
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 24 Aug 2011 09:57:44 UTC

Software testing



Contents
Articles
Introduction 1

Software testing 1

Black-box testing 16

Black-box testing 16
Exploratory testing 17
San Francisco depot 19
Session-based testing 20
Scenario testing 22
Equivalence partitioning 22
Boundary-value analysis 24
All-pairs testing 25
Fuzz testing 26
Cause-effect graph 30
Model-based testing 31
Web testing 35
Installation testing 37

White-box testing 38

White-box testing 38
Code coverage 39
Modified Condition/Decision Coverage 44
Fault injection 45
Bebugging 50
Mutation testing 51

Testing of non functional software aspects 55

Non-functional testing 55
Software performance testing 56
Stress testing 62
Load testing 63
Volume testing 67
Scalability testing 67
Compatibility testing 68



Portability testing 69
Security testing 69
Attack patterns 71
Localization testing 75
Pseudolocalization 76
Recovery testing 77
Soak testing 78
Characterization test 78

Unit testing 80

Unit testing 80
Self-testing code 85
Test fixture 86
Method stub 88
Mock object 89
Lazy systematic unit testing 92
Test Anything Protocol 93
xUnit 96
List of unit testing frameworks 98
SUnit 129
JUnit 130
CppUnit 132
Test::More 133
NUnit 134
NUnitAsp 136
csUnit 138
HtmlUnit 140

Test automation 141

Test automation 141
Test bench 145
Test execution engine 146
Test stubs 148
Testware 149
Test automation framework 150
Data-driven testing 151
Modularity-driven testing 152
Keyword-driven testing 152



Hybrid testing 154
Lightweight software test automation 155

Testing process 156

Software testing controversies 156
Test-driven development 158
Agile testing 165
Bug bash 166
Pair Testing 166
Manual testing 167
Regression testing 169
Ad hoc testing 171
Sanity testing 171
Integration testing 173
System testing 174
System integration testing 176
Acceptance testing 178
Risk-based testing 182
Software testing outsourcing 183
Tester driven development 185
Test effort 185

Testing artefacts 187

IEEE 829 187
Test strategy 189
Test plan 192
Traceability matrix 194
Test case 195
Test data 197
Test suite 198
Test script 199
Test harness 200

Static testing 201

Static testing 201
Software review 202
Software peer review 204
Software audit review 205



Software technical review 206
Management review 207
Software inspection 208
Fagan inspection 210
Software walkthrough 213
Code review 214
Automated code review 216
Code reviewing software 217
Static code analysis 218
List of tools for static code analysis 220

GUI testing and review 226

GUI software testing 226
Usability testing 229
Think aloud protocol 234
Usability inspection 235
Cognitive walkthrough 235
Heuristic evaluation 238
Pluralistic walkthrough 241
Comparison of usability evaluation methods 244

References
Article Sources and Contributors 246
Image Sources, Licenses and Contributors 252

Article Licenses
License 253



1

Introduction

Software testing
Software testing is an investigation conducted to provide stakeholders with information about the quality of the
product or service under test.[1] Software testing can also provide an objective, independent view of the software to
allow the business to appreciate and understand the risks of software implementation. Test techniques include, but
are not limited to, the process of executing a program or application with the intent of finding software bugs (errors
or other defects).
Software testing can be stated as the process of validating and verifying that a software program/application/product:
1. meets the requirements that guided its design and development;
2. works as expected; and
3. can be implemented with the same characteristics.
Software testing, depending on the testing method employed, can be implemented at any time in the development
process. However, most of the test effort occurs after the requirements have been defined and the coding process has
been completed. As such, the methodology of the test is governed by the software development methodology
adopted.
Different software development models will focus the test effort at different points in the development process.
Newer development models, such as Agile, often employ test driven development and place an increased portion of
the testing in the hands of the developer, before it reaches a formal team of testers. In a more traditional model, most
of the test execution occurs after the requirements have been defined and the coding process has been completed.

Overview
Testing can never completely identify all the defects within software.[2] Instead, it furnishes a criticism or
comparison that compares the state and behavior of the product against oracles—principles or mechanisms by which
someone might recognize a problem. These oracles may include (but are not limited to) specifications, contracts,[3]

comparable products, past versions of the same product, inferences about intended or expected purpose, user or
customer expectations, relevant standards, applicable laws, or other criteria.
Every software product has a target audience. For example, the audience for video game software is completely
different from banking software. Therefore, when an organization develops or otherwise invests in a software
product, it can assess whether the software product will be acceptable to its end users, its target audience, its
purchasers, and other stakeholders. Software testing is the process of attempting to make this assessment.
A study conducted by NIST in 2002 reports that software bugs cost the U.S. economy $59.5 billion annually. More
than a third of this cost could be avoided if better software testing was performed.[4]

History
The separation of debugging from testing was initially introduced by Glenford J. Myers in 1979.[5] Although his
attention was on breakage testing ("a successful test is one that finds a bug"[5] [6] ) it illustrated the desire of the
software engineering community to separate fundamental development activities, such as debugging, from that of
verification. Dave Gelperin and William C. Hetzel classified in 1988 the phases and goals in software testing in the
following stages:[7]

• Until 1956 - Debugging oriented[8]

http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Test_driven_development
http://en.wikipedia.org/w/index.php?title=Oracle_%28software_testing%29
http://en.wikipedia.org/w/index.php?title=Design_by_Contract
http://en.wikipedia.org/w/index.php?title=NIST
http://en.wikipedia.org/w/index.php?title=Dave_Gelperin
http://en.wikipedia.org/w/index.php?title=William_C._Hetzel


Software testing 2

• 1957–1978 - Demonstration oriented[9]

• 1979–1982 - Destruction oriented[10]

• 1983–1987 - Evaluation oriented[11]

• 1988–2000 - Prevention oriented[12]

Software testing topics

Scope
A primary purpose of testing is to detect software failures so that defects may be discovered and corrected. Testing
cannot establish that a product functions properly under all conditions but can only establish that it does not function
properly under specific conditions.[13] The scope of software testing often includes examination of code as well as
execution of that code in various environments and conditions as well as examining the aspects of code: does it do
what it is supposed to do and do what it needs to do. In the current culture of software development, a testing
organization may be separate from the development team. There are various roles for testing team members.
Information derived from software testing may be used to correct the process by which software is developed.[14]

Functional vs non-functional testing
Functional testing refers to activities that verify a specific action or function of the code. These are usually found in
the code requirements documentation, although some development methodologies work from use cases or user
stories. Functional tests tend to answer the question of "can the user do this" or "does this particular feature work".
Non-functional testing refers to aspects of the software that may not be related to a specific function or user action,
such as scalability or other performance, behavior under certain constraints, or security. Non-functional requirements
tend to be those that reflect the quality of the product, particularly in the context of the suitability perspective of its
users.

Defects and failures
Not all software defects are caused by coding errors. One common source of expensive defects is caused by
requirement gaps, e.g., unrecognized requirements, that result in errors of omission by the program designer.[15] A
common source of requirements gaps is non-functional requirements such as testability, scalability, maintainability,
usability, performance, and security.
Software faults occur through the following processes. A programmer makes an error (mistake), which results in a
defect (fault, bug) in the software source code. If this defect is executed, in certain situations the system will produce
wrong results, causing a failure.[16] Not all defects will necessarily result in failures. For example, defects in dead
code will never result in failures. A defect can turn into a failure when the environment is changed. Examples of
these changes in environment include the software being run on a new hardware platform, alterations in source data
or interacting with different software.[16] A single defect may result in a wide range of failure symptoms.

http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Performance
http://en.wikipedia.org/w/index.php?title=Constraints
http://en.wikipedia.org/w/index.php?title=Computer_security
http://en.wikipedia.org/w/index.php?title=Non-functional_requirements
http://en.wikipedia.org/w/index.php?title=Software_testability
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Maintainability
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Computer_performance
http://en.wikipedia.org/w/index.php?title=Computer_security
http://en.wikipedia.org/w/index.php?title=Human_error
http://en.wikipedia.org/w/index.php?title=Fault_%28technology%29
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Failure
http://en.wikipedia.org/w/index.php?title=Dead_code
http://en.wikipedia.org/w/index.php?title=Dead_code
http://en.wikipedia.org/w/index.php?title=Hardware
http://en.wikipedia.org/w/index.php?title=Source_data


Software testing 3

Finding faults early
It is commonly believed that the earlier a defect is found the cheaper it is to fix it.[17] The following table shows the
cost of fixing the defect depending on the stage it was found.[18] For example, if a problem in the requirements is
found only post-release, then it would cost 10–100 times more to fix than if it had already been found by the
requirements review.

 Cost to fix a defect  Time detected 

Requirements Architecture Construction System test Post-release 

 Time introduced  Requirements 1× 3× 5–10× 10× 10–100×

Architecture - 1× 10× 15× 25–100×

Construction - - 1× 10× 10–25×

Compatibility
A common cause of software failure (real or perceived) is a lack of compatibility with other application software,
operating systems (or operating system versions, old or new), or target environments that differ greatly from the
original (such as a terminal or GUI application intended to be run on the desktop now being required to become a
web application, which must render in a web browser). For example, in the case of a lack of backward compatibility,
this can occur because the programmers develop and test software only on the latest version of the target
environment, which not all users may be running. This results in the unintended consequence that the latest work
may not function on earlier versions of the target environment, or on older hardware that earlier versions of the target
environment was capable of using. Sometimes such issues can be fixed by proactively abstracting operating system
functionality into a separate program module or library.

Input combinations and preconditions
A very fundamental problem with software testing is that testing under all combinations of inputs and preconditions
(initial state) is not feasible, even with a simple product.[13] [19] This means that the number of defects in a software
product can be very large and defects that occur infrequently are difficult to find in testing. More significantly,
non-functional dimensions of quality (how it is supposed to be versus what it is supposed to do)—usability,
scalability, performance, compatibility, reliability—can be highly subjective; something that constitutes sufficient
value to one person may be intolerable to another.

Static vs. dynamic testing
There are many approaches to software testing. Reviews, walkthroughs, or inspections are considered as static
testing, whereas actually executing programmed code with a given set of test cases is referred to as dynamic testing.
Static testing can be (and unfortunately in practice often is) omitted. Dynamic testing takes place when the program
itself is used for the first time (which is generally considered the beginning of the testing stage). Dynamic testing
may begin before the program is 100% complete in order to test particular sections of code (modules or discrete
functions). Typical techniques for this are either using stubs/drivers or execution from a debugger environment. For
example, spreadsheet programs are, by their very nature, tested to a large extent interactively ("on the fly"), with
results displayed immediately after each calculation or text manipulation.

http://en.wikipedia.org/w/index.php?title=Computer_compatibility
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Software_versioning
http://en.wikipedia.org/w/index.php?title=Computer_terminal
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=Desktop_metaphor
http://en.wikipedia.org/w/index.php?title=Web_application
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Backward_compatibility
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Modular_programming
http://en.wikipedia.org/w/index.php?title=Library_%28computing%29
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Non-functional_requirements
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Computer_performance
http://en.wikipedia.org/w/index.php?title=Backward_compatibility
http://en.wikipedia.org/w/index.php?title=Reliability_%28engineering%29
http://en.wikipedia.org/w/index.php?title=Dynamic_testing
http://en.wikipedia.org/w/index.php?title=Function_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Debugger
http://en.wikipedia.org/w/index.php?title=Spreadsheet
http://en.wikipedia.org/w/index.php?title=On_the_fly


Software testing 4

Software verification and validation
Software testing is used in association with verification and validation:[20]

• Verification: Have we built the software right? (i.e., does it match the specification).
• Validation: Have we built the right software? (i.e., is this what the customer wants).
The terms verification and validation are commonly used interchangeably in the industry; it is also common to see
these two terms incorrectly defined. According to the IEEE Standard Glossary of Software Engineering
Terminology:

Verification is the process of evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase.
Validation is the process of evaluating a system or component during or at the end of the development process
to determine whether it satisfies specified requirements.

The software testing team
Software testing can be done by software testers. Until the 1980s the term "software tester" was used generally, but
later it was also seen as a separate profession. Regarding the periods and the different goals in software testing,[21]

different roles have been established: manager, test lead, test designer, tester, automation developer, and test
administrator.

Software quality assurance (SQA)
Though controversial, software testing is a part of the software quality assurance (SQA) process.[13] In SQA,
software process specialists and auditors are concerned for the software development process rather than just the
artifacts such as documentation, code and systems. They examine and change the software engineering process itself
to reduce the amount of faults that end up in the delivered software: the so-called defect rate.

What constitutes an "acceptable defect rate" depends on the nature of the software; A flight simulator video game
would have much higher defect tolerance than software for an actual airplane.
Although there are close links with SQA, testing departments often exist independently, and there may be no SQA
function in some companies.
Software testing is a task intended to detect defects in software by contrasting a computer program's expected results
with its actual results for a given set of inputs. By contrast, QA (quality assurance) is the implementation of policies
and procedures intended to prevent defects from occurring in the first place.

Testing methods

The box approach
Software testing methods are traditionally divided into white- and black-box testing. These two approaches are used
to describe the point of view that a test engineer takes when designing test cases.

White box testing

White box testing is when the tester has access to the internal data structures and algorithms including the code that
implement these.
Types of white box testing

The following types of white box testing exist:
• API testing (application programming interface) - testing of the application using public and private APIs

http://en.wikipedia.org/w/index.php?title=Verification_and_Validation_%28software%29
http://en.wikipedia.org/w/index.php?title=Software_quality_assurance
http://en.wikipedia.org/w/index.php?title=Application_programming_interface


Software testing 5

• Code coverage - creating tests to satisfy some criteria of code coverage (e.g., the test designer can create tests
to cause all statements in the program to be executed at least once)

• Fault injection methods - improving the coverage of a test by introducing faults to test code paths
• Mutation testing methods
• Static testing - White box testing includes all static testing

Test coverage
White box testing methods can also be used to evaluate the completeness of a test suite that was created with
black box testing methods. This allows the software team to examine parts of a system that are rarely tested
and ensures that the most important function points have been tested.[22]

Two common forms of code coverage are:
• Function coverage, which reports on functions executed
• Statement coverage, which reports on the number of lines executed to complete the test

They both return a code coverage metric, measured as a percentage.

