlquemont).

directTrain(nancy,metz).

Thatis, this knowledge baseholdsfactsabouttownsit is possibleto travelbetweenby
takinga direct train. Butof course, wecantravelfurtherby ‘chainingtogether’ direct
train journeys. Write a recursivepredicatetravelBetween/2 that tells us whenwe
cantravelby train betweentwo towns.For example, whengiventhequery

travelBetween(nancy,saarbruecken).

it shouldreply‘yes’.

Furthermore, let’s assumethat whenever it is possibleto take a direct train fromA to
B, it is also possibleto take a direct train from B to A. Add a rule which allows this
possibility. To check it, make sure yourprogramanswers ‘yes’ to thefollowing query:

travelBetween(saarbruecken,nancy).

3.4 Practical Session 3

By now, you shouldfeel moreat homewith writing andrunnningbasicPrologpro-
grams. The purposeof PracticalSession3 is twofold. First we suggesta seriesof
keyboardexercises,involving trace, which will helpyou get familiar with recursive
definitionsin Prolog. We thengive a numberof programmingproblemsfor you to
solve.

First thekeyboardexercises.As recursive programmingis sofundamentalto Prolog,it
is importantthatyouhaveafirm graspof whatit involves.In particular, it is important

44 Chapter 3. Recursion

that you understandthe processof variableinstantionwhenrecursive definitionsare
used,andthat you understandwhy both the orderof the clausesin a recursive defi-
nition, andtheorderof goalsin rules,canmake thedifferencebetweena knowledge
basethatis usefulandonethatdoesnotwork atall. So:

1. Loaddescend1.pl, turnontrace, andposethequerydescend(martha,laura).
This is thequerythatwasdiscussedin thenotes.Stepthroughthetrace,andre-
latewhatyouseeon thescreento thediscussionin thetext.

2. Still with trace on, posethe querydescend(martha,rose) and count how
many stepsit takes Prolog to work out the answer(that is, how many times
do you have to hit the return key). Now turn trace off and posethe query
descend(X,Y). How many answersarethere?

3. Loaddescend2.pl. This, remember, is the variantof descend1.pl in which
theorderof bothclausesis switched,andin addition,theorderof thetwo goals
in the recursive goalsis switchedtoo. Becauseof this, even for suchsimple
queriesasdescend(martha,laura), Prologwill not terminate.Stepthrough
anexample,usingtrace, to confirmthis.

4. But wait! Therearetwo morevariantsof descend1.pl thatwehavenotconsid-
ered.For astart,we couldhave written therecursive clauseasfollows:

descend(X,Y) :- child(X,Y).

descend(X,Y) :- descend(Z,Y),

child(X,Z).

Let uscall this variantdescend3.pl. And onefurtherpossibility remains:we
couldhave written therecursive definitionasfollows:

descend(X,Y) :- child(X,Z),

descend(Z,Y).

descend(X,Y) :- child(X,Y).

Let uscall this variantdescend4.pl.

5. Create(or loadfrom theinternet)thefile descend3.pl. Now considerthequery
descend(martha,rose). Do you think Prologwill be ableto succesfullyan-
swerthis query?Try, andseeif you areright. Thenturn ontrace andseehow
many stepsit took to find theanswer. Is thisbetteror worsethandescend1.pl?

6. Create(or loadfrom theinternet)thefile descend4.pl. Now considerthequery
descend(martha,rose). Do you think Prologwill be ableto succesfullyan-
swerthis query?Try, andseeif you areright. Thenturn ontrace andseehow
many stepsit took to find theanswer. Is this betteror worsethandescend1.pl
anddescend3.pl ?

7. Now switchoff trace. First,seehow descend3.pl handlesthequerydescend(X,Y).
Thenseehow descend4.pl handlesthesamequery. Is everythingasit should
be?If not,do youunderstandwhy?

3.4. Practical Session 3 45

8. Finally, loadthefile numeral1.pl. Turn ontrace, andmake surethatyou un-
derstandhow Prologhandlesbothspecificqueries(suchasnumeral(succ(succ(0))))
andqueriesinvolving variables(suchasnumeral(X)).

Now for someprogramming.Wearenow at theendof thethird session,whichmeans
wehavecoveredaboutaquarterof thematerialwearegoingto. Moreover, thematerial
we have coveredso far is the basisfor everythingthat follows, so it is vital that you
understandit properly. And theonly way to really get to gripswith Prologis to write
programs(lotsof them!),runthem,fix themwhenthey don’t work,andthenwrite some
more.Learningaprogramminglanguageis a lot like learninga foreignlanguage:you
have to getout thereandactuallyuseit if youwantto make genuineprogress.

Soherearethreeexercisesfor you to try your handon.

1. Wearegiventhefollowing knowledgebaseof travel information:

byCar(auckland,hamilton).

byCar(hamilton,raglan).

byCar(valmont,saarbruecken).

byCar(valmont,metz).

byTrain(metz,frankfurt).

byTrain(saarbruecken,frankfurt).

byTrain(metz,paris).

byTrain(saarbruecken,paris).

byPlane(frankfurt,bangkok).

byPlane(frankfurt,singapore).

byPlane(paris,losAngeles).

byPlane(bangkok,auckland).

byPlane(losAngeles,auckland).

Write a predicatetravel/2 which determineswhetherit is possibleto travel
from oneplaceto anotherby ‘chaining together’car, train, andplanejourneys.
Forexample,yourprogramshouldanswer‘yes’ to thequerytravel(valmont,raglan).

2. So,by usingtravel/2 to querytheabove database,you canfind out that it is
possibleto go from Vamontto Raglan.In caseyou areplanninga travel, that’s
alreadyvery goodinformation,but whatyou would thenreally want to know is
howexactly to get from Valmontto Raglan.Write a predicatetravel/3 which
tells you how to travel from oneplaceto another. Theprogramshould,e.g.,an-
swer‘yes’ to thequerytravel(valmont,paris,go(valmont,metz,go(metz,paris)))
andX = go(valmont,metz,go(metz,paris,go(paris,losAngeles))) to the
querytravel(valmont,losAngeles,X).

3. Extendthepredicatetravel/3 sothatit notonly tellsyouvia whichothercities
you have to go to get from oneplaceto another, but alsohow, i.e. by car, train,
or plane,yougetfrom onecity to thenext.

46 Chapter 3. Recursion

4

Lists

This lecturehastwo maingoals:

1. To introducelists, an importantrecursive datastructurewidely usedin compu-
tationallinguistics.

2. To definemember, a fundamentalPrologtool for manipulatinglists, andto in-
troducetheideaof recursingdown lists.

4.1 Lists

As its namesuggests,a list is justaplainold list of items.Slightly moreprecisely, it is
afinite sequenceof elements.Herearesomeexamplesof lists in Prolog:

[mia, vincent, jules, yolanda]

[mia, robber(honey_bunny), X, 2, mia]

[]

[mia, [vincent, jules], [butch, girlfriend(butch)]]

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]]

Wecanlearnsomeimportantthingsfrom theseexamples.

1. We canspecify lists in Prologby enclosingthe elementsof the list in square
brackets(that is, thesymbols[and]). Theelementsareseparatedby commas.
For example,our first example[mia, vincent, jules, yolanda] is a list
with four elements,namelymia, vincent, jules, andyolanda. Thelengthof
a list is thenumberof elementsit has,soourfirst exampleis a list of lengthfour.

2. Fromour secondexample,[mia,robber(honey_bunny),X,2,mia], we learn
thatall sortsof Prologobjectscanbeelementsof a list. Thefirst elementof this
list is mia, anatom; thesecondelementis robber(honey_bunny), a complex
term;thethird elementis X, avariable;thefourthelementis 2, anumber. More-
over, we also learnthat the sameitem may occurmorethanoncein the same
list: for example,thefifth elementof this list is mia, which is sameasthefirst
element.

48 Chapter 4. Lists

3. The third exampleshows that thereis a very speciallist, the empty list. The
emptylist (asits namesuggests)is thelist thatcontainsnoelements.Whatis the
lengthof theemptylist? Zero,of course(for thelengthof a list is thenumberof
membersit contains,andtheemptylist containsnothing).

4. Thefourthexampleteachesussomethingextremelyimportant:listscancontain
otherlistsaselements.For example,thesecondelementof

[mia, [vincent, jules], [butch,girlfriend(butch)]]

is thelist [vincent,jules], andthethirdelementis thelist [butch,girlfriend(butch)]].
In short, lists areexamplesof recursive datastructures:lists canbe madeout
of lists. What is the length of the fourth list? The answeris: three. If you
thoughtit wasfive (or indeed,anything else)you’re not thinking aboutlists in
the right way. The elementsof the list are the things betweenthe outermost
squarebracketsseparatedby commas.So this list containsthreeelements:the
first elementis mia, the secondelementis [vincent, jules], and the third
elementis [butch, girlfriend(butch)].

5. Thelastexamplemixesall theseideastogether. We have herea list which con-
tainstheemptylist (in fact, it containsit twice), thecomplex termdead(zed),
two copiesof the list [2, [b, chopper]], and the variableZ. Note that that
thethird (andthelast)elementsarelistswhich themselvescontainlists (namely
[b, chopper]).

Now for avery importantpoint. Any non-emptylist canbethoughtof asconsistingof
two parts:theheadandthetail. Theheadis simply thefirst item in thelist; thetail is
everythingelse.For example,theheadof

[mia, vincent, jules, yolanda]

is mia andthetail is [vincent, jules, yolanda]. Similarly, theheadof

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]]]

is [], and the tail is [dead(zed), [2,[b,chopper]],[],Z,[2,[b, chopper]]].
Notethatonly non-emptylistshave headsandtails. Thatis, theemptylist containsno
internalstructure.For Prolog,theemptylist [] is a special,particularlysimple,list.

Prologhasa specialinbuilt operator| which canbeusedto decomposea list into its
headandtail. It is very importantto get to know how to use|, for it is a key tool for
writing Prologlist manipulationprograms.

Themostobvioususeof | is to extractinformationfrom lists. Wedothisby using| to-
getherwith matching.For example,to getholdof theheadandtail of [mia,vincent,
jules,yolanda] wecanposethefollowing query:

?- [Head| Tail] = [mia, vincent, jules, yolanda].

Head = mia

Tail = [vincent,jules,yolanda]

yes

4.1. Lists 49

Thatis, theheadof thelist hasbecomeboundto Head andthetail of thelist hasbecome
boundto Tail. Notethatthereis nothingspecialaboutHead andTail, they aresimply
variables.Wecouldjustaswell have posedthequery:

?- [X|Y] = [mia, vincent, jules, yolanda].

X = mia

Y = [vincent,jules,yolanda]

yes

As we mentionedabove, only non-emptylists have headsandtails. If we try to use|
to pull [] apart,Prologwill fail:

?- [X|Y] = [].

no

Thatis, Prologtreats[] is aspeciallist. Thisobservation is very important.We’ll see
why later.

Let’s look at someotherexamples.We canextract theheadandtail of the following
list justaswe saw above:

?- [X|Y] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = []

Y = [dead(zed),[2,[b,chopper]],[],_7800]

Z = _7800

yes

That is: the headof the list is boundto X, the tail is boundto Y. (We also get the
informationthatProloghasboundZ to theinternalvariable_1457.)

But we cancando a lot morewith |; it really is a very flexible tool. For example,
supposewe wantedto know what thefirst two elementsof the list were,andalsothe
remainderof thelist afterthesecondelement.Thenwe’d posethefollowing query:

?- [X,Y | W] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = []

Y = dead(zed)

W = [[2,[b,chopper]],[],_8327]

Z = _8327

yes

Thatis: theheadof thelist is boundto X, thesecondelementis boundto Y, andthere-
mainderof thelist afterthesecondelementis boundto W. (Wealsogettheinformation
thatProloghasboundZ to theinternalvariable_2035.)

This is a goodtime to introducetheanonymousvariable.Supposewe wereinterested
in gettingholdof thesecondandfourthelementsof thelist:

50 Chapter 4. Lists

[[], dead(zed), [2, [b, chopper]], [], Z].

Now, we couldfind out like this:

?- [X1,X2,X3,X4 | Tail] = [[], dead(zed), [2, [b, chopper]], [], Z].

X1 = []

X2 = dead(zed)

X3 = [2,[b,chopper]]

X4 = []

Tail = [_8910]

Z = _8910

yes

OK, wehave got theinformationwewanted:thevaluesweareinterestedin arebound
to thevariablesX2 andX4. But we’ve got a lot of otherinformationtoo (namelythe
valuesboundto X1, X3 andTail). And perhapswe’re not interestedin all this other
stuff. If so, it’s a bit silly having to explicitly introducevariablesX1, X3 andTail to
dealwith it. And in fact,thereis asimplerwayto obtainonly theinformationwewant:
we canposethefollowing queryinstead:

?- [_,X,_,Y|_] = [[], dead(zed), [2, [b, chopper]], [], Z].

X = dead(zed)

Y = []

Z = _9593

yes

The _ symbol (that is, understroke) is the anonymousvariable. We useit whenwe
needto usea variable,but we’re not interestedin what Prolog instantiatesit to. As
you canseein the above example,Prologdidn’t bothertelling us what_ wasbound
to. Moreover, notethateachoccurrenceof _ is independent: eachis boundto some-
thing different.This couldn’t happenwith anordinaryvariableof course,but thenthe
anonymousvariableisn’t meantto be ordinary. It’s simply way of telling Prolog to
bindsomethingto agivenposition,completelyindependentlyof any otherbindings.

Let’s look at one last example. The third elementof our working exampleis a list
(namely[2, [b, chopper]]). Supposewe wantedto extract thetail of this internal
list, andthatwearenot interestedin any otherinformation.How couldwedothis?As
follows:

?- [_,_,[_|X]|_] =

[[], dead(zed), [2, [b, chopper]], [], Z, [2, [b, chopper]]].

X = [[b,chopper]]

Z = _10087

yes

4.2. Member 51

4.2 Member

It’s time to look at our first exampleof a Prologprogramfor manipulatinglists. One
of the mostbasicthingswe would like to know is whethersomethingis an element
of a list or not. Solet’s write a programthat,whengivenasinputsanarbitraryobject
X anda list L, tells uswhetheror not X belongsto L. Theprogramthatdoesthis is
usuallycalledmember, andit is thesimplestexampleof aPrologprogramthatexploits
therecursive structureof lists. Hereit is:

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

Thatsall thereis to it: one fact (namelymember(X,[X|T])) and one rule (namely
member(X,[H|T]) :- member(X,T)). But note that the rule is recursive (after all,
the functormember occursin both the rule’s headandtail) andit is this thatexplains
why suchashortprogramis all that is required.Let’s take acloserlook.

We’ll startby readingthe programdeclaratively. And readthis way, it is obviously
sensible.Thefirst clause(thefact)simply says:anobjectX is a memberof a list if it
is theheadof thatlist. Notethatweusedtheinbuilt | operatorto statethis (simplebut
important)principleaboutlists.

Whataboutthesecondclause,therecursive rule?This says:anobjectX is memberof
a list if it is a memberof thetail of thelist. Again,notethatwe usedthe| operatorto
statethisprinciple.

Now, clearly this definitionmakesgooddeclarative sense.But doesthis programac-
tually do what it is supposedto do? That is, will it really tell us whetheranobjectX
belongsto a list L? And if so,how exactly doesit do this? To answersuchquestions,
we needto think aboutits proceduralmeaning. Let’s work our way througha few
examples.

Supposeweposedthefollowing query:

?- member(yolanda,[yolanda,trudy,vincent,jules]).

Prolog will immediatelyanswer‘Yes’. Why? Becauseit can unify yolanda with
bothoccurrencesof X in thefirst clause(the fact) in thedefinitionof member/2, so it
succeedsimmediately.

Now considerthefollowing query:

?- member(vincent,[yolanda,trudy,vincent,jules]).

Now thefirst rulewon’t help(vincent andyolanda aredistinctatoms)soProloggoes
to thesecondclause,therecursive rule. ThisgivesProloganew goal: it now hasto see
if

member(vincent,[trudy,vincent,jules]).

Now, onceagainthe first clausewon’t help, so Prologgoes(again)to the recursive
rule. This givesit anew goal,namely

52 Chapter 4. Lists

member(vincent,[vincent,jules]).

This time, thefirst clausedoeshelp,andthequerysucceeds.

Sofarsogood,but weneedto askanimportantquestion.Whathappenswhenwepose
aquerythatfails? For example,whathappensif we posethequery

member(zed,[yolanda,trudy,vincent,jules]).

Now, this shouldobviously fail (afterall, zed is not on the list). Sohow doesProlog
handlethis?In particular, how canwebesurethatPrologreallywill stop, andsay no,
insteadgoinginto anendlessrecursive loop?

Let’s think this throughsystematically. Onceagain,the first clausecannothelp, so
Prologusestherecursive rule,whichgivesit a new goal

member(zed,[trudy,vincent,jules]).

Again,thefirst clausedoesn’t help,soPrologreusestherecursive ruleandtriesto show
that

member(zed,[vincent,jules]).

Similarly, the first rule doesn’t help, so Prologreusesthe secondrule yet againand
triesthegoal

member(zed,[jules]).

Again thefirst clausedoesn’t help,soPrologusesthesecondrule, which givesit the
goal

member(zed,[])

And this is wherethingsgetinteresting.Obviously thefirst clausecan’t helphere.But
note:therecursiverule can’t doanythingmoreeither. Why not?Simple:therecursive
rule relieson splitting the list into a headanda tail, but aswe have alreadyseen,the
emptylist can’t besplit up in this way. Sotherecursive rulecannotbeappliedeither,
andPrologstopssearchingfor moresolutionsandannounces‘No’. That is, it tells us
thatzed doesnotbelongto thelist, which is, of course,whatit oughtto do.

We could summarizethe member/2 predicateasfollows. It is a recursive predicate,
whichsystematicallysearchesdown thelengthof thelist for therequireditem. It does
this by stepwisebreakingdown the list into smallerlists, andlooking at thefirst item
of eachsmallerlist. This mechanismthat thatdrivesthis searchis recursion,andthe
reasonthat this recursionis safe(that is, the reasonit doesnot go on forever) is that
at theendof theline Prologhasto aska questionabouttheemptylist. Theemptylist
cannotbebrokendown into smallerparts,andthisallows awayoutof therecursion.

Well, we’ve now seenwhy member/2 works, but in fact it’s far moreusefulthat the
previousexamplemightsuggest.Up till now we’veonly beenusingit to answeryes/no
questions.But we canalsoposequestionscontainingvariables.For example,we can
have thefollowing dialogwith Prolog:

4.3. Recursing down lists 53

member(X,[yolanda,trudy,vincent,jules]).

X = yolanda ;

X = trudy ;

X = vincent ;

X = jules ;

no

Thatis,Prologhastold uswhateverymemberof alist is. This is averycommonuseof
member/2. In effect, by usingthevariablewe aresayingto Prolog: ‘Quick! Give me
someelementof thelist!’. In many applicationsweneedto beableto extractmembers
of a list, andthis is theway it is typically done.

Onefinal remark.Thewaywedefinedmember/2 above is certainlycorrect,but in one
respectit is a little messy.

Think aboutit. Thefirst clauseis thereto dealwith theheadof thelist. But although
thetail is irrelevantto thefirst clause,wenamedthetail usingthevariableT. Similarly,
the recursive rule is thereto dealwith the tail of the list. But althoughthe headis
irrelevant here,we namedit usingthe variableH. Theseunnecessaryvariablenames
aredistracting: it’s betterto write predicatesin a way that focusesattentionon what
is really importantin eachclause,andtheanonymousvariablegivesusa niceway of
doingthis. Thatis, we canrewrite member/2 asfollows:

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

This versionis exactly thesame,bothdeclaratively andprocedurally. But it’s just that
little bit clearer:whenyou readit, youareforcedto concentrateonwhatis essential.

4.3 Recur sing down lists

Memberworksby recursively working down a list, doingsomethingto thehead,and
thenrecursively doing the samething to the tail. Recursingdown a list (or indeed,
several lists) in this way is extremelycommonin Prolog: so common,in fact, that it
is importantthat you really masterthe idea. So let’s look at anotherexampleof the
techniqueatwork.

Whenworking with lists, we oftenwant to compareonelist with another, or to copy
bits of one list into another, or to translatethe contentsof one list into another, or
somethingsimilar. Here’s anexample.Let’s supposewe needa predicatea2b/2 that
takestwo lists asarguments,andsucceedsif thefirst argumentis a list of as, andthe
secondargumentis a list of bsof exactly thesamelength.For example,if weposethe
following query

a2b([a,a,a,a],[b,b,b,b]).

54 Chapter 4. Lists

we wantPrologto say‘yes’. On theotherhand,if we posethequery

a2b([a,a,a,a],[b,b,b]).

or thequery

a2b([a,c,a,a],[b,b,5,4]).

we wantPrologto say‘no’.

Whenfacedwith suchtasks,often the bestway to setaboutsolving themis to start
by thinking aboutthesimplestpossiblecase.Now, whenworkingwith lists, ‘thinking
aboutthe simplestcase’often means‘thinking abouttheemptylist’, andit certainly
meansthishere.After all: whatis theshortestpossiblelist of as?Why, theemptylist:
it containsno as at all! And what is theshortestpossiblelist of bs? Again, theempty
list: no bs whatsoever in that! So themostbasicinformationour definition needsto
containis

a2b([],[]).

This recordstheobviousfactthattheemptylist containsexactlyasmany asasas. But
althoughobvious, this fact turnsout to play a very importantrole in our program,as
we shallsee.

Sofar sogood:but how do we proceed?Here’s theidea: for longerlists, think recur-
sively. So: whenshoulda2b/2 decidethat two non-emptylists area list of as anda
list of bs of exactly the samelength? Simple: whenthe headof thefirst list is ana,
andtheheadof thesecondlist is a b, anda2b/2 decidesthat thetwo tails arelists of
asandbs of exactly thesamelength!This immediatelygivesusthefollowing rule:

a2b([a|Ta],[b|Tb]) :- a2b(Ta,Tb).

Thissays:thea2b/2 predicateshouldsucceedif its first argumentis a list with heada,
its secondargumentis a list with headb, anda2b/2 succeedson thetwo tails.

Now, thisdefinitionmakegoodsensedeclaratively. It is asimpleandnaturalrecursive
predicate,thebaseclausedealingwith theemptylist, therecursive clausedealingwith
non-emptylists. But how doesit work in practice? That is, what is its procedural
meaning?For example,if weposethequery

a2b([a,a,a],[b,b,b]).

Prologwill say‘yes’, which is whatwe want,by whyexactlydoesthishappen?

Let’s work theexamplethrough. In this query, neitherlist is empty, so the fact does
nothelp.ThusProloggoeson to try therecursive rule. Now, thequerydoesmatchthe
rule (afterall, theheadof thefirst list is a andtheheadof thesecondin b) soProlog
now hasanew goal,namely

a2b([a,a],[b,b]).

4.3. Recursing down lists 55

Onceagain,the factdoesnot helpwith this, but the recursive rule canbeusedagain,
leadingto thefollowing goal:

a2b([a],[b]).

Yet againthe fact doesnot help,but the recursive rule does,so we get the following
goal:

a2b([],[]).

At lastwe canusethefact: this tells usthat,yes,we really do have two lists herethat
containexactly thesamenumberof as andbs (namely, noneat all). And becausethis
goalsucceeds,thismeansthatthegoal

a2b([a],[b]).

succeedstoo. This is turnmeansthatthegoal

a2b([a,a],[b,b]).

succeeds,andthusthattheoriginalgoal

a2b([a,a,a],[b,b,b]).

is satisfied.

We could summarizethis processasfollows. Prologstartedwith two lists. It peeled
the headoff eachof them,andchecked that they werean a anda b as required. It
then recursively analyzedthe tails of both lists. That is, it worked down both tails
simultaneously, checkingthatateachstagethetailswereheadedby ana andab. Why
did theprocessstop?Becauseat eachrecursive stepwe hadto work with shorterlists
(namelythe tails of the lists examinedat theprevious step)andeventuallywe ended
up with empty lists. At this point, our rathertrivial looking fact wasable to play a
vital role: it said‘yes!’. This haltedtherecursion,andensuredthat theoriginal query
succeeded.

It’s is alsoimportantto think aboutwhathappenswith queriesthat fail. For example,
if we posethequery

a2b([a,a,a,a],[b,b,b]).

Prologwill correctlysay‘no’. Why? becauseaftercarryingout the‘peel off thehead
andrecursively examinethetail’ processthreetimes,it will beleft with thequery

a2b([a],[]).

But thisgoalcannotbesatisfied.And if we posethequery

a2b([a,c,a,a],[b,b,5,4]).

56 Chapter 4. Lists

aftercarryingout the‘peeloff theheadandrecursively examinethetail’ processonce,
Prologwill have thegoal

a2b([c,a,a],[b,5,4]).

andagain,this cannotbesatisfied.

Well, that’show a2b/2 worksin simplecases,but wehaven’t exhaustedits possibilities
yet. As alwayswith Prolog,it’sagoodideato investigatewhathappenswhenvariables
asusedasinput. And with a2b/2 somethinginterestinghappens:it actsasatranslator,
translatinglists of as to listsof bs,andviceversa.For examplethequery

a2b([a,a,a,a],X).

yieldstheresponse

X = [b,b,b,b].

That is, the list of as hasbeentranslatedto a list of bs. Similarly, by usinga variable
in thefirst argumentposition,we canuseit to translatelists of bs to listsof as:

a2b(X,[b,b,b,b]).

X = [a,a,a,a]

And of course,we canusevariablesin bothargumentpositions:

a2b(X,Y).

Canyouwork outwhathappensin thiscase?

To sum up: a2b/2 is an extremelysimpleexampleof a programthat works by re-
cursingits way down a pair of lists. But don’t befooledby its simplicity: thekind of
programmingit illustratesis fundamentalto Prolog. Both its declarative form (a base
clausedealingwith theemptylist, a recursive clausedealingwith non-emptylists)and
theproceduralideait tradeson(dosomethingto theheads,andthenrecursively dothe
samething to thetails)comeupagainandagainin Prologprogramming.In fact,in the
courseof yourPrologcareer, you’ll find thatyou’ll write whatis essentiallythea2b/2
predicate,or amorecomplex variantof it, many timesover in many differentguises.

4.4 Exercises

Exercise 4.1 How doesProlog respondto thefollowingqueries?

1. [a,b,c,d] = [a,[b,c,d]].

2. [a,b,c,d] = [a|[b,c,d]].

3. [a,b,c,d] = [a,b,[c,d]].

4.4. Exercises 57

4. [a,b,c,d] = [a,b|[c,d]].

5. [a,b,c,d] = [a,b,c,[d]].

6. [a,b,c,d] = [a,b,c|[d]].

7. [a,b,c,d] = [a,b,c,d,[]].

8. [a,b,c,d] = [a,b,c,d|[]].

