JUnit - Tutorial file:///F:/article.html

JUnit - Tutorial

Lars Vogel

Version 1.4
Copyright © 2007 - 2011 Lars Vogel

21.08.2011

Revision History

Revision 0.1-0.5 03.09.2007 Lars Vogel
JUnit description
Revision 0.6 - 1.4 10.05.2008 - 21.08.2011 Lars Vogel

bugfixes and enhancements

Unit testing with JUnit

This tutorial explains unit testing with JUnit 4.x. It explains the creation of JUnit tests and how to run them in Eclipse or via
own code.

Table of Contents

1. Introduction
1.1. Unit Testing
1.2. Unit Testing with JUnit
1.3. Installation of JUnit
2. JUnit with Eclipse
2.1. Preparation
2.2. Create a Java class
2.3. Create a JUnit test
2.4. Run your test via Eclipse
2.5. Run your test via code
3. JUnit (more) in Detail
3.1. Static imports with Eclipse
3.2. Annotations
3.3. Assert statements
4. Thank you
5. Questions and Discussion
6. Links and Literature
6.1. JUnit Resources
6.2. vogella Resources

1. Introduction

1.1. Unit Testing

A unit test is a piece of code written by a developer that tests a specific functionality in the code which is tested. Unit tests
can ensure that functionality is working and can be used to validate that this functionality still works after code changes.

Unit testing uses also mocking of objects. To learn more about mock frameworks please see EasyMock Tutorial

1.2. Unit Testing with JUnit

JUnit 4.x is a test framework which uses annotation to identify the methods which contain tests. JUnit assumes that all test
methods can be performed in an arbitrary order. Therefore tests should not depend other tests. To write a test with JUnit

e Annotate a method with @org.JUnit. Test

e Use a method provides by JUnit to check the expected result of the code execution versus the actual result
You use a tool like Eclipse or the class "org.junit.runner.JUnitCore" to run the test.
1.3. Installation of JUnit

Download JUnit4.x.jar from the JUnit website . The download contains the "junit-4.*.jar" which is the JUnit library. Add this

I sur 8 07/09/2011 10:29

JUnit - Tutorial

2 sur 8

library to your Java project and add it to the classpath. See Eclipse IDE Tutorial to learn how to do this in Eclipse.

2. JUnit with Eclipse

2.1. Preparation

file:///F:/article.html

Create a new project "de.vogella.junit.first". We want to create the unit tests in a separate folder. Create therefore a new
source folder "test" via right mouse click on your project, select properties and choose the "Java Build Path". Select the tab

source code.

r

= Properties for de.vogella. junit.first

E%]

Resaurce
Builders
FindBugs
+- Google
i

+- Java Compiler
+- Java Editor

Mercurial

- Java Code SI:';-'IE

Javador Location

Project References
Refactoring History
RunfDebug Settings
Server

+|- Task Repository

Task Tags
+- validation
WikiTexk

Java Build Path =

[source | = Prajects | = Libraties | % Order and Expart

Source folders on build path:

+ [de.vogella.junit. first/src [Add Folder...
[Link Source. ..
[Remove
[allow autput Folders For source Folders
Default output Falder:
de, wagella, junit. First hin I Browse, ..
[o4] [Cancel

)

Press "Add folder" then then press "Create new folder". Create the folder "test".

Source l=F Projects || =2 Libraries é}ﬁ} Crder and Exp

Source Folders on build path:

+- 2 de.vogella.junit. first/src

= de.vogella.junit. first/test (new)

HF Inchuded: (Al
M Excluded: (Mone)

g‘;‘i’ Mative library lacation: (Mone)

The creation of an separate folder for the test is not mandatory. But it is good advice to keep the test coding separate from

the normal coding.

2.2. Create a Java class

Create a package "de.vogella.junit.first" and the following class.