Black box testing

Black box testing treats the software as a "black box"—without any knowledge of internal implementation. Black
box testing methods include: equivalence partitioning, boundary value analysis, all-pairs testing, fuzz testing,
model-based testing, exploratory testing and specification-based testing.

Specification-based testing: Specification-based testing aims to test the functionality of software according to
the applicable requirements.[23] Thus, the tester inputs data into, and only sees the output from, the test object.
This level of testing usually requires thorough test cases to be provided to the tester, who then can simply
verify that for a given input, the output value (or behavior), either "is" or "is not" the same as the expected
value specified in the test case.
Specification-based testing is necessary, but it is insufficient to guard against certain risks.[24]

Advantages and disadvantages: The black box tester has no "bonds" with the code, and a tester's perception
is very simple: a code must have bugs. Using the principle, "Ask and you shall receive," black box testers find
bugs where programmers do not. On the other hand, black box testing has been said to be "like a walk in a
dark labyrinth without a flashlight," because the tester doesn't know how the software being tested was
actually constructed. As a result, there are situations when (1) a tester writes many test cases to check
something that could have been tested by only one test case, and/or (2) some parts of the back-end are not
tested at all.

Therefore, black box testing has the advantage of "an unaffiliated opinion", on the one hand, and the disadvantage of
"blind exploring", on the other. [25]

Grey box testing

Grey box testing (American spelling: gray box testing) involves having knowledge of internal data structures and
algorithms for purposes of designing the test cases, but testing at the user, or black-box level. Manipulating input
data and formatting output do not qualify as grey box, because the input and output are clearly outside of the
"black-box" that we are calling the system under test. This distinction is particularly important when conducting
integration testing between two modules of code written by two different developers, where only the interfaces are
exposed for test. However, modifying a data repository does qualify as grey box, as the user would not normally be
able to change the data outside of the system under test. Grey box testing may also include reverse engineering to
determine, for instance, boundary values or error messages.

http://en.wikipedia.org/w/index.php?title=Function_points
http://en.wikipedia.org/w/index.php?title=Software_metric
http://en.wikipedia.org/w/index.php?title=Percentage
http://en.wikipedia.org/w/index.php?title=Boundary_value_analysis
http://en.wikipedia.org/w/index.php?title=Reverse_engineering%23Reverse_engineering_of_software


Software testing 6

Testing levels
Tests are frequently grouped by where they are added in the software development process, or by the level of
specificity of the test. The main levels during the development process as defined by the SWEBOK guide are unit-,
integration-, and system testing that are distinguished by the test target without implying a specific process
model.[26] Other test levels are classified by the testing objective.[27]

Test target

Unit testing

Unit testing refers to tests that verify the functionality of a specific section of code, usually at the function level. In
an object-oriented environment, this is usually at the class level, and the minimal unit tests include the constructors
and destructors.[28]

These types of tests are usually written by developers as they work on code (white-box style), to ensure that the
specific function is working as expected. One function might have multiple tests, to catch corner cases or other
branches in the code. Unit testing alone cannot verify the functionality of a piece of software, but rather is used to
assure that the building blocks the software uses work independently of each other.
Unit testing is also called component testing.

Integration testing

Integration testing is any type of software testing that seeks to verify the interfaces between components against a
software design. Software components may be integrated in an iterative way or all together ("big bang"). Normally
the former is considered a better practice since it allows interface issues to be localised more quickly and fixed.
Integration testing works to expose defects in the interfaces and interaction between integrated components
(modules). Progressively larger groups of tested software components corresponding to elements of the architectural
design are integrated and tested until the software works as a system.[29]

System testing

System testing tests a completely integrated system to verify that it meets its requirements.[30]

System integration testing

System integration testing verifies that a system is integrated to any external or third-party systems defined in the
system requirements.

Objectives of testing

Regression testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically, it seeks to
uncover software regressions, or old bugs that have come back. Such regressions occur whenever software
functionality that was previously working correctly stops working as intended. Typically, regressions occur as an
unintended consequence of program changes, when the newly developed part of the software collides with the
previously existing code. Common methods of regression testing include re-running previously run tests and
checking whether previously fixed faults have re-emerged. The depth of testing depends on the phase in the release
process and the risk of the added features. They can either be complete, for changes added late in the release or
deemed to be risky, to very shallow, consisting of positive tests on each feature, if the changes are early in the
release or deemed to be of low risk.

http://en.wikipedia.org/w/index.php?title=SWEBOK
http://en.wikipedia.org/w/index.php?title=Corner_case
http://en.wikipedia.org/w/index.php?title=Software_regression
http://en.wikipedia.org/w/index.php?title=Unintended_consequence
http://en.wikipedia.org/w/index.php?title=Risk_management


Software testing 7

Acceptance testing

Acceptance testing can mean one of two things:
1. A smoke test is used as an acceptance test prior to introducing a new build to the main testing process, i.e. before

integration or regression.
2. Acceptance testing is performed by the customer, often in their lab environment on their own hardware, is known

as user acceptance testing (UAT). Acceptance testing may be performed as part of the hand-off process between
any two phases of development.

Alpha testing

Alpha testing is simulated or actual operational testing by potential users/customers or an independent test team at
the developers' site. Alpha testing is often employed for off-the-shelf software as a form of internal acceptance
testing, before the software goes to beta testing.[31]

Beta testing

Beta testing comes after alpha testing and can be considered a form of external user acceptance testing. Versions of
the software, known as beta versions, are released to a limited audience outside of the programming team. The
software is released to groups of people so that further testing can ensure the product has few faults or bugs.
Sometimes, beta versions are made available to the open public to increase the feedback field to a maximal number
of future users.

Non-functional testing
Special methods exist to test non-functional aspects of software. In contrast to functional testing, which establishes
the correct operation of the software (correct in that it matches the expected behavior defined in the design
requirements), non-functional testing verifies that the software functions properly even when it receives invalid or
unexpected inputs. Software fault injection, in the form of fuzzing, is an example of non-functional testing.
Non-functional testing, especially for software, is designed to establish whether the device under test can tolerate
invalid or unexpected inputs, thereby establishing the robustness of input validation routines as well as
error-handling routines. Various commercial non-functional testing tools are linked from the software fault injection
page; there are also numerous open-source and free software tools available that perform non-functional testing.

Software performance testing and load testing
Performance testing is executed to determine how fast a system or sub-system performs under a particular workload.
It can also serve to validate and verify other quality attributes of the system, such as scalability, reliability and
resource usage. Load testing is primarily concerned with testing that can continue to operate under a specific load,
whether that be large quantities of data or a large number of users. This is generally referred to as software
scalability. The related load testing activity of when performed as a non-functional activity is often referred to as
endurance testing.
Volume testing is a way to test functionality. Stress testing is a way to test reliability. Load testing is a way to test
performance. There is little agreement on what the specific goals of load testing are. The terms load testing,
performance testing, reliability testing, and volume testing, are often used interchangeably.

http://en.wikipedia.org/w/index.php?title=Smoke_testing%23Smoke_testing_in_software_development
http://en.wikipedia.org/w/index.php?title=Acceptance_testing%23User_acceptance_testing
http://en.wikipedia.org/w/index.php?title=Acceptance_testing%23User_acceptance_testing
http://en.wikipedia.org/w/index.php?title=Beta_version
http://en.wikipedia.org/w/index.php?title=Computer_bug
http://en.wikipedia.org/w/index.php?title=Feedback%23In_organizations
http://en.wikipedia.org/w/index.php?title=Load_testing%23Software_load_testing
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Stress_testing


Software testing 8

Stability testing
Stability testing checks to see if the software can continuously function well in or above an acceptable period. This
activity of non-functional software testing is often referred to as load (or endurance) testing.

Usability testing
Usability testing is needed to check if the user interface is easy to use and understand. It is concerned mainly with
the use of the application.

Security testing
Security testing is essential for software that processes confidential data to prevent system intrusion by hackers.

Internationalization and localization
The general ability of software to be internationalized and localized can be automatically tested without actual
translation, by using pseudolocalization. It will verify that the application still works, even after it has been translated
into a new language or adapted for a new culture (such as different currencies or time zones).[32]

Actual translation to human languages must be tested, too. Possible localization failures include:
• Software is often localized by translating a list of strings out of context, and the translator may choose the wrong

translation for an ambiguous source string.
• Technical terminology may become inconsistent if the project is translated by several people without proper

coordination or if the translator is imprudent.
• Literal word-for-word translations may sound inappropriate, artificial or too technical in the target language.
• Untranslated messages in the original language may be left hard coded in the source code.
• Some messages may be created automatically at run time and the resulting string may be ungrammatical,

functionally incorrect, misleading or confusing.
• Software may use a keyboard shortcut which has no function on the source language's keyboard layout, but is

used for typing characters in the layout of the target language.
• Software may lack support for the character encoding of the target language.
• Fonts and font sizes which are appropriate in the source language, may be inappropriate in the target language; for

example, CJK characters may become unreadable if the font is too small.
• A string in the target language may be longer than the software can handle. This may make the string partly

invisible to the user or cause the software to crash or malfunction.
• Software may lack proper support for reading or writing bi-directional text.
• Software may display images with text that wasn't localized.
• Localized operating systems may have differently-named system configuration files and environment variables

and different formats for date and currency.
To avoid these and other localization problems, a tester who knows the target language must run the program with
all the possible use cases for translation to see if the messages are readable, translated correctly in context and don't
cause failures.

http://en.wikipedia.org/w/index.php?title=Backdoor_%28computing%29
http://en.wikipedia.org/w/index.php?title=Hacker_%28computer_security%29
http://en.wikipedia.org/w/index.php?title=Internationalization_and_localization
http://en.wikipedia.org/w/index.php?title=Hard_coding
http://en.wikipedia.org/w/index.php?title=Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/w/index.php?title=Keyboard_shortcut
http://en.wikipedia.org/w/index.php?title=Keyboard_layout
http://en.wikipedia.org/w/index.php?title=Character_encoding
http://en.wikipedia.org/w/index.php?title=CJK_characters
http://en.wikipedia.org/w/index.php?title=Bi-directional_text
http://en.wikipedia.org/w/index.php?title=Configuration_file
http://en.wikipedia.org/w/index.php?title=Environment_variable
http://en.wikipedia.org/w/index.php?title=Date_and_time_notation_by_country
http://en.wikipedia.org/w/index.php?title=Currency


Software testing 9

Destructive testing
Destructive testing attempts to cause the software or a sub-system to fail, in order to test its robustness.

The testing process

Traditional CMMI or waterfall development model
A common practice of software testing is that testing is performed by an independent group of testers after the
functionality is developed, before it is shipped to the customer.[33] This practice often results in the testing phase
being used as a project buffer to compensate for project delays, thereby compromising the time devoted to testing.[34]

Another practice is to start software testing at the same moment the project starts and it is a continuous process until
the project finishes.[35]

Further information: Capability Maturity Model Integration and Waterfall model

Agile or Extreme development model
In counterpoint, some emerging software disciplines such as extreme programming and the agile software
development movement, adhere to a "test-driven software development" model. In this process, unit tests are written
first, by the software engineers (often with pair programming in the extreme programming methodology). Of course
these tests fail initially; as they are expected to. Then as code is written it passes incrementally larger portions of the
test suites. The test suites are continuously updated as new failure conditions and corner cases are discovered, and
they are integrated with any regression tests that are developed. Unit tests are maintained along with the rest of the
software source code and generally integrated into the build process (with inherently interactive tests being relegated
to a partially manual build acceptance process). The ultimate goal of this test process is to achieve continuous
deployment where software updates can be published to the public frequently. [36] [37]

A sample testing cycle
Although variations exist between organizations, there is a typical cycle for testing.[38] The sample below is common
among organizations employing the Waterfall development model.
• Requirements analysis: Testing should begin in the requirements phase of the software development life cycle.

During the design phase, testers work with developers in determining what aspects of a design are testable and
with what parameters those tests work.

• Test planning: Test strategy, test plan, testbed creation. Since many activities will be carried out during testing, a
plan is needed.

• Test development: Test procedures, test scenarios, test cases, test datasets, test scripts to use in testing software.
• Test execution: Testers execute the software based on the plans and test documents then report any errors found

to the development team.
• Test reporting: Once testing is completed, testers generate metrics and make final reports on their test effort and

whether or not the software tested is ready for release.
• Test result analysis: Or Defect Analysis, is done by the development team usually along with the client, in order

to decide what defects should be treated, fixed, rejected (i.e. found software working properly) or deferred to be
dealt with later.

• Defect Retesting: Once a defect has been dealt with by the development team, it is retested by the testing team.
AKA Resolution testing.

• Regression testing: It is common to have a small test program built of a subset of tests, for each integration of
new, modified, or fixed software, in order to ensure that the latest delivery has not ruined anything, and that the
software product as a whole is still working correctly.

http://en.wikipedia.org/w/index.php?title=Project_management
http://en.wikipedia.org/w/index.php?title=Capability_Maturity_Model_Integration
http://en.wikipedia.org/w/index.php?title=Waterfall_model
http://en.wikipedia.org/w/index.php?title=Extreme_programming
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Unit_tests
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Pair_programming
http://en.wikipedia.org/w/index.php?title=Continuous_deployment
http://en.wikipedia.org/w/index.php?title=Continuous_deployment
http://en.wikipedia.org/w/index.php?title=Waterfall_development
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Software_development_life_cycle
http://en.wikipedia.org/w/index.php?title=Testbed
http://en.wikipedia.org/w/index.php?title=Scenario_test
http://en.wikipedia.org/w/index.php?title=Resolution_testing


Software testing 10

• Test Closure: Once the test meets the exit criteria, the activities such as capturing the key outputs, lessons
learned, results, logs, documents related to the project are archived and used as a reference for future projects.

Automated testing
Many programming groups are relying more and more on automated testing, especially groups that use test-driven
development. There are many frameworks to write tests in, and continuous integration software will run tests
automatically every time code is checked into a version control system.
While automation cannot reproduce everything that a human can do (and all the ways they think of doing it), it can
be very useful for regression testing. However, it does require a well-developed test suite of testing scripts in order to
be truly useful.