9. [] = _.

10. [] = [_].

11. [] = [_|[]].

Exercise 4.2 Supposewearegivena knowledge basewith thefollowing facts:

tran(eins,one).

tran(zwei,two).

tran(drei,three).

tran(vier,four).

tran(fuenf,five).

tran(sechs,six).

tran(sieben,seven).

tran(acht,eight).

tran(neun,nine).

Write a predicatelisttran(G,E) which translatesa list of Germannumberwordsto
thecorrespondinglist of Englishnumberwords.For example:

listtran([eins,neun,zwei],X).

shouldgive:

X = [one,nine,two].

Your program shouldalsowork in theotherdirection. For example, if yougive it the
query

listtran(X,[one,seven,six,two]).

it shouldreturn:

X = [eins,sieben,sechs,zwei].

Hint: to answerthis question,first askyourself ‘How do shouldI translatetheempty
list of numberwords?’. That’s the basecase. For non-emptylists, first translatethe
headof thelist, thenuserecursionto translatethetail.

58 Chapter 4. Lists

Exercise 4.3 Write a predicatetwice(In,Out) whoseleft argumentis a list, and
whoseright argumentis a list consistingof everyelementin theleft list written twice.
For example, thequery

twice([a,4,buggle],X).

shouldreturn

X = [a,a,4,4,buggle,buggle]).

Andthequery

twice([1,2,1,1],X).

shouldreturn

X = [1,1,2,2,1,1,1,1].

Hint: to answerthis question,first askyourself ‘What shouldhappenwhenthe first
argumentis theempty?’. That’s thebasecase. For non-emptylists, think aboutwhat
youshoulddo with thehead,anduserecursionto handlethetail.

4.5 Practical Session 4

Thepurposeof PracticalSession4 is to helpyougetfamiliarwith theideaof recursing
down lists. We first suggestsometracesfor you to carryout, andthensomeprogram-
ming exercises.

First, systematicallycarry out a numberof traceson a2b/2 to make sureyou fully
understandhow it works. In particular:

1. Tracesomeexamples,not involving variables,thatsucceed.For example,trace
thequerya2b([a,a,a,a],[b,b,b,b]) andrelatetheoutputto thediscussion
in thetext.

2. Tracesomesimpleexamplesthat fail. Try examplesinvolving lists of different
lengths(suchasa2b([a,a,a,a],[b,b,b])) andexamplesinvolving symbols
otherthana andb (suchasa2b([a,c,a,a],[b,b,5,4])).

3. Tracesomeexamplesinvolving variables.Forexample,try tracinga2b([a,a,a,a],X)
anda2b(X,[b,b,b,b]).

4. Make sureyou understandwhat happenwhenboth argumentsin thequeryare
variables.For example,carryouta traceon thequerya2b(X,Y).

5. Carry out a seriesof similar tracesinvolving member. That is, carry out traces
involving simplequeriesthat succeed(suchasmember(a,[1,2,a,b])), sim-
ple queriesthat fail (suchas member(z,[1,2,a,b])), and queriesinvolving
variables(suchasmember(X,[1,2,a,b]))). In all cases,make surethat you
understandwhy therecursionhalts.

4.5. Practical Session 4 59

Having donethis, try thefollowing.

1. Write a 3-placepredicatecombine1 which takes threelists as argumentsand
combinestheelementsof thefirst two lists into thethird asfollows:

combine1([a,b,c],[1,2,3],X).

X = [a,1,b,2,c,3]

combine1([foo,bar,yip,yup],[glub,glab,glib,glob],Result).

Result = [foo,glub,bar,glab,yip,glib,yup,glob]

2. Now write a 3-placepredicatecombine2 which takes threelists asarguments
andcombinestheelementsof thefirst two lists into thethird asfollows:

combine1([a,b,c],[1,2,3],X).

X = [[a,1],[b,2],[c,3]]

combine1([foo,bar,yip,yup],[glub,glab,glib,glob],Result).

Result = [[foo,glub],[bar,glab],[yip,glib],[yup,glob]]

3. Finally, write a3-placepredicatecombine2 which takesthreelistsasarguments
andcombinestheelementsof thefirst two lists into thethird asfollows:

combine1([a,b,c],[1,2,3],X).

X = [join(a,1),join(b,2),join(c,3)]

combine1([foo,bar,yip,yup],[glub,glab,glib,glob],Result).

Result = [join(foo,glub),join(bar,glab),join(yip,glib),join(yup,glob)]

All threeprogramsareprettymuchthesameasa2b/2 (thoughof coursethey manip-
ulatethreelists,not two). That is, all threecanbewritten by recursingdown thelists,
doingsomethingto the heads,andthenrecursively doing the samething to the tails.
Indeed,onceyouhavewrittencombine1, you justneedto changethe‘something’you
do to theheadsto getcombine2 andcombine3.

Now, you shouldhave a pretty goodideaof what the basicpatternof predicatesfor
processinglists lookslike. Herearea coupleof list processingexercisesthatarea bit
moredifficult.

1. Writeapredicatemysubset/2thattakestwo listsasargumentsandchecks,whether
thefirst list is a subsetof thesecond.

2. Write a predicatemyintersection/3which takesthreelists asarguments(myin-
tersection(+List,+List,+List))andcheckswhetherthefirst argumentis theinter-
sectionof thesecondandthethird.

60 Chapter 4. Lists

3. Write a predicatemysuperset/2that takes two lists as argumentsand checks,
whetherthe first list is a supersetof the second.Hint: Which of the two lists
doestherecursionhave to go over?

5

Arithmetic

This lecturehastwo maingoals:

1. To introduceProlog’s inbuilt abilitiesfor performingarithmetic,and

2. To applythemto simplelist processingproblems,usingaccumulators.

5.1 Arithmetic in Prolog

Prologprovidesa numberof basicarithmetictools for manipulatingintegers(that is,
numbersof the form ...-3, -2, -1, 0, 1, 2, 3, 4...). Most Prolog implementationalso
provide tools for handlingreal numbers(or floating point numbers)suchas1.53 or
6 � 35 � 105, but we’re not going to discussthese,for they arenot particularlyuseful
for thesymbolicprocessingtasksdiscussedin thiscourse.Integers,on theotherhand,
areusefulfor varioustasks(suchasfinding the lengthof a list), so it is importantto
understandhow to work with them. We’ll startby looking at how Prologhandlesthe
four basicoperationsof addition,multiplication,subtraction,anddivision.

Arithmetic examples Prolog Notation
6 � 2 � 8 8 is 6+2.

6 � 2 � 12 12 is 6*2.

6 � 2 � 4 4 is 6-2.

6 � 8 ��� 2 -2 is 6-8.

6 	 2 � 3 3 is 6/2.

7 	 2 � 3 3 is 7/2.

1 is theremainderwhen7 is dividedby 2 1 is mod(7,2).

(Note thataswe areworking with integers,division givesusbackan integeranswer.
Thus7 	 2 gives3 asananswer, leaving a reminderof 1.)

Posingthefollowing queriesyieldsthefollowing responses:

?- 8 is 6+2.

yes

?- 12 is 6*2.

yes

62 Chapter 5. Arithmetic

?- -2 is 6-8.

yes

?- 3 is 6/2.

yes

?- 1 is mod(7,2).

yes

More importantly, we canwork out theanswersto arithmeticquestionsby usingvari-
ables.For example:

?- X is 6+2.

X = 8

?- X is 6*2.

X = 12

?- R is mod(7,2).

R = 1

Moreover, wecanusearithmeticoperationswhenwedefinepredicates.Here’sasimple
example. Let’s definea predicateadd_3_and_double2/ whoseargumentsare both
integers. This predicatetakes its first argument,addsthreeto it, doublesthe result,
andreturnsthenumberobtainedasthesecondargument.We definethis predicateas
follows:

add_3_and_double(X,Y) :- Y is (X+3)*2.

And indeed,thisworks:

?- add_3_and_double(1,X).

X = 8

?- add_3_and_double(2,X).

X = 10

Oneotherthing. Prologunderstandstheusualconventionswe usefor disambiguating
arithmeticalexpressions.For example,whenwe write 3 � 2 � 4 we mean3 ��
 2 � 4�
andnot
 3 � 2�
� 4, andPrologknows thisconvention:

?- X is 3+2*4.

X = 11

5.2. A closer look 63

5.2 A closer look

That’s thebasics,but we needto know more. Themostimportantto graspis this: +,
*, -, 	 andmod do not carryoutany arithmetic.In fact,expressionssuchas3+2, 3-2
and3*2 aresimply terms. The functorsof thesetermsare+, - and* respectively,
andtheargumentsare3 and2. Apart from thefact that the functorsgo betweentheir
arguments(insteadof in front of them)theseareordinaryPrologterms,andunlesswe
do somethingspecial,Prologwill not actuallydo any arithmetic. In particular, if we
posethequery

?- X = 3+2

we don’t getbacktheanswerX=5. Insteadwe getback

X = 3+2

yes

Thatis,ProloghassimplyboundthevariableX to thecomplex term3+2. It hasnotcar-
riedoutany arithmetic.It hassimplydonewhatit usuallydoes:performedunification
Similarly, if we posethequery

?- 3+2*5 = X

we gettheresponse

X = 3+2*5

yes

Again, Prolog hassimply boundthe variableX to the complex term 3+2*5. It did
not evaluatethis expressionto 13. To force Prolog to actually evaluatearithmetic
expressionswe have to use

is

just aswe did in our in our earlierexamples.In fact,is doessomethingvery special:
it sendsa signalto Prologthat says‘Hey! Don’t treatthis expressionasan ordinary
complex term! Call up your inbuilt arithmeticcapabilitiesandcarry out the calcula-
tions!’

In short,is forcesPrologto actin anunusualway. NormallyPrologis quitehappy just
unifying variablesto structures:that’s its job, afterall. Arithmetic is somethingextra
thathasbeenboltedon to thebasicPrologenginebecauseit is useful.Unsurprisingly,
therearesomerestrictionson thisextraability, andwe needto know whatthey are.

For astart,thearithmeticexpressionsto beevaluatedmustbeon theright handsideof
is. In ourearlierexampleswecarefullyposedthequery

?- X is 6+2.

X = 8

64 Chapter 5. Arithmetic

which is theright way to do it. If insteadwe hadasked

6+2 is X.

we would have got an error messagesayinginstantiation_error, or something
similar.

Moreover, althoughwe arefree to usevariableson the right handsideof is, when
we actually carry out evaluation, the variable mustalreadyhavebeeninstantiated
to an integer. If the variable is uninstantiated,or if it is instantiatedto something
otherthananinteger, we will getsomesortof instantiation_error message.And
this makesperfectsense.Arithmetic isn’t performedusingPrologusualunification
andknowledgebasesearchmechanisms:it’s doneby calling up a special‘black box’
which knows aboutinteger arithmetic. If we handthe black box the wrong kind of
data,naturallyits goingto complain.

Here’s anexample.Recallour ‘add3 anddoubleit’ predicate.

add_3_and_double(X,Y) :- Y is (X+3)*2.

Whenwedescribedthispredicate,wecarefullysaidthatit added3 to its first argument,
doubledthe result, and returnedthe answerin its secondargument. For example,
add_3_and_double(3,X) returnsX = 12. We didn’t sayanything aboutusingthis
predicatein thereversedirection.For example,we might hopethatposingthequery

add_3_and_double(X,12).

wouldreturntheanswerX=3. But it doesn’t! Insteadwegettheinstantiation_error
message.Why? Well, whenwe posethequerythis way round,we areaskingProlog
to evaluate12 is (X+3)*2, which it can’t do asX is not instantiated.

Two final remarks.As we’ve alreadymentioned,for Prolog3 + 2 is just a term. In
fact, for Prolog, it really is the term +(3,2). The expression3 + 2 is just a user-
friendly notationthat’s nicer for us to use.This meansthat if you really want to, you
cangivePrologquerieslike

X is +(3,2)

andPrologwill correctlyreply

X = 5

Actually, youcanevengivenPrologthequery

is(X,+(3,2))

andPrologwill respond

X = 5

5.3. Arithmetic and lists 65

This is because,for Prolog,theexpressionX is +(3,2) is the termis(X,+(3,2)).
The expressionX is +(3,2) is just userfriendly notation. Underneath,asalways,
Prologis just workingaway with terms.

Summingup,arithmeticin Prologis easyto use.Prettymuchall youhaveto remember
is to useis to forceevaluation,thatstuff to beevaluatedmustgoesto theright of is,
andto takecarethatany variablesarecorrectlyinstantiated.But thereisadeeperlesson
thatis worthreflectingon. By ‘bolting on’ theextracapabilityto doarithmeticwehave
furtherwidenedthedistancebetweentheproceduralanddeclarative interpretationof
Prologprocessing.

5.3 Arithmetic and lists

Probablythe most importantuseof arithmeticin this courseis to tell us usefulfacts
aboutdata-structures,suchaslists. For example,it canbeusefulto know how long a
list is. We’ll give someexamplesof usinglists togetherwith arithmeticcapabilities.

How long is a list? Here’s a recursive definition.

1. Theemptylist haslengthzero.

2. A non-emptylist haslength1 + len(T), wherelen(T) is thelengthof its tail.

Thisdefinitionis practicallyaPrologprogramalready. Here’s thecodewe need:

len([],0).

len([_|T],N) :- len(T,X), N is X+1.

Thispredicatework in theexpectedway. For example:

?- len([a,b,c,d,e,[a,b],g],X).

X = 7

Now, this is quite a goodprogram: it’s easyto understandandefficient. But there
is anothermethodof finding the lengthof a list. We’ll now look at this alternative,
becauseit introducestheideaof accumulators,astandardPrologtechniquewewill be
seeinglotsmoreof.

If you’re usedto otherprogramminglanguages,you’re probablyusedto the ideaof
usingvariablesto hold intermediateresults. An accumulatoris the Prologanalogof
this idea.

Here’s how to usean accumulatorto calculatethe lengthof a list. We shall definea
predicateaccLeng3/ which takesthefollowing arguments.

accLeng(List,Acc,Length)

66 Chapter 5. Arithmetic

HereList is thelist whoselengthwewanttofind,andLength is its length(aninteger).
WhataboutAcc? This is avariablewewill useto keeptrackof intermediatevaluesfor
length(soit will alsobeaninteger). Here’s whatwe do. Whenwe call this predicate,
wearegoingto giveAcc aninitial valueof 0. Wethenrecursively work ourwaydown
the list, adding1 to Acc eachtime we find a headelement,until we reachtheempty
list. Whenwedoreachtheemptyset,Acc will containthelengthof thelist. Here’s the
code:

accLeng([_|T],A,L) :- Anew is A+1, accLeng(T,Anew,L).

accLeng([],A,A).

Thebasecaseof thedefinition,unifiesthesecondandthird arguments.Why? There
areactually two reasons.The first is becausewhenwe reachthe endof the list, the
accumulator(thesecondvariable)containsthelengthof thelist. Sowe give thisvalue
(via unification)to thelengthvariable(thethird variable).Thesecondis thatthis trivial
unificationgivesa nice way of stoppingthe recursionwhenwe reachthe emptylist.
Here’s anexample:

accLeng([a,b,c],0,_988)

accLeng([b,c],1,_988)

accLeng([c],2,_988)

accLeng([],3,_988)

accLeng([],3,3)

As a final step,we’ll definea predicatewhich calls accLeng for us, andgivesit the
initial valueof 0:

leng(List,Length) :- accLeng(List,0,Length).

Sonow wecanposequerieslike this:

leng([a,b,c,d,e,[a,b],g],X).

We’ll seeanotheraccumulatorbasedprogramlaterin this lecture.

5.4 Comparing integ ers

SomePrologarithmeticpredicatesactuallydo carry out arithmeticall by themselves
(thatis, without theassistanceof is). Thesearetheoperatorsthatcompareintegers.

Arithmetic examples Prolog Notation
x � y X < Y.

x � y X =< Y.

x � y X =:= Y.

x �� y X =\= Y.

x � y X >= Y

x � y X > Y

5.4. Comparing integers 67

Theseoperatorshave theobviousmeaning:

2 < 4.

yes

2 =< 4.

yes

4 =< 4.

yes

4=:=4.

yes

4=\=5.

yes

4=\=4.

no

4 >= 4.

yes

4 > 2.

yes

Moreover, they forceboththeir right-handandleft-handargumentsto beevaluated:

2 < 4+1.

yes

2+1 < 4.

yes

2+1 < 3+2.

yes

Notethat=:= really is differentfrom =, asthefollowing examplesshow:

4=4.

yes

2+2 =4.

no

2+2 =:= 4.

yes

That is, = tries to unify its arguments;it does not forcearithmeticevaluation.That’s
=:=’s job.

68 Chapter 5. Arithmetic

Whenever we usetheseoperators,we have to take carethatany variablesareinstanti-
ated.For example,all thefollowing queriesleadto instantiationerrors.

X < 3.

3 < Y.

X =:= X.

Moreover, variableshave to beinstantiatedto integers. Thequery

X = 3, X < 4.

succeeds.But thequery

X = b, X < 4.

fails.

OK, let’s now look at an examplewhich putsProlog’s abilities to comparenumbers
to work. We’re going to definea predicatewhich takes takes a list of non-negative
integersas its first argument,andreturnsthe maximuminteger in the list as its last
argument. Again, we’ll usean accumulator. As we work our way down the list, the
accumulatorwill keeptrack of the highestinteger found so far. If we find a higher
value,theaccumulatorwill beupdatedto this new value. Whenwe call theprogram,
we setaccumulatorto an initial valueof 0. Here’s thecode.Note that thereare two
recursive clauses:

accMax([H|T],A,Max) :-

H > A,

accMax(T,H,Max).

accMax([H|T],A,Max) :-

H =< A,

accMax(T,A,Max).

accMax([],A,A).

Thefirst clausetestsif theheadof thelist is larger thanthelargestvaluefoundsofar.
If it is, we set the accumulatorto this new value,andthenrecursively work through
the tail of the list. The secondclauseapplieswhenthe headis lessthanor equalto
theaccumulator;in this casewe recursively work throughthetail of thelist usingthe
old accumulatorvalue.Finally, thebaseclauseunifiesthesecondandthird arguments;
it givesthehighestvaluewe foundwhile going throughthe list to the lastargument.
Here’s how it works:

accMax([1,0,5,4],0,_5810)

accMax([0,5,4],1,_5810)

5.4. Comparing integers 69

accMax([5,4],1,_5810)

accMax([4],5,_5810)

accMax([],5,_5810)

accMax([],5,5)

Again, it’s nice to definea predicatewhich calls this, andinitializes theaccumulator.
But wait: whatshouldwe initialize theaccumulatortoo? If you say0, this meansyou
areassumingthatall thenumbersin thelist arepositive. But supposewe give a list of
negative integersasinput. Thenwe wouldhave

accMax([-11,-2,-7,-4,-12],0,Max).

Max = 0

yes

Thisis notwhatwewant: thebiggestnumberonthelist is -2. Ouruseof 0 astheinitial
valueof the accumulatorhasruinedeverything,becauseit’s biggerthanany number
on thelist.

There’s aneasyway aroundthis: sinceour input list will alwaysbea list of integers,
simply initialize theaccumulatorto theheadof the list. That way we guaranteethat
theaccumulatoris initialized to anumberonthelist. Thefollowing predicatedoesthis
for us:

max(List,Max) :-

List = [H|_],

accMax(List,H,Max).

Sowecansimply say:

max([1,2,46,53,0],X).

X = 53

yes

And furthermorewe have:

max([-11,-2,-7,-4,-12],X).

X = -2

yes

70 Chapter 5. Arithmetic

5.5 Exercises

Exercise 5.1 How doesProlog respondto thefollowingqueries?

1. X = 3*4.

2. X is 3*4.

3. 4 is X.

4. X = Y.

5. 3 is 1+2.

6. 3 is +(1,2).

7. 3 is X+2.

8. X is 1+2.

9. 1+2 is 1+2.

10. is(X,+(1,2)).

11. 3+2 = +(3,2).

12. *(7,5) = 7*5.

13. *(7,+(3,2)) = 7*(3+2).

14. *(7,(3+2)) = 7*(3+2).

15. *(7,(3+2)) = 7*(+(3,2)).

Exercise 5.2 1. Definea 2-placepredicateincrementthat holds only whenits
secondargumentis an integer onelarger than its first argument.For example,
increment(4,5) shouldhold,but increment(4,6) shouldnot.

2. Definea 3-placepredicatesumthat holdsonly whenits third argumentis the
sumof the first two arguments. For example, sum(4,5,9) shouldhold, but
increment(4,6,12)should not.

Exercise 5.3 Write a predicateaddone2/ whosefirst argumentis a list of integers,
andwhosesecondargumentis thelist of integers obtainedbyadding1 to each integer
in thefirst list. For example, thequery

addone([1,2,7,2],X).

shouldgive

X = [2,3,8,3].

5.6. Practical Session 5 71

5.6 Practical Session 5

Thepurposeof PracticalSession5 is to helpyou getfamiliar with Prolog’s arithmetic
capabilities,andto giveyousomefurtherpracticein list manipulation.To thisend,we
suggestthefollowing programmingexercises:

1. In thetext we discussedthe3-placepredicateaccMax which which returnedthe
maximumof a list of integers. By changingthe codeslightly, turn this into a
3-placepredicateaccMin which returnsthe minimumof a list of integers.

2. In mathematics,an n-dimensionalvector is a list of numbersof lengthn. For
example,[2,5,12] is a 3-dimensionalvector, and [45,27,3,-4,6] is a 5-
dimensionalvector. Oneof the basicoperationson vectorsis scalar multipli-
cation. In this operation,every elementof a vectoris multiplied by somenum-
ber. For example,if we scalarmultiply the 3-dimensionalvector[2,7,4] by
3 the result is the 3-dimensionalvector[6,21,12]. Write a 3-placepredicate
scalarMult whosefirst argumentis an integer, whosesecondargumentis a
list of integers,andwhosethird argumentis theresultof scalarmultiplying the
secondargumentby thefirst. For example,thequery

scalarMult(3,[2,7,4],Result).

shouldyield

Result = [6,21,12]

3. Another fundamentaloperationon vectorsis the dot product. This operation
combinestwo vectorsof the samedimensionandyields a numberasa result.
Theoperationis carriedout asfollows: thecorrespondingelementsof the two
vectorsaremultiplied, andthe resultsadded.For example,the dot productof
[2,5,6] and[3,4,1] is 6+20+6, that is, 32. Write a 3-placepredicatedot
whosefirst argumentis a list of integers,whosesecondargumentis a list of
integersof the samelength as the first, and whosethird argumentis the dot
productof thefirst argumentwith thesecond.For example,thequery

dot([2,5,6],[3,4,1],Result).

shouldyield

Result = 32

72 Chapter 5. Arithmetic

6

More Lists

This lecturehastwo maingoals:

1. To defineappend,apredicatefor concatenatingtwo lists,andillustratewhatcan
bedonewith it.

2. To discusstwo waysof reversingalist: anaivemethodusingappend,andamore
efficient methodusingaccumulators.

6.1 Append

Weshalldefineanimportantpredicateappend/3 whoseargumentsareall lists. Viewed
declaratively, append(L1,L2,L3) will hold whenthe list L3 is the resultof concate-
natingthe lists L1 andL2 together(‘concatenating’means‘joining the lists together,
endto end’). For example,if we posethequery

?- append([a,b,c],[1,2,3],[a,b,c,1,2,3]).

or thequery

?- append([a,[foo,gibble],c],[1,2,[[],b]],

[a,[foo,gibble],c,1,2,[1,2,[[],b]]).

we will gettheresponse‘yes’. On theotherhand,if weposethequery

?- append([a,b,c],[1,2,3],[a,b,c,1,2]).

or thequery

?- append([a,b,c],[1,2,3],[1,2,3,a,b,c]).

we will gettheanswer‘no’.

Froma proceduralperspective, themostobvioususeof append is to concatenatetwo
lists together. We cando this simply by usinga variableasthe third argument: the
query

74 Chapter 6. More Lists

?- append([a,b,c],[1,2,3],L3).

yieldstheresponse

L3 = [a,b,c,1,2,3]

yes

But (aswe shallsoonsee)we canalsouseappend to split up a list. In fact,append is
a realworkhorse.There’s lots we cando with it, andstudyingit is a goodway to gain
abetterunderstandingof list processingin Prolog.

6.1.1 Defining append

Here’s how append/3 is defined:

append([],L,L).

append([H|T],L2,[H|L3]) :- append(T,L2,L3).

This is a recursive definition. Thebasecasesimply saysthatappendingtheemptylist
to any list whatsoever yieldsthatsamelist, which is obviously true.

But whataboutthe recursive step?This saysthatwhenwe concatenatea non-empty
list [H|T] with a list L2, we endup with the list whoseheadis H andwhosetail is
the resultof concatenatingT with L2. It may be usefulto think aboutthis definition
pictorially:

But whatis theproceduralmeaningof thisdefinition?Whatactuallygoesonwhenwe
useappend to gluetwo lists together?Let’s takeadetailedlook atwhathappenswhen
we posethequeryappend([a,b,c],[1,2,3],X).

Whenwe posethis query, Prologwill matchthis query to the headof the recursive
rule,generatinga new internalvariable(say_G518) in theprocess.If we carriedout a
traceon whathappensnext, wewouldgetsomethinglike thefollowing:

append([a, b, c], [1, 2, 3], _G518)

append([b, c], [1, 2, 3], _G587)

append([c], [1, 2, 3], _G590)

append([], [1, 2, 3], _G593)

append([], [1, 2, 3], [1, 2, 3])

append([c], [1, 2, 3], [c, 1, 2, 3])

6.1. Append 75

append([b, c], [1, 2, 3], [b, c, 1, 2, 3])

append([a, b, c], [1, 2, 3], [a, b, c, 1, 2, 3])

X = [a, b, c, 1, 2, 3]

yes

Thebasicpatternshouldbeclear: in thefirst four lineswe seethatPrologrecursesits
way down the list in its first argumentuntil it canapplythebasecaseof therecursive
definition.Then,asthenext four linesshow, it thenstepwise‘fills in’ theresult.How is
this ‘filling in’ processcarriedout?By successively instantiatingthevariables_G593,
_G590, _G587, and_G518. Butwhile it’s importanttograspthisbasicpattern,it doesn’t
tell usall weneedto know aboutthewayappend works,solet’sdig deeper. We’ll work
carefully throughthestepsin this trace,makinga carefulnoteof whatour goalsare,
andwhatthevariablesareinstantiatedto.

1. Goal1: append([a, b, c], [1, 2, 3], _G518). Prologmatchesthis to the
headof therecursive rule (thatis, append([H|T],L2,[H|L3])). Thus_G518 is
matchedto[a|L3], andProloghasthenew goalappend([b, c],[1, 2, 3], L3).
It generatesanew variable_G587 for L3, thuswehavethat_G518 = [a|_G587].

