
Creational Patterns

• control the process of creating new objects
• help making a system independent of how its

objects are created, composed, or represented
• we will study the following ones:

– Singleton

EISTI : Département Informatique : Creational Patterns 1

– Singleton
– Abstract Factory
– Factory Method
– Builder

Structure of a Design Pattern

• Intent: what does it do? Why?
• Motivation: a concrete example or a scenario

which requires an application of the pattern
• Participants: classes (concrete or abstract),

the interfaces and objects which are used

EISTI : Département Informatique : Creational Patterns 2

the interfaces and objects which are used
• Structure: the generic description of the

pattern, usually expressed in UML
• Collaborations: how different classes

involved communicate with each other

Singleton pattern

Motivation: example

– almost every application exchanges data at
run-time with a database

– for the application to execute one and only

EISTI : Département Informatique : Creational Patterns 3

– for the application to execute one and only
one transaction at run-time, we must be
sure that at every moment we are
manipulating the same session (in the
database sense)

Singleton (2)

Intent
– ensure a class has only one instance,
– provide a global point of access to it
– any class which makes use of a Singleton

always manipulates the same instance of it

EISTI : Département Informatique : Creational Patterns 4

always manipulates the same instance of it
Participants
– only one: the class responsible for creating

its only instance.

Singleton: structure

EISTI : Département Informatique : Creational Patterns 5

Singleton (3)

Collaborations
Clients access a Singleton instance through:
– Singleton static getInstance() operation:

returns the reference to the unique instance

EISTI : Département Informatique : Creational Patterns 6

returns the reference to the unique instance
of the class

– The set of public methods defined for the
Singleton object

Abstract Factory

Motivation: example

– Suppose we want to model the content of a
classroom: tables, chairs and lamps

– The type of such elements can change from one
room to another, or from one school to another

EISTI : Département Informatique : Creational Patterns 7

– Therefore, for any given room we must NOT hard
code its specific elements. That would make it
difficult to change later the type of the content.

Abstract Factory (2)

• Intent

provide an interface to create a family
of related objects without specifying
their concrete classes

EISTI : Département Informatique : Creational Patterns 8

their concrete classes

Abstract Factory: example implemented

EISTI : Département Informatique : Creational Patterns 9

Abstract Factory

+CreateProduct()

AbstractFactory

ConcreteProduct

AbstractProduct

ConcreteFactory

Client

EISTI : Département Informatique : Creational Patterns 10

Participants
• AbstractFactory: declares an interface for operations that create abstract

product objects
• ConcreteFactory: implements the operations to create concrete products
• AbstractProduct: declares an interface for a type of product objects
• ConcreteProduct: implements the AbstractProduct interface
• Client: only uses interfaces declared by abstract classes

+CreateProduct()

Pattern: Factory Method

Motivation: example

– Suppose we want to design a racing cars
videogame: we want to be able to add new cars
independently from the game design.

– The videogame must know the cars’ interface but

EISTI : Département Informatique : Creational Patterns 11

– The videogame must know the cars’ interface but
not the type of implemented cars.

– Therefore: for the game to make use of a car, it
must be able to create a car without knowing its
type!!!

Factory Method: example implemented

EISTI : Département Informatique : Creational Patterns 12

Factory Method Pattern (2)

• Intent
– Définir une classe (abstraite) qui implémente

toutes ses méthodes qui utilisent des objets et ne
fait que déclarer les méthodes de fabrication des
objets utilisés.

EISTI : Département Informatique : Creational Patterns 13

– La méthode de fabrication permet à la classe
abstraite de déléguer l’instanciation des objets
utilisés à d’autres classes.

Factory Method Pattern

Intent

– define an interface for creating an object,but
– let subclasses decide which class to

instantiate

EISTI : Département Informatique : Creational Patterns 14

instantiate
– Factory Method lets a class defer

instantiation to subclasses

Factory Method Structure

EISTI : Département Informatique : Creational Patterns 15

• Product: defines the interface of the objects which are
produced by the factory method

• ConcreteProduct: implements the Product interface
• Creator: declares the factory method and implements other

methods
• ConcreteCreator: overrides the factory method to return an

instance of ConcreteProduct

Creational Patterns: putting it all together

Example :
– We want to design an application to

model living creatures (avatars)
moving along paths.

EISTI : Département Informatique : Creational Patterns 16

moving along paths.
– Paths are located in an environment

which includes other items besides
paths.

Putting it all together (2)

• We can build spaces made of
– segments of paths
– crossings
– an environment (trees, rivers,…)

EISTI : Département Informatique : Creational Patterns 17

• At any time, we want to be able to create new
avatars and put them on one of the paths.