Testing tools
Program testing and fault detection can be aided significantly by testing tools and debuggers. Testing/debug tools
include features such as:
• Program monitors, permitting full or partial monitoring of program code including:

• Instruction set simulator, permitting complete instruction level monitoring and trace facilities
• Program animation, permitting step-by-step execution and conditional breakpoint at source level or in machine

code
• Code coverage reports

• Formatted dump or symbolic debugging, tools allowing inspection of program variables on error or at chosen
points

• Automated functional GUI testing tools are used to repeat system-level tests through the GUI
• Benchmarks, allowing run-time performance comparisons to be made
• Performance analysis (or profiling tools) that can help to highlight hot spots and resource usage
Some of these features may be incorporated into an Integrated Development Environment (IDE).
• A regression testing technique is to have a standard set of tests, which cover existing functionality that result in

persistent tabular data, and to compare pre-change data to post-change data, where there should not be
differences, using a tool like diffkit. Differences detected indicate unexpected functionality changes or
"regression".

Measurement in software testing
Usually, quality is constrained to such topics as correctness, completeness, security, but can also include more
technical requirements as described under the ISO standard ISO/IEC 9126, such as capability, reliability, efficiency,
portability, maintainability, compatibility, and usability.
There are a number of frequently-used software measures, often called metrics, which are used to assist in
determining the state of the software or the adequacy of the testing.

http://en.wikipedia.org/w/index.php?title=Continuous_integration
http://en.wikipedia.org/w/index.php?title=Version_control
http://en.wikipedia.org/w/index.php?title=Debugger
http://en.wikipedia.org/w/index.php?title=Instruction_set_simulator
http://en.wikipedia.org/w/index.php?title=Program_animation
http://en.wikipedia.org/w/index.php?title=Breakpoint
http://en.wikipedia.org/w/index.php?title=Machine_code
http://en.wikipedia.org/w/index.php?title=Machine_code
http://en.wikipedia.org/w/index.php?title=Symbolic_debugging
http://en.wikipedia.org/w/index.php?title=Benchmark_%28computing%29
http://en.wikipedia.org/w/index.php?title=Performance_analysis
http://en.wikipedia.org/w/index.php?title=Hot_spot_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environment
http://en.wikipedia.org/w/index.php?title=Correctness_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Computer_security_audit
http://en.wikipedia.org/w/index.php?title=International_Organization_for_Standardization
http://en.wikipedia.org/w/index.php?title=ISO/IEC_9126
http://en.wikipedia.org/w/index.php?title=Reliability_engineering
http://en.wikipedia.org/w/index.php?title=Algorithmic_efficiency
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=Maintainability
http://en.wikipedia.org/w/index.php?title=Usability


Software testing 11

Testing artifacts
Software testing process can produce several artifacts.
Test plan

A test specification is called a test plan. The developers are well aware what test plans will be executed and
this information is made available to management and the developers. The idea is to make them more cautious
when developing their code or making additional changes. Some companies have a higher-level document
called a test strategy.

Traceability matrix
A traceability matrix is a table that correlates requirements or design documents to test documents. It is used to
change tests when the source documents are changed, or to verify that the test results are correct.

Test case
A test case normally consists of a unique identifier, requirement references from a design specification,
preconditions, events, a series of steps (also known as actions) to follow, input, output, expected result, and
actual result. Clinically defined a test case is an input and an expected result.[39] This can be as pragmatic as
'for condition x your derived result is y', whereas other test cases described in more detail the input scenario
and what results might be expected. It can occasionally be a series of steps (but often steps are contained in a
separate test procedure that can be exercised against multiple test cases, as a matter of economy) but with one
expected result or expected outcome. The optional fields are a test case ID, test step, or order of execution
number, related requirement(s), depth, test category, author, and check boxes for whether the test is
automatable and has been automated. Larger test cases may also contain prerequisite states or steps, and
descriptions. A test case should also contain a place for the actual result. These steps can be stored in a word
processor document, spreadsheet, database, or other common repository. In a database system, you may also
be able to see past test results, who generated the results, and what system configuration was used to generate
those results. These past results would usually be stored in a separate table.

Test script
The test script is procedure, or a programing code that replicate the user actions. Initially the term was derived
from the product of work created by automated regression test tools. Test Case will be a baseline to create test
scripts using a tool or a program.

Test suite
The most common term for a collection of test cases is a test suite. The test suite often also contains more
detailed instructions or goals for each collection of test cases. It definitely contains a section where the tester
identifies the system configuration used during testing. A group of test cases may also contain prerequisite
states or steps, and descriptions of the following tests.

Test data
In most cases, multiple sets of values or data are used to test the same functionality of a particular feature. All
the test values and changeable environmental components are collected in separate files and stored as test data.
It is also useful to provide this data to the client and with the product or a project.

Test harness
The software, tools, samples of data input and output, and configurations are all referred to collectively as a
test harness.

http://en.wikipedia.org/w/index.php?title=Artifact_%28software_development%29


Software testing 12

Certifications
Several certification programs exist to support the professional aspirations of software testers and quality assurance
specialists. No certification currently offered actually requires the applicant to demonstrate the ability to test
software. No certification is based on a widely accepted body of knowledge. This has led some to declare that the
testing field is not ready for certification.[40] Certification itself cannot measure an individual's productivity, their
skill, or practical knowledge, and cannot guarantee their competence, or professionalism as a tester.[41]

Software testing certification types
• Exam-based: Formalized exams, which need to be passed; can also be learned by self-study [e.g., for ISTQB or

QAI][42]

• Education-based: Instructor-led sessions, where each course has to be passed [e.g., International Institute for
Software Testing (IIST)].

Testing certifications
• Certified Associate in Software Testing (CAST) offered by the QAI [43]

• CATe offered by the International Institute for Software Testing[44]

• Certified Manager in Software Testing (CMST) offered by the QAI [43]

• Certified Software Tester (CSTE) offered by the Quality Assurance Institute (QAI)[43]

• Certified Software Test Professional (CSTP) offered by the International Institute for Software Testing[44]

• CSTP (TM) (Australian Version) offered by K. J. Ross & Associates[45]

• ISEB offered by the Information Systems Examinations Board
• ISTQB Certified Tester, Foundation Level (CTFL) offered by the International Software Testing Qualification

Board [46] [47]

• ISTQB Certified Tester, Advanced Level (CTAL) offered by the International Software Testing Qualification
Board [46] [47]

• TMPF TMap Next Foundation offered by the Examination Institute for Information Science[48]

• TMPA TMap Next Advanced offered by the Examination Institute for Information Science[48]

Quality assurance certifications
• CMSQ offered by the Quality Assurance Institute (QAI).[43]

• CSQA offered by the Quality Assurance Institute (QAI)[43]

• CSQE offered by the American Society for Quality (ASQ)[49]

• CQIA offered by the American Society for Quality (ASQ)[49]

Controversy
Some of the major software testing controversies include:
What constitutes responsible software testing?

Members of the "context-driven" school of testing[50] believe that there are no "best practices" of testing, but
rather that testing is a set of skills that allow the tester to select or invent testing practices to suit each unique
situation.[51]

Agile vs. traditional
Should testers learn to work under conditions of uncertainty and constant change or should they aim at process
"maturity"? The agile testing movement has received growing popularity since 2006 mainly in commercial
circles,[52] [53] whereas government and military[54] software providers use this methodology but also the
traditional test-last models (e.g. in the Waterfall model).

Exploratory test vs. scripted[55]

Should tests be designed at the same time as they are executed or should they be designed beforehand?

http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=QAI
http://en.wikipedia.org/w/index.php?title=QAI
http://en.wikipedia.org/w/index.php?title=QAI
http://en.wikipedia.org/w/index.php?title=Quality_Assurance_Institute
http://en.wikipedia.org/w/index.php?title=CSTP_%28TM%29
http://en.wikipedia.org/w/index.php?title=ISEB
http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=TMAP/TMap
http://en.wikipedia.org/w/index.php?title=TMAP/TMap
http://en.wikipedia.org/w/index.php?title=American_Society_for_Quality
http://en.wikipedia.org/w/index.php?title=American_Society_for_Quality
http://en.wikipedia.org/w/index.php?title=Capability_Maturity_Model
http://en.wikipedia.org/w/index.php?title=Capability_Maturity_Model
http://en.wikipedia.org/w/index.php?title=Waterfall_model


Software testing 13

Manual testing vs. automated
Some writers believe that test automation is so expensive relative to its value that it should be used
sparingly.[56] More in particular, test-driven development states that developers should write unit-tests of the
XUnit type before coding the functionality. The tests then can be considered as a way to capture and
implement the requirements.

Software design vs. software implementation[57]

Should testing be carried out only at the end or throughout the whole process?
Who watches the watchmen?

The idea is that any form of observation is also an interaction—the act of testing can also affect that which is
being tested.[58]

References
[1] Exploratory Testing (http:/ / www. kaner. com/ pdfs/ ETatQAI. pdf), Cem Kaner, Florida Institute of Technology, Quality Assurance Institute

Worldwide Annual Software Testing Conference, Orlando, FL, November 2006
[2] Software Testing (http:/ / www. ece. cmu. edu/ ~koopman/ des_s99/ sw_testing/ ) by Jiantao Pan, Carnegie Mellon University
[3] Leitner, A., Ciupa, I., Oriol, M., Meyer, B., Fiva, A., "Contract Driven Development = Test Driven Development - Writing Test Cases" (http:/

/ se. inf. ethz. ch/ people/ leitner/ publications/ cdd_leitner_esec_fse_2007. pdf), Proceedings of ESEC/FSE'07: European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering 2007, (Dubrovnik, Croatia),
September 2007

[4] Software errors cost U.S. economy $59.5 billion annually (http:/ / www. abeacha. com/ NIST_press_release_bugs_cost. htm), NIST report
[5] Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. ISBN 0-471-04328-1.
[6] Company, People's Computer (1987). "Dr. Dobb's journal of software tools for the professional programmer" (http:/ / books. google. com/

?id=7RoIAAAAIAAJ). Dr. Dobb's journal of software tools for the professional programmer (M&T Pub) 12 (1–6): 116. .
[7] Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
[8] until 1956 it was the debugging oriented period, when testing was often associated to debugging: there was no clear difference between

testing and debugging. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.
[9] From 1957–1978 there was the demonstration oriented period where debugging and testing was distinguished now - in this period it was

shown, that software satisfies the requirements. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6).
ISSN 0001-0782.

[10] The time between 1979–1982 is announced as the destruction oriented period, where the goal was to find errors. Gelperin, D.; B. Hetzel
(1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

[11] 1983–1987 is classified as the evaluation oriented period: intention here is that during the software lifecycle a product evaluation is
provided and measuring quality. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

[12] From 1988 on it was seen as prevention oriented period where tests were to demonstrate that software satisfies its specification, to detect
faults and to prevent faults. Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN 0001-0782.

[13] Kaner, Cem; Falk, Jack and Nguyen, Hung Quoc (1999). Testing Computer Software, 2nd Ed.. New York, et al: John Wiley and Sons, Inc..
pp. 480 pages. ISBN 0-471-35846-0.

[14] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/
WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. pp. 41–43. ISBN 0470042125. .

[15] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/
WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 86. ISBN 0470042125. .

[16] Section 1.1.2, Certified Tester Foundation Level Syllabus (http:/ / www. istqb. org/ downloads/ syllabi/ SyllabusFoundation. pdf),
International Software Testing Qualifications Board

[17] Kaner, Cem; James Bach, Bret Pettichord (2001). Lessons Learned in Software Testing: A Context-Driven Approach. Wiley. p. 4.
ISBN 0-471-08112-4.

[18] McConnell, Steve (2004). Code Complete (2nd ed.). Microsoft Press. pp. 29. ISBN 0-7356-1967-0.
[19] Principle 2, Section 1.3, Certified Tester Foundation Level Syllabus (http:/ / www. bcs. org/ upload/ pdf/ istqbsyll. pdf), International

Software Testing Qualifications Board
[20] Tran, Eushiuan (1999). "Verification/Validation/Certification" (http:/ / www. ece. cmu. edu/ ~koopman/ des_s99/ verification/ index. html).

In Koopman, P.. Topics in Dependable Embedded Systems. USA: Carnegie Mellon University. . Retrieved 2008-01-13.
[21] see D. Gelperin and W.C. Hetzel
[22] Introduction (http:/ / www. bullseye. com/ coverage. html#intro), Code Coverage Analysis, Steve Cornett
[23] Laycock, G. T. (1993) (PostScript). The Theory and Practice of Specification Based Software Testing (http:/ / www. mcs. le. ac. uk/ people/

gtl1/ thesis. ps. gz). Dept of Computer Science, Sheffield University, UK. . Retrieved 2008-02-13.

http://www.kaner.com/pdfs/ETatQAI.pdf
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://se.inf.ethz.ch/people/leitner/publications/cdd_leitner_esec_fse_2007.pdf
http://se.inf.ethz.ch/people/leitner/publications/cdd_leitner_esec_fse_2007.pdf
http://www.abeacha.com/NIST_press_release_bugs_cost.htm
http://books.google.com/?id=7RoIAAAAIAAJ
http://books.google.com/?id=7RoIAAAAIAAJ
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.istqb.org/downloads/syllabi/SyllabusFoundation.pdf
http://en.wikipedia.org/w/index.php?title=International_Software_Testing_Qualifications_Board
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://www.bcs.org/upload/pdf/istqbsyll.pdf
http://en.wikipedia.org/w/index.php?title=International_Software_Testing_Qualifications_Board
http://en.wikipedia.org/w/index.php?title=International_Software_Testing_Qualifications_Board
http://www.ece.cmu.edu/~koopman/des_s99/verification/index.html
http://www.bullseye.com/coverage.html#intro
http://en.wikipedia.org/w/index.php?title=PostScript
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz
http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz


Software testing 14

[24] Bach, James (June 1999). "Risk and Requirements-Based Testing" (http:/ / www. satisfice. com/ articles/ requirements_based_testing. pdf)
(PDF). Computer 32 (6): 113–114. . Retrieved 2008-08-19.