2. Goal 2: append([b, c], [1, 2, 3], _G587). Prolog matchesthis to the
headof the recursive rule, thus_G587 is matchedto [b|L3], andProloghas
thenew goalappend([c],[1, 2, 3], L3). It generatesthe internalvariable
_G590 for L3, thuswe have that_G587 = [b|_G590].

3. Goal 3: append([c], [1, 2, 3], _G590). Prologmatchesthis to the head
of therecursive rule, thus_G590 is matchedto [c|L3], andProloghasthenew
goalappend([],[1, 2, 3], L3). It generatestheinternalvariable_G593 for
L3, thuswehave that_G590 = [c|_G593].

4. Goal 4: append([], [1, 2, 3], _G593). At last: Prologcanusethe base
clause(that is, append([],L,L)). And in the four successive matchingsteps,
Prologwill obtainanswersto Goal4, Goal3, Goal2, andGoal1. Here’s how.

5. Answer to Goal 4: append([], [1, 2, 3], [1, 2, 3]). This is because
whenwe matchGoal4 (that is, append([], [1, 2, 3], _G593) to thebase
clause,_G593 is matchedto [1, 2, 3].

6. Answer to Goal 3: append([c], [1, 2, 3], [c, 1, 2, 3]). Why? Be-
causeGoal3 isappend([c], [1, 2, 3], _G590]), and_G590 = [c|_G593],
andwehavejustmatched_G593 to[1, 2, 3]. So_G590 ismatchedto[c, 1, 2, 3].

7. Answerto Goal2: append([b, c], [1, 2, 3], [b, c, 1, 2, 3]). Why?
BecauseGoal2 isappend([b, c], [1, 2, 3], _G587]), and_G587 = [b|_G590],
andwe have just matched_G590 to [c, 1, 2, 3]. So _G587 is matchedto
[b, c, 1, 2, 3].

8. AnswertoGoal1: append([a, b, c], [1, 2, 3], [b, c, 1, 2, 3]). Why?
BecauseGoal2 isappend([a, b, c], [1, 2, 3], _G518]), and_G518 = [a|_G587],
andwe have justmatched_G587 to [b, c, 1, 2, 3]. So_G518 is matchedto
[a, b, c, 1, 2, 3].

76 Chapter 6. More Lists

9. ThusProlognow knows how to instantiateX, theoriginal queryvariable.It tells
usthatX = [a, b, c, 1, 2, 3], which is whatwe want.

Work throughthis examplecarefully, andmake sureyou fully understandthepattern
of variableinstantiations,namely:

_G518 = [a|_G587]

= [a|[b|_G590]]

= [a|[b|[c|_G593]]]

For a start,this typeof patternliesat theheartof thewayappend works.Moreover, it
illustratesa moregeneraltheme:theuseof matchingto build structure.In a nutshell,
the recursive calls to appendbuild up this nestedpatternof variableswhich codeup
therequiredanswer. WhenPrologfinally instantiatestheinnermostvariable_G593 to
[1, 2, 3], the answercrystallizesout, like a snowflake forming arounda grain of
dust.But it is matching,notmagic,thatproducestheresult.

6.1.2 Using append

Now thatwe understandhow append works,let’s seehow we canput it to work.

Oneimportantuseof append is tosplit upalist into twoconsecutive lists. Forexample:

append(X,Y,[a,b,c,d]).

X = []

Y = [a,b,c,d] ;

X = [a]

Y = [b,c,d] ;

X = [a,b]

Y = [c,d] ;

X = [a,b,c]

Y = [d] ;

X = [a,b,c,d]

Y = [] ;

no

Thatis, wegive thelist wewantto split up(here[a,b,c,d]) to append asthethird ar-
gument,andweusevariablesfor thefirst twoarguments.Prologthensearchesfor ways
of instantiatingthe variablesto two lists that concatenateto give the third argument,
thussplitting up the list in two. Moreover, asthis exampleshows, by backtracking,
Prologcanfind all possiblewaysof splittingup a list into two consecutive lists.

This ability meansit is easyto definesomeusefulpredicateswith append. Let’s con-
sidersomeexamples.First,we candefinea programwhich findsprefixesof lists. For

6.1. Append 77

example,the prefixesof [a,b,c,d] are[], [a], [a,b], [a,b,c], and[a,b,c,d].
With thehelpof append it is straightforwardto defineaprogramprefix/2, whosear-
gumentsarebothlists,suchthatprefix(P,L) will holdwhenP is aprefixof L. Here’s
how:

prefix(P,L) :- append(P,_,L).

This saysthat list P is a prefix of list L whenthereis somelist suchthatL is theresult
of concatenatingP with that list. (We usetheanonymousvariablesincewe don’t care
what thatotherlist is: we only carethat theresomesuchlist or other.) This predicate
successfullyfindsprefixesof lists,andmoreover, via backtracking,findsthemall:

prefix(X,[a,b,c,d]).

X = [] ;

X = [a] ;

X = [a,b] ;

X = [a,b,c] ;

X = [a,b,c,d] ;

no

In asimilarfashion,wecandefineaprogramwhichfindssuffixesof lists. For example,
thesuffixesof [a,b,c,d] are[], [d], [c,d], [b,c,d], and[a,b,c,d]. Again,using
append it is easyto definesuffix/2, apredicatewhoseargumentsarebothlists,such
thatsuffix(S,L) will holdwhenS is asuffix of L:

suffix(S,L) :- append(_,S,L).

Thatis, list S is asuffix of list L if thereis somelist suchthatL is theresultof concate-
natingthatlist with S. Thispredicatesuccessfullyfindssuffixesof lists,andmoreover,
via backtracking,findsthemall:

suffix(X,[a,b,c,d]).

X = [a,b,c,d] ;

X = [b,c,d] ;

X = [c,d] ;

X = [d] ;

X = [] ;

no

78 Chapter 6. More Lists

Make sureyouunderstandwhy theresultscomeout in thisorder.

And now it’s very easyto definea programthat finds sublistsof lists. The sublists
of [a,b,c,d] are[], [a], [b], [c], [d], [a,b], [b,c], [c,d], [d,e], [a,b,c],
[b,c,d], and[a,b,c,d]. Now, a little thoughtrevealsthatthesublistsof a list L are
simply theprefixesof suffixesof L. Think aboutit pictorially:

And of course,wehave boththepredicatesweneedto pin this ideasdown: wesimply
define

sublist(SubL,L) :- suffix(S,L),prefix(SubL,S).

That is, SubL is a sublistof L if thereis somesuffix S of L of which SubL is a prefix.
This programdoesn’t explicitly useappend, but of course,underthe surface,that’s
what’s doingthework for us,asbothprefix andsuffix aredefinedusingappend.

6.2 Reversing a list

Appendis ausefulpredicate,andit is importantto know how to useit. But it is justas
importantto know that it canbea sourceof inefficiency, andthatyou probablydon’t
wantto useit all thetime.

Why is append a sourceof inefficiency? If you think abouttheway it works,you’ll
noticeaweakness:append doesn’t join two lists in onesimpleaction.Rather, it needs
to work its way down its first argumentuntil it finds theendof thelist, andonly then
canit carryout theconcatenation.

Now, oftenthiscausesnoproblems.For example,if wehavetwo listsandwejustwant
to concatenatethem,it’s probablynot too bad. Sure,Prologwill needto work down
the lengthof thefirst list, but if the list is not too long, that’s probablynot too high a
priceto payfor theeaseof workingwith append.

But mattersmaybevery differentif thefirst two argumentsaregivenasvariables.As
we’vejustseen,it canbeveryusefulto giveappend variablesin its first two arguments,
for this letsPrologsearchfor waysof splitting up thelists. But thereis a priceto pay:
a lot of searchis goingon,andthiscanleadto very inefficient programs.

To illustratethis,we shallexaminetheproblemof reversinga list. Thatis, we will ex-
aminetheproblemof defininga predicatewhich takesa list (say[a,b,c,d]) asinput
andreturnsa list containingthesameelementsin thereverseorder(here[d,c,b,a]).

6.2. Reversing a list 79

Now, a reverse predicateis a useful predicateto have around. As you will have
realizedby now, lists in Prologarefar easierto accessfrom the front thanfrom the
back. For example,to pull out the headof a list L, all we have to do is performthe
unification[H|_] = L; this resultsin H beinginstantiatedto theheadof L. But pulling
outthelastelementof anarbitrarylist is harder:wecan’t doit simplyusingunification.
Ontheotherhand,if wehadapredicatewhich reversedlists,wecouldfirst reversethe
input list, andthenpull out theheadof thereversedlist, asthis would give usthelast
elementof theoriginal list. Soa reverse predicatecouldbea usefultool. However,
aswe may have to reverselarge lists, we would like this tool to be efficient. So we
needto think abouttheproblemcarefully.

And that’s whatwe’re goingto do now. Wewill definetwo reversepredicates:anaive
one,definedwith thehelpof append, anda moreefficient (andindeed,morenatural)
onedefinedusingaccumulators.

6.2.1 Naive reverse using append

Here’s a recursive definitionof whatis involvedin reversinga list:

1. If we reversetheemptylist, we obtaintheemptylist.

2. If we reversethelist [H|T], we endup with thelist obtainedby reversingT and
concatenatingwith [H].

To seethat therecursive clauseis correct,considerthe list [a,b,c,d]. If we reverse
thetail of this list weobtain[d,c,b]. Concatenatingthiswith [a] yields[d,c,b,a],
which is thereverseof [a,b,c,d].

With thehelpof append it is easyto turn this recursive definitioninto Prolog:

naiverev([],[]).

naiverev([H|T],R) :- naiverev(T,RevT),append(RevT,[H],R).

Now, this definitionis correct,but it is doesanawful lot of work. It is very instructive
to look ata traceof thisprogram.Thisshows thattheprogramis spendingalot of time
carryingoutappends.Thisshouldn’t betoosurprising:after, all, wearecallingappend
recursively, andwearetelling it to instantiateavariablerevT in its first argument.The
resultis very inefficient (if you run a trace,youwill find thatit takesabout90 stepsto
reversean eightelementlist) andhardto understand(thepredicatespendsmostof it
time in therecursive callsto append, makingit very hardto seewhatis goingon).

Not nice.And aswe shallnow see,thereis abetterway.

6.2.2 Reverse using an accum ulator

The betterway is to usean accumulator. The underlyingideais simpleandnatural.
Our accumulatorwill bea list, andwhenwe startit will beempty. Supposewe want
to reverse[a,b,c,d]. At thestart,ouraccumulatorwill be[]. Sowesimply take the
headof thelist we aretrying to reverseandaddit astheheadof theaccumulator. We
thencarryonprocessingthetail, thuswearefacedwith thetaskof reversing[b,c,d],
andouraccumulatoris [a]. Againwe take theheadof thelist wearetrying to reverse

80 Chapter 6. More Lists

andaddit astheheadof theaccumulator(thusournew accumulatoris [b,a]) andcarry
on trying to reverse[c,d]. Againwe usethesameidea,sowe geta new accumulator
[c,b,a], andtry to reverse[d]. Needlessto say, thenext stepyieldsanaccumulator
[d,c,b,a] andthenew goalof trying to reverse[]. This is wheretheprocessstops:
and our accumulatorcontainsthe reversedlist we want. To summarize:the ideais
simply to work our way throughthelist we wantto reverse,andpusheachelementin
turnontotheheadof theaccumulator, like this:

List: [a,b,c,d] Accumulator: []

List: [b,c,d] Accumulator: [a]

List: [c,d] Accumulator: [b,a]

List: [d] Accumulator: [c,b,a]

List: [] Accumulator: [d,c,b,a]

This will beefficient becausewe simply blastour way throughthelist once:we don’t
have to wastetime carryingout concatenationor otherirrelevantwork.

It’s alsoeasyto put this ideain Prolog.Here’s theaccumulatorcode:

accRev([H|T],A,R) :- accRev(T,[H|A],R).

accRev([],A,A).

Thisis classicaccumulatorcode:it followsthesamepatternasthearithmeticexamples
we examinedin thepreviouslecture.Therecursive clauseis responsiblefor chopping
of theheadof the input list, andpushingit ontotheaccumulator. Thebasecasehalts
theprogram,andcopiestheaccumulatorto thefinal argument.

As is usualwith accumulatorcode,it’s a goodideato write a predicatewhich carries
out therequiredinitialization of theaccumulatorfor us:

rev(L,R) :- accRev(L,[],R).

Again,it is instructive to runsometracesonthisprogramandcompareit with naiverev.
Theaccumulatorbasedversionis clearly better. For example,it takesabout20 steps
to reversean eight elementlist, as opposedto 90 for the naive version. Moreover,
thetraceis far easierto follow. Theideaunderlyingtheaccumulatorbasedversionis
simplerandmorenaturalthantherecursive callsto append.

Summingup, append is a usefulprogram,andyou certainlyshouldnot be scaredof
usingit. Howeveryoualsoneedto beawarethatit is asourceof inefficiency, sowhen
you useit, askyourselfwhetherthereis a betterway. And oftenthereare.Theuseof
accumulatorsis oftenbetter, and(asthereverse exampleshow) accumulatorscanbe
anaturalwayof handlinglist processingtasks.Moreover, asweshalllearnlaterin the
course,therearemoresophisticatedwaysof thinking aboutlists (namelyby viewing
themasdifferencelists) whichcanalsoleadto dramaticimprovementsin performance.

6.3 Exercises

Exercise 6.1 Let’s call a list doubledif it is madeof two consecutiveblocks of ele-
mentsthat are exactly thesame. For example, [a,b,c,a,b,c] is doubled(it’s made

6.3. Exercises 81

up of [a,b,c]followedby [a,b,c]) and so is [foo,gubble,foo,gubble]. On the
other hand,[foo,gubble,foo] is not doubled. Write a predicatedoubled(List)
which succeedswhenList is a doubledlist.

Exercise 6.2 A palindromeis a word or phrasethat spellsthe sameforwards and
backwards. For example, ‘rotator’, ‘eve’, and‘nursesrun’ are all palindromes.Write
a predicatepalindrome(List), which checks whetherList is a palindrome. For
example, to thequeries

?- palindrome([r,o,t,a,t,o,r]).

and

?- palindrome([n,u,r,s,e,s,r,u,n]).

Prolog shouldrespond‘yes’, but to thequery

?- palindrome([n,o,t,h,i,s]).

Prolog shouldrespond‘no’.

Exercise 6.3 1. Write a predicatesecond(X,List) which checks whetherX is
thesecondelementof List.

2. Write a predicateswap12(List1,List2) which checkswhetherList1 is iden-
tical to List2, exceptthat thefirst twoelementsareexchanged.

3. Writea predicatefinal(X,List) which checkswhetherX is thelastelementof
List.

4. Write a predicatetoptail(InList,Outlist) which says‘no’ if inlist is a
list containingfewer than 2 elements,and which deletesthe first and the last
elementsof Inlist and returnsthe resultas Outlist, whenInlist is a list
containingat least2 elements.For example:

toptail([a],T).

no

toptail([a,b],T).

T=[]

toptail([a,b,c],T).

T=[b]

Hint: here’s whereappend comesin useful.

5. Write a predicateswapfl(List1,List2) which checkswhetherList1 is iden-
tical to List2, exceptthat thefirstandlastelementsareexchanged.Hint: here’s
whereappend comesin usefulagain.

82 Chapter 6. More Lists

Exercise 6.4 Andhere is anexercisefor thoseof youwho,likeme, like logic puzzles.

There is a streetwith threeneighboringhousesthatall havea differentcolor. They are
red,blue, andgreen. Peopleof different nationalitieslive in thedifferent housesand
they all havea differentpet.Here aresomemore factsaboutthem:

� TheEnglishmanlivesin theredhouse.

� Thejaguar is thepetof theSpanishfamily.

� TheJapaneselivesto theright of thesnail keeper.

� Thesnail keeperlivesto theleft of thebluehouse.

Whokeepsthezebra?

Definea predicatezebra/1 that tells youthenationalityof theownerof thezebra.

Hint: Thinkof a representationfor thehousesandthestreet.Codethefour constraints
in Prolog. member andsublist mightbeusefulpredicates.

6.4 Practical Session 6

Thepurposeof PracticalSession6 is to helpyougetmoreexperiencewith list manip-
ulation.Wefirst suggestsometracesfor youto carryout,andthensomeprogramming
exercises.

Thefollowing traceswill helpyougetto gripswith thepredicatesdiscussedin thetext:

1. Carryouttracesof appendwith thefirst twoargumentsinstantiated,andthethird
argumentuninstantiated.For example,append([a,b,c],[[],[2,3],b],X)
Make surethebasicpatternis clear.

2. Next, carryouttracesonappend asusedtosplit upalist, thatis,with thefirst two
argumentsgiven asvariables,andthe last argumentinstantiated.For example,
append(L,R,[foo,wee,blup]).

3. Carry out sometraceson prefix andsuffix. Why doesprefix find shorter
listsfirst, andsuffix longerlists first?

4. Carryout sometraceson sublist. A we saidin thetext, via backtrackingthis
predicategeneratesall possiblesublists,but asyou’ll see,it generatesseveral
sublistsmorethanonce.Do youunderstandwhy?

5. Carryout tracesonbothnaiverev andrev, andcomparetheir behavior.

Now for someprogrammingwork:

1. It is possibleto write aoneline definitionof themember predicateby makinguse
of append. Do so. How doesthis new versionof member comparein efficiency
with thestandardone?

6.4. Practical Session 6 83

2. Write a predicateset(InList,OutList) which takesasinput anarbitrarylist,
andreturnsa list in which eachelementof theinput list appearsonly once.For
example,thequery

set([2,2,foo,1,foo, [],[]],X).

shouldyield theresult

X = [2,foo,1,[]].

Hint: usethemember predicateto testfor repetitionsof itemsyou have already
found.

3. We‘flatten’ a list by removing all thesquarebracketsaroundany lists it contains
aselements,andaroundany lists thatits elementscontainaselement,andsoon
for all nestedlists. For example,whenwe flattenthelist

[a,b,[c,d],[[1,2]],foo]

we getthelist

[a,b,c,d,1,2,foo]

andwhenwe flattenthelist

[a,b,[[[[[[[c,d]]]]]]],[[1,2]],foo,[]]

we alsoget

[a,b,c,d,1,2,foo].

Write apredicateflatten(List,Flat) thatholdswhenthefirstargumentList
flattensto thesecondargumentFlat. Thisexercisecanbedonewithoutmaking
useof append.

84 Chapter 6. More Lists

7

Definite Clause Grammar s

This lecturehastwo maingoals:

1. To introducecontext freegrammars(CFGs)andsomerelatedconcepts.

2. To introducedefiniteclausegrammars(DCGs),an in-built Prologmechanism
for workingwith context freegrammars(andotherkindsof grammartoo).

7.1 Conte xt free grammar s

Prologhasbeenusedfor many purposes,but its inventor, Alain Colmerauer, wasa
computationallinguist,andcomputationallinguisticsremainsa classicapplicationfor
the language.Moreover, Prologoffers a numberof tools which make life easierfor
computationallinguists,andtodaywearegoingto startlearningaboutoneof themost
usefulof these:DefiniteClausesGrammars, or DCGsasthey areusuallycalled.

DCGsareaspecialnotationfor defininggrammars.So,beforewegoany further, we’d
betterlearnwhat a grammaris. We shall do so by discussingcontext freegrammars
(or CFGs).Thebasicideaof context freegrammarsis simpleto understand,but don’t
befooledinto thinking thatCFGsaretoys. They’re not. While CFGsaren’t powerful
enoughto copewith thesyntacticstructureof all naturallanguages(thatis, thekind of
languagesthathumanbeingsuse),they cancertainlyhandlemostaspectsof thesyntax
of many naturallanguages(for example,English,German,andFrench)in areasonably
naturalway.

Sowhat is a context freegrammar?In essence,a finite collectionof ruleswhich tell
usthatcertainsentencesaregrammatical(thatis, syntacticallycorrect)andwhattheir
grammaticalstructureactually is. Here’s a simplecontext free grammarfor a small
fragmentof English:

s -> np vp

np -> det n

vp -> v np

vp -> v

det -> a
det -> the
n -> woman
n -> man
v -> shoots

86 Chapter 7. Definite Clause Grammars

Whatarethe ingredientsof this little grammar?Well, first notethat it containsthree
typesof symbol. There’s ->, which is usedto definethe rules. Then thereare the
symbolswritten like this: s, np, vp, det, n, v. Thesesymbolsarecallednon-terminal
symbols;we’ll soonlearnwhy. Eachof thesesymbolshasa traditionalmeaningin
linguistics: s is short for sentence,np is short for nounphrase,vp is short for verb
phrase,anddet is shortfor determiner. Thatis, eachof thesesymbolsis shorthandfor
a grammaticalcategory. Finally therearethesymbolsin italics: a, the, woman,man,
andshoots. A computerscientistwould probablycall theseterminalsymbols(or: the
alphabet),andlinguistswould probablycall themlexical items.We’ll usetheseterms
occasionally, but oftenwe’ll make life easyfor ourselvesandjust call themwords.

Now, this grammarcontainsnine rules. A context free rule consistsof a singlenon-
terminalsymbol,followed by ->, followed by a finite sequencemadeup of terminal
and/ornon-terminalsymbols.All nine itemslisted above have this form, so they are
all legitimatecontext freerules.Whatdo theserulesmean?They tell ushow different
grammaticalcategoriescanbebuilt up. Read-> ascanconsistof, or canbebuilt out
of. For example,the first rule tells us that a sentencecanconsistof a nounphrase
followed by a verbphrase.The third rule tells us that a verb phrasecanconsistof a
verbfollowedby a nounphrase,while thefourth rule tells usthatthereis anotherway
to build a verbphrase:simply usea verb. Thelastfive rulestell usthata andtheare
determiners,thatmanandwomanarenouns,andthatshootsis averb.

Now, considerthestringof wordsa womanshootsa man. Is this grammaticalaccord-
ing to our little grammar?And if it is, whatstructuredoesit have?Thefollowing tree
answersbothquestions:

Right at the top we have a nodemarkeds. This nodehastwo daughters,onemarked
np, andonemarkedvp. Notethat this partof thediagramagreeswith thefirst rule of
thegrammar, whichsaysthatans canbebuilt outof annp andavp. (A linguistwould
saythatthis partof thetreeis licensedby thefirst rule.) In fact,asyou cansee,every
partof thetreeis licensedby oneof our rules.For example,thetwo nodesmarkednp
arelicensedby therulethatsaysthatannp canconsistof adet followedby ann. And,
right at thebottomof thediagram,all thewordsin a womanshootsa manarelicensed
by a rule. Incidentally, notethattheterminalsymbolsonly decoratethenodesright at
thebottomof thetree(theterminalnodes)while non-terminalsymbolsonly decorate
nodesthatarehigherup in thetree(thenon-terminalnodes).

7.1. Context free grammars 87

Sucha treeis calleda parsetree,andit givesustwo sortsof information: information
aboutstringsandinformationaboutstructure.This is animportantdistinctionto grasp,
solet’s acloserlook, andlearnsomeimportantterminologywhile we aredoingso.

First,if wearegivenastringof words,andagrammar, andit turnsoutthatwecanbuild
aparsetreelike theoneabove (thatis, a treethathass at thetopnode,andevery node
in thetreeis licensedby thegrammar, andthestringof wordswe weregivenis listed
in thecorrectorderalongtheterminalnodes)thenwesaythatthestringis grammatical
(accordingto thegiven grammar).For example,thestring a womanshootsa man is
grammaticalaccordingto our little grammar(andindeed,any reasonablegrammarof
Englishwouldclassifyit asungrammatical).On theotherhand,if thereisn’t any such
tree,thestring is ungrammatical(accordingto thegivengrammar).For example,the
stringwomana womanmana shootsis ungrammaticalaccordingto our little grammar
(and any reasonablegrammarof English would classify it as ungrammatical).The
languagegeneratedby a grammarconsistsof all the stringsthat grammarclassifies
asgrammatical. For example,a womanshootsa manalsobelongsto the language
generatedby our little grammar, andsodoesa manshootsthewoman. A context free
recognizeris programwhich correctlytells us whetheror not a string belongsto the
languagegeneratedby acontext freegrammar. To put it anotherway, a recognizeris a
programthatcorrectlyclassifiesstringsasgrammaticalor ungrammatical(relative to
somegrammar).

But often, in both linguisticsandcomputerscience,we arenot merely interestedin
whethera stringis grammaticalor not,we wantto know why it is grammatical.More
precisely, we oftenwantto know what its structureis, andthis is exactly theinforma-
tion aparsetreegivesus.For example,theaboveparsetreeshowsushow thewordsin
a womanshootsa manfit together, pieceby piece,to form thesentence.This kind of
informationwouldbeimportantif wewereusingthissentencein someapplicationand
neededto saywhatit actuallymeant(thatis, if we wantedto dosemantics).A context
freeparseris a programwhich correctlydecideswhethera string belongsto the lan-
guagegeneratedby a context freegrammar andalso tells us a what its structure is.
Thatis, whereasa recognizermerelysays‘Yes,grammatical’or ‘No, ungrammatical’
to eachstring,aparseractuallybuilds theassociatedparsetreeandgivesit to us.

It remainsto explainonefinal concept,namelywhatacontext freelanguageis. (Don’t
get confused:we’ve told you what a context free grammar is, but not what a con-
text free language is.) Quitesimply, a context freelanguageis a languagethatcanbe
generatedby a context freegrammar. Somelanguagesarecontext free,andsomeare
not. For example,it seemsplausiblethatEnglishis a context free language.That is,
it is probablypossibleto write a context free grammarthat generatesall (andonly)
the sentencesthat native speakersfind acceptable.On the otherhand,somedialects
of Swiss-Germanarenot context free. It canbe proved mathematicallythat no con-
text free grammarcangenerateall (andonly) the sentencesthat native speakersfind
acceptable.Soif you wantedto write a grammarfor suchdialects,you would have to
employ additionalgrammaticalmechanisms,notmerelycontext freerules.

7.1.1 CFG recognition using append

That’s thetheory, but how dowework with context freegrammarsin Prolog?To make
thingsconcrete:supposewe aregiven a context free grammar. How canwe write a
recognizerfor it? And how canwe write a parserfor it? This weekwe’ll look at the

88 Chapter 7. Definite Clause Grammars

first questionin detail.We’ll first show how (rathernaive)recognizerscanbewrittenin
Prolog,andthenshow how moresophisticatedrecognizerscanbewrittenwith thehelp
of differencelists. This discussionwill leadus to definiteclausegrammars,Prolog’s
inbuilt grammartool. Next weekwe’ll look atdefiniteclausegrammarsin moredetail,
andlearn(amongotherthings)how to usethemto defineparsers.

So: givena context freegrammar, how do we definea recognizerin Prolog?In fact,
Prologoffersa very directanswerto this question:we cansimply write down Prolog
clausesthat correspond,in an obvious way, to the grammarrules. That is, we can
simply ‘turn thegrammarinto Prolog’.