07/09/2011 10:29

JUnit - Tutorial

3sur8

package de.wgella. jmit. f irst;

pblic class Wllass {
pblic int mitply({int =, int v} {
rebtrn ¥ S V)

¥

2.3. Create a JUnit test

= Mew JUnit Test Case

Bx]

JUnit Test Case

Select the name of the new JUnit test case, You have the options ko specify
the class under test and on the next page, ko select methods to be tested,

() Mewe JUnik 3 kest () Mews JUnik 4 besk

Source folder: de.vogella.junit. firsftest]
Package: de.vogella, junit. first
harne: My ClassTest

which method stubs would vou like to create?
[setpBeforeclass)y []tearDownafterclass()

[setup(y [JrearDownis

Do you want to add comments? (Configure kemplates and defaulk value here)
|:| enerate comments

Class under test: | de.vagella. junit, Firsk My lass

Browse, ,,

l;

Browse., .,

(?J‘l Mext = ” Finish

l [Cancel

Press next and select the methods which you want to test.

file:///F:/article.html

Select your new class, right mouse click and select New ->JUnit Test case, change the source folder to JUnit. Select "New
JUnit 4 test". Make sure you change the source folder to test.

07/09/2011 10:29

JUnit - Tutorial file:///F:/article.html

[= Mew JUnit Test Case @

Test Methods

Select methods for which test method stubs should be
created.

Available methods:

= G j
@ mulkiply(ink, int)

= D@ Ohiject Deselect Al
[]®° obiect()
Oe P getclass)
[1® hashCode)
[J& -equals(Object)
=

rlnne

|| Select Al

i -

1 method selected.

[Jcreate final method stubs
[]create basks for generated kest methods

3
'\2/.' Finish l [Cancel

If you have not yet JUnit in your classpath, Eclipse will asked you if it should be added to the classpath.

= Mew JUnit Test Case @

3/ JUnit 4 is not on the build path, Do wou wank ko add it?
-

) Mok now

() Open the build path property page

{(*)Perform the Following ackion::

B Add JUnit 4 library to the build path

Ok l [Cancel

Create a test with the following code.

package de.wgella. jmit. f irst;
inport crg . jwit Test
inport stEbdc crg . jmit fEsert asseriEqels;
pblic class WllassTe=st {
Test
pblic wid Estltdply() {

Wllas=s tEster = new fllass():
assertiqels("Resut', 50, Ester mdtdply (10, 53

2.4. Run your test via Eclipse

Right click on your new test class and select Run-As-> Junit Test.

4sur 8 07/09/2011 10:29

JUnit - Tutorial

|
Run As L4 P-rf 1 Run on Server

Debug As b 0L 2 JUnik Test

% pack | T2 Hier (goauni 52 [9proi | Smavi | T O

Finished after 0,015 seconds =
ST SRR i
Runs: 1)1 H Errars: 0 B Failures; 1

= E?_I de.vogella. junit, First, My ClassTest [Funner: Jnik <] (0,015
g kestmultiply (0,015 59 ¢

Alt+5hifk+, R
Alt+5hifk+, T

file:///F:/article.html

The test should be failing (indicated via a red bar). This is due to the fact that our multiplier class is currently not working

correctly (it does a division instead of multiplication). Fix the bug and re-run test to get a green light.

If you have several tests you can combine them into a test suite. All test in this test suite will then be executed if you run the
test suite. To create a new test suite, select your test classes, right mouse click-> New-> Other -> JUnit -Test Suite

-,

= Mew @

Select a wizard
Create a JUnik Test Suite

\izards:
JUnik

=l = Java
=1-[== Uit
EF JUnit Test Case
ES JUnik Test Suite

=

Select next and select the methods you would like to have test created for.

Change the coding to the following to make your test suite run your test. If you later develop another test you can add it to

@Suite.SuiteClasses

package nypackage:

inport crg . jwmit rnner. Bt
inport crg . jwmit rnners. Sute;

Fnlith (Sute. class)

Fue . Suellasses{ { Wlas=Test cla==s 1)
pblic clas=s AlTe=st {

+

2.5. Run your test via code

You can also run your test via your own coding. The class "org.junit.runner.JUnitCore" provides the method runClasses()

which allows you to run one or several tests classes. As a return parameter you receive an object of type

Ssur8

07/09/2011 10:29

JUnit - Tutorial file:///F:/article.html

"org.junit.runner.Result". This object can be used to retrieve information about the tests and provides information about the
failed tests.