[25] Savenkov, Roman (2008). How to Become a Software Tester. Roman Savenkov Consulting. p. 159. ISBN 978-0-615-23372-7.
[26] http:/ / www. computer. org/ portal/ web/ swebok/ html/ ch5#Ref2. 1
[27] http:/ / www. computer. org/ portal/ web/ swebok/ html/ ch5#Ref2. 2
[28] Binder, Robert V. (1999). Testing Object-Oriented Systems: Objects, Patterns, and Tools. Addison-Wesley Professional. p. 45.

ISBN 0-201-80938-9.
[29] Beizer, Boris (1990). Software Testing Techniques (Second ed.). New York: Van Nostrand Reinhold. pp. 21,430. ISBN 0-442-20672-0.
[30] IEEE (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. New York: IEEE.

ISBN 1559370793.
[31] van Veenendaal, Erik. "Standard glossary of terms used in Software Testing" (http:/ / www. astqb. org/ educational-resources/ glossary.

php#A). . Retrieved 17 June 2010.
[32] Globalization Step-by-Step: The World-Ready Approach to Testing. Microsoft Developer Network (http:/ / msdn. microsoft. com/ en-us/

goglobal/ bb688148)
[33] e)Testing Phase in Software Testing:- (http:/ / www. etestinghub. com/ testing_lifecycles. php#2)
[34] Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. pp. 145–146. ISBN 0-471-04328-1.
[35] Dustin, Elfriede (2002). Effective Software Testing. Addison Wesley. p. 3. ISBN 0-20179-429-2.
[36] Marchenko, Artem (November 16, 2007). "XP Practice: Continuous Integration" (http:/ / agilesoftwaredevelopment. com/ xp/ practices/

continuous-integration). . Retrieved 2009-11-16.
[37] Gurses, Levent (February 19, 2007). "Agile 101: What is Continuous Integration?" (http:/ / www. jacoozi. com/ blog/ ?p=18). . Retrieved

2009-11-16.
[38] Pan, Jiantao (Spring 1999). "Software Testing (18-849b Dependable Embedded Systems)" (http:/ / www. ece. cmu. edu/ ~koopman/

des_s99/ sw_testing/ ). Topics in Dependable Embedded Systems. Electrical and Computer Engineering Department, Carnegie Mellon
University. .

[39] IEEE (1998). IEEE standard for software test documentation. New York: IEEE. ISBN 0-7381-1443-X.
[40] Kaner, Cem (2001). "NSF grant proposal to "lay a foundation for significant improvements in the quality of academic and commercial

courses in software testing"" (http:/ / www. testingeducation. org/ general/ nsf_grant. pdf) (pdf). .
[41] Kaner, Cem (2003). "Measuring the Effectiveness of Software Testers" (http:/ / www. testingeducation. org/ a/ mest. pdf) (pdf). .
[42] Black, Rex (December 2008). Advanced Software Testing- Vol. 2: Guide to the ISTQB Advanced Certification as an Advanced Test

Manager. Santa Barbara: Rocky Nook Publisher. ISBN 1933952369.
[43] Quality Assurance Institute (http:/ / www. qaiglobalinstitute. com/ )
[44] International Institute for Software Testing (http:/ / www. testinginstitute. com/ )
[45] K. J. Ross & Associates (http:/ / www. kjross. com. au/ cstp/ )
[46] "ISTQB" (http:/ / www. istqb. org/ ). .
[47] "ISTQB in the U.S." (http:/ / www. astqb. org/ ). .
[48] EXIN: Examination Institute for Information Science (http:/ / www. exin-exams. com)
[49] American Society for Quality (http:/ / www. asq. org/ )
[50] context-driven-testing.com (http:/ / www. context-driven-testing. com)
[51] Article on taking agile traits without the agile method. (http:/ / www. technicat. com/ writing/ process. html)
[52] “We’re all part of the story” (http:/ / stpcollaborative. com/ knowledge/ 272-were-all-part-of-the-story) by David Strom, July 1, 2009
[53] IEEE article about differences in adoption of agile trends between experienced managers vs. young students of the Project Management

Institute (http:/ / ieeexplore. ieee. org/ Xplore/ login. jsp?url=/ iel5/ 10705/ 33795/ 01609838. pdf?temp=x). See also Agile adoption study
from 2007 (http:/ / www. ambysoft. com/ downloads/ surveys/ AgileAdoption2007. ppt)

[54] Willison, John S. (April 2004). "Agile Software Development for an Agile Force" (http:/ / web. archive. org/ web/ 20051029135922/ http:/ /
www. stsc. hill. af. mil/ crosstalk/ 2004/ 04/ 0404willison. html). CrossTalk (STSC) (April 2004). Archived from the original (http:/ / www.
stsc. hill. af. mil/ crosstalk/ 2004/ 04/ 0404willison. htm) on unknown. .

[55] IEEE article on Exploratory vs. Non Exploratory testing (http:/ / ieeexplore. ieee. org/ iel5/ 10351/ 32923/ 01541817.
pdf?arnumber=1541817)

[56] An example is Mark Fewster, Dorothy Graham: Software Test Automation. Addison Wesley, 1999, ISBN 0-201-33140-3.
[57] Article referring to other links questioning the necessity of unit testing (http:/ / java. dzone. com/ news/ why-evangelising-unit-testing-)
[58] Microsoft Development Network Discussion on exactly this topic (http:/ / channel9. msdn. com/ forums/ Coffeehouse/

402611-Are-you-a-Test-Driven-Developer/ )

http://en.wikipedia.org/w/index.php?title=James_Bach
http://www.satisfice.com/articles/requirements_based_testing.pdf
http://www.computer.org/portal/web/swebok/html/ch5#Ref2.1
http://www.computer.org/portal/web/swebok/html/ch5#Ref2.2
http://www.astqb.org/educational-resources/glossary.php#A
http://www.astqb.org/educational-resources/glossary.php#A
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://msdn.microsoft.com/en-us/goglobal/bb688148
http://www.etestinghub.com/testing_lifecycles.php#2
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://agilesoftwaredevelopment.com/xp/practices/continuous-integration
http://www.jacoozi.com/blog/?p=18
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/
http://en.wikipedia.org/w/index.php?title=IEEE_829
http://www.testingeducation.org/general/nsf_grant.pdf
http://www.testingeducation.org/a/mest.pdf
http://www.qaiglobalinstitute.com/
http://www.testinginstitute.com/
http://www.kjross.com.au/cstp/
http://www.istqb.org/
http://www.astqb.org/
http://www.exin-exams.com
http://www.asq.org/
http://www.context-driven-testing.com
http://www.technicat.com/writing/process.html
http://stpcollaborative.com/knowledge/272-were-all-part-of-the-story
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/iel5/10705/33795/01609838.pdf?temp=x
http://www.ambysoft.com/downloads/surveys/AgileAdoption2007.ppt
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://web.archive.org/web/20051029135922/http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.html
http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.htm
http://www.stsc.hill.af.mil/crosstalk/2004/04/0404willison.htm
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://ieeexplore.ieee.org/iel5/10351/32923/01541817.pdf?arnumber=1541817
http://java.dzone.com/news/why-evangelising-unit-testing-
http://channel9.msdn.com/forums/Coffeehouse/402611-Are-you-a-Test-Driven-Developer/
http://channel9.msdn.com/forums/Coffeehouse/402611-Are-you-a-Test-Driven-Developer/


Software testing 15

External links
• Software testing tools and products (http:/ / www. dmoz. org/ Computers/ Programming/ Software_Testing/

Products_and_Tools/ ) at the Open Directory Project
• "Software that makes Software better" Economist.com (http:/ / www. economist. com/ science/ tq/ displaystory.

cfm?story_id=10789417)
• Automated software testing metrics including manual testing metrics (http:/ / idtus. com/ img/

UsefulAutomatedTestingMetrics. pdf)

http://www.dmoz.org/Computers/Programming/Software_Testing/Products_and_Tools/
http://www.dmoz.org/Computers/Programming/Software_Testing/Products_and_Tools/
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://www.economist.com/science/tq/displaystory.cfm?story_id=10789417
http://www.economist.com/science/tq/displaystory.cfm?story_id=10789417
http://idtus.com/img/UsefulAutomatedTestingMetrics.pdf
http://idtus.com/img/UsefulAutomatedTestingMetrics.pdf


16

Black-box testing

Black-box testing

Black box diagram

Black-box testing is a method of software testing that tests the
functionality of an application as opposed to its internal structures
or workings (see white-box testing). Specific knowledge of the
application's code/internal structure and programming knowledge
in general is not required. Test cases are built around
specifications and requirements, i.e., what the application is supposed to do. It uses external descriptions of the
software, including specifications, requirements, and designs to derive test cases. These tests can be functional or
non-functional, though usually functional. The test designer selects valid and invalid inputs and determines the
correct output. There is no knowledge of the test object's internal structure.

This method of test can be applied to all levels of software testing: unit, integration, functional, system and
acceptance. It typically comprises most if not all testing at higher levels, but can also dominate unit testing as well.

Test design techniques
Typical black-box test design techniques include:
• Decision table testing
• All-pairs testing
• State transition tables
• Equivalence partitioning
• Boundary value analysis.
Boundary value analysis:
i) Elements at the edge of the domain are selected and tested.
ii) Instead of focusing on input condition only,the test cases from output domain are also derived.
iii) Test case design technique that complements equivalence partitioning technique. by Shanavas R [MCA].
In this approach, the domain of a program is partitioned into a set of equivalence classes. The partitioning is done
such that the behaviour of the program is similar to every input data belonging to the same equivalence class.

Hacking
In penetration testing, black-box testing refers to a methodology where an ethical hacker has no knowledge of the
system being attacked. The goal of a black-box penetration test is to simulate an external hacking or cyber warfare
attack.

External links
• BCS SIGIST (British Computer Society Specialist Interest Group in Software Testing): Standard for Software

Component Testing (http:/ / www. testingstandards. co. uk/ Component Testing. pdf), Working Draft 3.4, 27.
April 2001.

http://en.wikipedia.org/w/index.php?title=File%3ABlackbox.svg
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Functional_testing
http://en.wikipedia.org/w/index.php?title=Acceptance_test
http://en.wikipedia.org/w/index.php?title=Decision_table
http://en.wikipedia.org/w/index.php?title=State_transition_table
http://en.wikipedia.org/w/index.php?title=Boundary_value_analysis
http://en.wikipedia.org/w/index.php?title=Penetration_test
http://en.wikipedia.org/w/index.php?title=White_hat_%28computer_security%29
http://www.testingstandards.co.uk/Component%20Testing.pdf


Exploratory testing 17

Exploratory testing
Exploratory testing is an approach to software testing that is concisely described as simultaneous learning, test
design and test execution. Cem Kaner, who coined the term in 1983,[1] now defines exploratory testing as "a style of
software testing that emphasizes the personal freedom and responsibility of the individual tester to continually
optimize the quality of his/her work by treating test-related learning, test design, test execution, and test result
interpretation as mutually supportive activities that run in parallel throughout the project."[2]

While the software is being tested, the tester learns things that together with experience and creativity generates new
good tests to run. Exploratory testing is often thought of as a black box testing technique. Instead, those who have
studied it consider it a test approach that can be applied to any test technique, at any stage in the development
process. The key is not the test technique nor the item being tested or reviewed; the key is the cognitive engagement
of the tester, and the tester's responsibility for managing his or her time.[3]

History
Exploratory testing has always been performed by skilled testers. In the early 1990s, ad hoc was too often
synonymous with sloppy and careless work. As a result, a group of test methodologists (now calling themselves the
Context-Driven School) began using the term "exploratory" seeking to emphasize the dominant thought process
involved in unscripted testing, and to begin to develop the practice into a teachable discipline. This new terminology
was first published by Cem Kaner in his book Testing Computer Software[1] and expanded upon in Lessons Learned
in Software Testing.[4] Exploratory testing can be as disciplined as any other intellectual activity.

Description
Exploratory testing seeks to find out how the software actually works, and to ask questions about how it will handle
difficult and easy cases. The quality of the testing is dependent on the tester's skill of inventing test cases and finding
defects. The more the tester knows about the product and different test methods, the better the testing will be.
To further explain, comparison can be made of freestyle exploratory testing to its antithesis scripted testing. In this
activity test cases are designed in advance. This includes both the individual steps and the expected results. These
tests are later performed by a tester who compares the actual result with the expected. When performing exploratory
testing, expectations are open. Some results may be predicted and expected; others may not. The tester configures,
operates, observes, and evaluates the product and its behaviour, critically investigating the result, and reporting
information that seems likely to be a bug (which threatens the value of the product to some person) or an issue
(which threatens the quality of the testing effort).
In reality, testing almost always is a combination of exploratory and scripted testing, but with a tendency towards
either one, depending on context.
According to Cem Kaner & James Bach, exploratory testing is more a mindset or "...a way of thinking about testing"
than a methodology.[5] They also say that it crosses a continuum from slightly exploratory (slightly ambiguous or
vaguely scripted testing) to highly exploratory (freestyle exploratory testing).[6]

The documentation of exploratory testing ranges from documenting all tests performed to just documenting the bugs.
During pair testing, two persons create test cases together; one performs them, and the other documents.
Session-based testing is a method specifically designed to make exploratory testing auditable and measurable on a
wider scale.
Exploratory testers often use tools, including screen capture or video tools as a record of the exploratory session, or
tools to quickly help generate situations of interest, e.g. James Bach's Perlclip.

http://en.wikipedia.org/w/index.php?title=Test_design
http://en.wikipedia.org/w/index.php?title=Test_design
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=Creativity
http://en.wikipedia.org/w/index.php?title=Black_box_testing
http://en.wikipedia.org/w/index.php?title=Ad_hoc
http://en.wikipedia.org/w/index.php?title=Context-Driven_School
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Test_method
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=James_Bach
http://en.wikipedia.org/w/index.php?title=Mindset
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Pair_testing
http://en.wikipedia.org/w/index.php?title=Session-based_test


Exploratory testing 18

Benefits and drawbacks
The main advantage of exploratory testing is that less preparation is needed, important bugs are found quickly, and at
execution time, the approach tends to be more intellectually stimulating than execution of scripted tests.
Another major benefit is that testers can use deductive reasoning based on the results of previous results to guide
their future testing on the fly. They do not have to complete a current series of scripted tests before focusing in on or
moving on to exploring a more target rich environment. This also accelerates bug detection when used intelligently.
Another benefit is that, after initial testing, most bugs are discovered by some sort of exploratory testing. This can be
demonstrated logically by stating, "Programs that pass certain tests tend to continue to pass the same tests and are
more likely to fail other tests or scenarios that are yet to be explored."
Disadvantages are that tests invented and performed on the fly can't be reviewed in advance (and by that prevent
errors in code and test cases), and that it can be difficult to show exactly which tests have been run.
Freestyle exploratory test ideas, when revisited, are unlikely to be performed in exactly the same manner, which can
be an advantage if it is important to find new errors; or a disadvantage if it is more important to repeat specific
details of the earlier tests. This can be controlled with specific instruction to the tester, or by preparing automated
tests where feasible, appropriate, and necessary, and ideally as close to the unit level as possible.