Here’s a simple (thoughas we shall learn, inefficient) way of doing this. We shall
uselists to representstrings. For example,the string a womanshootsa manwill be
representedby the list [a,woman,shoots,a,man]. Now, we have alreadysaidthat
the-> symbolusedin context freegrammarsmeanscanconsistof, or canbebuilt out
of, andthis ideais easilymodeledusinglists. For example,therule s -> np vp can
be thoughtof assaying:a list of words is an s list if it is the resultof concatenating
annp list with a vp list. As we know how to concatenatelists in Prolog(we canuse
append), it shouldbe easyto turn thesekinds of rulesinto Prolog. And what about
the rulesthat tell us aboutindividual words?Eveneasier:we cansimply view n ->

womanassayingthatthelist [woman] is ann list.

If we turn theseideasinto Prolog,this is whatwe get:

s(Z) :- np(X), vp(Y), append(X,Y,Z).

np(Z) :- det(X), n(Y), append(X,Y,Z).

vp(Z) :- v(X), np(Y), append(X,Y,Z).

vp(Z) :- v(Z).

det([the]).

det([a]).

n([woman]).

n([man]).

v([shoots]).

ThecorrespondencebetweentheCFGrulesandthePrologshouldbeclear. And to use
thisprogramasa recognizer, wesimply posetheobviousqueries.For example:

s([a,woman,shoots,a,man]).

yes

In fact, becausethis is a simple declarative Prolog program,we can do more than
this: we canalsogenerateall thesentencesthis grammarproduces.In fact,our little
grammargenerates20sentences.Herearethefirst five:

7.1. Context free grammars 89

s(X).

X = [the,woman,shoots,the,woman] ;

X = [the,woman,shoots,the,man] ;

X = [the,woman,shoots,a,woman] ;

X = [the,woman,shoots,a,man] ;

X = [the,woman,shoots]

Moreover, we’re not restrictedto posingquestionsaboutsentences:we canaskabout
othergrammaticalcategories.For example:

np([a,woman]).

yes

And we cangeneratenounphraseswith thefollowing query.

np(X).

Now this is rathernice. We have a simple,easyto understandprogramwhich corre-
spondswith our CFG in an obvious way. Moreover, it shouldthat if we addedmore
rulesto ourCFG,it wouldbeeasyto altertheprogramto copewith thenew rules.

But thereis a problem: the programhasan obvious inefficiency, namelythe useof
append. Notethatthedangersignwespokeof lastweekis there:weareusingappend
heavily when its first two argumentsare instantiatedto variables. And indeed,the
performanceof this recognizeris verybad.It is revealingto tracethoughwhatactually
happenwhenthis programanalysesa sentencesuchasa womanshootsa man. As
you will see,relatively few of thestepsaredevotedto thereal taskof recognizingthe
sentences:mostaredevotedto usingappend to decomposelists. This isn’t muchof
a problemfor our little grammar, but it certainlywould be if we wereworking with a
morerealisticgrammarcapableof generatinga largenumberof sentences.Weneedto
do somethingaboutthis.

7.1.2 CFG recognition using diff erence lists

A more efficient implementationcan be obtainedby making useof differencelists.
This is a sophisticated(and,onceyou’ve understoodit, beautiful)Prolog technique
thatcanbeusedfor avarietyof purposes.Wewon’t discusstheideaof differencelists
in any depth:we’ll simply show how they canbeusedto rewrite our recognizermore
efficiently.

Thekey ideaunderlyingdifferencelists is to representtheinformationaboutgrammat-
ical categoriesnotasasinglelist, but asthedifferencebetweentwo lists. For example,
insteadof representingawomanshootsamanas[a,woman,shoots,a,man] wemight
representit asthepairof lists

90 Chapter 7. Definite Clause Grammars

[a,woman,shoots,a,man] [].

Think of thefirst list aswhat needsto be consumed(or if you prefer: the input list),
andthesecondlist aswhatweshouldleavebehind(or: theoutputlist). Viewedfrom
this (ratherprocedural)perspective thedifferencelist

[a,woman,shoots,a,man] [].

representsthe sentencea womanshootsa manbecauseit says: If I consumeall the
symbolsontheleft, andleavebehindthesymbolsontheright, I havethesentenceI am
interestedin.

Thatis: thesentenceweareinterestedin is thedifferencebetweenthecontentsof these
two lists.

Differencerepresentationsarenot unique.In fact,we couldrepresenta womanshoots
a manin infinitely many ways.For example,we couldalsorepresentit as

[a,woman,shoots,a,man,ploggle,woggle] [ploggle,woggle].

Again the point is: if we consumeall the symbolson the left, and leave behindthe
symbolson theright, we have thesentencewe areinterestedin.

That’s all we needto know aboutdifferencelists to rewrite our recognizer. If we bear
theideaof ‘consumingsomething,andleaving somethingbehindin mind’, we obtain
thefollowing recognizer:

s(X,Z) :- np(X,Y), vp(Y,Z).

np(X,Z) :- det(X,Y), n(Y,Z).

vp(X,Z) :- v(X,Y), np(Y,Z).

vp(X,Z) :- v(X,Z).

det([the|W],W).

det([a|W],W).

n([woman|W],W).

n([man|W],W).

v([shoots|W],W).

Thes rule says:I knowthat thepair of lists X andZ representsa sentenceif (1) I can
consumeX andleavebehinda Y, andthepair X andY representsa nounphrase, and
(2) I canthengo on to consumeY leavingZ behind, andthepair Y Z representsa verb
phrase.

Theideaunderlyingthewaywe handlethewordsis similar. Thecode

n([man|W],W).

7.2. Definite clause grammars 91

meanswe arehandlingmanasthedifferencebetween[man|W] andW. Intuitively, the
differencebetweenwhatI consumeandwhatI leave behindis preciselythewordman.

Now, atfirst this is probablyharderto graspthanourpreviousrecognizer. But wehave
gainedsomethingimportant: we haven’t usedappend. In the differencelist based
recognizer, they simplyaren’t needed,andasweshallsee,thismakesabig difference.

How do weusesuchgrammars?Here’s how to recognizesentences:

s([a,woman,shoots,a,man],[]).

yes

Thisaskswhetherwecangetans byconsumingthesymbolsin [a,woman,shoots,a,man],
leaving nothingbehind.

Similarly, to generateall thesentencesin thegrammar, we ask

s(X,[]).

This asks: what valuescanyou give to X, suchthat we get an s by consumingthe
symbolsin X, leaving nothingbehind?

Thequeriesfor othergrammaticalcategoriesalsowork thesameway. For example,to
find out if a womanis anounphrasewe ask:

np([a,woman],[]).

And we generateall thenounphrasesin thegrammarasfollows:

np(X,[]).

Youshouldtracewhathappenswhenthisprogramanalysesasentencesuchasawoman
shootsa man. As youwill see,it is alot moreefficient thanourappend basedprogram.
Moreover, asno useis madeof append, the traceis a lot easierto grasp.Sowe have
madeabig stepforward.

On the otherhand,it hasto be admittedthat the secondrecognizeris not aseasyto
understand,at leastat first, andit’s a painhaving to keeptrackof all thosedifference
list variables.If only it werepossibleto have a recognizerassimpleasthefirst andas
efficientasthesecond.And in fact,it is possible:this is whereDCGscomein.

7.2 Definite clause grammar s

So,whatareDCGs?Quitesimply, a nicenotationfor writing grammars thathidesthe
underlyingdifferencelist variables. Let’s look at threeexamples.

92 Chapter 7. Definite Clause Grammars

7.2.1 A fir st example

As ourfirst example,here’s our little grammarwrittenasaDCG:

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Thelink with theoriginalcontext freegrammarshouldbeutterlyclear:thisisdefinitely
the mostuserfriendly notationwe have usedyet. But how do we usethis DCG?In
fact,we useit in exactly thesameway aswe usedour differencelist recognizer. For
example,to find outwhethera womanshootsa manis asentence,we posethequery:

s([a,woman,shoots,a,man],[]).

That is, just as in the differencelist recognizer, we askwhetherwe canget an s by
consumingthesymbolsin [a,woman,shoots,a,man], leaving nothingbehind.

Similarly, to generateall thesentencesin thegrammar, we posethequery:

s(X,[]).

ThisaskswhatvalueswecangivetoX, suchthatwegetans by consumingthesymbols
in X, leaving nothingbehind.

Moreover, thequeriesfor othergrammaticalcategoriesalsowork thesameway. For
example,to find out if a womanis anounphrasewe posethequery:

np([a,woman],[]).

And we generateall thenounphrasesin thegrammarasfollows:

np(X,[]).

What’s going on? Quite simply, this DCG is our differencelist recognizer!That is,
DCG notationis essentiallysyntacticsugar: userfriendly notationthat lets us write
grammarsin a naturalway. But Prologtranslatesthis notationinto thekindsof differ-
encelistsdiscussedbefore.Sowehave thebestof bothworlds: anicesimplenotation
for workingwith, and theefficiency of differencelists.

Thereis a easyway to actuallyseewhat PrologtranslatesDCG rulesinto. Suppose
you areworkingwith this DCG (that is, Prologhasalreadyconsultedtherules).Then
if youposethequery:

7.2. Definite clause grammars 93

listing(s)

youwill gettheresponse

s(A,B) :-

np(A,C),

vp(C,B).

This is whatProloghastranslateds -> np,vp into. Notethat(apartfrom thechoice
of variables)this is exactly thedifferencelist rulewe usedin oursecondrecognizer.

Similarly, if youposethequery

listing(np)

youwill get

np(A,B) :-

det(A,C),

n(C,B).

This is whatProloghastranslatednp -> det,n into. Again (apartfrom thechoiceof
variables)this is thedifferencelist rulewe usedin oursecondrecognizer.

To getacompletelisting of thetranslationsof all therules,simply type

listing.

Thereis onethingyoumayobserve. SomePrologimplementationstranslaterulessuch
as

det --> [the].

not into

det([the|W],W).

whichwastheform we usedin ourdifferencelist recognizer, but into

det(A,B) :-

’C’(A,the,B).

Althoughthenotationis different,theideais thesame.Basically, thissaysyoucanget
aB from anA by consumingathe. Notethat’C’ is anatom.

94 Chapter 7. Definite Clause Grammars

7.2.2 Adding recur sive rules

Our original context freegrammargeneratedonly 20 sentences.However it is easyto
write context freegrammarsthatgenerateinfinitely many sentences:we needsimply
userecursive rules. Here’s an example. Let’s add the following rules to our little
grammar:

s -> s conj s

conj -> and
conj -> or
conj -> but

This ruleallows usto join asmany sentencestogetheraswe like usingthewordsand,
but andor. SothisgrammarclassifiessentencessuchasThewomanshootsthemanor
thamanshootsthewomanasgrammatical.

It is easyto turn this grammarinto DCGrules.In fact,we justneedto addtherules

s --> s,conj,s.

conj --> [and].

conj --> [or].

conj --> [but].

But we needto becareful! It makesabig differencewherewe placetherule

s --> s,conj,s.

in theknowledgebase.If we placeit before therule

s --> np,vp

andthenposethequery

s([a,woman,shoots],[]).

thenPrologwill go into aninfinite loop.

Canyou seewhy? Thepoint is this. PrologtranslatesDCG rulesinto ordinaryProlog
rules,If we placetherecursive rules -> s,conj,s in theknowledgebasebeforethe
non-recursive rule s -> np,vp then the knowledgebasewill containthe following
two Prologrules,in thisorder:

s(A, B) :-

s(A, C),

conj(C, D),

s(D, B).

s(A, B) :-

np(A, C),

vp(C, B).

7.2. Definite clause grammars 95

Now, from a declarative perspective this is fine, but from a proceduralperspective the
rule orderingis fatal. Whenit tries to usethefirst rule, Prologimmediatelyencoun-
ters the goal s(A,C), which it then tries to satisfyusingthe first rule, whereuponit
immediatelyencountersthegoals(A, C), which it thentriesto satisfyusingthefirst
rule, whereuponit immediatelyencountersthegoal s(A, C)... In short,it goesinto
infinite loopanddoesnousefulwork. Sowereallyneedto addtherecursive ruleafter
the non-recursive rule, for with this orderingPrologalwaysecountersthe translation
of thenon-recursive rulefirst, andthispreventslooping.

The moral is: DCGs aren’t magic. They are a nice notation,but you can’t always
expectjust to ‘write down thegrammarasa DCG’ andhave it work. DCG rulesare
really ordinaryPrologrulesin disguise,andthis meansthatyou mustpayattentionto
theproceduralconsequncesof theway therulesareordered.

7.2.3 A DCG for a simple formal langua ge

As our lastexample,weshalldefineaDCGfor theformal languageanbn. Whatis this
language?And whatis a formal languageanyway?

A formal languageis simplyasetof strings.Theterm‘formal language’is intendedto
contrastwith theterm‘naturallanguage’:whereasnaturallanguagesarelanguagesthat
humanbeingsactuallyuse,fomal languagesaremathematicalobjectsthat computer
scientists,logicians,andmathematiciansdefineandstudyfor variouspurpose.

A simpleexampleof a formal languageis anbn. Thereareonly two ‘words’ in this
language:the symbola andthe symbolb. The languageanbn consistof all strings
madeup from thesetwo symbolsthathave thefollowing form: thestringmustconsist
of anunbrokenblock of as of lengthn, followedby anunbrokenblock of bs of length
n, andnothingelse.Sothestringsab, aabb, aaabbbandaaaabbbball belongto anbn.
(Notethattheemptystringbelongsto anbn too: afterall, theemptystringconsistsof a
blockof asof lengthzerofollowedby ablockof asof lengthzero.)Ontheotherhand,
aaabbandaaabbbadonotbelongto anbn.

Now, it is easyto write acontext freegrammarthatgeneratesthis language:

s -> ε
s -> l s r

l -> a

r -> b

Thefirst rule saysthatans canberealizedasnothingat all. Thesecondrule saysthat
ans canbemadeup of an l (for left) element,followedby ans, followedby an r (for
right) element.Thelasttwo rulessaythat l elementsandr elementscanberealizedas
asandbs respectively. It shouldbeclearthatthisgrammarreallydoesgenerateall and
only theelementsof anbn, includingtheemptystring.

Moreover, it is trivial to turn thisgrammarinto DCG.Wecando soasfollows:

s --> [].

s --> l,s,r.

l --> [a].

r --> [b].

96 Chapter 7. Definite Clause Grammars

And thisDCG worksexacltyaswe wouldhope.For example,to thequery

s([a,a,a,b,b,b],[]).

we gettheanswer‘yes’, while to thequery

s([a,a,a,b,b,b,b],[]).

we gettheanswer‘no’. And thequery

s(X,[]).

enumeratesthestringsin thelanguage,startingfrom [].

7.3 Exercises

Exercise 7.1 Supposeweareworkingwith thefollowingDCG:

s --> foo,bar,wiggle.

foo --> [choo].

foo --> foo,foo.

bar --> mar,zar.

mar --> me,my.

me --> [i].

my --> [am].

zar --> blar,car.

blar --> [a].

car --> [train].

wiggle --> [toot].

wiggle --> wiggle,wiggle.

Write downtheordinary Prolog rules that correspondto theseDCG rules. Whatare
thefirst threeresponsesthatProlog givesto thequerys(X,[])?

Exercise 7.2 Theformal language anbn ��� ε � consistsof all thestringsin anbn ex-
cepttheemptystring. Write a DCG thatgeneratesthis language.

Exercise 7.3 Let anb2n betheformal language which containsall stringsof thefol-
lowing form: anunbrokenblock of asof lengthn followedbyan unbrokenblock of bs
of length2n, and nothingelse. For example, abb, aabbbb, and aaabbbbbbbelongto
anb2n, andsodoestheemptystring. Writea DCG thatgeneratesthis language.

7.4. Practical Session 7 97

7.4 Practical Session 7

Thepurposeof PracticalSession7 is to helpyou get familiar with theDCGs,differ-
encelists, andtherelationbetweenthem,andto give you someexperiencein writing
basicDCGs. As you will learnnext week,thereis moreto DCGsthanthe ideasjust
discussed.Nonetheless,whatyouhave learnedlearnedsofar is certainlythecore,and
it is importantthatyouarecomfortablewith thebasicideasbeforemoving on.

First somekeyboardexercises:

1. First, type in or downloadthesimpleappend basedrecognizerdiscussedin the
text, andthenrunsometraces.As youwill see,we werenotexaggeratingwhen
wesaidthattheperformanceof theappend basedgrammarwasverypoor. Even
for suchsimplesentencesasThewomanshota manyou will seethat the trace
is very long,andverydifficult to follow.

2. Next, type in or downloadour secondrecognizer, the onebasedon difference
lists,andrunmoretraces.As youwill see,thereis adramaticgainin efficiency.
Moreover, even if you find the ideaof differencelists a bit hardto follow, you
will seethatthetracesareverysimpleto understand,especiallywhencompared
with themonstersproducedby thedifferencelist implementation!

3. Next, typein or downloadtheDCG discussedin thetext. Typelisting sothat
you canseewhatPrologtranslatestherulesto. How doesyour systemtranslate
rulesof the form Det -> [the]? That is, doesit translatethemto rules like
det([the|X],X), or doesis make useof rulescontainingthe’C’predicate?

4. Now run sometraces.Apart from variablenames,the tracesyou observe here
shouldbe very similar to the tracesyou observed whenrunningthe difference
list register. In fact,youwill only observe any realdifferencesif yourversionof
Prologusesa’C’ basedtranslation.

And now it’s time to write someDCGs:

1. The formal languageaEvenis very simple: it consistsof all stringscontaining
anevennumberof as,andnothingelse.Notethattheemptystringε belongsto
aEven. Write aDCG thatgeneratesaEven.

2. The formal languageanb2mc2mdn consistsof all stringsof the following form:
an unbroken block of as followed by an unbroken block of bs followed by an
unbroken block of cs followedby anunbroken block of ds, suchthat thea and
d blocksareexactly thesamelength,andthec andd blocksarealsoexactly the
samelengthandfurthermoreconsistof anevennumberof csanddsrespectively.
For example,ε, abbccd, andaaabbbbccccdddall belongto anb2mc2mdn. Write a
DCG thatgeneratesthis language.

3. Thelanguagethatlogicianscall ‘propositionallogic over thepropositionalsym-
bolsp, q, andr ’ canbedefinedby thefollowing context freegrammar:

98 Chapter 7. Definite Clause Grammars

prop -> p

prop -> q

prop -> r

prop -> � prop

prop -> (prop � prop)

prop -> (prop � prop)

prop -> (prop � prop)

Write a DCG that generatesthis language.Actually, becausewe don’t know
aboutPrologoperatorsyet, you will have to make a few ratherclumsylooking
compromises.For example,insteadof gettingit to recognize

� (p � q)

youwill have to getit recognizethingslike

[not, ’(’, p, implies, q, ’)’]

instead.But we will learnlaterhow to make theoutputnicer, sowrite theDCG
that acceptsa clumsylooking versionof this language.Useor for � , andand
for � .

8

More Definite Clause Grammar s

This lecturehastwo maingoals:

1. To examinetwo importantcapabilitiesoffered by DCG notation: extra argu-
mentsandextra tests.

2. To discussthestatusandlimitationsof DCGs.

8.1 Extra arguments

In the previous lecturewe only scratchedthe surfaceof DCG notation: it actually
offers a lot morethanwe’ve seenso far. For a start,DCGsallow us to specifyextra
arguments.Extraargumentscanbeusedfor many purposes;we’ll examinethree.

8.1.1 Conte xt free grammar s with features

As afirst example,let’sseehow extraargumentscanbeusedto addfeaturesto context-
freegrammars.

Here’s theDCGwe workedwith lastweek:

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Supposewewantedto dealwith sentenceslike“Sheshootshim”, and“He shootsher”.
What shouldwe do? Well, obviously we shouldadd rules sayingthat “he”, “she”,
“him”, and“her” arepronouns:

100 Chapter 8. More Definite Clause Grammars

pro --> [he].

pro --> [she].

pro --> [him].

pro --> [her].

Furthermore,we shouldadda rulesayingthatnounphrasescanbepronouns:

np--> pro.

Up to apoint, thisnew DCGworks.For example:

s([she,shoots,him],[]).

yes

But there’s anobviousproblem.TheDCG will alsoaccepta lot of sentencesthatare
clearlywrong,suchas“A womanshootsshe”, “Her shootsa man”, and“Her shoots
she”:

s([a,woman,shoots,she],[]).

yes

s([her,shoots,a,man],[]).

yes

s([her,shoots,she],[]).

yes

That is, the grammardoesn’t know that “she” (and “he”) aresubjectpronounsand
cannotbeusedin objectposition;thus“A womanshootsshe”is badbecauseit violates
this basicfact aboutEnglish. Moreover, the grammardoesn’t know that “her” (and
“him”) areobjectpronounsandcannotbeusedin subjectposition;thus“Her shootsa
man” is badbecauseit violatesthis constraint.As for “Her shootsshe”,this manages
to getbothmatterswrongatonce.

Now, it’s pretty obvious what we have to do to put this right: we needto extendthe
DCG with informationaboutwhich pronounscanoccurin subjectpositionandwhich
in objectposition. Theinterestingquestion:howexactly arewe to do this? First let’s
look at anaive wayof correctingthis,namelyaddingnew rules:

s --> np_subject,vp.

np_subject --> det,n.

np_object --> det,n.

np_subject --> pro_subject.

np_object --> pro_object.

vp --> v,np_object.

vp --> v.

8.1. Extra arguments 101

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro_subject --> [he].

pro_subject --> [she].

pro_object --> [him].

pro_object --> [her].

v --> [shoots].

Now thissolution“works”. For example,

?- s([her,shoots,she],[]).

no

But neithercomputerscientistsnor linguistswould considerthis a goodsolution.The
troubleis, a small additionto the lexicon hasled to quite a big changein the DCG.
Let’s faceit: “she” and“her” (and“he” and“him”) arethesamein a lot of respects.
But to dealwith the propertyin which they differ (namely, in which position in the
sentencethey canoccur)we’vehadto makebig changesto thegrammar:in particular,
we’ve doubledthe numberof nounphraserules. If we hadto make further changes
(for example,to copewith plural nounphrases)thingswould get even worse. What
wereallyneedis amoredelicateprogrammingmechanismthatallows usto copewith
suchfactswithout beingforcedto addrulesall the time. And here’s wheretheextra
argumentscomeinto play. Look at thefollowing grammar:

s --> np(subject),vp.

np(_) --> det,n.

np(X) --> pro(X).

vp --> v,np(object).

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

pro(subject) --> [he].

pro(subject) --> [she].

pro(object) --> [him].

pro(object) --> [her].

v --> [shoots].

102 Chapter 8. More Definite Clause Grammars

Thekey thing to noteis thatthisnew grammarcontainsno new rules. It is exactly the
sameasthefirst grammarthatwewroteabove,exceptthatthesymbolnp is associated
with a new argument,either(subject), (object), (_) and (X). A linguist would
saythatwe’veaddedafeaturetodistinguishvariouskindsof nounphrase.In particular,
note the four rules for the pronouns. Here we’ve usedthe extra argumentto state
which pronounscan occur in subjectposition, and which occur in object position.
Thustheserulesarethemostfundamental,for they give us thebasicfactsabouthow
thesepronounscanbeused.

Sowhatdo theotherrulesdo?Well, intuitively, therule

np(X) --> pro(X).

usesthe extra argument(the variableX) to passthesebasicfactsaboutpronounsup
to noun phrasesbuilt out of them: becausethe variableX is usedas the extra ar-
gumentfor both the np andthe pronoun,Prologunificationwill guaranteethat they
will be given thesamevalue. In particular, if thepronounwe useis “she” (in which
caseX=subject), then the extra argumentassociatedwith the np will be marked
X=subject) too. On the otherhand,if the pronounwe useis “her” (in which case
X=object), thenthe extra argumentnp will be markedX=object) too. And this, of
course,is exactly thebehaviour we want.

On theotherhand,althoughnounphrasesbuilt usingtherule

np(_) --> det,n.

alsohave anextra argument,we’ve usedtheanonymousvariableasits value. Essen-
tially this meanscan be either, which is correct,for expressionsbuilt usingthis rule
(suchas“the man” and“a woman”)canbeusedin bothsubjectandobjectposition.

Now considertherule

vp --> v,np(object).

This saysthat to applythis rule we needto useannounphrasewhoseextra argument
unifieswith object. This canbe either nounphrasesbuilt from objectpronounsor
nounphrasessuchas“the man” and“a woman”which have theanonymousvariable
asthevalueof theextra argument.Crucially, pronounsmarkedhashaving subject

asthevalueof theextra argumentcan’t beusedhere:theatomsobject andsubject
don’t unify. Notethattherule

s --> np(subject),vp.

worksin ananalogousfashionto preventnounphrasesmadeof objectpronounsfrom
endingup in subjectposition.

Thisworks.You cancheckit outby posingthequery:

?- s(X,[]).

8.1. Extra arguments 103

As youstepthroughtheresponses,you’ll seethatonly acceptableEnglishis generated.

But while the intuitive explanationjust given is correct,what’s really goingon? The
key thing to rememberis thatDCG rulesarereally arejust a convenientabbreviation.
For example,therule

s --> np,vp.

is really syntacticsugarfor

s(A,B) :-

np(A,C),

vp(C,B).

That is, aswe learnedin the previous lecture,the DCG notationis a way of hiding
the two argumentsresponsiblefor the differencelist representation,so that we don’t
have to think aboutthem. We work with the nice userfriendly notation,andProlog
translatesit into theclausesjustgiven.

Ok, sowe obviously needto askwhat

s --> np(subject),vp.

translatesinto. Here’s theanswer:

s(A,B) :-

np(subject,A,C),

vp(C,B).

As shouldnow beclear, thename“extra argument”is a goodone: asthis translation
makesclear, the (subject) symbolreally is just onemoreargumentin an ordinary
Prologrule! Similarly, ournounphraseDCG rulestranslateinto

np(A,B,C) :-

det(B,D),

n(D,C).

np(A,B,C) :-

pro(A,B,C).

Notethatbothruleshave threearguments.Thefirst, A, is theextra argument,andthe
lasttwo aretheordinary, hiddenDCGarguments(thetwo hiddenargumentsarealways
thelasttwo arguments).

Incidentally, how doyouthink wewouldusethegrammarto list thegrammaticalnoun
phrases?Well, if wehadbeenworkingwith theDCGrulenp -> det,n (thatis, arule
with no extraarguments)we wouldhave madethequery

np(NP,[]).

Soit’s not toosurprisingthatwe needto posethequery

104 Chapter 8. More Definite Clause Grammars

np(X,NP,[]).

whenworkingwith ournew DCG.Here’s whattheresponsewouldbe.