Putting it all together (3)

paths

environment
items

EISTI : Département Informatique : Creational Patterns 18

paths avatars

The Animation class uses the following objects:
– spaces and their environment items
– segments of paths
– crossings

Putting it all together (4)

EISTI : Département Informatique : Creational Patterns 19

– crossings
– avatars

1. We create an Abstract Factory

interface IAnimationFactory

EnvironmentItem makeEnvironmentItem(…)

Space makeSpace(…)

Putting it all together (5)

EISTI : Département Informatique : Creational Patterns 20

Space makeSpace(…)

Crossing makeCrossing(…)

PathSegment makePathSegment(…)

Avatar makeAvatar(…)

Putting it all together (6)
2. For every object that we manipulate (space,

environment item, avatar, path, crossing), we
define its usage interface inside Animation class

– ISpace
– IEnvironmentItem
– IPath

EISTI : Département Informatique : Creational Patterns 21

– IPath
– ICrossing
– IAvatar

Putting it all together (7)

(1-2) allow us to create Animation
class without knowing the concrete
type of the objects it manipulates

EISTI : Département Informatique : Creational Patterns 22

type of the objects it manipulates

Putting it all together (8)

Enter Factory Method:

3. Animation class is an abstract class which
– declares an abstract method which returns a factory

through a reference to IAnimationFactory

EISTI : Département Informatique : Creational Patterns 23

through a reference to IAnimationFactory
– Implements all the methods of the application which

uses, through their interfaces, the constructed objects
4. Eventually, we create a concrete class

ConcreteAnimation which inherits from Animation and
overrides the method to create a Factory

Putting it all together (9)
/**

This class implements the whole application except for the concrete object instantiation mechanism,
which is delegated to a subclass

*/

abstract class Animation {

private ISpace space;

public IAnimationFactory makeAnimationFactory();

void run(…) {

space = makeAnimationFactory().makeSpace();

EISTI : Département Informatique : Creational Patterns 24

space = makeAnimationFactory().makeSpace();

…

IAvatar av = makeAnimationFactory().makeAvatar(…);

space.addAvatar(av);

…

imethod(…);

}

void imethod(…) { space.addPath(makeAnimationFactory().makePath(…));

…

};}

Putting it all together (10)

// A concrete Animation class

class RuralAnimation extends Animation {

IAnimationFactory makeAnimationFactory(…) {
return RuralAnimationFactory.getInstance(…);

}

EISTI : Département Informatique : Creational Patterns 25

}

public static void main (String [] args) {
RuralAnimation ra = new RuralAnimation(…);

ra.run(…);

}

}

Putting it all together (11)

5. RuralAnimationFactory can be
implemented as a Singleton in order to
control the whole set of objects by

EISTI : Département Informatique : Creational Patterns 26

control the whole set of objects by
means of a unique factory object

Summing up…
In every application, we can systematically
make use of
– Abstract Factory pattern to provide the

application class with a interface to create the
objects used by the application

– Factory Method pattern to implement the

EISTI : Département Informatique : Creational Patterns 27

– Factory Method pattern to implement the
creation of the objects factory. This way, we
hide the concrete type of the objects factory to
the application class.

– Singleton pattern to guarantee that the same
and only factory is used by the application.

Builder Pattern: Motivation
– A reader for RTF (Rich Text Format) documents

format should be able to convert RTF to many
text formats

– Problem: the number of possible conversions is
open-ended (ASCII, TeX, PDF, …)

– How can we design the reader application so

EISTI : Département Informatique : Creational Patterns 28

– How can we design the reader application so
that we can add a new conversion without
modifying the reader?

Builder: Intent

Separate the construction of a complex
object from its representation so that
the same construction process can
create different representations

EISTI : Département Informatique : Creational Patterns 29

Builder Pattern: Motivation (2)

+ParseRTF()

RTFReader

+ConvertCharacter(in c : char)

+ConvertParagraph()

TextConverter

+ConvertCharacter(in c : char)

+ConvertParagraph()

-text : ASCIIText

ASCIIConverter

+ConvertCharacter(in c : char)

+ConvertParagraph()

-text : TeXText

TeXConverter

+ConvertCharacter(in c : char)

+ConvertParagraph()

-text : TextWidget

TextWidgetConverter

-builder

while (t = get_next_token) {

 switch t.Type {

 case CHAR:

Builders

EISTI : Département Informatique : Creational Patterns 30

ConvertParagraph()

+GetASCIIText() : ASCIIText

ConvertParagraph()

+GetTeXText() : TeXText

ConvertParagraph()

+GetTextWidget() : TextWidget

ASCIIText TeXText TextWidget

 builder.ConvertCharacter(t.Char);

 case PARA:

 builder.ConvertParagraph();

 }

}

Builder: Structure & Participants

• Builder
• Specifies an abstract interface for creating parts of a product object

EISTI : Département Informatique : Creational Patterns 31

• Specifies an abstract interface for creating parts of a product object
• ConcreteBuilder

• constructs the product by implementing the Builder interface
• defines and keeps track of the representation it creates

• Director
• constructs an object using the Builder interface

• Product
• represents the complex object under construction
• Includes classes that define the constituent parts, including interfaces

for assembling the parts into the final result

Builder: Consequences

• It lets you vary a product’s internal
representation

• It isolates code for construction and
representation

EISTI : Département Informatique : Creational Patterns 32

representation
• It gives you a finer control over the

construction process