Usage
Exploratory testing is particularly suitable if requirements and specifications are incomplete, or if there is lack of
time.[7] [8] The approach can also be used to verify that previous testing has found the most important defects.[7]

References
[1] Kaner, Falk, and Nguyen, Testing Computer Software (Second Edition), Van Nostrand Reinhold, New York, 1993. p. 6, 7-11.
[2] Cem Kaner, A Tutorial in Exploratory Testing (http:/ / www. kaner. com/ pdfs/ QAIExploring. pdf), p. 36.
[3] Cem Kaner, A Tutorial in Exploratory Testing (http:/ / www. kaner. com/ pdfs/ QAIExploring. pdf), p. 37-39, 40- .
[4] Kaner, Cem; Bach, James; Pettichord, Bret (2001). Lessons Learned in Software Testing. John Wiley & Sons. ISBN 0471081124.
[5] Cem Kaner, James Bach, Exploratory & Risk Based Testing, www.testingeducation.org (http:/ / www. testingeducation. org), 2004, p. 10
[6] Cem Kaner, James Bach, Exploratory & Risk Based Testing, www.testingeducation.org (http:/ / www. testingeducation. org), 2004, p. 14
[7] Bach, James (2003). "Exploratory Testing Explained" (http:/ / www. satisfice. com/ articles/ et-article. pdf). satisfice.com. p. 7. . Retrieved

October 23, 2010.
[8] Kaner, Cem (2008). "A Tutorial in Exploratory Testing" (http:/ / www. kaner. com/ pdfs/ QAIExploring. pdf). kaner.com. p. 37, 118. .

Retrieved October 23, 2010.

External links
• James Bach, Exploratory Testing Explained (http:/ / www. satisfice. com/ articles/ et-article. pdf)
• Cem Kaner, James Bach, The Nature of Exploratory Testing (http:/ / www. testingeducation. org/ a/ nature. pdf),

2004
• Cem Kaner, James Bach, The Seven Basic Principles of the Context-Driven School (http:/ / www.

context-driven-testing. com)
• Jonathan Kohl, Exploratory Testing: Finding the Music of Software Investigation (http:/ / www. methodsandtools.

com/ archive/ archive. php?id=65), Kohl Concepts Inc., 2007
• Chris Agruss, Bob Johnson, Ad Hoc Software Testing (http:/ / www. testingcraft. com/ ad_hoc_testing. pdf)

http://en.wikipedia.org/w/index.php?title=Deductive_reasoning
http://en.wikipedia.org/w/index.php?title=Software_requirement
http://en.wikipedia.org/w/index.php?title=Program_specification
http://www.kaner.com/pdfs/QAIExploring.pdf
http://www.kaner.com/pdfs/QAIExploring.pdf
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://www.testingeducation.org
http://www.testingeducation.org
http://www.satisfice.com/articles/et-article.pdf
http://www.kaner.com/pdfs/QAIExploring.pdf
http://www.satisfice.com/articles/et-article.pdf
http://www.testingeducation.org/a/nature.pdf
http://www.context-driven-testing.com
http://www.context-driven-testing.com
http://www.methodsandtools.com/archive/archive.php?id=65
http://www.methodsandtools.com/archive/archive.php?id=65
http://www.testingcraft.com/ad_hoc_testing.pdf


San Francisco depot 19

San Francisco depot
San Francisco depot is a mnemonic for the SFDPO software exploratory testing heuristic. SFDPO stands for
Structure, Function, Data, Platform and Operations. Each of these represents a different aspect of a software product.

Structure
Structure is what the entire product is. This is its physical files, utility programs, physical materials such as user
docs, specifications and design docs, etc.

Function
Function is what the product does. This is the product's features. How does it handle errors? What is its UI? How
does it interface with the operating system?

Data
Data is what the product processes. What kinds of input does it process? This can be input from the user, the file
system, etc. What kind of output or reports does it generate? Does it come with default data? Is any of its input
sensitive to timing or sequencing?

Platform
Platform is what the product depends upon. What operating systems and related service packs, browsers, runtime
libraries, plug-ins, languages and locales, etc. does it run on? Does the user need to configure the environment? Does
it depend on third-party components?

Operations
Operations are scenarios in which the product will be used. Who are the application's users and what are their
patterns and sequences of input? Where and how will they use it? What are the different ways a user can use the
product's features?

External links
• How Do You Spell Testing? [1]

References
[1] http:/ / www. satisfice. com/ articles/ sfdpo. shtml

http://en.wikipedia.org/w/index.php?title=Mnemonic
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Utility_program
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Input/output
http://en.wikipedia.org/w/index.php?title=Output
http://en.wikipedia.org/w/index.php?title=Third-party_developer
http://www.satisfice.com/articles/sfdpo.shtml
http://www.satisfice.com/articles/sfdpo.shtml


Session-based testing 20

Session-based testing
Session-based testing is a software test method that aims to combine accountability and exploratory testing to
provide rapid defect discovery, creative on-the-fly test design, management control and metrics reporting. The
method can also be used in conjunction with Scenario testing. Session-based testing was developed in 2000 by
Jonathan and James Bach.
Session-based testing can be used to introduce measurement and control to an immature test process, and can form a
foundation for significant improvements in productivity and error detection. Session-based testing can offer benefits
when formal requirements are not present, incomplete, or changing rapidly.

Elements of session-based testing

Charter
A charter is a goal or agenda for a test session. Charters are created by the test team prior to the start of testing, but
may be added or changed at any time. Often charters are created from a specification, test plan, or by examining
results from previous test sessions.

Session
An uninterrupted period of time spent testing, ideally lasting one to two hours. Each session is focused on a charter,
but testers can also explore new opportunities or issues during this time. The tester creates and executes test cases
based on ideas, heuristics or whatever frameworks to guide them and records their progress. This might be through
the use of written notes, video capture tools or by whatever method as deemed appropriate by the tester.

Session report
The session report records the test session. Usually this includes:
• Charter.
• Area tested.
• Detailed notes on how testing was conducted.
• A list of any bugs found.
• A list of issues (open questions, product or project concerns)
• Any files the tester used or created to support their testing
• Percentage of the session spent on the charter vs investigating new opportunities.
• Percentage of the session spent on:

• Testing - creating and executing tests.
• Bug investigation / reporting.
• Session setup or other non-testing activities.

• Session Start time and duration.

http://en.wikipedia.org/w/index.php?title=Accountability
http://en.wikipedia.org/w/index.php?title=Scenario_test
http://en.wikipedia.org/w/index.php?title=James_Bach
http://en.wikipedia.org/w/index.php?title=Requirement
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=Software_bug


Session-based testing 21

Debrief
A debrief is a short discussion between the manager and tester (or testers) about the session report. Jon Bach, one of
the co-creators of session based test management, uses the aconymn PROOF to help structure his debriefing.
PROOF stands for:-
• Past. What happened during the session?
• Results. What was achieved during the session?
• Obstacles. What got in the way of good testing?
• Outlook. What still needs to be done?
• Feelings. How does the tester feel about all this?[1]

Parsing results
With a standardized Session Report, software tools can be used to parse and store the results as aggregate data for
reporting and metrics. This allows reporting on the number of sessions per area or a breakdown of time spent on
testing, bug investigation, and setup / other activities.

Planning
Testers using session-based testing can adjust their testing daily to fit the needs of the project. Charters can be added
or dropped over time as tests are executed and/or requirements change.

References
[1] http:/ / www. satisfice. com/ articles/ sbtm. pdf

External links
• Session-Based Test Management Site (http:/ / www. satisfice. com/ sbtm/ )
• How to Manage and Measure ET (http:/ / www. quardev. com/ content/ whitepapers/

how_measure_exploratory_testing. pdf)
• Session-Based Test Lite (http:/ / www. quardev. com/ articles/ sbt_lite)
• Adventures in Session-Based Testing (http:/ / www. workroom-productions. com/ papers/ AiSBTv1. 2. pdf)
• Session-Based Test Management (http:/ / www. satisfice. com/ articles/ sbtm. pdf)
• Applying Session-Based Testing to Medical Software (http:/ / www. devicelink. com/ mddi/ archive/ 03/ 05/ 003.

html)
• Sessionweb - Web application to manage SBTM including debriefing and support for statistics. (http:/ / code.

google. com/ p/ sessionweb/ )
• Web application based on Session-based testing software test method (http:/ / sites. google. com/ site/

sessionbasedtester/ )

http://en.wikipedia.org/w/index.php?title=Parsing
http://en.wikipedia.org/w/index.php?title=Aggregate_data
http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com/sbtm/
http://www.quardev.com/content/whitepapers/how_measure_exploratory_testing.pdf
http://www.quardev.com/content/whitepapers/how_measure_exploratory_testing.pdf
http://www.quardev.com/articles/sbt_lite
http://www.workroom-productions.com/papers/AiSBTv1.2.pdf
http://www.satisfice.com/articles/sbtm.pdf
http://www.devicelink.com/mddi/archive/03/05/003.html
http://www.devicelink.com/mddi/archive/03/05/003.html
http://code.google.com/p/sessionweb/
http://code.google.com/p/sessionweb/
http://sites.google.com/site/sessionbasedtester/
http://sites.google.com/site/sessionbasedtester/


Scenario testing 22

Scenario testing
Scenario testing is a software testing activity that uses scenario tests, or simply scenarios, which are based on a
hypothetical story to help a person think through a complex problem or system for a testing environment. The ideal
scenario has five key characteristics: it is (a) a story that is (b) motivating, (c) credible, (d) complex, and (e) easy to
evaluate[1] . These tests are usually different from test cases in that test cases are single steps whereas scenarios
cover a number of steps. Test suites and scenarios can be used in concert for complete system testing.

References
[1] "An Introduction to Scenario Testing" (http:/ / www. kaner. com/ pdfs/ ScenarioIntroVer4. pdf). Cem Kaner. . Retrieved 2009-05-07.

External links
• Introduction to Scenario Testing (http:/ / www. kaner. com/ pdfs/ ScenarioIntroVer4. pdf)

Equivalence partitioning
Equivalence partitioning (also called Equivalence Class Partitioning or ECP[1] ) is a software testing technique
that divides the input data of a software unit into partitions of data from which test cases can be derived. In principle,
test cases are designed to cover each partition at least once. This technique tries to define test cases that uncover
classes of errors, thereby reducing the total number of test cases that must be developed.
In rare cases equivalence partitioning is also applied to outputs of a software component, typically it is applied to the
inputs of a tested component. The equivalence partitions are usually derived from the requirements specification for
input attributes that influence the processing of the test object. An input has certain ranges which are valid and other
ranges which are invalid. Invalid data here does not mean that the data is incorrect, it means that this data lies outside
of specific partition. This may be best explained by the example of a function which takes a parameter "month". The
valid range for the month is 1 to 12, representing January to December. This valid range is called a partition. In this
example there are two further partitions of invalid ranges. The first invalid partition would be <= 0 and the second
invalid partition would be >= 13.

        ... -2 -1  0 1 .............. 12 13  14  15 .....

      --------------|-------------------|---------------------

 invalid partition 1     valid partition    invalid partition 2

The testing theory related to equivalence partitioning says that only one test case of each partition is needed to
evaluate the behaviour of the program for the related partition. In other words it is sufficient to select one test case
out of each partition to check the behaviour of the program. To use more or even all test cases of a partition will not
find new faults in the program. The values within one partition are considered to be "equivalent". Thus the number
of test cases can be reduced considerably.
An additional effect of applying this technique is that you also find the so called "dirty" test cases. An inexperienced
tester may be tempted to use as test cases the input data 1 to 12 for the month and forget to select some out of the
invalid partitions. This would lead to a huge number of unnecessary test cases on the one hand, and a lack of test
cases for the dirty ranges on the other hand.
The tendency is to relate equivalence partitioning to so called black box testing which is strictly checking a software 
component at its interface, without consideration of internal structures of the software. But having a closer look at 
the subject there are cases where it applies to grey box testing as well. Imagine an interface to a component which

http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf
http://www.kaner.com/pdfs/ScenarioIntroVer4.pdf
http://en.wikipedia.org/w/index.php?title=Black_box_testing
http://en.wikipedia.org/w/index.php?title=Grey_box_testing


Equivalence partitioning 23

has a valid range between 1 and 12 like the example above. However internally the function may have a
differentiation of values between 1 and 6 and the values between 7 and 12. Depending upon the input value the
software internally will run through different paths to perform slightly different actions. Regarding the input and
output interfaces to the component this difference will not be noticed, however in your grey-box testing you would
like to make sure that both paths are examined. To achieve this it is necessary to introduce additional equivalence
partitions which would not be needed for black-box testing. For this example this would be:

        ... -2 -1  0 1 ..... 6 7 ..... 12 13  14  15 .....