X = _2625

NP = [the,woman] ;

X = _2625

NP = [the,man] ;

X = _2625

NP = [a,woman] ;

X = _2625

NP = [a,man] ;

X = subject

NP = [he] ;

X = subject

NP = [she] ;

X = object

NP = [him] ;

X = object

NP = [her] ;

no

Onefinal remark:don’t bemisledby this simplicityof our example. Extraarguments
canbeusedto copewith somecomplex syntacticproblems.DCGsareno longerthe
state-of-artgrammardevelopmenttools they oncewere, but they’re not toys either.
Onceyou know aboutwriting DCGswith extra arguments,you canwrite somefairly
sophisticatedgrammars.

8.1.2 Building parse trees

Sofar, theprogramswehavediscussedhavebeenableto recognizegrammaticalstruc-
ture(that is, they couldcorrectlyanswer“yes” or “no” whenaskedwhetherthe input
wasa sentence,a nounphrase,andso on) andto generate grammaticaloutput. This
is pleasant,but we would also like to be able to parse. That is, we would like our
programsnot only to tell us which sentencesaregrammatical,but alsoto give us an
analysisof their structure. In particular, we would like to seethe treesthe grammar
assignsto sentences.

Well, usingonly standardProlog tool we can’t actuallydraw nice picturesof trees,
but we can build datastructureswhich describetreesin a clearway. For example,
correspondingto thetree

8.1. Extra arguments 105

we couldhave thefollowing term:

s(np(det(a),n(woman)),vp(v(shoots))).

Sure: it doesn’t look asnice,but all the informationin thepictureis there.And, with
theaid of adecentgraphicspackage,it wouldbeeasyto turn this terminto apicture.

But how do we getDCGsto build suchterms?Actually, it’s prettyeasy. After all, in
effect a DCG hasto work out what thetreestructureis whenrecognizinga sentence.
Sowe just needto find awayof keepingtrackof thestructurethattheDCG finds.We
do thisby addingextra arguments.Here’s how:

s(s(NP,VP)) --> np(NP),vp(VP).

np(np(DET,N)) --> det(DET),n(N).

vp(vp(V,NP)) --> v(V),np(NP).

vp(vp(V)) --> v(V).

det(det(the)) --> [the].

det(det(a)) --> [a].

n(n(woman)) --> [woman].

n(n(man)) --> [man].

v(v(shoots)) --> [shoots].

What’sgoingonhere?Essentiallywearebuilding theparsetreesfor thesyntacticcate-
goriesontheleft-handsideof therulesoutof theparsetreesfor thesyntacticcategories
ontheright-handsideof therules.Considertherulevp(vp(V,NP)) -> v(V),np(NP).
WhenwemakeaqueryusingthisDCG,theV in v(V) andtheNP in np(NP) will bein-
stantiatedto termsrepresentingparsetrees.For example,perhapsV will beinstantiated
to

v(shoots)

andNP will beinstantiatedto

np(det(a),n(woman)).

106 Chapter 8. More Definite Clause Grammars

Whatis thetermcorrespondingto avp madeoutof thesetwo structures?Obviously it
shouldbethis:

vp(v(shoots),np(det(a),n(woman))).

And this is preciselywhattheextraargumentvp(V,NP) in therulevp(vp(V,NP)) ->

v(V),np(NP) givesus: it formsatermwhosefunctoris vp, andwhosefirst andsecond
argumentsarethevaluesof V andNP respectively. To put it informally: it plugstheV
andtheNP termstogetherunderavp functor.

To parsethesentence“A womanshoots”we posethequery:

s(T,[a,woman,shoots],[]).

That is, we askfor theextra argumentT to be instantiatedto a parsetreefor thesen-
tence.And we get:

T = s(np(det(a),n(woman)),vp(v(shoots)))

yes

Furthermore,we cangenerateall parsetreesby makingthefollowing query:

s(T,S,[]).

Thefirst threeresponsesare:

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(the),n(woman))))

S = [the,woman,shoots,the,woman] ;

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(the),n(man))))

S = [the,woman,shoots,the,man] ;

T = s(np(det(the),n(woman)),vp(v(shoots),np(det(a),n(woman))))

S = [the,woman,shoots,a,woman]

This codeshouldbestudiedclosely: it’s a classicexampleof building structureusing
unification.

Extra argumentscanalsobe usedto build semanticrepresentations.We did not say
anything aboutwhatthewordsin our little DCG mean.In fact,nowadaysa lot is now
known aboutthe semanticsof naturallanguages,and it is surprisinglyeasyto build
to computesemanticrepresentationswhich partially capturethemeaningof sentences
or entirediscourses.Suchrepresentationsareusuallyexpressionsof someformal lan-
guage(for examplefirst-orderlogic, discourserepresentationstructures,or a database
querylanguage)andthey areusuallybuilt up compositionally. That is, the meaning
of eachword is expressedin the formal language;this meaningis given asan extra
argumentin theDCGentriesfor theindividualwords.Then,for eachrule in thegram-
mar, anextraargumentshowshow to combinethemeaningof thetwo subcomponents.
For example,to therules -> np, vp wewouldaddanextraargumentstatinghow to
combinethenp meaningandthevp meaningto form thes meaning.Althoughsome-
what morecomplex, thesemanticconstructionprocessis quite like theway we built
up theparsetreefor thesentencefrom theparsetreeof its subparts.

8.1. Extra arguments 107

8.1.3 Beyond conte xt free langua ges

In the previous lecturewe introducedDCGsasa usefulPrologtool for representing
andworkingwith context freegrammars.Now, this is certainlyagoodwayof thinking
aboutDCGs, but it’s not the whole story. For the fact of the matteris: DCGscan
dealwith a lot morethanjust context free languages.The extra argumentswe have
beendiscussing(and indeed,the extra testswe shall introduceshortly) give us the
toolsfor copingwith any computablelanguagewhatsoever. We shall illustratethis by
presentingasimpleDCGfor theformal languageanbncn ��� ε � .
The formal languageanbncn ��� ε � consistsof all non-null stringsmadeup of as, bs,
andcs which consistof an unbroken block of as, followed by an unbroken block of
bs, followedby anunbrokenblock of cs, all threeblockshaving thesamelength.For
example,abc, andaabbcc andaaabbbccc all belongto anbncn ��� ε � .
Theinterestingthingaboutthis languageis thatit is notcontext free.Try whateveryou
like, you will not succeedin writing a context free grammarthat generatesprecisely
thesestrings.Proving thiswould take ustoo farafield,but theproof is notparticularly
difficult, andyoucanfind it in many bookson formal languagetheory.

On theotherhand,aswe shallnow see,it is very easyto write a DCG thatgenerates
this language.Justaswe did in thepreviouslecture,we shallrepresentstringsaslists;
for example,the string abc will be representedusing the list [a,b,c]. Given this
convention,here’s theDCG weneed:

s(Count) --> ablock(Count),bblock(Count),cblock(Count).

ablock(1) --> a(1).

ablock(succ(Count)) --> a(1),ablock(Count).

bblock(1) --> b(1).

bblock(succ(Count)) --> b(1),bblock(Count).

cblock(1) --> c(1).

cblock(succ(Count)) --> c(1),cblock(Count).

a(1) --> [a].

b(1) --> [b].

c(1) --> [c].

TheideaunderlyingthisDCGis fairly simple:weuseanextraargumentto keeptrack
of thelengthof theblocks.Thes rulesimplysaysthatwewantablockof as followed
by a block of bs followed by block of cs, andall threeblocksare to have the same
length,namelyCount.

But what shouldthe valuesof Count be? The obvious answeris: 1, 2, 3, 4,..., and
soon. But asyet we don’t know how to mix DCGsandarithmetic,so this isn’t very
helpful. Fortunatelythere’s aneasier(andmoreelegant)way. Representthenumber
1 by 1, thenumber2 by succ(1), thenumber3 by succ(succ(1)), thenumber4 by
succ(succ(succ(1))),..., andsoon. (You canreadsucc as“successorof”.) Using
thissimplenotationwe can“countusingmatching”.

108 Chapter 8. More Definite Clause Grammars

This is preciselywhat the above DCG does,andit works very neatly. For example,
supposeweposethefollowing query:

s(Count,L,[]).

which asksPrologto generatethelists L of symbolsthatbelongto this language,and
to give thevalueof Count neededto produceeachitem. Thenthefirst threeresponses
are:

Count = 1

L = [a, b, c] ;

Count = succ(1)

L = [a, a, b, b, c, c] ;

Count = succ(succ(1))

L = [a, a, a, b, b, b, c, c, c]

Thevalueof Count clearlycorrespondsto thelengthof theblocks.

So:DCGsarenotjustatoolsfor workingwith context freegrammars.They arestrictly
morepowerful thanthat,and(aswe’ve just seen)partof theextra power comesfrom
theuseof extraarguments.

8.2 Extra tests

Any DCGruleis reallysyntacticsugarfor anordinaryPrologrule. Soit’snotreallytoo
surprisingthat we’re allowed to make useof extra arguments.Similarly, it shouldn’t
comeastoomuchof asurprisethatwecanalsoaddonextraconditionsto Prologrules.
Thiscanbeusefulfor all sortsof purposes.

For example,supposeyou’ve written a DCG for a fragmentof English,andthat the
sententialrule for theDCGis

s(X) --> np(X),vp(X).

And supposethatin a few minutesyouhave to demonstrateto yourboss(averyshort-
temperedperson,with no senseof humor) that this grammargeneratesgrammatical
sentences.You suddenlyheara nasty rumor. Someof your colleagues(so-called
friends!) have tamperedwith the valuesassignedto the extra argumentX. It now
getsas valuesvery rude words suchas &%*%$#@, %$#*&%$, *%$^& and even
$@#^&%%! Horrors! In a cold sweatyou imaginethesewords appearingon the
screenin front of your boss,andyour job goingstraightdown thedrain!

Fortunatelyyou’ve heardthe rumor, and you quickly definea predicatepolite/1
which checksfor the presenceof the offending words. You changethe DCG rule
to

s(X) --> np(X),vp(X),{polite(X)}.

8.2. Extra tests 109

Soonly polite sentenceswill begenerated.Whew! You’re safe...

Ok, this is probablynot goingto happen;but still, how would this imaginaryprogram
work? Simple. WhenPrologtranslatesthis DCG rule into anordinaryPrologrule, it
simplyaddsthetermin bracesasanextra test:

s(A,B,C) :-

np(A,B,D),

vp(A,D,C),

polite(A).

Soassumingyou definedpolite/1 correctly(andlet’s faceit, if you didn’t, you de-
serve to loseyour job) youwill successively filter outunacceptablesentences.

We’re freeto addasmany extra testsaswe like. For example,here’s aDCG rule with
two extraarguments,andtwo extra tests:

ping(foo,bar) --> pong(_,bar),pang(foo),{glu(foo,moo)},{gli(mar,Z)}.

This translatesto:

ping(foo,bar,A,B) :-

pong(C,bar,A,D),

pang(foo,D,B),

glu(foo,moo),

gli(mar,E).

8.2.1 Separating rules and lexicon

But whatareextra testsusefulfor? Actually, justaswith extraarguments,youcanuse
themfor a tremendousvariety of purposes.Still, thereis oneclassicapplicationthat
everycomputationallinguistshouldknow about:separatingrulesfrom lexicon. To see
whatis meantlike this, let’s returnto ourbasicgrammar, namely:

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

We aregoing to separatethe rulesform the lexicon. That is, we aregoing to write a
DCG thatgeneratesexactly thesamelanguage,but in which no rule mentionsany in-
dividualword. All theinformationaboutindividual wordswill berecordedseparately.

110 Chapter 8. More Definite Clause Grammars

As a first step,let’s recordtheinformationaboutindividual words. In effect, we shall
build a (very simple)lexicon. We shalldo this by usinga predicatelex/2 whosefirst
argumentis a word,andwhosesecondargumentis a syntacticcategory. Doing sofor
ourbasicgrammaryields:

lex(the,det).

lex(a,det).

lex(woman,n).

lex(man,n).

lex(shoots,v).

The secondstep is to changethe rules so they make useof the information in the
lexicon. Of course,not all therulesneedto bechanged.Thes, np, andvp rulesdon’t
mentionspecificwords,so they remainthe same. The oneswe needto changeare
the rulesfor det, n, andv, for thesedo mentionspecificwords. We rewrite themas
follows:

det --> [Det],{lex(Det,det)}.

n --> [Noun],{lex(Noun,n)}.

v --> [Verb],{lex(Verb,v)}.

Considerthenew det rule. This rule partsays“a det canconsistof a list containing
asingleelementDet” (notethatDet is avariable).Thentheextra testaddsthecrucial
stipulation: “so long asDet matcheswith somethingthat is listed in the lexicon asa
determiner”. With our presentlexicon, this meansthat Det mustbe matchedeither
with theword“a” or “the”. Sothissinglerule replacesthetwo previousDCGrulesfor
det.

This explains the “how” of separatingrules from lexicon, but it doesn’t explain the
“why”. Is it really so important? Is this new way of writing DCGsreally that much
better?

Theansweris anunequivocal “yes”! It’s much better, andfor at leasttwo reasons.

Thefirst reasonis theoretical.Arguablyrulesshouldnotmentionspecificlexical items.
Thepurposeof rulesis to list general syntacticfacts,suchasthefactthatsentencecan
be madeup of a noun phrasefollowed by a verb phrase. The rules for s, np, and
vp describesuchgeneralsyntacticfacts,but the old rules for det, n, and v don’t.
Instead,theold rulessimply list particularfacts:that“a” is a determiner, that“the” is
adeterminer, andsoon. Fromtheoreticalperspective it is muchneaterto haveasingle
rule thatsays“anything is adeterminer(or anoun,or averb,...)if it is listedassuchin
thelexicon”. And this,of course,is preciselywhatournew DCG rulessay.

The secondreasonis morepractical. Oneof thekey lessonscomputationallinguists
have learntover thelast twentyor soyearsis that thelexicon is by far themostinter-
esting,important(andexpensive!) repositoryof linguistic knowledge.Bluntly, if you
wantto getto gripswith naturallanguagefrom acomputationalperspective, you need
to know a lot of words,andyouneedto know a lot aboutthem.

Now, our little lexicon, with its simpletwo-placelex entries,is a toy. But a real lex-
icon is (most emphatically!) not. A real lexicon is likely to be very large (it may

8.3. Concluding remarks 111

containhundredsof thousands,or evenmillions, of word) andmoreover, theinforma-
tion associatedwith eachword is likely to bevery rich. Our lex entriesgive only the
syntacticalcategory of eachword,but a real lexicon will give muchmore,suchasin-
formationaboutits phonological,morphological,semantic,andpragmaticproperties.

Becausereallexiconsarebig andcomplex, from a softwareengineeringperspective it
is bestto write simplegrammarsthathave a simple,well-definedway, of pulling out
the informationthey needfrom vastlexicons. That is, grammarshouldbethoughtof
asseparateentitieswhich canaccesstheinformationcontainedin lexicons. Blending
thetwo togetheris simply not sensible,asthey eachhave a separate,well-definedrole
to play.

Our new DCG rules,thoughsimple,illustratethebasicidea. Thenew rulesreally do
just list generalsyntacticfacts,andtheextra testsactasaninterfaceto our (admittedly
simple)lexicon thatletstherulesfind exactly theinformationthey need.

8.3 Conc luding remarks

Wenow have a fairly usefulpictureof whatDCGsareandwhatthey cando for us.To
conclude,let’s think aboutthemfrom asomewhathigherlevel, from bothaformaland
a linguisticperspective.

First theformal remarks.For themostpart,we have presentedDCGsasa simpletool
for encodingcontext freegrammars(or context freegrammarsenrichedwith features
suchassubjectandobject). But DCGsgo beyondthis. Wesaw thatit waspossibleto
write a DCG thatgenerateda noncontext free language.In fact,anyprogram what-
soever canbewritten in DCG notation.That is, DCGsarefull-fledgedprogramming
languagein theirown right (they areTuring-complete,to usetheproperterminology).
And althoughDCGsareusuallyassociatedwith linguistic applications,they canbe
usefulfor otherpurposes.

So how good are DCGs from a linguistic perspective? Well, mixed. At one stage
(in the early 1980s)they werepretty muchstateof theart. They madeit possibleto
codecomplex grammarsin a clearway, andto explore the interplayof syntacticand
semanticideas. Certainlyany history of parsingin computationallinguisticswould
give DCGsanhonorablemention.

Nonetheless,from a contemporaryperspective, DCGshave drawbacks. For a start,
their tendency to loop whentherule orderingis wrong(we saw anexamplein thelast
lecturewhenwe addeda rule for conjunctions)is annoying; we don’t want to think
aboutsuchissueswhenwriting seriousgrammars.Furthermore,while the ability to
addextraargumentsis useful,if weneedto uselotsof them(andfor big grammarswe
will) it is a ratherclumsymechanism.

Nowadays,its probablybestto view DCGsasa convenienttool for testingnew gram-
matical ideas,or for implementingreasonablycomplex grammarsfor particularap-
plications. DCGsarenot perfect,but they arevery useful. Even if you have never
programmedbefore,simply usingwhatyou have learnedsofar you arereadyto start
experimentingwith reasonablysophisticatedgrammarwriting. With a conventional
programminglanguage(suchasC++ or Java) it simply wouldn’t bepossibleto reach
thisstagesosoon.Thingswouldbeeasierin functionallanguages(suchasLISP, SML,
or Haskell), but evenso,it is doubtfulwhetherbeginnerscoulddosomuchsoearly.

112 Chapter 8. More Definite Clause Grammars

8.4 Exercises

Exercise 8.1 Here’s our basicDCG.

s --> np,vp.

np --> det,n.

vp --> v,np.

vp --> v.

det --> [the].

det --> [a].

n --> [woman].

n --> [man].

v --> [shoots].

Supposewe add the noun“men” (which is plural) and the verb “shoot”. Thenwe
wouldwant a DCG which saysthat “The menshoot” is ok, ‘The manshoots” is ok,
“The menshoots” is not ok, and “The manshoot” is not ok. Change the DCG so
that it correctly handlesthesesentences.Use an extra argumentto copewith the
singular/plural distinction.

Exercise 8.2 TranslatethefollowingDCG rule into theform Prolog uses:

kanga(V,R,Q) --> roo(V,R),jumps(Q,Q),{marsupial(V,R,Q)}.

Exercise 8.3 In our DCG for anbncn ��� ε � , we gavetheCount variable thevalues
1, succ(1), succ(succ(1)), and so on. But now that we knowaboutextra tests,it
is possibleto mix DCGsandarithmetic.So,change theDCG for anbncn ��� ε � sothat
Count takesthevalues1, 2, 3, 4,...,andsoon. Useextra teststo carry out therequired
arithmetic.

8.5 Practical Session 8

The purposeof PracticalSession8 is to help you get familiar with DCGsthat make
useof additionalargumentsandtests.

First somekeyboardexercises:

1. TracesomeexamplesusingtheDCG which usesextra argumentsto handlethe
subject/objectdistinct, the DCG which producesparses,and the DCG which
usesextra teststo separatelexiconandrules.Makesureyouarefully understand
thewayall threeDCGswork.

8.5. Practical Session 8 113

2. Carryout traceson theDCG for anbncn ��� ε � thatwasgivenin thetext (thatis,
theDCG thatgave theCount variablethevalues1, succ(1), succ(succ(1)),
andsoon). FirstgivethetheDCGqueriesin whichCount is instantiatedtoapar-
ticularvalue(for example,succ(1)) andthemiddleargumentis thespecificlist
which goeswith this value(here,[a,a,b,b,c,c]). Thengive queriesin which
thevalueof Count is wrongfor thelist (for example,with [a,a,b,b,c,c], try
Count = 1 andCount = succ(succ(1)). Finally, try queriesin whichCount
is givenasavariable.

Now for someprogramming.Wesuggesttwo exercises.

1. First,bring togetherall thethingswe have learnedaboutDCGsfor Englishinto
oneDCG. In particular, todaywe sayhow to useextra argumentsto dealwith
thesubject/objectdistinction,andin theexercisesyou wereasked to useaddi-
tionalargumentsto dealwith thesingular/pluraldistinction.Write aDCGwhich
handlesboth. Moreover, write theDCG in sucha way thatit will produceparse
trees,andmakesuseof aseparatelexicon.

2. Onceyou have donethis,extendtheDCG sothatnounphrasescanbemodified
by adjectivesandsimpleprepositionalphrases(thatis, it shouldbeableto handle
nounphrasessuchas“the small frightenedwomanon thetable” or “the big fat
cow undertheshower”). Then,furtherextendit sothat thedistinctionbetween
first, second,andthird personpronounsis correctlyhandled(bothin subjectand
objectform).

114 Chapter 8. More Definite Clause Grammars

9

A Closer Look at Terms

This lecturehasthreemaingoals:

1. To introducethe== predicate.

2. To take acloserlook at termstructure.

3. To introduceoperators.

9.1 Comparing terms

Prologcontainsan importantpredicatefor comparingterms,namely==. This tests
whethertwo termsareidentical. It doesnot instantiatevariables,thusit not thesame
astheunificationpredicate=.

Let’s look atsomeexamples:

?= a == a.

yes

?- a == b.

no

?- a == ’a’.

yes

TheseanswersProloggiveshereshouldbe obvious, thoughpay attentionto the last
one. It tells us that, as far asProlog is concerned,a and’a’ are literally the same
object.

Now let’s look at examplesinvolving variables,andexplicitly compare== with the
unificationpredicate=.

?- X==Y.

no

?- X=Y.

X = _2808

Y = _2808

yes

116 Chapter 9. A Closer Look at Terms

In thesequeries,X andY areuninstantiatedvariables;wehaven’t giventhemany value.
Thusthefirst answeris correct:X andY arenot identicalobjects,so the== testfails.
On theotherhand,theuseof = succeeds,for X andY canbeunified.

Let’snow look atqueriesinvolving instantiatedvariables:

?- a=X, a==X.

X = a

yes

Thefirst conjunct,a=X, bindsX to a. Thuswhena==X is evaluated,the left-handside
andright-handsidesareexactly thesamePrologobject,anda==X succeeds.

A similar thinghappensin thefollowing query:

?- X=Y, X==Y.

X = _4500

Y = _4500

yes

The conjunctX=Y first unifiesthe variablesX andY. Thuswhenthe secondconjunct
X==Y is evaluated,thetwo variablesareexactly thesamePrologobject,andthesecond
conjunctsucceedsaswell.

It shouldnow beclearthat= and== areverydifferent,nonethelessthereis animportant
relationbetweenthem. Namelythis: == canbeviewedasa stronger testfor equality
betweentermsthan=. That is, if term1 andterm areProlog terms,and the query
term1 == term2 succeeds,thenthequeryterm1 = term2 will succeedtoo.

Anotherpredicateworth knowing aboutis \==. This predicateis definedso that it
succeedspreciselyin thosecasewhere== fails. That is, it succeedswhenever two
termsarenot identical,andfails otherwise.For example:

?- a \== a.

no

a \== b.

yes

a \== ’a’.

no

Theseshouldbeclear;they aresimply theoppositeof theanswerswegotabove when
we used==. Now consider:

?- X\==a.

X = _3719

yes

9.2. Terms with a special notation 117

Why this response?Well, we know from above that the queryX==a fails (recall the
way== treatsuninstantiatedvariables).ThusX\==a shouldsucceed, andit does.

Similarly:

?- X\==Y.

X = _798

Y = _799

yes

Again,we know from above thatthequeryX==Y fails, thusX\==Y succeeds

9.2 Terms with a special notation

Sometimestermslook differentto us,but Prologregardsthemasidentical.For exam-
ple, whenwe comparea and’a’, we seetwo distinct stringsof symbols,but Prolog
treatsthemasidentical. And in fact therearemany othercaseswherePrologregards
two stringsasbeingexactly the sameterm. Why? Becauseit makes programming
morepleasant.SometimesthenotationProloglikesisn’t asnatural,asthenotationwe
would like. Soit is niceto beableto to write programsin thenotationwe like, andto
let Prologrun themin thenotationit findsnatural.

9.2.1 Arithmetic terms

Thearithmeticpredicatesintroducedearlierarea goodexampleof this. As wasmen-
tioned in Chapter5, /, -, *, and\ are functors, and arithmeticexpressionssuchas

2+3 are terms. And this is not an analogy. Apart from the fact that we caneval-
uatethemwith the help of is, for Prologstringsof symbolssuchas2+3 really are
identical with ordinarycomplex terms:

?- 2+3 == +(2,3).

yes

?- +(2,3) == 2+3.

yes

?- 2-3 == -(2,3).

yes

?- *(2,3) == 2*3.

yes

?- 2*(7+2) == *(2,+(7,2)).

yes

In short,the familiar arithmeticnotationis therefor our convenience.Prologdoesn’t
regardit asdifferentfrom theusualtermnotation.

Similar remarksto thearithmeticcomparisonpredicates<, =<, =:=, =\=, > and>=:

118 Chapter 9. A Closer Look at Terms

?- (2 < 3) == <(2,3).

yes

?- (2 =< 3) == =<(2,3).

yes

?- (2 =:= 3) == =:=(2,3).

yes

?- (2 =\= 3) == =\=(2,3).

yes

?- (2 > 3) == >(2,3).

yes

?- (2 >= 3) == >=(2,3).

yes

Two remarks.First theseexampleshow why it’s niceto have theusefriendly notation
(wouldyouwantto have to work with expressionslike=:=(2,3)?). Second,notethat
we enclosedtheleft handargumentin brackets.For example,we didn’t ask

2 =:= 3 == =:=(2,3).

we asked

(2 =:= 3) == =:x=(2,3).

Why? Well, Prologfinds the query2 =:= 3 == =:=(2,3) confusing(andcanyou
blameit?). It’snotsurewhethertobrackettheexpressionsas(2 =:= 3) == =:=(2,3)

(which is what we want), or 2 =:= (3 == =:=(2,3)). So we needto indicatethe
groupingexplicitly.

One final remark. We have now introducedthree rathersimilar looking symbols,
namely=, ==, and=:= (andindeed,there’s also\=, \==, and=\=). Here’s a summary:

= Theunificationpredicate.
Succeedsif it canunify its arguments,fails otherwise.

\= Thenegationof theunificationpredicate.
Succeedsif = fails,andvice-versa.

== Theidentity predicate.
Succeedsif its argumentsareidentical,failsotherwise.

\== Thenegationof theidentity predicate.
Succeedsif == fails,andvice-versa.

=:= Thearithmeticequalitypredicate.
Succeedsif its argumentsevaluateto thesameinteger.

=\= Thearithmeticinequalitypredicate.
Succeedsif its argumentsevaluateto differentintegers.