Create in your "test" folder a new class "MyTestRunner" with the following coding. This class will execute your test class
and write potential failures to the console.

package de.wgella. jmit. f irst;

inport crg . jwit rnner. Jhitiere:
inport crg . jwmit rnner. Resdt
inport crg . jwit rnner. notf ication . Failwe

pblic class WTestRunner {
pblic =kEtc wid main{String [] arg=s) {
Fe=zit resdt = Jhitire . rinClas=es(Hlas=Test class) ;
for (Failuwe failuwe : resutgettailwes()) {
Systen. ot println(failwe String ()
+

3. JUnit (more) in Detail

3.1. Static imports with Eclipse

JUnit uses a lot of static methods and Eclipse cannot automatically import static imports. You can make the JUnit test
methods available via the content assists.

Open the Preferences via Window -> Preferences and select Java > Editor > Content Assist > Favorites. Add then via "New
Member" the methods you need. For example this makes the assertTrue, assertFalse and assertEquals method available.

Favorites L= b

Define a list of skatic members ar bypes with skatic members. Content assist wil
propose those static members even iF the import is missing.

@ org.junit. Assert, assertEquals Mew Type..,
@ org.junit. Assert, assertfalse

© forg.junit, Assert, assertTrue Mew Member ...

Edit...

Bemove

You can now use Content Assist (Ctrl+Space) to add the method and the import.
| suggest to add at least the following new members.
e org.junit. Assert.assertTrue
e org.junit.Assert.assertFalse
® org.junit.Assert.assertEquals
e org.junit.Assert.fail
3.2. Annotations
The following give an overview of the available annotations in JUnit 4.x
Table 1. Annotations

Annotation Description
@Test public void method() Annotation @Test identifies that this method is a test method.

6 sur 8 07/09/2011 10:29

JUnit - Tutorial

7 sur 8

Annotation
@Before public void method()

@After public void method()
@BeforeClass public void method()

@AfterClass public void method()

@Ignore

@Test(expected=lllegalArgumentException.class) Tests if the method throws the named exception

@Test(timeout=100)

file:///F:/article.html

Description

Will perform the method() before each test. This method can prepare
the test environment, e.g. read input data, initialize the class)

Test method must start with test

Will perform the method before the start of all tests. This can be used to
perform time intensive activities for example be used to connect to a
database

Will perform the method after all tests have finished. This can be used
to perform clean-up activities for example be used to disconnect to a
database

Will ignore the test method, e.g. useful if the underlying code has been
changed and the test has not yet been adapted or if the runtime of this
test is just to long to be included.

Fails if the method takes longer then 100 milliseconds

3.3. Assert statements

The following gives an overview of the available test methods:

Table 2. Test methods

Statement
fail(String)

assertTrue(true);

assertsEquals([String message], expected,
actual)

assertsEquals([String message], expected,
actual, tolerance)

assertNull([message], object)
assertNotNull([message], object)
assertSame([String], expected, actual)
assertNotSame([String], expected, actual)
assertTrue([message], boolean condition)

Description

Let the method fail, might be usable to check that a certain part of the
code is not reached.

True

Test if the values are the same. Note: for arrays the reference is
checked not the content of the arrays

Usage for float and double; the tolerance are the number of decimals
which must be the same

Checks if the object is null

Check if the object is not null

Check if both variables refer to the same object
Check that both variables refer not to the same object
Check if the boolean condition is true.

4. Thank you
Please help me to support this article:

5. Questions and Discussion

Before posting questions, please see the vogella FAQ . If you have questions or find an error in this article please use the
www.vogella.de Google Group . | have created a short list how to create good guestions which might also help you.

6. Links and Literature

6.1. JUnit Resources

http://www.junit.org/ JUnit Homepage

6.2. vogella Resources

Eclipse RCP Training (German) Eclipse RCP Training with Lars Vogel

Android Tutorial Introduction to Android Programming

GWT Tutorial Program in Java and compile to JavaScript and HTML

07/09/2011 10:29

JUnit - Tutorial file:///F:/article.html

Eclipse RCP Tutorial Create native applications in Java

JUnit Tutorial Test your application

Git Tutorial Put everything you have under distributed version control system

8sur 8 07/09/2011 10:29