      --------------|---------|----------|---------------------

 invalid partition 1      P1         P2     invalid partition 2

                       valid partitions

To check for the expected results you would need to evaluate some internal intermediate values rather than the
output interface. It is not necessary that we should use multiple values from each partition. In the above scenario we
can take -2 from invalid partition 1, 6 from valid partition P1, 7 from valid partition P2 and 15 from invalid partition
2.
Equivalence partitioning is not a stand alone method to determine test cases. It has to be supplemented by boundary
value analysis. Having determined the partitions of possible inputs the method of boundary value analysis has to be
applied to select the most effective test cases out of these partitions.

References
• The Testing Standards Working Party website [2]

• Parteg [3], a free test generation tool that is combining test path generation from UML state machines with
equivalence class generation of input values.

[1] Burnstein, Ilene (2003), Practical Software Testing, Springer-Verlag, p. 623, ISBN 0-387-95131-8
[2] http:/ / www. testingstandards. co. uk
[3] http:/ / parteg. sourceforge. net

http://en.wikipedia.org/w/index.php?title=Boundary_value_analysis
http://en.wikipedia.org/w/index.php?title=Boundary_value_analysis
http://www.testingstandards.co.uk
http://parteg.sourceforge.net
http://www.testingstandards.co.uk
http://parteg.sourceforge.net


Boundary-value analysis 24

Boundary-value analysis
Boundary value analysis is a software testing technique in which tests are designed to include representatives of
boundary values. Values on the minimum and maximum edges of an equivalence partition are tested. The values
could be either input or output ranges of a software component. Since these boundaries are common locations for
errors that result in software faults they are frequently exercised in test cases.

Application
The expected input and output values to the software component should be extracted from the component
specification. The values are then grouped into sets with identifiable boundaries. Each set, or partition, contains
values that are expected to be processed by the component in the same way. Partitioning of test data ranges is
explained in the equivalence partitioning test case design technique. It is important to consider both valid and invalid
partitions when designing test cases.
For an example, if the input values were months of the year, expressed as integers, the input parameter 'month' might
have the following partitions:

       ... -2 -1  0 1 .............. 12 13  14  15 .....

     --------------|-------------------|-------------------

invalid partition 1   valid partition   invalid partition 2

The boundary between two partitions is the place where the behavior of the application changes and is not a real
number itself. The boundary value is the minimum (or maximum) value that is at the boundary. The number 0 is the
maximum number in the first partition, the number 1 is the minimum value in the second partition, both are
boundary values. Test cases should be created to generate inputs or outputs that will fall on and to either side of each
boundary, which results in two cases per boundary. The test cases on each side of a boundary should be in the
smallest increment possible for the component under test, for an integer this is 1, but the input was a decimal with 2
places then it would be .01. In the example above there are boundary values at 0,1 and 12,13 and each should be
tested.
Boundary value analysis does not require invalid partitions. Take an example where a heater is turned on if the
temperature is 10 degrees or colder. There are two partitions (temperature<=10, temperature>10) and two boundary
values to be tested (temperature=10, temperature=11).
Where a boundary value falls within the invalid partition the test case is designed to ensure the software component
handles the value in a controlled manner. Boundary value analysis can be used throughout the testing cycle and is
equally applicable at all testing phases.

References
• The Testing Standards Working Party [2] website.

http://en.wikipedia.org/w/index.php?title=Fault_%28technology%29
http://www.testingstandards.co.uk


All-pairs testing 25

All-pairs testing
All-pairs testing or pairwise testing is a combinatorial software testing method that, for each pair of input
parameters to a system (typically, a software algorithm), tests all possible discrete combinations of those parameters.
Using carefully chosen test vectors, this can be done much faster than an exhaustive search of all combinations of all
parameters, by "parallelizing" the tests of parameter pairs. The number of tests is typically O(nm), where n and m are
the number of possibilities for each of the two parameters with the most choices.
The reasoning behind all-pairs testing is this: the simplest bugs in a program are generally triggered by a single input
parameter. The next simplest category of bugs consists of those dependent on interactions between pairs of
parameters, which can be caught with all-pairs testing.[1] Bugs involving interactions between three or more
parameters are progressively less common,[2] whilst at the same time being progressively more expensive to find by
exhaustive testing, which has as its limit the exhaustive testing of all possible inputs.[3]

Many testing methods regard all-pairs testing of a system or subsystem as a reasonable cost-benefit compromise
between often computationally infeasible higher-order combinatorial testing methods, and less exhaustive methods
which fail to exercise all possible pairs of parameters. Because no testing technique can find all bugs, all-pairs
testing is typically used together with other quality assurance techniques such as unit testing, symbolic execution,
fuzz testing, and code review.

Notes
[1] Black, Rex (2007). Pragmatic Software Testing: Becoming an Effective and Efficient Test Professional. New York: Wiley. p. 240.

ISBN 978-0-470-12790-2.
[2] D.R. Kuhn, D.R. Wallace, A.J. Gallo, Jr. (June 2004). "Software Fault Interactions and Implications for Software Testing" (http:/ / csrc. nist.

gov/ groups/ SNS/ acts/ documents/ TSE-0172-1003-1. pdf). IEEE Trans. on Software Engineering 30 (6). .
[3] (2010) Practical Combinatorial Testing. SP 800-142. (http:/ / csrc. nist. gov/ groups/ SNS/ acts/ documents/ SP800-142-101006. pdf). Natl.

Inst. of Standards and Technology. (Report).

External links
• Combinatorialtesting.com; Includes clearly written introductions to pairwise and other, more thorough, methods

of combinatorial testing (http:/ / www. combinatorialtesting. com)
• Hexawise.com - Pairwise test case generating tool with both free and commercial versions (also provides more

thorough 3-way, 4-way, 5-way, and 6-way coverage solutions) (http:/ / hexawise. com/ )
• Pairwise Testing Comes of Age - Review including history, examples, issues, research (http:/ / testcover. com/

pub/ background/ stareast2008. ppt)
• Pairwise Testing: Combinatorial Test Case Generation (http:/ / www. pairwise. org/ )
• Pairwise testing (http:/ / www. developsense. com/ testing/ PairwiseTesting. html)
• All-pairs testing (http:/ / www. mcdowella. demon. co. uk/ allPairs. html)
• Pairwise and generalized t-way combinatorial testing (http:/ / csrc. nist. gov/ acts/ )
• TestApi - the API library for testing, providing a variation generation API (http:/ / testapi. codeplex. com)

http://en.wikipedia.org/w/index.php?title=Combinatorial
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Test_vector
http://en.wikipedia.org/w/index.php?title=Quality_assurance
http://en.wikipedia.org/w/index.php?title=Symbolic_execution
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://csrc.nist.gov/groups/SNS/acts/documents/TSE-0172-1003-1.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/TSE-0172-1003-1.pdf
http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf
http://www.combinatorialtesting.com
http://hexawise.com/
http://testcover.com/pub/background/stareast2008.ppt
http://testcover.com/pub/background/stareast2008.ppt
http://www.pairwise.org/
http://www.developsense.com/testing/PairwiseTesting.html
http://www.mcdowella.demon.co.uk/allPairs.html
http://csrc.nist.gov/acts/
http://testapi.codeplex.com


Fuzz testing 26

Fuzz testing
Fuzz testing or fuzzing is a software testing technique, often automated or semi-automated, that involves providing
invalid, unexpected, or random data to the inputs of a computer program. The program is then monitored for
exceptions such as crashes or failing built-in code assertions. Fuzzing is commonly used to test for security problems
in software or computer systems.
The term first originates from a class project at the University of Wisconsin 1988 although similar techniques have
been used in the field of quality assurance, where they are referred to as robustness testing, syntax testing or negative
testing.
There are two forms of fuzzing program; mutation-based and generation-based, which can be employed as white-,
grey- or black-box testing.[1] File formats and network protocols are the most common targets of testing, but any
type of program input can be fuzzed. Interesting inputs include environment variables, keyboard and mouse events,
and sequences of API calls. Even items not normally considered "input" can be fuzzed, such as the contents of
databases, shared memory, or the precise interleaving of threads.
For the purpose of security, input that crosses a trust boundary is often the most interesting.[2] For example, it is
more important to fuzz code that handles the upload of a file by any user than it is to fuzz the code that parses a
configuration file that is accessible only to a privileged user.

History
The term "fuzz" or "fuzzing" originates from a 1988 class project at the University of Wisconsin, taught by Professor
Barton Miller. The assignment was titled "Operating System Utility Program Reliability - The Fuzz Generator".[3] [4]

The project developed a basic command-line fuzzer to test the reliability of Unix programs by bombarding them with
random data until they crashed. The test was repeated in 1995, expanded to include testing of GUI-based tools (X
Windows), network protocols, and system library API's.[1] Follow-on work included testing command- and
GUI-based applications on both Windows and MacOS X.
One of the earliest examples of fuzzing dates from before 1983. "The Monkey" was a Macintosh application
developed by Steve Capps prior to 1983. It used journaling hooks to feed random events into Mac programs, and was
used to test for bugs in MacPaint.[5]

Uses
Fuzz testing is often employed as a black-box testing methodology in large software projects where a budget exists
to develop test tools. Fuzz testing is one of the techniques which offers a high benefit to cost ratio.
The technique can only provide a random sample of the system's behavior, and in many cases passing a fuzz test may
only demonstrate that a piece of software can handle exceptions without crashing, rather than behaving correctly.
This means fuzz testing is an assurance of overall quality, rather than a bug-finding tool, and not a substitute for
exhaustive testing or formal methods.
As a gross measurement of reliability, fuzzing can suggest which parts of a program should get special attention, in
the form of a code audit, application of static analysis, or partial rewrites.

http://en.wikipedia.org/w/index.php?title=Random_data
http://en.wikipedia.org/w/index.php?title=Computer_program
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=University_of_Wisconsin
http://en.wikipedia.org/w/index.php?title=Robustness_testing
http://en.wikipedia.org/w/index.php?title=Software_testing%23The_box_approach
http://en.wikipedia.org/w/index.php?title=File_format
http://en.wikipedia.org/w/index.php?title=Protocol_%28computing%29
http://en.wikipedia.org/w/index.php?title=Environment_variable
http://en.wikipedia.org/w/index.php?title=Event_%28computing%29
http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Shared_memory
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Trust_boundary
http://en.wikipedia.org/w/index.php?title=Unix
http://en.wikipedia.org/w/index.php?title=Macintosh
http://en.wikipedia.org/w/index.php?title=Steve_Capps
http://en.wikipedia.org/w/index.php?title=MacPaint
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Code_audit
http://en.wikipedia.org/w/index.php?title=Rewrite_%28programming%29


Fuzz testing 27

Types of bugs
As well as testing for outright crashes, fuzz testing is used to find bugs such as assertion failures and memory leaks
(when coupled with a memory debugger). The methodology is useful against large applications, where any bug
affecting memory safety is likely to be a severe vulnerability.
Since fuzzing often generates invalid input it is used for testing error-handling routines, which are important for
software that does not control its input. Simple fuzzing can be thought of as a way to automate negative testing.
Fuzzing can also find some types of "correctness" bugs. For example, it can be used to find incorrect-serialization
bugs by complaining whenever a program's serializer emits something that the same program's parser rejects.[6] It
can also find unintentional differences between two versions of a program[7] or between two implementations of the
same specification.[8]

Techniques
Fuzzing programs fall into two different categories. Mutation based fuzzers mutate existing data samples to create
test data while generation based fuzzers define new test data based on models of the input.[1]

The simplest form of fuzzing technique is sending a stream of random bits to software, either as command line
options, randomly mutated protocol packets, or as events. This technique of random inputs still continues to be a
powerful tool to find bugs in command-line applications, network protocols, and GUI-based applications and
services. Another common technique that is easy to implement is mutating existing input (e.g. files from a test suite)
by flipping bits at random or moving blocks of the file around. However, the most successful fuzzers have detailed
understanding of the format or protocol being tested.
The understanding can be based on a specification. A specification-based fuzzer involves writing the entire array of
specifications into the tool, and then using model-based test generation techniques in walking through the
specifications and adding anomalies in the data contents, structures, messages, and sequences. This "smart fuzzing"
technique is also known as robustness testing, syntax testing, grammar testing, and (input) fault injection.[9] [10] [11]

[12] The protocol awareness can also be created heuristically from examples using a tool such as Sequitur [13].[14]

These fuzzers can generate test cases from scratch, or they can mutate examples from test suites or real life. They
can concentrate on valid or invalid input, with mostly-valid input tending to trigger the "deepest" error cases.
There are two limitations of protocol-based fuzzing based on protocol implementations of published specifications:
1) Testing cannot proceed until the specification is relatively mature, since a specification is a prerequisite for
writing such a fuzzer; and 2) Many useful protocols are proprietary, or involve proprietary extensions to published
protocols. If fuzzing is based only on published specifications, test coverage for new or proprietary protocols will be
limited or nonexistent.
Fuzz testing can be combined with other testing techniques. White-box fuzzing uses symbolic execution and
constraint solving.[15] Evolutionary fuzzing leverages feedback from code coverage,[16] effectively automating the
approach of exploratory testing.

http://en.wikipedia.org/w/index.php?title=Memory_leak
http://en.wikipedia.org/w/index.php?title=Memory_debugger
http://en.wikipedia.org/w/index.php?title=Memory_safety
http://en.wikipedia.org/w/index.php?title=Vulnerability_%28computing%29
http://en.wikipedia.org/w/index.php?title=Negative_test
http://en.wikipedia.org/w/index.php?title=Serialization
http://en.wikipedia.org/w/index.php?title=Specification_%28technical_standard%29%23Software_development
http://en.wikipedia.org/w/index.php?title=Heuristic_algorithm
http://sequitur.info/
http://en.wikipedia.org/w/index.php?title=Symbolic_execution
http://en.wikipedia.org/w/index.php?title=Constraint_solving


Fuzz testing 28

Reproduction and isolation
Test case reduction is the process of extracting minimal test cases from an initial test case.[17] [18] Test case reduction
may be done manually, or using software tools, and usually involves a divide-and-conquer strategy where parts of
the test are removed one by one until only the essential core of the test case remains.
So as to be able to reproduce errors, fuzzing software will often record the input data it produces, usually before
applying it to the software. If the computer crashes outright, the test data is preserved. If the fuzz stream is
pseudo-random number-generated, the seed value can be stored to reproduce the fuzz attempt. Once a bug is found,
some fuzzing software will help to build a test case, which is used for debugging, using test case reduction tools such
as Delta or Lithium.