9.2. Terms with a special notation 119

9.2.2 Lists as terms

Lists areanothergoodexamplewherePrologworkswith oneinternalrepresentation,
andgivesusanothermoreuserfriendly notationto work with. Let’s startwith aquick
look at the userfriendly notation(that is, the useof the squarebracket [and]). In
fact,becausePrologalsooffers the| constructor, therearearemany waysof writing
thesamelist, evenat theusefriendly level:

?- [a,b,c,d] == [a |[b,c,d]].

yes

?- [a,b,c,d] == [a,b |[c,d]].

yes

?- [a,b,c,d] == [a,b,c |[d]].

yes

?- [a,b,c,d] == [a,b,c,d |[]].

yes

But how doesPrologview lists?In fact,Prologseeslistsastermswhicharebuilt outof
two specialterms,namely[], which representstheemptylist, and., a functorof arity
2 whichis usedto build non-emptylist (theterms[] and. arecalledlist constructors).

Here’s how theseconstructorsareusedto build lists. Needlessto say, thedefinitionis
recursive:

� Theemptylist is theterm[]. Theemptylist haslength0.

� A non-emptylist is any termof theform .(term,list), whereterm canbeany
Prologterm,andlist is any list. If list haslengthn, then.(term,list)
haslength$n+1$.

?- .(a,[]) == [a].

yes

?- .(f(d,e),[]) == [f(d,e)].

yes

?- .(a,.(b,[])) == [a,b].

yes

?- .(a,.(b,.(f(d,e),[]))) == [a,b,f(d,e)].

yes

?- .(.(a,[]),[]) == [[a]].

yes

?- .(.(.(a,[]),[]),[]) == [[[a]]].

yes

120 Chapter 9. A Closer Look at Terms

?- .(.(a,.(b,[])),[]) == [[a,b]].

yes

?- .(.(a,.(b,[])),.(c,[])) == [[a,b],c].

yes

?- .(.(a,[]),.(b,.(c,[]))) == [[a],b,c].

yes

?- .(.(a,[]),.(.(b,.(c,[])),[])) == [[a],[b,c]].

yes

Again, it is clearthat Prolog’s internalnotationfor lists is not asuserfriendly asthe
useof thesquarebracket notation.But actually, it’snotasbadasit seemsatfirst sight.
It is very similar to the | notation. It representsa list in two parts: its first element
or head,anda list representingthe restof the list. The trick is to readthesetermsas
trees. The internalnodesof this treeare labeledwith . andall have two daughter
nodes.Thesubtreeunderthe left daughteris representingthefirst elementof the list
andthesubtreeundertheright daughtertherestof thelist. So,thetreerepresentation
of .(a,.(.(b,.(c,[])),.(d,[]))), i.e. [a, [b,c], d], lookslike this:

Onefinal remark.Prologis very polite. Not only areyou freeto talk to it in your own
user-friendly notation,it will reply in thesameway.

?- .(f(d,e),[]) = Y.

Y = [f(d,e)]

yes

?- .(a,.(b,[])) = X, Z= .(.(c,[]),[]), W = [1,2,X,Z].

X = [a,b]

Z = [[c]]

W = [1,2,[a,b],[[c]]]

yes

9.3. Examining Terms 121

9.3 Examining Terms

In this section,we will learnabouta coupleof inbuilt predicatesthat let us examine
termsmoreclosely. First, we will look at predicatesthat testwhethertheir arguments
aretermsof a certaintype,whetherthey are,for instance,anatomor a number. Then,
we will seepredicatesthattell ussomethingaboutthestructureof complex terms.

9.3.1 Types of Terms

Rememberwhat we saidabouttermsin Prologin thevery first lecture. We saw that
therearedifferentkindsof terms,namelyvariables, atoms, numbersandcomplex terms
andwhat they look like. Furthermore,we said that atomsandnumbersaregrouped
togetherunderthe nameconstantsandconstantsandvariablesconstitutethe simple
terms. Thefollowing picturesummarizesthis:

Sometimesit is usefulto know of which typeagiventermis. Youmight, for instance,
wantto write a predicatethathasto dealwith differentkindsof terms,but hasto treat
themin differentways.Prologprovidesacoupleof inbuilt predicatesthattestwhether
agiventermis of acertaintype.Herethey are:

atom/1 Testswhethertheargumentis anatom.
integer/1 Testswhethertheargumentis aninteger, suchas4, 10, or -6.
float/1 Testswhethertheargumentis afloatingpointnumber, suchas1.3 or 5.0.
number/1 Testswhethertheargumentis anumber, i.e. anintegeror afloat
atomic/1 Testswhethertheargumentis aconstant.
var/1 Testswhethertheargumentis uninstantiated.
nonvar/1 Testswhethertheargumentis instantiated.

So,let’s seehow they behave.

?- atom(a).

yes

?- atom(7).

no

?- atom(loves(vincent,mia)).

no

122 Chapter 9. A Closer Look at Terms

Thesethreeexamplesfor thebehavior of atom/1 is prettymuchwhatonewouldexpect
of a predicatefor testingwhethera termis anatom. But whathappens,whenwe call
atom/1 with avariableasargument?

?- atom(X).

no

This makes sense,sincean uninstantiatedvariableis not an atom. If we, however,
instantiateX with anatomfirst andthenaskatom(X), Prologanswers‘yes’.

?- X = a, atom(X).

X = a

yes

But it is importantthattheinstantiationis donebefore thetest:

?- atom(X), X = a.

no

number/1, integer/1, andfloat/1 behave analogously. Try it!

atomic/1 testswhethera giventermis a constant,i.e. whetherit is eitheranatomor
a variable. Soatomic/1 will evaluateto true whenever eitheratom/1 or number/1
evaluateto trueandit failswhenbothof themfail.

?- atomic(mia).

yes

?- atomic(8).

yes

?- atomic(loves(vincent,mia)).

no

?- atomic(X)

no

Finally thereare two predicatesto testwhetherthe argumentis an uninstantiatedor
instantiatedvariable.So:

?- var(X)

yes

?- var(loves(vincent,mia)).

no

?- nonvar(loves(vincent,mia)).

yes

?- nonvar(X).

no

Note thata complex termwhich containsuninstantiatedvariables,is of coursenot an
uninstantiatedvariableitself (but acomplex term).Therefore:

9.3. Examining Terms 123

?- var(loves(_,mia)).

no

?- nonvar(loves(_,mia)).

yes

And again,whenthevariableX getsinstantiatedvar(X) andnonvar(X) behave dif-
ferentlydependingonwhetherthey arecalledbeforeor aftertheinstantiation.

?- X = a, var(X).

no

?- var(X), X = a.

X = a

yes

9.3.2 The Structure of Terms

Givena complex termof whichyoudon’t know whatit lookslike,whatkind of infor-
mationwould beinterestingto get?Probably, what’s thefunctor, what’s thearity and
whatdo theargumentslook like. Prologprovidesinbuilt predicatesthatanswerthese
questions.Thefirst two areansweredby thepredicatefunctor/3. Givena complex
termfunctor/3 will tell uswhatthefunctorandthearity of this termare.

?- functor(f(a,b),F,A).

A = 2

F = f

yes

?- functor(a,F,A).

A = 0

F = a

yes

?- functor([a,b,c],X,Y).

X = ’.’

Y = 2

yes

So,we canusethepredicatefunctor to find out the functorandthearity of a term,
but we canalsouseit to constructterms,by specifyingthesecondandthird argument
andleaving thefirst undetermined.Thequery

?- functor(T,f,8).

for example,returnsthefollowing answer:

T = f(_G286, _G287, _G288, _G289, _G290, _G291, _G292, _G293)

yes

Note,thateitherthefirst argumentor thesecondandthird argumenthaveto beinstanti-
ated.So,Prologwouldanswerwith anerrormessageto thequeryfunctor(T,f,N). If
you think aboutwhatthequerymeans,Prologis reactingin asensibleway. Thequery

124 Chapter 9. A Closer Look at Terms

is askingPrologto constructacomplex termwithout telling it how many argumentsto
provide andthatis somethingPrologcanjustnotdo.

In theprevioussection,we saw inbuilt predicatesfor testingwhethersomethingis an
atom, a number, a constant,or a variable. So, to make the list complete,we were
actuallymissinga predicatefor testingwhethersomethingis a complex term. Now,
we candefinethat by makinguseof the predicatefunctor. All we have to do is to
checkthatthetermis instantiatedandthatit hasarguments,i.e. thatits arity is greater
thanzero.Hereis thepredicatedefinition.

complexterm(X) :-

nonvar(X),

functor(X,_,A),

A > 0.

In additionto thepredicatefunctor thereis thepredicatearg/3 which tells usabout
argumentsof complex terms. It takesa numberN anda complex termT andreturns
theNth argumentof T in its third argument. It canbe usedto accessthevalueof an
argument

?- arg(2,loves(vincent,mia),X).

X = mia

yes

or to instantiateanargument.

?- arg(2,loves(vincent,X),mia).

X = mia

yes

Trying to accessanargumentwhichdoesn’t exist, of coursefails.

?- arg(2,happy(yolanda),X).

no

The third useful inbuilt predicatefor analyzingterm structureis ’=..’/2. It takesa
complex termandreturnsa list that containsthe functor asfirst elementandthenall
the arguments. So, whenasked the query’=..’(loves(vincent,mia),X) Prolog
will answerX = [loves,vincent,mia]. This predicateis alsocalleduniv andcan
beusedasaninfix operator. Hereareacoupleof examples.

?- cause(vincent,dead(zed)) =.. X.

X = [cause, vincent, dead(zed)]

Yes

?- X =.. [a,b(c),d].

X = a(b(c), d)

Yes

?- footmassage(Y,mia) =.. X.

Y = _G303

X = [footmassage, _G303, mia]

Yes

9.3. Examining Terms 125

Univ (’=..’) is alwaysusefulwhensomethinghasto be doneto all argumentsof a
complex term. Sinceit returnsthe argumentsasa list, normal list processingstrate-
gies can be usedto traversethe arguments. As an example, let’s definethe predi-
cateunifiable/2 which checkswhethertwo termscanbe unified. In contrastto =,
unifiable shouldn’t instantiateany variables.That means,while Prologwould an-
swerX = big_kahuna_burger to thequeryfood(X) = food(big_kahuna_burger),
it shouldsimplyansweryes to thequeryunifiable(food(X),food(big_kahuna_burger).

So,whencantwo termsbeunified? In Lecture2, we gave threeconditions.Thefirst
onewasthis:

� If term1 andterm2 areconstants,thenterm1 andterm2 matchif andonly if
they arethesameatom,or thesamenumber.

Translatingthis to Prolog,we get

unifiable(X,Y) :-

atomic(X),

atomic(Y),

X==Y.

Thesecondconditiondealtwith variables.

� If term1 is a variableandterm2 is any type of term, thenterm1 andterm2
match. Similarly, if term2 is a variableandterm1 is any type of term, then
term1 andterm2 match.

This givesustwo clauses:onefor thecasethat thefirst termis a variableandonefor
thecasethatthesecondoneis avariable.

unifiable(X,_) :-

var(X).

unifiable(_,Y) :-

var(Y).

Finally, therewasaconditiondealingwith complex terms.

� If term1 andterm2 arecomplex terms,thenthey matchif andonly if:

1. They have thesamefunctor.

2. All their correspondingargumentsmatch

Hereis thecorrespondingPrologcode:

unifiable(X,Y) :-

nonvar(X),

nonvar(Y),

functor(X,F,A),

functor(Y,F,A),

126 Chapter 9. A Closer Look at Terms

A > 0,

X =.. [_|T],

Y =.. [_|T0],

unifiableArgs(T,T0).

unifiableArgs([],[]).

unifiableArgs([H|T],[H0|T0]) :-

unifiable(H,H0),

unifiableArgs(T,T0).

So,wefirst checkwhetherthetwo termsarecomplex termsandhave thesamefunctor.
Wethenuseuniv to collecttheirargumentsinto lists. Finally, wehave to checkthatall
correspondingelementsin theselistsunify. Wedefineasimplerecursivelist processing
predicatecalledunifiableArgs for this task.

9.4 Operator s

9.4.1 Proper ties of operator s

By now, we have seenseveral times alreadythat, in certaincases,Prolog let’s us
usea moreuserfriendly notationthanwhat it will useasits internal representation.
The notation for arithmeticoperatorswas an example. Internally, Prolog will use
is(11,+(2,*(3,3))), but we canwrite 11 is 2 + 3 * 3. Suchfunctorsthat can
bewritten in betweentheir argumentsarecalledinfix operators. Otherinfix operators
in Prologare for example:-, ->, ;, ’,’, =, =.., == andso on. Infix operatorsare
calledinfix operators,becausethey arewrittenbetweentheirarguments.Therearealso
prefixoperatorsthatarewritten before their argument,andpostfixoperatorswhichare
writtenafter theirargument.?- for exampleis aprefixoperator, andsois theone-place
- which is usedto representnegative numbersasin 1 is 3 + -2.

Whenwe learnedaboutarithmeticin Prolog,wesaw thatPrologknowsaboutthecon-
ventionsfor disambiguatingarithmeticexpressions.So, whenwe write 2 + 3 * 3

for example,Prologknows that we mean2 + (3 * 3) andnot (2 + 3) * 3. But
how doesProlog know this? Every operatorhasa certainprecedence. The prece-
denceof + is greaterthan the precedenceof *. That’s why + is taken to be the
main functor of the expression2 + 3 * 3. (Note that Prolog’s internal representa-
tion +(2,*(3,3)) is not ambiguous.)Similarly, theprecedenceof is is higherthan
theprecedenceof +, sothat11 is 2 + 3 * 3 is interpretedasis(11,+(2,*(3,3)))
andnot as+(is(11,2),*(3,3)) (which wouldn’t make any sense,by the way). In
Prologprecedenceis expressedby numbers.Thehigherthis number, the greaterthe
precedence.

But whathappenswhenthereareseveraloperatorswith thesameprecedencein oneex-
pression?Wesaidthatabove thatPrologfindsthequery2 =:= 3 == =:=(2,3) con-
fusing,becauseit doesn’t know how tobrackettheexpression(is it =:=(2,==(3,=:=(2,3)))
or is it ==(=:=(2,3),=:=(2,3))?). Thereasonfor why Prologis not ableto decide
which is thecorrectbracketingis of coursethat== and=:= have thesameprecedence.

Whataboutthefollowing query, though?

9.4. Operators 127

?- X is 2 + 3 + 4.

DoesPrologfind it confusing?No, PrologcorrectlyanswersX = 9. So,whichbrack-
etingdid Prologchoose:is(X,+(2,+(3,4))) or is(X,+(+(2,3),4))? It chosethe
secondoneascanbetestedwith thefollowing queries.

?- 2 + 3 + 4 = +(2,+(3,4)).

No

?- 2 + 3 + 4 = +(+(2,3),4).

Yes

Prologusesinformationabouttheassociativityof + hereto disambiguatetheexpres-
sions.+ is left associative, whichmeansthattheexpressionto theright of + musthave
a lowerprecedencethan+ itself, whereastheexpressionontheleft mayhave thesame
precedenceas+. Theprecedenceof anexpressionis simply theprecedenceof its main
operatoror 0, if it is enclosedin brackets. The main operatorof 3 + 4 is +, so that
interpreting2 + 3 + 4 as+(2,+(3,4)) would meanthat theexpressionto the right
of thefirst + hasthesameprecedenceas+ itself, which is illegal. It hasto belower.

Theoperators==, =:=, andis aredefinedto benon-associativewhichmeansthatboth
of their argumentsmusthave a lower precedence.Therefore,2 =:= 3 == =:=(2,3)

is illegal, sinceno matterhow you bracket it, you’ll get a conflict: 2 =:= 3 hasthe
sameprecedenceas==, and3 == =:=(2,3) hasthesameprecedenceas=:=.

The typeof anoperator(infix, prefix, or postfix), its precedence,andits associativity
arethethreethingsthatPrologneedsto know to beableto translatetheuserfriendly,
but potentiallyambiguousoperatornotationinto Prolog’s internalrepresentation.

9.4.2 Defining operator s

In additionto providing a userfriendly operatornotationfor certainfunctors,Prolog
also let’s you defineyou own operators.So you could for exampledefinea postfix
operatoris_dead andthenPrologwouldallow you to write zed is_dead asa fact in
yourdatabaseinsteadof is_dead(zed).

Operatordefinitionsin Prologlook like this:

:- op(Precedence, Type, Name).

Precedenceis anumberbetween0 and1200.Theprecedenceof =, for instance,is 700,
theprecedenceof + is 500,andtheprecedenceof * 400.Typeis anatomspecifyingthe
typeandassociativity of theoperator. In thecaseof + thisatomis yfx, whichsaysthat
+ is aninfix operatorf representstheoperatorandx andy thearguments.Furthermore,
x standsfor anargumentwhich hasa precedencewhich is lower thantheprecedence
of + andy standsfor anargumentwhichhasaprecedencewhich lower or equalto the
precedenceof +. Therearethefollowing possibilitiesfor whatTypemaylook like:

infix xfx, xfy, yfx
prefix fx, fy
suffix xf, yf

128 Chapter 9. A Closer Look at Terms

So,your operatordefinitionfor is_dead couldlook asfollows:

:- op(500, xf, is_dead).

Herearethedefinitionsfor someof the inbuilt operators.You canseethatoperators
with the samepropertiescan be specifiedin one statementby giving a list of their
namesinsteadof asinglenameasthird argumentof op.

:- op(1200, xfx, [:-, ->]).

:- op(1200, fx, [:-, ?-]).

:- op(1100, xfy, [;]).

:- op(1000, xfy, [’,’]).

:- op(700, xfx, [=, is, =.., ==, \==,

=:=, =\=, <, >, =<, >=]).

:- op(500, yfx, [+, -]).

:- op(500, fx, [+, -]).

:- op(300, xfx, [mod]).

:- op(200, xfy, [^]).

Onefinal thing to note is, that operatordefinitionsdon’t specify the meaningof an
operator, but only describewho it canbe usedsyntactically. An operatordefinition
doesn’t sayanything aboutwhena queryinvolving this operatorwill evaluateto true.
It is only a definition extendingthesyntaxof Prolog. So, if the operatoris_dead is
definedasabove andyou askthe queryzed is_dead, Prologwon’t complainabout
illegal syntax(as it would without this definition), but it will try to prove the goal
is_dead(zed), which is Prolog’s internalrepresentationof zed is_dead. And this
is what operatordefinitionsdo. They just tell Prologhow to translatea userfriendly
notationinto real Prolognotation. So, what would be Prolog’s answerto the query
zed is_dead? It wouldbeno, becausePrologwould try to proveis_dead(zed), but
not find any matchingclausein thedatabase.Unless,of course,your databasewould
look like this, for instance:

:- op(500, xf, is_dead).

kill(marsellus,zed).

is_dead(X) :- kill(_,X).

In this case,Prologwouldansweryes to thequeryzed is_dead.

9.5 Exercises

Exercise 9.1 Which of thefollowingqueriessucceed,andwhich fail?

?- 12 is 2*6

?- 14 =\= 2*6

?- 14 = 2*7

9.5. Exercises 129

?- 14 == 2*7

?- 14 \== 2*7

?- 14 =:= 2*7

?- [1,2,3|[d,e]] == [1,2,3,d,e]

?- 2+3 == 3+2

?- 2+3 =:= 3+2

?- 7-2 =\= 9-2

?- p == ’p’

?- p =\= ’p’

?- vincent == VAR

?- vincent=VAR,VAR==vincent

Exercise 9.2 How doesProlog respondto thefollowingqueries?

?- .(a,.(b,.(c,[]))) = [a,b,c]

?- .(a,.(b,.(c,[]))) = [a,b|[c]]

?- .(.(a,[]),.(.(b,[]),.(.(c,[]),[]))) = X

?- .(a,.(b,.(.(c,[]),[]))) = [a,b|[c]]

Exercise 9.3 Write a two-placepredicatetermtype(+Term,?Type) that takes a
term and givesback the type(s)of that term (atom,number, constant,variable etc.).
Thetypesshouldbegivenback in theorder of their generality. Thepredicateshould,
e.g., behavein thefollowing way.

?- termtype(Vincent,variable).

yes

?- termtype(mia,X).

X = atom ;

X = constant ;

X = simple_term ;

X = term ;

no

?- termtype(dead(zed),X).

X = complex_term ;

X = term ;

no

130 Chapter 9. A Closer Look at Terms

Exercise 9.4 Writea programthatdefinesthepredicategroundterm(+Term) which
testswhetherTerm is a groundterm. Groundtermsare termsthat don’t containvari-
ables.Hereareexamplesof howthepredicateshouldbehave:

?- groundterm(X).

no

?- groundterm(french(bic_mac,le_bic_mac)).

yes

?- groundterm(french(whopper,X)).

no

Exercise 9.5 Assumethatwehavethefollowingoperator definitions.

:- op(300, xfx, [are, is_a]).

:- op(300, fx, likes).

:- op(200, xfy, and).

:- op(100, fy, famous).

Which of the following is a wellformedterm? Whatis the main operator? Give the
bracketing.

?- X is_a witch.

?- harry and ron and hermione are friends.

?- harry is_a wizard and likes quidditch.

?- dumbledore is_a famous famous wizard.

9.6 Practical Session

In thispracticalsession,wewantto introducesomeinbuilt predicatesfor printingterms
onto the screen.The first predicatewe want to look at is display/1, which takesa
termandprintsit ontothescreen.

?- display(loves(vincent,mia)).

loves(vincent, mia)

Yes

?- display(’jules eats a big kahuna burger’).

jules eats a big kahuna burger

Yes

More strictly speaking,display printsProlog’s internalrepresentationof terms.

?- display(2+3+4).

+(+(2, 3), 4)

Yes

9.6. Practical Session 131

In fact,thispropertyof display makesit averyusefultool for learninghow operators
work in Prolog.So,beforegoingon to learnmoreabouthow to write thingsontothe
screen,try thefollowing queries.Make sureyou understandwhy Prologanswersthe
way it does.

?- display([a,b,c]).

?- display(3 is 4 + 5 / 3).

?- display(3 is (4 + 5) / 3).

?- display((a:-b,c,d)).

?- display(a:-b,c,d).

So, display is nice to look at the internal representationof termsin operatornota-
tion, but usuallywe would probablypreferto print theuserfriendly notationinstead.
Especiallywhen printing lists, it would be much nicer to get [a,b,c], insteadof
.(a.(b.(c,[]))). This is what the inbuilt predicatewrite/1 does. It takesa term
andprintsit to thescreenin theusefriendly notation.

?- write(2+3+4).

2+3+4

Yes

?- write(+(2,3)).

2+3

Yes

?- write([a,b,c]).

[a, b, c]

Yes

?- write(.(a,.(b,[]))).

[a, b]

Yes

And hereis whathappens,whenthetermthatis to bewrittencontainsvariables.

?- write(X).

_G204

X = _G204

yes

?- X = a, write(X).

a

X = a

Yes

The following exampleshows whathappenswhenyou put two write commandsone
aftertheother.

132 Chapter 9. A Closer Look at Terms

?- write(a),write(b).

ab

Yes

Prologjustexecutesoneaftertheotherwithoutputtingany spacein betweentheoutput
of the differentwrite commands.Of course,you can tell Prolog to print spacesby
telling it to write theterm’ ’.

?- write(a),write(’ ’),write(b).

a b

Yes

And if you wantmorethanonespace,for examplefive blanks,you cantell Prologto
write ’ ’.

?- write(a),write(’ ’),write(b).

a b

Yes

Anotherway of printing spacesis by usingthepredicatetab/1. tab takesa number
asargumentandthenprintsasmany spacesasspecifiedby thatnumber.

?- write(a),tab(5),write(b).

a b

Yes

Anotherpredicateusefulfor formattingis nl. nl tells Prologto make a linebreakand
to go on printingon thenext line.

?- write(a),nl,write(b).

a

b

Yes

Hereis anexercise,whereyoucanapplywhatyou just learned.

In thelast lecture,we saw how extra argumentsin DCGscanbeusedto build a parse
tree. For example,to the querys(T,[a,man,shoots,a,woman],[]) Prologwould
answers(np(det(a),n(man)),vp(v(shoots),np(det(a),n(woman)))). This is
a representationof the parsetree. It is not a very readablerepresentation,though.
Wouldn’t it benicerif Prologprintedsomethinglike

s(

np(

det(a)

9.6. Practical Session 133

n(man))

vp(

v(shoots)

np(

det(a)

n(woman))))

for example?

Write a predicatepptree/1 that takes a complex term representinga tree, suchas
s(np(det(a),n(man)),vp(v(shoots),np(det(a),n(woman)))), as its argument
andprintsaniceandreadableoutputfor this tree.

Finally, hereis anexerciseto practicewriting operatordefinitions.

In thepracticalsessionof Chapter7, youwereaskedto write aDCGgeneratingpropo-
sitional logic formulas.Theinput you hadto usewasa bit awkwardthough.Thefor-
mula ��
 p � q� hadto berepresentedas[not, ’(’, p, implies, q, ’)’]. Now,
that you know aboutoperators,you cando somethinga lot nicer. Write the opera-
tor definitionsfor the operatorsnot, and, or, implies, so that Prologaccepts(and
correctlybrackets)propositionallogic formulas.For example:

?- display(not(p implies q)).

not(implies(p,q)).

Yes

?- display(not p implies q).

implies(not(p),q)

Yes

134 Chapter 9. A Closer Look at Terms

10

Cuts and Negation

This lecturehastwo maingoals:

1. To explain how to control Prolog’s backtrackingbehavior with the help of the
cut predicate.

2. Toexplainhow cutcanbepackagedintomorestructuredforms,notablynegation
asfailure.

10.1 The cut

Automaticbacktrackingis oneof themostcharacteristicfeaturesof Prolog.But back-
trackingcanleadto inefficiency. SometimesPrologcanwastetime exploring possi-
bilites thatleadnowhere.It wouldbepleasantto have somecontrolover thisaspectof
its behaviour, but sofar we only have only seentwo (rathercrude)waysof doingthis:
changingtheorderof rules,andchangingtheorderof conjunctsin thebodyof rules.
But thereis anotherway. Thereis aninbuilt Prologpredicate!, calledcut,whichoffers
amoredirectway of exercisingcontrolover theway Prologlooksfor solutions.

What exactly is cut, andwhat doesit do? It’s simply a specialatomthatwe canuse
whenwriting clause.For example,

p(X) :- b(X),c(X),!,d(X),e(X).

is aperfectlygoodPrologrule. As for whatcutdoes,first of all, it is agoalthatalways
succeeds.Second,andmoreimportantly, it hasa sideeffect. Supposethatsomegoal
makes useof this clause(we call this goal the parentgoal). Then the cut commits
Prologto any choicesthat weremadesincethe parentgoal wasunified with the left
handsideof therule(including,importantly, thechoiceof usingthatparticularclause).
Let’s look atanexampleto seewhatthismeans.

Let’s first considerthefollowing pieceof cut-freecode:

p(X) :- a(X).

p(X) :- b(X),c(X),d(X),e(X).

p(X) :- f(X).

136 Chapter 10. Cuts and Negation

a(1).

b(1).

c(1).

b(2).

c(2).

d(2).

e(2).

f(3).

If we posethequeryp(X) we will getthefollowing responses:

X = 1 ;

X = 2 ;

X = 3 ;

no

But now suppposewe insertacut in thesecondclause:

p(X) :- b(X),c(X),!,d(X),e(X).

If we now posethequeryp(X) we will getthefollowing responses:

X = 1 ;

no

What’s goingon here?Letsconsider.

1. p(X) is first matchedwith thefirst rule,sowegetanew goala(X). By instantiat-
ing X to 1, Prologmatchesa(X) with thefacta(1) andwehavefoundasolution.
Sofar, this is exactlywhathappenedin thefirst versionof theprogram.

2. We thengo on andlook for a secondsolution. p(X) is matchedwith the sec-
ond rule, so we get the new goalsb(X),c(X),!,d(X),e(X). By instantiating
X to 1, Prolog matchesb(X) with the fact b(1), so we now have the goals
c(1),!,d(1),e(1). Butc(1) is in thedatabasesothissimplifiesto!,d(1),e(1).

3. Now for thebig change.The! goalsucceeds(asit alwaysdoes)andcommitsus
to all thechoiceswehavemadesofar. In particular, wearecommittedto having
X = 1, andwe arealsocommittedto usingthesecondrule.

10.1. The cut 137

4. But d(1) fails. And there’s no way we canresatisfythegoalp(X). Sure,if we
wereallowed to try the valueX=2 we could usethe sesondrule to generatea
solution(that’s whathappenedin theoriginal versionof theprogram).But we
can’t do this: thecut hascommittedusto thechoiceX=1. And sure.if we were
allowed to try the third rule, we couldgeneratethesolutionX=3. But we can’t
do this: thecut hascommittedusto usingthesecondrule.

Onepoint is worth emphasizing:the cut only commitsus to choicesmadesincethe
parentgoal wasunified with the left handsideof the clausecontainingthe cut. For
example,in a ruleof theform

q :- p1,...,pn,!,r1,...,rm

the cut will commit us to the choicesmadewhenevalautingp1,...,pn, but we are
freeto backtrackamongther1,...,rm. A concreteexamplewill make thisclear.

First considerthefollowing cut-freeprogram:

q(X,Y) :- i(X),j(Y).

i(1).

i(2).

j(1).

j(2).

j(3).

Here’s how it behaves:

?- q(X,Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

X = 1

Y = 3 ;

X = 2

Y = 1 ;

X = 2

Y = 2 ;

X = 2

Y = 3 ;

no

138 Chapter 10. Cuts and Negation

Supposeweadda cut to thefirst line:

q(X,Y) :- i(X),!,j(Y).

Now theprogrambehavesasfollows:

?- q(X,Y).

X = 1

Y = 1 ;

X = 1

Y = 2 ;

X = 1

Y = 3 ;

no

Let’s seewhy.

1. q(X,Y) is first matchedwith thefirst rule, sowe geta new goali(X),!,j(Y).
By instantiatingX to 1, Prologmatchesi(X) with the fact i(1). This leaves
us with the goal !,j(Y). The cut, of course,succeeds,andcommitsus to the
choicessofar made.

2. But whatarethesechoices?These:thatX = 1, andthatweareusingthisclause.
But note:we have not yet chosenavaluefor Y.

3. Prologthengoeson, andby instantiatingY to 1, Prologmatchesj(Y) with the
factj(1). Sowe have foundasolution.

4. But we canfind more.Prologis freeto try anothervaluefor Y. Soit backtracks
andsetsY to 2, thusfinding a secondsolution. And in fact it canfind another
solution:onbacktrackingagain,it setsY to 3, thusfinding a third solution.

5. But that’s all. It can’t backtrackto theleft of thecut,soit can’t resetX to 2, soit
won’t find thelastthreesolutionsthatthecut-freeprogramfound.

Well, we now know what cut is. But how do we useit in practice,and why is it
so useful? As a first example,let’s definea (cut-free)predicatemax/3 which takes
integersasargumentsandsucceedsif the third argumentis themaximumof thefirst
two. For example,thequeries

max(2,3,3)

and

max(3,2,3)

and

10.1. The cut 139

max(3,3,3)

shouldsucceed,andthequeries

max(2,3,2)

and

max(2,3,5)

shouldfail. And of course,wealsowanttheprogramto work whenthethird argument
is a variable.That is, we wanttheprogramto beableto find themaximumof thefirst
two argumentsfor us:

?- max(2,3,Max).

Max = 3

Yes

?- max(2,1,Max).

Max = 2

Yes

Now, it is easyto write aprogramthatdoesthis. Here’s afirst attempt:

max(X,Y,Y) :- X =< Y.

max(X,Y,X) :- X>Y.

This is a perfectly correctprogram,and we might be temptedsimply to stop here.
But we shouldn’t: it’s not goodenough. What’s the problem? Thereis a potential
inefficiency. Supposethisdefinitionis usedaspartof a largerprogram,andsomewhere
alongthe way max(3,4,Y) is called. The programwill correctlysetY=4. But now
considerwhathappensif at somestagebacktrackingis forced. Theprogramwill try
to resatisfymax(3,4,Y) usingthe secondclause. And of course,this is completely
pointless:the maximumof 3 and4 is 4 andthat’s that. Thereis no secondsolution
to find. To put it anotherway: the two clausesin the above programaremutually
exclusive: if thefirst succeeds,thesecondmustfail andvice versa.Soattemptingto
resatisfythis clauseis acompletewasteof time.

With thehelpof cut, this is easyto fix. We needto insist thatPrologshouldnever try
bothclauses,andthefollowing codedoesthis:

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X) :- X>Y.

Note how this works. Prologwill reachthecut if max(X,Y,Y) is calledandX =< Y

succeeds.In this case,thesecondargumentis themaximum,andthat’s that,andthe

140 Chapter 10. Cuts and Negation

cut commitsus to this choice. On the otherhand,if X =< Y fails, thenProloggoes
ontothesecondclauseinstead.

Note that this cut doesnot changethe meaningof the program.Our new codegives
exactly the sameanswersas the old one, it’s just a bit more efficient. In fact, the
programis exactly the sameasthe previous version,exceptfor the cut, andthis is a
prettygoodsign that thecut is a sensibleone. Cutslike this, which don’t changethe
meaningof aprogram,have aspecialname:they’re calledgreencuts.

But thereis anotherkind of cut: cuts which do changethe meaningof a program.
Thesearecalledredcuts,andareusuallybestavoided.Here’sanexampleof aredcut.
Yetanotherway to write themax predicateis asfollows:

max(X,Y,Y) :- X =< Y,!.

max(X,Y,X).

This is thesameasour earliergreencut max, exceptthatwe have got rid of the> test
in thesecondclause.This is badsign: it suggeststhatwe’re changingtheunderyling
logic of theprogram.And indeedweare:thisprogram‘works’ by relyingoncut. How
goodis it?

Well, for somekindsof queryit’sfine. In particular, it answerscorrectlywhenwepose
queriesin which thethird argumentis avariable.For example:

?- max(100,101,X).

X = 101

Yes

and

?- max(3,2,X).

X = 3

Yes

Nonetheless,it’s not the sameas the greencut program: the meaningof max has
changed.Considerwhathappenswhenall threeargumentsareinstantiated.For exam-
ple,considerthequery

max(2,3,2).

Obviously this queryshouldfail. But in the red cut version,it will succeed!Why?
Well, thisquerysimplywon’t matchtheheadof thefirst clause,soProloggoesstraight
to thesecondclause.And thequerywill matchwith thesecondclause,and(trivially)
thequerysucceeds!Oops!Gettingrid of that> testwasn’t quitesosmartafterall...

This programis a classicredcut. It doesnot truly definethemax predicate,ratherit
changesit’s meaningandonly getsthingsright for certaintypesof queries.

A sensibleway of usingcut is to try andgeta good,clear, cut freeprogramworking,
andonly thentry to improve its efficiency usingcuts. It’s not alwayspossibleto work
thisway, but its agoodidealto aim for.

10.2. Negation as failure 141

10.2 Negation as failure

Oneof Prolog’s mostusefulfeaturesis thesimpleway it letsusstategeneralizations.
To saythatVincentenjoys burgerswe justwrite:

enjoys(vincent,X) :- burger(X).

But in reallife ruleshaveexceptions.PerhapsVincentdoesn’t likeBig Kahunaburgers.
That is, perhapsthecorrectrule is really: Vincentenjoys burgers,exceptBig Kahuna
burgers.Fine.But how dowe statethis in Prolog?

As afirst step,let’s introduceanotherbuilt in predicatefail/0. As it’snamesuggests,
fail is aspecialsymbolthatwill immediatelyfail whenPrologencountersit asagoal.
Thatmaynot soundtoouseful,but remember:whenProlog fails, it tries to backtrack.
Thusfail can be viewed as an instructionto force backtracking. And when used
in combinationwith cut, which blocks backtracking,fail enablesus to write some
interestingPrograms,andin particular, it letsusdefineexceptionsto generalrule.

Considerthefollowing code:

enjoys(vincent,X) :- big_kahuna_burger(X),!,fail.

enjoys(vincent,X) :- burger(X).

burger(a).

burger(b).

burger(c).

burger(d).

big_mac(c).

big_kahuna_burger(b).

big_mac(c).

whopper(d).

Thefirst two linesdescribeVincent’s preferences.The lastsix linesdescribea world
containingfour burgers,a, b, c, andd. We’re alsogiveninformationaboutwhatkinds
of burgersthey are. Given that thefirst two lines really do describeVincent’s prefer-
ences(thatis, thathelikesall burgersexceptBig Kahunaburgers)thenheshouldenjoy
burgersa, c andd, but notb. And indeed,this is whathappens:

?- enjoys(vincent,a).

yes

?- enjoys(vincent,b).

no

?- enjoys(vincent,c).

yes

?- enjoys(vincent,d).

yes

142 Chapter 10. Cuts and Negation

How doesthis work? The key is the combinationof ! and fail in the first line
(this even hasa name: its calledthe cut-fail combination).Whenwe posethequery
enjoys(vincent,b), thefirst rule applies,andwe reachthecut. This commitsusto
thechoiceswehavemade,andin particular, blocksaccessto thesecondrule. But then
we hit fail. This tries to force backtracking,but thecut blocksit, andsoour query
fails.

This is interesting,but it’s not ideal. For a start,notethat theorderingof the rulesis
crucial: if we reversethefirst two lines,we don’t getthebehavior we want.Similarly,
thecut is crucial: if weremove it, theprogramdoesn’t behave in thesameway(sothis
is a red cut). In short,we’ve got two mutuallydependentclausesthat make intrinsic
useof theproceduralaspectsof Prolog.Somethingusefulis clearlygoingonhere,but
it wouldbebetterif wecouldextracttheusefulpartandpackageit morerobustly way.

And we can. The crucial observation is that the first clauseis essnetiallya way of
sayingthatVincentdoesnot enjoy X if X is a Big Kahunaburger. Thatis, thecut-fail
combinationseemsto be offering us someform of negation. And indeed,this is the
crucialgeneralization:thecut-fail combinationlet’susdefineaform of negationcalled
negationasfailure.Here’s how:

neg(Goal) :- Goal,!,fail.

neg(Goal).

For any Prologgoal,neg(Goal) will succeedpreciselyif Goal doesnot succeed.

Usingournew neg predicate,we candescribeVincent’s preferencesin amuchclearer
way:

enjoys(vincent,X) :- burger(X), neg(big_kahuna_burger(X)).

That is, Vincentenjoys X if X is a burger andX is not a Big Kahunaburger. This
is quite closeto our original statement:Vincentenjoys burgers,exceptBig Kahuna
burgers.

Negation as failure is an importanttool. Not only doesit offer useful expressivity
(notably, theability to describeexceptions)it alsooffersit in arelatively safeform. By
working with negationasfailure(insteadof with thelower level cut-fail combination)
we have abetterchanceof avoiding theprogrammingerrorsthatoftenaccompany the
useof redcuts. In fact,negationasfailureis souseful,that it comesbuilt in Standard
Prolog,we don’t have to defineit at all. In StandardProlog the operator\+ means
negationasfailure,sowecoulddefineVincent’s preferencesasfollows:

enjoys(vincent,X) :- burger(X), \+ big_kahuna_burger(X).

Nonetheless,a coupleof wordsof warningare in order: don’t make the mistake of
thinking thatnegationasfailureworks just like logical negation. It doesn’t. Consider
againourburgerworld:

burger(a).

burger(b).

burger(c).

10.2. Negation as failure 143

burger(d).

big_mac(c).

big_kahuna_burger(b).

big_mac(c).

whopper(d).

If we posethequeryenjoys(vincent,X) wegetthecorrectsequenceof responses:

X = a ;

X = c ;

X = d ;

no

But now supposewerewrite thefirst line asfollows:

enjoys(vincent,X) :- \+ big_kahuna_burger(X), burger(X).

Note that from a declarative point of view, this should make no difference: after
all, burger(x) and not big kahunaburger(x) is logically equivalent to not big kahuna
burger(x) andburger(x). That is, no matterwhat thevariablex denotes,it impossible
for oneof theseexpressionsto betrue,andtheotherexpressionto befalse.Nonethe-
less,here’s whathappenswhenwe posethesamequery:

enjoys(vincent,X)

no

What’s going on? Well, in the modifieddatabase,the first thing that Prolog hasto
checkis whether\+ big_kahuna_burger(X) holds,which meansthat it mustcheck
whetherbig_kahuna_burger(X) fails. But thissucceeds.After all, thedatabasecon-
tainstheinformationbig_kahuna_burger(b), whichmeansthatthequery\+ big_kahuna_burger(X)

fails, andhencethe original querydoestoo. In a nutshell,the crucial differencebe-
tweenthe two programsis that in the original version(the onethat works right) we
use\+ only after we have instantiatedthevariableX. In thenew version(which goes
wrong)we use\+ beforewe have donethis. Thedifferenceis crucial.

Summingup, we have seenthat negationas failure is not logical negation,andthat
it hasa proceduraldimensionthat mustbe mastered.Nonetheless,it is an important
programmingconstruct:it is generallya betterideato try usenegationasfailurethan
to write codecontainingheavy useof readcuts. Nonetheless,“generally” doesnot
mean“always”. Thereare timeswhenit is betterto useredcuts.

For example,supposethatwe needto write codeto capturethefollowing condition:p
holdsif a andb hold,or if a doesnot hold andc holdstoo. This canbecapturedwith
thehelpof negationasfailurevery directly:

144 Chapter 10. Cuts and Negation

p :- a,b.

p :- \+ a, c.

But supposethata is a very complicatedgoal,a goal that takesa lot of time to com-
pute.Programmingit this way meanswe mayhave to computea twice,andthis may
meanthatwe have unacceptablyslow performance.If so,it would bebetterto usethe
following program:

p :- a,!,b.

p :- c.

Note that this is a redcut: removing it changesthemeaningof theprogram.Do you
seewhy?

Whenall’s saidanddone,therearenouniversalgusidelinesthatwill coverall thesitu-
ationsyouarelikely to runacross.Programmingis asmuchandartasascience:that’s
what makes it so interesting. You needto know asmuchaspossibleaboutthe lan-
guageyou areworking with (whetherit’s Prolog,Java, Perl,or whatever) understand
theproblemyou aretrying to solve, andknow whatcountsasanacceptablesolution.
And then:go aheadandtry your best!

10.3 Exercises

Exercise 10.1 Supposewehavethefollowing database:

p(1).

p(2) :- !.

p(3).

Write all of Prolog’s answers to thefollowingqueries:

?- p(X).

?- p(X),p(Y).

?- p(X),!,p(Y).

Exercise 10.2 First,explain whatthefollowingprogramdoes:

class(Number,positive) :- Number > 0.

class(0,zero).

class(Number, negative) :- Number < 0.

Second,improveit byaddinggreencuts.

Exercise 10.3 Without usingcut, write a predicatesplit/3 that splits a list of in-
tegers into two lists: onecontainingthepositiveones(andzero), theothercontaining
thenegativeones.For example:

10.4. Practical Session 10 145

split([3,4,-5,-1,0,4,-9],P,N)

shouldreturn:

P = [3,4,0,4]

N = [-5,-1,-9].

Thenimprovethisprogram,withoutchangingits meaning, with thehelpof cut.

10.4 Practical Session 10

Thepurposeof PracticalSession10 is to helpyou getfamiliar with cutsandnegation
asfailure.

First somekeyboardexercises:

1. First of all, try out all threeversionsof themax/3 predicatedefinedin thetext:
thecut-freeversion,thegreencutversion,andtheredcutversion.As usual,“try
out” means“run traceson”, andyou shouldmake surethat you tracequeries
in which all threeargumentsareinstantiatedto integers,andquerieswherethe
third argumentis givenasavariable.

2. OK, time for a burger. Try out all the methodsdiscussedin the text for cop-
ing with Vincent’s preferences.That is, try out theprogramthatusesa cut-fail
combination,the programthat usesnegationas failure correctly, andalso the
programthatgetsit wrongby usingnegationin thewrongplace.

Now for someprogramming:

1. Definea predicatenu/2 ("not unifiable") which takes two termsasarguments
andsucceedsif thetwo termsdo notunify. For example:

nu(foo,foo).

no

nu (foo,blob).

yes

nu(foo,X).

no

Youshoulddefinethispredicatein threedifferentways:

(a) First (andeasiest)write it with thehelpof = and\+.

(b) Secondwrite it with thehelpof =, but don’t use\+.

(c) Third, write it usingacut-fail combination.Don’t use= anddon’t use � +.

2. Definea predicateunifiable(List1,Term,List2) whereList2 is thelist of
all membersof List1 thatmatchTerm , but arenot instantiatedby thematching.
For example,

146 Chapter 10. Cuts and Negation

unifiable([X,b,t(Y)],t(a),List]

shouldyield

List = [X,t(Y)].

NotethatX andY arestill not instantiated.Sothetricky partis: how dowecheck
thatthey matchwith t(a) without instantiatingthem?(Hint: considerusingthe
test\+ (term1 = term2). Why? Think aboutit. You might alsolike to think
aboutthetest\+(\+ (term1 = term2)).)

11

Database Manipulation and Collecting
Solutions

This lecturehastwo maingoals:

1. To discussdatabasemanipulationin Prolog.

2. To discussinbuilt predicatesthat let uscollectall solutionsto a probleminto a
singlelist.

11.1 Database manipulation

Prologhasfour databasemanipulationcommands:assert,retract,asserta,andassertz.
Let’s seehow theseareused.Supposewe startwith anemptydatabase.Soif we give
thecommand:

listing.

we simplygetayes; thelisting (of course)is empty.

Supposewenow give thiscommand:

assert(happy(mia)).

It succeeds(assert commandsalwayssucceed).But what is importantis not that it
succeeds,but theside-effect it hason thedatabase.If we now give thecommand:

listing.

we getthelisting:

happy(mia).

Thatis, thedatabaseis no longerempty: it now containsthefactweasserted.

Supposewethenmadefour moreassertcommands:

148 Chapter 11. Database Manipulation and Collecting Solutions

assert(happy(vincent)).

yes

assert(happy(marcellus)).

yes

assert(happy(butch)).

yes

assert(happy(vincent)).

yes

Supposewethenaskfor a listing:

listing.

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

yes

All thefactswe assertedarenow in theknowledgebase.Notethathappy(vincent)
is in theknowledgebasetwice. As weassertedit twice, this seemssensible.

So far, we have only assertedfactsinto the database,but we canassertnew rulesas
well. Supposewe wantto asserttherule thateveryonewho is happy is naive. That is,
supposewewantto assertthat:

naive(X) :- happy(X).

Wecando thisasfollows:

assert((naive(X) :- happy(X))).

Note the syntaxof this command:the rule we are assertingis enclosedin a pair of
brackets. If we now askfor a listing weget:

happy(mia).

happy(vincent).

happy(marcellus).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

11.1. Database manipulation 149

Now thatwe know how to assertnew informationinto thedatabase,we needto know
how to remove thingsform the databasewhenwe no longerneedthem. Thereis an
inversepredicateto assert, namelyretract. For example,if we go straighton and
give thecommand:

retract(happy(marcellus)).

andthenlist thedatabaseweget:

happy(mia).

happy(vincent).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

Thatis, thefacthappy(marcellus) hasbeenremoved.Supposewegoonfurther, and
say

retract(happy(vincent)).

andthenaskfor a listing. Weget:

happy(mia).

happy(butch).

happy(vincent).

naive(A) :-

happy(A).

Notethat thefirst occurrenceof happy(vincent) (andonly thefirst occurrence)was
removed.

To remove all of ourassertionswe canuseavariable:

retract(happy(X)).

X = mia ;

X = butch ;

X = vincent ;

no

A listing revealsthatthedatabaseis now empty:

listing.

yes

150 Chapter 11. Database Manipulation and Collecting Solutions

If we want a morecontrol over wherethe assertedmaterialis placed,thereare two
variantsof assert,namely:

1. assertz.Placesassertedmaterialat theendof thedatabase.

2. asserta.Placesassertedmaterialat thebeginningof thedatabase.

For example,supposewestartwith anemptydatabase,andthenwegive thefollowing
command:

assert(p(b)), assertz(p(c)), asserta(p(a)).

Thena listing revealsthatwe now have thefollowing database:

p(a).

p(b).

p(c).

yes

Databasemanipulationis a useful technique. It is especiallyuseful for storing the
resultsto computations,sothatif we needto askthesamequestionin future,wedon’t
needto redo the work: we just look up the assertedfact. This techniqueis called
‘memoization’,or ‘caching’.

Here’s a simple example. We createan addition table for adding digits by using
databasemanipulation.

additiontable(A) :-

member(B,A),

member(C,A),

D is B+C,

assert(sum(B,C,D)),

fail.

(Heremember/2 is thestandardmembershippredicatewhich testsfor membershipin
a list.)

What doesthis programdo? It takesa list of numbersA, usesmember to selecttwo
numbersB andC off this list, andthenaddsB andC togethercallingtheresultD. Now
for the importantbit. It thenassertsthe fact that it hasdiscovered(namelythat D is
thesumof A andB), andthenfails. Why do we want it to fail? Becausewe want to
forcebacktracking!Becauseit hasfailed,Prologwill backtrackto member(C,A) and
choosea new valuefor C, addthis new C to B two createa new D, andthenassert
this new fact. it will thenfail again.This repeatedfailurewill forcePrologto find all
valuesfor member(B,A) andmember(C,A), andaddtogetherandassertall possible
combinations.

For example,whenwe give Prologthecommand

additiontable([0,1,2,3,4,5,6,7,8,9])

11.1. Database manipulation 151

It will comebackandsayNo. But it’s not this responsethat interestsus, its theside-
effect on the databasethat’s important. If we now ask for a listing we seethat the
databasenow contains

sum(0,0,0).

sum(0,1,1).

sum(0,2,2).

sum(0,3,3).

sum(0,4,4).

sum(0,5,5).

sum(0,6,6).

sum(0,7,7).

sum(0,8,8).

sum(0,9,9).

sum(1,0,1).

sum(1,1,2).

sum(1,2,3).

sum(1,3,4).

sum(1,4,5).

sum(1,5,6).

sum(1,6,7).

sum(1,7,8).

sum(1,8,9).

sum(1,9,10).

.

.

.

.

.

Question:how doweremoveall thesenew factswhenweno longerwantthem?After
all, if wesimply give thecommand

retract(sum(X,Y,Z)).

Prologis goingto gothroughall 100factsandaskuswhetherwewantto removethem!
But there’s amuchsimplerway. Usethecommand

retract(sum(_,_,_)),fail.

Again, thepurposeof thefail is to forcebacktracking.Prologremovesthefirst fact
aboutsum in thedatabase,andthenfails. So it backtracksandremovesthenext fact
aboutsum. So it backtracksagain,removesthe third, andso on. Eventually(after it
hasremovedall 100items)it will fail completely, andsayNo. But we’renot interested
in what Prologsays,we’re interestedin what it does. All we careaboutis that the
databasenow containsno factsaboutsum.

To concludeour discussionof databasemanipulation,a word of warning.Althoughit
canbea usefultechnique,databasemanipulationcanleadto dirty, hardto understand,
code.If you useit heavily in a programwith lotsof backtracking,understandingwhat
is goingon canbea nightmare.It is a non-declarative, non logical, featureof Prolog
thatshouldbeusedcautiously.

152 Chapter 11. Database Manipulation and Collecting Solutions

11.2 Collecting solutions

Theremaybemany solutionsto a query. For example,supposewe areworking with
thedatabase

child(martha,charlotte).

child(charlotte,caroline).

child(caroline,laura).

child(laura,rose).

descend(X,Y) :- child(X,Y).

descend(X,Y) :- child(X,Z),

descend(Z,Y).

Thenif weposethequery

descend(martha,X).

therearefour solutions(namelyX=charlotte, X=caroline, X=laura, andX=rose).

However Prologgeneratesthesesolutionsoneby one. Sometimeswe would like to
have all the solutionsto a query, and we would like them handedto us in a neat,
usable,form. Prologhasthreebuilt-in predicatesthatdo this: findall, bagof,andsetof.
Basicallythesepredicatescollectall thesolutionsto aqueryandput themin a list, but
thereareimportantdifferencesbetweenthem,aswe shallsee.

11.2.1 findall/3

Thequery

findall(Object,Goal,List).

producesa list List of all theobjectsObject thatsatisfythegoalGoal. OftenObject
is simply a variable,in which casethequerycanbereadas:Givemea list containing
all theinstantiationsof Object which satisfyGoal.

Here’s anexample.Supposewe’re working with theabove database(that is, with the
informationaboutchild andthedefinitionof descend). Thenif we posethequery

findall(X,descend(martha,X),Z).

weareaskingfor alist Z containingall thevaluesof X thatsatisfydescend(martha,X).
Prologwill respond

X = _7489

Z = [charlotte,caroline,laura,rose]

But Object doesn’t have to beavariable,it mayjustcontainavariablethatis in Goal.
For example,we might decidethatwe want to build a new predicatefromMartha/1
thatis trueonly of descendantsof Martha.Wecoulddo thiswith thequery:

11.2. Collecting solutions 153

findall(fromMartha(X),descend(martha,X),Z).

That is, we areaskingfor a list Z containingall the valuesof fromMartha(X) that
satisfythegoaldescend(martha,X). Prologwill respond

X = _7616

Z = [fromMartha(charlotte),fromMartha(caroline),

fromMartha(laura),fromMartha(rose)]

Notethatfor findall to do usefulwork, its first two argumentshave to have (at least
one)variablein common.For example,thequery

findall(Y,descend(martha,X),Z).

yieldsnothinguseful. Whenwe usefindall (or indeed,bagof andsetof) thefirst
two arguments“talk to eachother” via their sharedvariables.