Advantages and disadvantages
The main problem with fuzzing to find program faults is that it generally only finds very simple faults. The
computational complexity of the software testing problem is of exponential order ( ) and every
fuzzer takes shortcuts to find something interesting in a timeframe that a human cares about. A primitive fuzzer may
have poor code coverage; for example, if the input includes a checksum which is not properly updated to match other
random changes, only the checksum validation code will be verified. Code coverage tools are often used to estimate
how "well" a fuzzer works, but these are only guidelines to fuzzer quality. Every fuzzer can be expected to find a
different set of bugs.
On the other hand, bugs found using fuzz testing are sometimes severe, exploitable bugs that could be used by a real
attacker. This has become more common as fuzz testing has become more widely known, as the same techniques and
tools are now used by attackers to exploit deployed software. This is a major advantage over binary or source
auditing, or even fuzzing's close cousin, fault injection, which often relies on artificial fault conditions that are
difficult or impossible to exploit.
The randomness of inputs used in fuzzing is often seen as a disadvantage, as catching a boundary value condition
with random inputs is highly unlikely.
Fuzz testing enhances software security and software safety because it often finds odd oversights and defects which
human testers would fail to find, and even careful human test designers would fail to create tests for.

References
[1] Michael Sutton, Adam Greene, Pedram Amini (2007). Fuzzing: Brute Force Vulnerability Discovery. Addison-Wesley. ISBN 0321446119.
[2] John Neystadt (2008-02). "Automated Penetration Testing with White-Box Fuzzing" (http:/ / msdn. microsoft. com/ en-us/ library/ cc162782.

aspx). Microsoft. . Retrieved 2009-05-14.
[3] Barton Miller (2008). "Preface". In Ari Takanen, Jared DeMott and Charlie Miller, Fuzzing for Software Security Testing and Quality

Assurance, ISBN 978-1-59693-214-2
[4] "Fuzz Testing of Application Reliability" (http:/ / pages. cs. wisc. edu/ ~bart/ fuzz/ ). University of Wisconsin-Madison. . Retrieved

2009-05-14.
[5] "Macintosh Stories: Monkey Lives" (http:/ / www. folklore. org/ StoryView. py?story=Monkey_Lives. txt). Folklore.org. 1999-02-22. .

Retrieved 2010-05-28.
[6] Jesse Ruderman. "Fuzzing for correctness" (http:/ / www. squarefree. com/ 2007/ 08/ 02/ fuzzing-for-correctness/ ). .
[7] Jesse Ruderman. "Fuzzing TraceMonkey" (http:/ / www. squarefree. com/ 2008/ 12/ 23/ fuzzing-tracemonkey/ ). .
[8] Jesse Ruderman. "Some differences between JavaScript engines" (http:/ / www. squarefree. com/ 2008/ 12/ 23/ differences/ ). .
[9] "Robustness Testing Of Industrial Control Systems With Achilles" (http:/ / wurldtech. com/ resources/

SB_002_Robustness_Testing_With_Achilles. pdf) (PDF). . Retrieved 2010-05-28.
[10] "Software Testing Techniques by Boris Beizer. International Thomson Computer Press; 2 Sub edition (June 1990)" (http:/ / www. amazon.

com/ dp/ 1850328803). Amazon.com. . Retrieved 2010-05-28.
[11] "Kaksonen, Rauli. (2001) A Functional Method for Assessing Protocol Implementation Security (Licentiate thesis). Espoo. Technical

Research Centre of Finland, VTT Publications 447. 128 p. + app. 15 p. ISBN 951-38-5873-1 (soft back ed.) ISBN 951-38-5874-X (on-line
ed.)." (http:/ / www. vtt. fi/ inf/ pdf/ publications/ 2001/ P448. pdf) (PDF). . Retrieved 2010-05-28.

http://en.wikipedia.org/w/index.php?title=Divide-and-conquer
http://en.wikipedia.org/w/index.php?title=Pseudorandomness
http://en.wikipedia.org/w/index.php?title=Debug
http://en.wikipedia.org/w/index.php?title=Big-oh
http://en.wikipedia.org/w/index.php?title=Checksum
http://en.wikipedia.org/w/index.php?title=Software_security
http://en.wikipedia.org/w/index.php?title=Safety_engineering
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://pages.cs.wisc.edu/~bart/fuzz/
http://www.folklore.org/StoryView.py?story=Monkey_Lives.txt
http://www.squarefree.com/2007/08/02/fuzzing-for-correctness/
http://www.squarefree.com/2008/12/23/fuzzing-tracemonkey/
http://www.squarefree.com/2008/12/23/differences/
http://wurldtech.com/resources/SB_002_Robustness_Testing_With_Achilles.pdf
http://wurldtech.com/resources/SB_002_Robustness_Testing_With_Achilles.pdf
http://www.amazon.com/dp/1850328803
http://www.amazon.com/dp/1850328803
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf


Fuzz testing 29

[12] "Software Fault Injection: Inoculating Programs Against Errors by Jeffrey M. Voas and Gary McGraw" (http:/ / www. amazon. com/ dp/
0471183814). John Wiley & Sons. January 28, 1998. .

[13] http:/ / sequitur. info/
[14] Dan Kaminski (2006). "Black Ops 2006" (http:/ / usenix. org/ events/ lisa06/ tech/ slides/ kaminsky. pdf). .
[15] Patrice Godefroid, Adam Kiezun, Michael Y. Levin. "Grammar-based Whitebox Fuzzing" (http:/ / people. csail. mit. edu/ akiezun/

pldi-kiezun. pdf). Microsoft Research. .
[16] "VDA Labs" (http:/ / www. vdalabs. com/ tools/ efs_gpf. html). .
[17] "Test Case Reduction" (http:/ / www. webkit. org/ quality/ reduction. html). 2011-07-18. .
[18] "IBM Test Case Reduction Techniques" (https:/ / www-304. ibm. com/ support/ docview. wss?uid=swg21084174). 2011-07-18. .

Further reading
• ISBN 978-1-59693-214-2, Fuzzing for Software Security Testing and Quality Assurance, Ari Takanen, Jared D.

DeMott, Charles Miller

External links
• University of Wisconsin Fuzz Testing (the original fuzz project) (http:/ / www. cs. wisc. edu/ ~bart/ fuzz) Source

of papers and fuzz software.
• Look out! It's the Fuzz! (IATAC IAnewsletter 10-1) (http:/ / iac. dtic. mil/ iatac/ download/ Vol10_No1. pdf)
• Designing Inputs That Make Software Fail (http:/ / video. google. com/

videoplay?docid=6509883355867972121), conference video including fuzzy testing
• Link to the Oulu (Finland) University Secure Programming Group (http:/ / www. ee. oulu. fi/ research/ ouspg/ )
• JBroFuzz - Building A Java Fuzzer (http:/ / video. google. com/ videoplay?docid=-1551704659206071145),

conference presentation video
• Building 'Protocol Aware' Fuzzing Frameworks (http:/ / docs. google. com/ viewer?url=https:/ / github. com/

s7ephen/ Ruxxer/ raw/ master/ presentations/ Ruxxer. ppt)

http://www.amazon.com/dp/0471183814
http://www.amazon.com/dp/0471183814
http://sequitur.info/
http://usenix.org/events/lisa06/tech/slides/kaminsky.pdf
http://people.csail.mit.edu/akiezun/pldi-kiezun.pdf
http://people.csail.mit.edu/akiezun/pldi-kiezun.pdf
http://www.vdalabs.com/tools/efs_gpf.html
http://www.webkit.org/quality/reduction.html
https://www-304.ibm.com/support/docview.wss?uid=swg21084174
http://www.cs.wisc.edu/~bart/fuzz
http://iac.dtic.mil/iatac/download/Vol10_No1.pdf
http://video.google.com/videoplay?docid=6509883355867972121
http://video.google.com/videoplay?docid=6509883355867972121
http://www.ee.oulu.fi/research/ouspg/
http://video.google.com/videoplay?docid=-1551704659206071145
http://docs.google.com/viewer?url=https%3A%2F%2Fgithub.com%2Fs7ephen%2FRuxxer%2Fraw%2Fmaster%2Fpresentations%2FRuxxer.ppt
http://docs.google.com/viewer?url=https%3A%2F%2Fgithub.com%2Fs7ephen%2FRuxxer%2Fraw%2Fmaster%2Fpresentations%2FRuxxer.ppt


Cause-effect graph 30

Cause-effect graph
In software testing, a cause-effect graph is a directed graph that maps a set of causes to a set of effects. The causes
may be thought of as the input to the program, and the effects may be thought of as the output. Usually the graph
shows the nodes representing the causes on the left side and the nodes representing the effects on the right side.
There may be intermediate nodes in between that combine inputs using logical operators such as AND and OR.
Constraints may be added to the causes and effects. These are represented as edges labelled with the constraint
symbol using a dashed line. For causes, valid constraint symbols are E (exclusive), O (one and only one), and I (at
least one). The exclusive constraint states that both causes1 and cause2 cannot be true simultaneously. The Inclusive
(at least one) constraint states that at least one of the causes 1, 2 or 3 must be true. The OaOO (One and Only One)
constraint states that only one of the causes 1, 2 or 3 can be true.
For effects, valid constraint symbols are R (Requires) and M (Mask). The Requires constraint states that if cause 1 is
true, then cause 2 must be true, and it is impossible for 1 to be true and 2 to be false. The mask constraint states that
if effect 1 is true then effect 2 is false. (Note that the mask constraint relates to the effects and not the causes like the
other constraints.
The graph's direction is as follows:

Causes --> intermediate nodes --> Effects

The graph can always be rearranged so there is only one node between any input and any output. See conjunctive
normal form and disjunctive normal form.
A cause-effect graph is useful for generating a reduced decision table.

Further reading
• Myers, Glenford J. (1979). The Art of Software Testing. John Wiley & Sons. ISBN 0471043281.

http://en.wikipedia.org/w/index.php?title=Directed_graph
http://en.wikipedia.org/w/index.php?title=Conjunctive_normal_form
http://en.wikipedia.org/w/index.php?title=Conjunctive_normal_form
http://en.wikipedia.org/w/index.php?title=Disjunctive_normal_form
http://en.wikipedia.org/w/index.php?title=Decision_table


Model-based testing 31

Model-based testing
Model-based testing is the application of Model based design for designing and executing the necessary artifacts to
perform software testing. This is achieved by having a model that describes all aspects of the testing data, mainly the
test cases and the test execution environment. Usually, the testing model is derived in whole or in part from a model
that describes some (usually functional) aspects of the system under development (SUD).

General model-based testing setting

The model describing the SUD is usually an abstract, partial
presentation of the system under test's desired behavior. The test cases
derived from this model are functional tests on the same level of
abstraction as the model. These test cases are collectively known as the
abstract test suite. The abstract test suite cannot be directly executed
against the system under test because it is on the wrong level of
abstraction. Therefore an executable test suite must be derived from the
abstract test suite that can communicate with the system under test.
This is done by mapping the abstract test cases to concrete test cases
suitable for execution. In some model-based testing tools, the model
contains enough information to generate an executable test suite from
it. In the case of online testing (see below), the abstract test suite exists
only as a concept but not as an explicit artifact.

There are many different ways to "derive" tests from a model. Because testing is usually experimental and based on
heuristics, there is no one best way to do this. It is common to consolidate all test derivation related design decisions
into a package that is often known as "test requirements", "test purpose" or even "use case". This package can
contain e.g. information about the part of the model that should be the focus for testing, or about the conditions
where it is correct to stop testing (test stopping criteria).
Because test suites are derived from models and not from source code, model-based testing is usually seen as one
form of black-box testing. In some aspects, this is not completely accurate. Model-based testing can be combined
with source-code level test coverage measurement, and functional models can be based on existing source code in
the first place.
Model-based testing for complex software systems is still an evolving field.

http://en.wikipedia.org/w/index.php?title=Model_based_design
http://en.wikipedia.org/w/index.php?title=Model_%28abstract%29
http://en.wikipedia.org/w/index.php?title=Model_%28abstract%29
http://en.wikipedia.org/w/index.php?title=File%3AMbt-overview.png
http://en.wikipedia.org/w/index.php?title=Abstract_test_suite
http://en.wikipedia.org/w/index.php?title=Executable_test_suite


Model-based testing 32

Models

An example of a model-based testing workflow
(offline test case generation). IXIT refers to

"implementation extra information" and denotes
here the total package of information that is

needed when the abstract test suite is converted
into an executable one. Typically, it includes
information about test harness, data mappings

and SUT configuration.

Especially in Model Driven Engineering or in OMG's model-driven
architecture the model is built before or parallel to the development
process of the system under test. The model can also be constructed
from the completed system. Recently the model is created mostly
manually, but there are also attempts to create the model automatically,
for instance out of the source code. One important way to create new
models is by model transformation, using languages like ATL, a
QVT-like Domain Specific Language.

Model-based testing inherits the complexity of the domain or, more
particularly, of the related domain models.

Deploying model-based testing

There are various known ways to deploy model-based testing, which
include online testing, offline generation of executable tests, and
offline generation of manually deployable tests.[1]

Online testing means that a model-based testing tool connects
“directly” to a system under test and tests it dynamically.

Offline generation of executable tests means that a model-based testing tool generates test cases as a
computer-readable asset that can be later deployed automatically. This asset can be, for instance, a collection of
Python classes that embodies the generated testing logic.
Offline generation of manually deployable tests means that a model-based testing tool generates test cases as a
human-readable asset that can be later deployed manually. This asset can be, for instance, a PDF document in
English that describes the generated test steps.