11.2.2 bagof/3

Thefindall/3 predicateis useful,but in certainrespectsit is rathercrude.For exam-
ple,supposewe posethequery

findall(Child,descend(Mother,Child),List).

Wegettheresponse

Child = _6947

Mother = _6951

List = [charlotte,caroline,laura,rose,caroline,laura,rose,laura,rose,rose]

Now, this is correct,but sometimesit wouldbeusefulif wehadaseparatelist for each
of thedifferentinstantiationsof Mother.

This is whatbagof letsusdo. If we posethequery

bagof(Child,descend(Mother,Child),List).

we gettheresponse

Child = _7736

Mother = caroline

List = [laura,rose] ;

Child = _7736

Mother = charlotte

List = [caroline,laura,rose] ;

Child = _7736

Mother = laura

154 Chapter 11. Database Manipulation and Collecting Solutions

List = [rose] ;

Child = _7736

Mother = martha

List = [charlotte,caroline,laura,rose] ;

no

Thatis, bagof is morefinegrainedthanfindall, it givesustheopportunityto extract
the informationwe want in a morestructuredway. Moreover, bagof canalsodo the
samejob asfindall, with thehelpof aspecialpieceof syntax.If weposethequery

bagof(Child,Mother ^ descend(Mother,Child),List).

Thissays:givemea list ofall thevaluesof Child such thatdescend(Mother,Child),
andput the result in a list, but don’t worry aboutgenerating a separate list for each
valueof Mother. Soposingthisqueryyields:

Child = _7870

Mother = _7874

List = [charlotte,caroline,laura,rose,caroline,laura,rose,laura,rose,rose]

Note that this is exactly the responsethatfindall would have given us. So,strictly
speaking,we don’t really needfindall at all: bagof canhandleall its work. Still, if
this is thekind of queryyouwantto make (andit oftenis) it’s simplerto usefindall,
becausethenyoudon’t have to botherexplicitly write down theconditionsusing^.

Onefinal remark.Consideragainthequery

bagof(Child,descend(Mother,Child),List).

As we saw above, this hasfour solutions.But, onceagain,Prologgeneratesthemone
by one.Wouldn’t it beniceif we couldcollectthemall into onelist?

And, of course,we can.Thesimplestway is to usefindall. Thequery

findall(List,bagof(Child,descend(Mother,Child),List),Z).

collectsall of bagof’s responsesinto onelist:

List = _8293

Child = _8297

Mother = _8301

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

Anotherway to do it is with bagof:

11.2. Collecting solutions 155

bagof(List,Child ^ Mother ^ bagof(Child,descend(Mother,Child),List),Z).

List = _2648

Child = _2652

Mother = _2655

Z = [[laura,rose],[caroline,laura,rose],[rose],

[charlotte,caroline,laura,rose]]

Now, this maynot bethesortof thing you needto do very often,but it doesshow the
flexibility andpower offeredby thesepredicates.

11.2.3 setof/3

Thesetof/3 predicateis basicallythesameasbagof, but with oneusefuldifference:
thelists it containsareorderedandcontainnoredundancies(thatis, eachitemappears
in thelist only once).

For example,supposewe have thefollowing database

age(harry,13).

age(draco,14).

age(ron,13).

age(hermione,13).

age(dumbledore,60).

age(hagrid,30).

Now supposewe want a list of everyonewhoseageis recordedin the database.We
cando this with thequery:

findall(X,age(X,Y),Out).

X = _8443

Y = _8448

Out = [harry,draco,ron,hermione,dumbledore,hagrid]

But maybewewould like thelist to beordered.Wecanachieve thiswith thefollowing
query:

setof(X,Y ^ age(X,Y),Out).

(Notethat,just like withbagof, we have to tell setof not to generateseparatelists for
eachvalueof Y, andagainwe do thiswith the^ symbol.)

Thisqueryyields:

X = _8711

Y = _8715

Out = [draco,dumbledore,hagrid,harry,hermione,ron]

156 Chapter 11. Database Manipulation and Collecting Solutions

Notethatthelist is alphabeticallyordered.

Now supposewe areinterestedin collectingtogetherall theageswhich arerecorded
in thedatabase.Of course,we cando thiswith thefollowing query:

findall(Y,age(X,Y),Out).

Y = _8847

X = _8851

Out = [13,14,13,13,60,30]

But this output is rathermessy. It is unorderedand containsrepetitions. By using
setof we getthesameinformationin anicerform:

setof(Y,X ^ age(X,Y),Out).

Y = _8981

X = _8985

Out = [13,14,30,60]

Betweenthem,thesethreepredicatesoffer usa lot of flexibility. For many purposes,
all we needis findall. But if we needmore,bagof andsetof aretherewaiting to
helpusout.

11.3 Implementing findall/3

In this lecturewehavediscussedtwo topics:databasemanipulation,andcollectingso-
lutions. And if you think aboutit, you will seethat theseideashave a lot in common:
assertingstuff into the databaseis a way of collectingsolutions(exceptwe collect it
into thedatabase,not into a list). And aswe shall now see,we canusethedatabase
manipulationpredicatesto definefindall. Actually, findall (andbagof andsetof)
shouldcomebuilt in aspartof any Prologimplementation,so you shouldn’t have to
definethemyourself. But it is good to understandhow you could implementthem
yourselfif youneededto: it will teachyou moreaboutPrologandhow to useit effec-
tively. Theprogrammingstyleinvolvedis quitedifferentfrom whatwe’veseensofar:
it’s a styleof programmingthat is oftencalledmetaprogramming,becauseit involves
a lot of termmanipulation.

Here’s what we’ll do. We’ll implementa predicatecalledmyfindall. This will do
the samejob as the inbuilt findall predicate. Now, in order to defineit, we will
have to make useof oneother inbuilt Prologpredicate,namelycall/1. Basically,
call(Goal) succeedsif and only if Goal succeeds.For example, in our previous
databasethegoal

age(hermione,13).

succeeds,thussowill

call(age(hermione,13)).

11.3. Implementing findall/3 157

Thatcall predicateis often calleda metapredicatebecauseits job is to take another
termasargument,andseewhetheror not thatothertermwill succeedwhenusedasa
goal.

With thehelpof call, thedatabasemanipulationpredicates,==, and!, it is possible
to definemyfindall quiteelegantly. Whenreadingthefollowing code,themostim-
portantthing to bearin mind is thatObject is meantto be,or to contain,oneof the
variablesin Goal.

myfindall(Object,Goal,List) :-

call(Goal),

assertz(queue(Object)),

fail.

myfindall(Object,Goal,List) :-

assertz(queue(bottom)),

collect(List).

collect(List) :-

retract(queue(X)), % take item off queue, and

!, % immediately cut to prevent backtracking.

(

X == bottom, % if at bottom of queue....

!, % cut, to stop backtracking, and

List = [] % return the empty list.

;

List = [X|Rest], % else add X to head of list

collect(Rest) % and recursively collect tail.

).

Let’sgo throughit. Let’s first look at whatthefirst partof thecodedoes,thatis:

myfindall(Object,Goal,List) :-

call(Goal),

assertz(queue(Object)),

fail.

We first usecall to seeif Goal succeedsor not.. If Goal doessucceed,we get in-
stantiationfor Object (remember:whenwe usemyfindall, thenObject will either
bea variablein Goal, or it will containa variablethatoccursin Goal). We assertthe
new factaboutObject at theendof thedatabase.We’ve chosenthefunctorqueue to
to mark this information,but there’s nothingspecialaboutthis choice: we could use
foo, or blob, or anythingwe like. Oncewe’ve assertedthis fact,we fail. Thefail is to
forcebacktracking:it forcesPrologtry andresatisfyGoal. If this is possible,we geta
secondsolution,andthis is alsoasserted.Againwe fail, andtry to resatisfyGoal, and
soon,andsoon. In thisway, Prologwill eventuallygenerateall solutions.

Eventually, we’vegeneratedall thepossiblesolutionsfor Goal, sowefail onelasttime.
Prologthengoesinto thisclause:

158 Chapter 11. Database Manipulation and Collecting Solutions

myfindall(Object,Goal,List) :-

assertz(queue(bottom)),

collect(List).

This assertsa specialfact: queue(bottom). This marksthe endof the list of newly
assertedfacts. (There’s nothing specialabout the atom bottom; we could useany
marker we like.) Thusat this stagethedatabaselookssomethinglike this:

queue(Object1).

queue(Object2).

.

.

.

.

queue(ObjectLast).

queue(bottom)

The predicatecollect is a neatbit of codewhich readsthroughthesefacts,puts
themin a list, andretractsthem(we wantto leave thedatabasetidy: we don’t wantto
leave old stuff lying around!).Studythis carefullywith thehelpof thecomments.In
particular, think carefullyaboutthefollowing partof thecode:

(

X == bottom, % if at bottom of queue....

!, % cut, to stop backtracking, and

List = [] % return the empty list.

;

List = [X|Rest], % else add X to head of list

collect(Rest) % and recursively collect tail.

).

This is essentiallyan if ... then... elseconstruction(rememberthat; means‘or’).

11.4 Exercises

Exercise 11.1 Supposewestartwith anemptydatabase. Wethengivethecommand:

assert(q(a,b)), assertz(q(1,2)), asserta(q(foo,blug)).

Whatdoesthedatabasenowcontain?

Wethengivethecommand:

retract(q(1,2)), assertz((p(X) :- h(X))).

11.4. Exercises 159

Whatdoesthedatabasenowcontain?

Wethengivethecommand:

retract(q(_,_)),fail.

Whatdoesthedatabasenowcontain?

Exercise 11.2 Supposewehavethefollowing database:

q(blob,blug).

q(blob,blag).

q(blob,blig).

q(blaf,blag).

q(dang,dong).

q(dang,blug).

q(flab,blob).

Whatis Prolog’s responseto thequeries:

1. findall(X,q(blob,X),List).

2. findall(X,q(X,blug),List).

3. findall(X,q(X,Y),List).

4. bagof(X,q(X,Y),List).

5. setof(X,Ŷ q(X,Y),List).

Exercise 11.3 Writea predicatesigma/2 that takesan integer n � 0 andcalculates
thesumof all intergers from1 to n. E.g.

?- sigma(3,X).

X = 6

yes

?- sigma(5,X).

X = 15

yes

Write thepredicatesuch that resultsarestoredin thedatabase(of coursethere should
alwaysbe no more than oneresultentry in the databasefor each value)and reused
whenever possible. So,for example:

?- sigma(2,X).

X = 3

yes

?- listing.

sigmares(2,3).

Whenwethenaskthequery

160 Chapter 11. Database Manipulation and Collecting Solutions

?- sigma(3,X).

Prolog will not calculateeverythingnew, but will get theresultfor sigma(2,3) from
thedatabaseandonlyadd3 to that. Prolog will answer:

X = 6

yes

?- listing.

sigmares(2,3).

sigmares(3,6).

11.5 Practical Session 11

Herearesomeprogrammingexercises:

1. Setscanbethoughtof aslists thatdon’t containany repeatedelements.For ex-
ample,[a,4,6] is a set,but [a,4,6,a] is not (asit containstwo occurrences
of a). Write a Prologprogramsubset/2 that is satisfiedwhenthe first argu-
mentis a subsetof thesecondargument(thatis, whenevery elementof thefirst
argumentis amemberof thesecondargument).For example:

subset([a,b],[a,b,c])

yes

subset([c,b],[a,b,c])

yes

subset([],[a,b,c])

yes.

Your programshouldbe capableof generatingall subsetsof an input set by
bactracking.For example,if yougive it asinput

subset(X,[a,b,c])

it shouldsuccesively generateall eightsubsetsof [a,b,c].

2. Using thesubset predicateyou have just written, andfindall, write a predi-
catepowerset/2 that takesa setasits first argument,andreturnsthepowerset
of this setas the secondargument. (The powersetof a set is the setof all its
subsets.)For example:

powerset([a,b,c],P)

shouldreturn

P = [[],[a],[b],[c],[a,b],[a,c],[b,c],[a,b,c]]

it doesn’t matterif thesetsarereturnedin someotherorder. For example,

P = [[a],[b],[c],[a,b,c],[],[a,b],[a,c],[b,c]]

is fine too.

12

Working With Files

This lectureis concernedwith differentaspectof file handling.Wewill see

1. how predicatedefinitionscanbespreadacrossdifferentfiles

2. how to write resultsto filesandhow to readinput from files

12.1 Splitting Programs Over Files

By now, you have seenandyou hadto write lots of programsthatusethepredicates
append andmember. Whatyou probablydid eachtime you neededoneof themwas
to go backto thedefinitionandcopy it over into thefile whereyou wantedto useit.
And maybe,afterhaving donethata coupleof times,you startedthinking that it was
actuallyquite annoying that you hadto copy thesamepredicatedefinitionsover and
overagainandthatit wouldbealot nicerif youcoulddefinethemsomewhereonceand
for all andthenjust accessthatdefinitionwhenever you neededit. Well, that sounds
like a prettysensiblething to askfor and,of course,Prologoffersyou waysof doing
it.

12.1.1 Reading in Programs

In fact,you alreadyknow a way of telling Prologto readin predicatedefinitionsthat
arestoredin afile. Right! [FileName1,FileName2]. Youhavebeenusingqueriesof
thatform all thetime to tell Prologto consultfiles. By putting

:- [FileName1,FileName2].

at thetop of afile, you cantell Prologto consultthefiles in thesquarebracketsbefore
readingin therestof thefile.

So,supposethatyou keepall predicatedefinitionsthathave to do with basiclist pro-
cessing,suchasappend, member, reverse etc.,in a file calledlistpredicates.pl.
If youwantto usethem,you justput

:- [listpredicates].

162 Chapter 12. Working With Files

at the top of thefile you want to usethemin. Prologwill consultlistpredicates,
whenreadingin thatfile, sothatall predicatedefinitionsin listpredicates become
available.

On encounteringsomethingof the form :- [file,anotherfile], Prologjust goes
aheadandconsultsthefiles without checkingwhetherthefile really needsto becon-
sulted.If, for example,thepredicatedefinitionsprovidedby oneof thefilesarealready
available,becauseit alreadywasconsultedonce,Prologstill consultsit again,overwrit-
ing thedefinitionsin thedatabase.Theinbuilt predicateensure_loaded/1 behavesa
bit moreclever in thiscaseandit is whatyoushouldusuallyuseto loadpredicatedef-
initions given in someotherfile into your program.ensure_loaded basicallyworks
asfollows: On encounteringthefollowing directive

:- ensure_loaded([listpredicates]).

Prologcheckswhetherthefile listpredicates.pl hasalreadybeenloaded.If not,
Prologloadsit. If it alreadyis loadedin, Prologcheckswhetherit haschangedsince
last loadingit andif that is thecase,Prologloadsit, if not, it doesn’t do anything and
goeson processingtheprogram.

12.1.2 Modules

Now, imagine that you are writing a programthat needstwo predicates,let’s say
pred1/2 andpred2/2. You have a definition for pred1 in the file preds1.pl and
adefinitionof pred2 in thefile preds2.pl. No problem,you think, I’ ll just loadthem
into my programby putting

:- [preds1, preds2].

at the top of the file. Unfortunately, thereseemto be problemsthis time. You get a
messagethatlookssomethinglike thefollowing:

{consulting /a/troll/export/home/MP/kris/preds1.pl...}

{/a/troll/export/home/MP/kris/preds1.pl consulted, 10 msec 296 bytes}

{consulting /a/troll/export/home/MP/kris/preds2.pl...}

The procedure helperpred/2 is being redefined.

Old file: /a/troll/export/home/MP/kris/preds1.pl

New file: /a/troll/export/home/MP/kris/preds2.pl

Do you really want to redefine it? (y, n, p, or ?)

So what hashappened?Well, it looks as if both files preds1.pl and preds2.pl

aredefiningthepredicatehelperpred. And what’s worse,you can’t besurethat the
predicateis definedin thesamewayin bothfiles. So,youcan’t justsay"yes,override",
sincepred1 dependson the definition of helperpred given in file preds1.pl and
pred2 dependson thedefinitiongiven in file preds2.pl. Furthermore,notethatyou
arenot really interestedin thedefinitionof helperpred at all. You don’t want to use
it. Thepredicatesthatyouareinterestedin, thatyouwantto usearepred1 andpred2.
They needdefinitionsof helperpred, but therestof your programdoesn’t.

12.1. Splitting Programs Over Files 163

A solutionto thisproblemis to turnpreds1.pl andpreds2.pl into modules. Hereis
whatthismeansandhow it works:

Modulesessentiallyallow you to hidepredicatedefinitions.Youareallowedto decide
which predicatesshouldbe public, i.e. callablefrom otherpartsof theprogram,and
whichpredicatesshouldbeprivate, i.e. callableonly from within themodule.Youwill
notbeableto call privatepredicatesfrom outsidethemodulein whichthey aredefined,
but therewill alsobeno conflictsif two modulesinternallydefinethesamepredicate.
In our example. helperpred is a goodcandidatefor becominga privatepredicate,
sinceit is only usedasahelperpredicatein thedefinitionof pred1 andpred2.

Youcanturnafile into amoduleby puttingamoduledeclarationat thetopof thatfile.
Moduledeclarationsareof theform

:- module(ModuleName,List_of_Predicates_to_be_Exported)

They specify the nameof the moduleand the list of public predicates.That is, the
list of predicatesthat onewantsto export. Thesewill be theonly predicatesthatare
accessiblefrom outsidethemodule.

So,by putting

:- module(preds1,[pred1/2]).

at the top of file preds1.pl you can definethe modulepreds1 which exports the
predicatepred1/2. And similarly, you candefinethe modulepreds2 exporting the
predicatepred2/2 by putting

:- module(preds2,[pred2/3]).

at thetop of file preds2.pl. helperpred is now hiddenin themodulespreds1 and
preds2, sothatthereis no clashwhenloadingbothmodulesat thesametime.

Modulescanbeloadedwith theinbuilt predicateuse_module/1. Putting:- use_module(preds1).

at thetopof afile will import all predicatesthatweredefinedaspublicby themodule.
Thatmeans,all publicpredicateswill beaccessibleaccessible.

If you don’t needall public predicatesof a module,but only someof them,you can
usethe two-placeversionof use_module, which takesthe list of predicatesthat you
wantto importasits secondargument.So,by putting

:- use_module(preds1,[pred1/2]),

use_module(preds2,[pred2/3]).

at the top of your file, you will be ableto usepred1 andpred2. Of course,you can
only importpredicatesthatarealsoexportedby therelevantmodule.

164 Chapter 12. Working With Files

12.1.3 Libraries

Many of the very commonpredicatesareactuallypredefinedin mostProlog imple-
mentationsin oneway or another. If you have beenusingSWI Prolog,for example,
youwill probablyhave noticedthatthingslikeappend andmember arebuilt in. That’s
a specialtyof SWI, however. OtherProlog implementations,like Sicstusfor exam-
ple, don’t have them built in. But they usually comewith a set of libraries, i.e.
modulesdefiningcommonpredicates.Theselibrariescanbeloadedusingthenormal
commandsfor importingmodules.Whenspecifyingthenameof the library thatyou
wantto use,you have to tell Prologthatthis moduleis a library, sothatPrologknows
whereto look for it (namely, not in thedirectorywhereyour othercodeis, but at the
placewherePrologkeepsits libraries).Putting

:- use_module(library(lists)).

at the top of your file, for instance,tells Prolog to load a library calledlists. In
Sicstus,this library providesbasiclist processingpredicates.

So, libraries can be pretty useful and they cansafeyou a lot of work. Note, how-
ever, that theway librariesareorganizedandthe inventoryof predicatesprovided by
libraries are by no meansstandardizedacrossdifferent Prolog implementations.In
fact, the library systemsmay differ quite a bit. So, if you want your programto run
with differentPrologimplementations,it mightbeeasierandfasterto defineyourown
library modules(using the techniquesthat we saw in the last section)than to try to
work aroundall the incompatibilitiesbetweenthe library systemsof differentProlog
implementations.

12.2 Writing To and Reading From Files

Now, thatwe have learnedhow to loadprogramsfrom differentfiles,we wantto look
atwriting resultsto filesandreadingin input from files in thissection.

Beforewecandoany readingof or writing to thefile, wehave to openit andassociate
astream with it. Youcanthink of streamsasconnectionsto files. Streamshavenames
that look like this, for instance:’$stream’(183368). You needthesenames,when
specifyingwhich streamto write to or readfrom. Luckily, you never really have to
worry aboutthe exact namesof streams.Prologassignsthemthesenamesandyou
usuallyjust bind themto a variableandthenpassthis variablearound. We’ll seean
examplesoon.

Theinbuilt predicateopen/3 opensafile andconnectsit to astream.

open(+FileName,+Mode,-Stream)

The first argumentof open is the nameof the file, and in the last argument,Prolog
returnsthenamethat it assignsto thestream.Mode is oneof read, write, append.
read meansthat thefile is openedfor reading,andwrite andappend bothopenthe
file for writing. In bothcases,thefile is created,if it doesn’t exist, yet. If it doesexist,
however, write will causethefile to beoverwritten,while append appendseverything
at theendof thefile.

12.2. Writing To and Reading From Files 165

Whenyou arefinishedwith thefile, you shouldcloseit again. That is donewith the
following predicate,whereStreamis thenameof aStreamasassignedby Prolog.

close(Stream)

So,programsthatarewriting to or readingfrom fileswill typically have thefollowing
structure:

open(myfile,write,Stream),

...

do something

...

close(Stream),

Thepredicatesfor actuallywriting thingsto a streamarealmostthesameastheones
we saw in Chapter9 for writing to thescreen.Wehave write, tab, andnl. Theonly
thing that’s differentis thatwe alwaysgive thestreamthatwe want to write to asthe
first argument.

Hereis a pieceof codethatopensa file for writing, writessomethingto it, andcloses
it again.

?- open(hogwarts,write,OS),

tab(OS,7),write(OS,gryffindor),nl(OS),

write(OS,hufflepuff),tab(OS,5),write(OS,ravenclaw),nl(OS),

tab(OS,7),write(OS,slytherin),

close(OS).

Thefile hogwarts shouldafterwardslook like this:

gryffindor

hufflepuff ravenclaw

slytherin

Finally, thereis a two-placepredicatefor readingin termsfrom astream.read always
looksfor thenext termon thestreamandreadsit in.

read(+Stream,+Term)

The inbuilt predicateat_end_of_stream checkswhetherthe end of a streamhas
beenreached.at_end_of_stream(Stream) will evaluateto true, when the endof
thestreamStream is reached,i.e. whenall termsin thecorrespondingfile have been
read.

Note,thatread only readsin Prologterms.If youwantto readin arbitraryinput,things
becomea bit more ugly. You have to readit characterby character. The predicate
that you needis get0(+Stream,-Char). It readsthenext characterfrom thestream
+Stream. Char is theintegercodeof thecharacter. Thatmeansthatget0 returns97,
if thenext characteris a, for instance.

Usually, we arenot interestedin theseinteger codes,but in the charactersor rather
the atomsthat aremadeup of a list of characters.Well, you canusethe predicate
atom_chars/2 to convert a list of integersinto thecorrespondingatom. Thefirst ar-
gumentof atom_chars/2 is theatomandthesecondthelist of integers.For example:

166 Chapter 12. Working With Files

?- atom_chars(W,[113,105,100,100,105,116,99,104]).

W = quidditch

Hereis thecodefor readingin a word from a stream.It readsin a characterandthen
checkswhetherthis characteris a blank,a carriagereturnor theendof thestream.In
any of thesecaseacompletewordhasbeenread,otherwisethenext characteris read.

readWord(InStream,W) :-

get0(InStream,Char),

checkCharAndReadRest(Char,Chars,InStream),

atom_chars(W,Chars).

checkCharAndReadRest(10,[],_) :- !. % Return

checkCharAndReadRest(32,[],_) :- !. % Space

checkCharAndReadRest(-1,[],_) :- !. % End of Stream

checkCharAndReadRest(end_of_file,[],_) :- !.

checkCharAndReadRest(Char,[Char|Chars],InStream) :-

get0(InStream,NextChar),

checkCharAndReadRest(NextChar,Chars,InStream).

12.3 Practical Session

In thispracticalsession,wewantto combinewhatwelearnedtodaywith somebitsand
piecesthatwe metearlierin thecourse.Thegoal is to write a programfor runninga
DCG grammaron a testsuite,sothattheperformanceof thegrammarcanbechecked.
A testsuiteis afile thatcontainslotsof possibleinputsfor aprogram,in ourcaseafile
thatcontainslotsof listsrepresentinggrammaticalor ungrammaticalsentences,suchas
[the,woman,shoots,the,cow,under,the,shower] or[him,shoots,woman]. The
testprogramshouldtake this file, run thegrammaron eachof thesentencesandstore
the resultsin anotherfile. We can then look at the outputfile to checkwhetherthe
grammaransweredeverywheretheway it should. Whendevelopinggrammars,test-
suiteslike this are extremely useful to make surethat the changeswe make to the
grammardon’t have any unwantedeffects.

12.3.1 Step 1

Take the DCG that you built in the practicalsessionof Chapter8 and turn it into a
module,exporting the predicates/3, i.e. thepredicatethat let’s you parsesentences
andreturnstheparsetreein its first argument.

12.3.2 Step 2

In the practicalsessionof Chapter9, you hadto write a programfor pretty printing
parsetreesontothescreen.Turn thatinto amoduleaswell.

12.3.3 Step 3

Now, modify the program,so that it prints the treenot to the screenbut to a given
stream. That meansthat the predicatepptree shouldnow be a two-placepredicate
takingthePrologrepresentationof aparsetreeandastreamasarguments.

12.3. Practical Session 167

12.3.4 Step 4

Importbothmodulesinto afile anddefineatwo-placepredicatetest whichtakesalist
representinga sentence(suchas[a,woman,shoots]), parsesit andwrites the result
to thefile specifiedby thesecondargumentof test. Checkthateverythingis working
asit should.

12.3.5 Step 5

Finally, modify test/2, so that it takes a filenameinsteadof a sentenceas its first
argumentandthenreadsin thesentencesgivenin thefile oneby one,parsesthemand
writesthesentenceaswell astheparsingresultinto theoutputfile. If, e.g,your input
file lookedlike this:

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].

theoutputfile shouldlook similar to this:

[the, cow, under, the, table, shoots]

s(

np(

det(the)

nbar(

n(cow))

pp(

prep(under)

np(

det(the)

nbar(

n(table)))))

vp(

v(shoots)))

[a, dead, woman, likes, he]

no

12.3.6 Step 6

Now, if you arein for somereal Prologhacking,try to write a modulethat readsin
sentencesterminatedby a full stopor a line breakfrom afile, sothatyoucangiveyour
testsuiteas

the cow under the table shoots .

a dead woman likes he .

168 Chapter 12. Working With Files

insteadof

[the,cow,under,the,table,shoots].

[a,dead,woman,likes,he].