Deriving tests algorithmically
The effectiveness of model-based testing is primarily due to the potential for automation it offers. If the model is
machine-readable and formal to the extent that it has a well-defined behavioral interpretation, test cases can in
principle be derived mechanically.
Often the model is translated to or interpreted as a finite state automaton or a state transition system. This automaton
represents the possible configurations of the system under test. To find test cases, the automaton is searched for
executable paths. A possible execution path can serve as a test case. This method works if the model is deterministic
or can be transformed into a deterministic one. Valuable off-nominal test cases may be obtained by leveraging
un-specified transitions in these models.
Depending on the complexity of the system under test and the corresponding model the number of paths can be very
large, because of the huge amount of possible configurations of the system. For finding appropriate test cases, i.e.
paths that refer to a certain requirement to proof, the search of the paths has to be guided. For test case generation,
multiple techniques have been applied and are surveyed in [2] .

http://en.wikipedia.org/w/index.php?title=File%3AMbt-process-example.png
http://en.wikipedia.org/w/index.php?title=Model_Driven_Engineering
http://en.wikipedia.org/w/index.php?title=Model-driven_architecture
http://en.wikipedia.org/w/index.php?title=Model-driven_architecture
http://en.wikipedia.org/w/index.php?title=Model_transformation
http://en.wikipedia.org/w/index.php?title=ATLAS_Transformation_Language
http://en.wikipedia.org/w/index.php?title=QVT
http://en.wikipedia.org/w/index.php?title=Domain_Specific_Language
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Finite_state_automaton
http://en.wikipedia.org/w/index.php?title=State_transition_system
http://en.wikipedia.org/w/index.php?title=Deterministic


Model-based testing 33

Test case generation by theorem proving
Theorem proving has been originally used for automated proving of logical formulas. For model-based testing
approaches the system is modeled by a set of logical expressions (predicates) specifying the system's behavior. For
selecting test cases the model is partitioned into equivalence classes over the valid interpretation of the set of the
logical expressions describing the system under development. Each class is representing a certain system behavior
and can therefore serve as a test case. The simplest partitioning is done by the disjunctive normal form approach. The
logical expressions describing the system's behavior are transformed into the disjunctive normal form.

Test case generation by constraint logic programming and symbolic execution
Constraint programming can be used to select test cases satisfying specific constraints by solving a set of constraints
over a set of variables. The system is described by the means of constraints[3] . Solving the set of constraints can be
done by Boolean solvers (e.g. SAT-solvers based on the Boolean satisfiability problem) or by numerical analysis,
like the Gaussian elimination. A solution found by solving the set of constraints formulas can serve as a test cases for
the corresponding system.
Constraint programming can be combined with symbolic execution. In this approach a system model is executed
symbolically, i.e. collecting data constraints over different control paths, and then using the constraint programming
method for solving the constraints and producing test cases.

Test case generation by model checking
Model checkers can also be used for test case generation[4] . Originally model checking was developed as a
technique to check if a property of a specification is valid in a model. When used for testing, a model of the system
under test, and a property to test is provided to the model checker. Within the procedure of proofing, if this property
is valid in the model, the model checker detects witnesses and counterexamples. A witness is a path, where the
property is satisfied, whereas a counterexample is a path in the execution of the model, where the property is
violated. These paths can again be used as test cases.

Test case generation by using an event-flow model
A popular model that has recently been used extensively for testing software with a graphical user-interface (GUI)
front-end is called the event-flow model that represents events and event interactions. In much the same way as a
control-flow model represents all possible execution paths in a program, and a data-flow model represents all
possible definitions and uses of a memory location, the event-flow model represents all possible sequences of events
that can be executed on the GUI. More specifically, a GUI is decomposed into a hierarchy of modal dialogs; this
hierarchy is represented as an integration tree; each modal dialog is represented as an event-flow graph that shows all
possible event execution paths in the dialog; individual events are represented using their preconditions and effects.
An overview of the event-flow model with associated algorithms to semi-automatically reverse engineer the model
from an executing GUI software is presented inthis 2007 paper [5] [6] . Because the event-flow model is not tied to a
specific aspect of the GUI testing process, it may be used to perform a wide variety of testing tasks by defining
specialized model-based techniques called event-space exploration strategies (ESES). These ESES use the
event-flow model in a number of ways to develop an end-to-end GUI testing process, namely by checking the model,
test-case generation, and test oracle creation. Please see the GUI Testing page for more details.

http://en.wikipedia.org/w/index.php?title=Theorem_proving
http://en.wikipedia.org/w/index.php?title=Predicate_%28logic%29
http://en.wikipedia.org/w/index.php?title=Equivalence_classes
http://en.wikipedia.org/w/index.php?title=Disjunctive_normal_form
http://en.wikipedia.org/w/index.php?title=Constraint_programming
http://en.wikipedia.org/w/index.php?title=Boolean_satisfiability_problem
http://en.wikipedia.org/w/index.php?title=Numerical_analysis
http://en.wikipedia.org/w/index.php?title=Gaussian_elimination
http://en.wikipedia.org/w/index.php?title=Model_checking
http://www.cs.umd.edu/~atif/papers/MemonSTVR2007-abstract.html
http://en.wikipedia.org/w/index.php?title=GUI_Testing


Model-based testing 34

Test case generation by using a Markov chains model
Markov chains are an efficient way to handle Model-based Testing. Test model realized with Markov chains model
can be understood as a usage model: we spoke of Usage/Statistical Model Based Testing. Usage models, so Markov
chains, are mainly constructed by 2 artifacts : the Finite State Machine (FSM) which represents all possible usage
scenario of the system and the Operational Profiles (OP) which qualify the FSM to represent how the system will
statically will be used. The first (FSM) helps to know what can be or has been tested and the second (OP) helps to
derive operational test cases. Usage/Statistical Model-based Testing starts from the facts that is not not possible to
exhaustively test a system and that failure can appear with a very low rate.[7] . This approach offers a pragmatic way
to statically derive test cases focused on: improving as prompt as possible the system under test reliability. The
company ALL4TEC provides an implementation of this approach with the tool MaTeLo (Markov Test Logic).
MaTeLo allows to model the test with Markov chains, derive executables test cases w.r.t the usage testing approach,
and assess the system under test reliability with the help of the so called Test Campaign Analysis module.

References
[1] Practical Model-Based Testing: A Tools Approach (http:/ / www. cs. waikato. ac. nz/ ~marku/ mbt), Mark Utting and Bruno Legeard, ISBN

978-0-12-372501-1, Morgan-Kaufmann 2007
[2] John Rushby. Automated Test Generation and Verified Software. Verified Software: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3

Conference, VSTTE 2005, Zurich, Switzerland, October 10-13. pp. 161-172, Springer-Verlag
[3] Jefferson Offutt. Constraint-Based Automatic Test Data Generation. IEEE Transactions on Software Engineering, 17:900-910, 1991
[4] Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with model checkers: a survey. Software Testing, Verification and Reliability,

19(3):215–261, 2009. URL: http:/ / www3. interscience. wiley. com/ journal/ 121560421/ abstract
[5] http:/ / www. cs. umd. edu/ ~atif/ papers/ MemonSTVR2007-abstract. html
[6] Atif M. Memon. An event-flow model of GUI-based applications for testing Software Testing, Verification and Reliability, vol. 17, no. 3,

2007, pp. 137-157, John Wiley and Sons Ltd. URL: http:/ / www. cs. umd. edu/ %7Eatif/ papers/ MemonSTVR2007. pdf
[7] Helene Le Guen. Validation d'un logiciel par le test statistique d'usage : de la modelisation de la decision à la livraison, 2005. URL:ftp:/ / ftp.

irisa. fr/ techreports/ theses/ 2005/ leguen. pdf

Further reading
• OMG UML 2 Testing Profile; (http:/ / www. omg. org/ cgi-bin/ doc?formal/ 05-07-07. pdf)
• Eckard Bringmann, Andreas Krämer; Model-based Testing of Automotive Systems (http:/ / www. piketec. com/

downloads/ papers/ Kraemer2008-Model_based_testing_of_automotive_systems. pdf) In: ICST, pp. 485-493,
2008 International Conference on Software Testing, Verification, and Validation, 2008.

• Practical Model-Based Testing: A Tools Approach (http:/ / www. cs. waikato. ac. nz/ ~marku/ mbt), Mark Utting
and Bruno Legeard, ISBN 978-0-12-372501-1, Morgan-Kaufmann 2007.

• Model-Based Software Testing and Analysis with C# (http:/ / www. cambridge. org/ us/ catalogue/ catalogue.
asp?isbn=9780521687614), Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte, ISBN
978-0-521-68761-4, Cambridge University Press 2008.

• Model-Based Testing of Reactive Systems (http:/ / www. springer. com/ west/ home/ computer/
programming?SGWID=4-40007-22-52081580-detailsPage=ppmmedia|aboutThisBook) Advanced Lecture Series,
LNCS 3472, Springer-Verlag, 2005.

• Hong Zhu et al. (2008). AST '08: Proceedings of the 3rd International Workshop on Automation of Software Test
(http:/ / portal. acm. org/ citation. cfm?id=1370042#). ACM Press. ISBN 978-1-60558-030-2.

• Requirements for information systems model-based testing (http:/ / portal. acm. org/ citation. cfm?id=1244306&
coll=ACM& dl=ACM& CFID=37894597& CFTOKEN=57312761)

• Model-Based Testing Adds Value (http:/ / www. methodsandtools. com/ archive/ archive. php?id=102), Ewald
Roodenrijs, Methods & Tools, Spring 2010.

• A Systematic Review of Model Based Testing Tool Support (http:/ / squall. sce. carleton. ca/ pubs/ tech_report/
TR_SCE-10-04. pdf), Muhammad Shafique, Yvan Labiche, Carleton University, Technical Report, May 2010.

http://en.wikipedia.org/w/index.php?title=Markov_chains
http://en.wikipedia.org/w/index.php?title=Finite_State_Machine
http://www.cs.waikato.ac.nz/~marku/mbt
http://www3.interscience.wiley.com/journal/121560421/abstract
http://www.cs.umd.edu/~atif/papers/MemonSTVR2007-abstract.html
http://www.cs.umd.edu/%7Eatif/papers/MemonSTVR2007.pdf
ftp://ftp.irisa.fr/techreports/theses/2005/leguen.pdf
ftp://ftp.irisa.fr/techreports/theses/2005/leguen.pdf
http://www.omg.org/cgi-bin/doc?formal/05-07-07.pdf
http://www.piketec.com/downloads/papers/Kraemer2008-Model_based_testing_of_automotive_systems.pdf
http://www.piketec.com/downloads/papers/Kraemer2008-Model_based_testing_of_automotive_systems.pdf
http://www.cs.waikato.ac.nz/~marku/mbt
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521687614
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=9780521687614
http://www.springer.com/west/home/computer/programming?SGWID=4-40007-22-52081580-detailsPage=ppmmedia%7CaboutThisBook
http://www.springer.com/west/home/computer/programming?SGWID=4-40007-22-52081580-detailsPage=ppmmedia%7CaboutThisBook
http://portal.acm.org/citation.cfm?id=1370042#
http://portal.acm.org/citation.cfm?id=1244306&coll=ACM&dl=ACM&CFID=37894597&CFTOKEN=57312761
http://portal.acm.org/citation.cfm?id=1244306&coll=ACM&dl=ACM&CFID=37894597&CFTOKEN=57312761
http://www.methodsandtools.com/archive/archive.php?id=102
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-10-04.pdf
http://squall.sce.carleton.ca/pubs/tech_report/TR_SCE-10-04.pdf


Model-based testing 35

• Model-Based Testing for Embedded Systems (Computational Analysis, Synthesis, and Design of Dynamic
Systems) (http:/ / www. amazon. com/ Model-Based-Embedded-Computational-Analysis-Synthesis/ dp/
1439818452), Justyna Zander, Ina Schieferdecker, Pieter J. Mosterman, 592 pages, CRC Press, ISBN-10:
1439818452, September 15, 2011.

Web testing
Web testing is the name given to software testing that focuses on web applications. Complete testing of a web-based
system before going live can help address issues before the system is revealed to the public. Issues such as the
security of the web application, the basic functionality of the site, its accessibility to handicapped users and fully able
users, as well as readiness for expected traffic and number of users and the ability to survive a massive spike in user
traffic, both of which are related to load testing.

Web Application Performance Tool
A Web Application Performance Tool, also known as (WAPT) is used to test web applications and web related
interfaces. These tools are used for performance, load and stress testing of web applications, web sites, web servers
and other web interfaces. WAPT tends to simulate virtual users which will repeat either recorded URLs or specified
URL and allows the users to specify number of times or iterations that the virtual users will have to repeat the
recorded URLs. By doing so, the tool is useful to check for bottleneck and performance leakage in the website or
web application being tested.
A WAPT faces various challenges during testing and should be able to conduct tests for:
• Browser compatibility
• Operating System compatibility
• Windows application compatibility where required (especially for backend testing)
WAPT allows a user to specify how virtual users are involved in the testing environment.ie either increasing users or
constant users or periodic users load. Increasing user load, step by step is called RAMP where virtual users are
increased from 0 to hundreds. Constant user load maintains specified user load at all time. Periodic user load tends to
increase and decrease the user load from time to time.

Web security testing
Web security testing tells us whether Web based applications requirements are met when they are subjected to
malicious input data.[1]

• Web Application Security Testing Plug-in Collection for FireFox: https:/ / addons. mozilla. org/ en-US/ firefox/
collection/ webappsec

Testing the user interface of web applications
Some frameworks give a toolbox for testing Web applications.

http://www.amazon.com/Model-Based-Embedded-Computational-Analysis-Synthesis/dp/1439818452
http://www.amazon.com/Model-Based-Embedded-Computational-Analysis-Synthesis/dp/1439818452
http://en.wikipedia.org/w/index.php?title=Web_applications
http://en.wikipedia.org/w/index.php?title=Web_application
http://en.wikipedia.org/w/index.php?title=Web_site
http://en.wikipedia.org/w/index.php?title=Web_servers
https://addons.mozilla.org/en-US/firefox/collection/webappsec
https://addons.mozilla.org/en-US/firefox/collection/webappsec


Web testing 36

Open Source web testing tools
• JMeter: http:/ / jakarta. apache. org/ jmeter/ - Java desktop application for load testing and performance

measurement.
• HTTP Test Tool: http:/ / htt. sourceforge. net/ - Scriptable protocol test tool for HTTP protocol based products.

Windows-based web testing tools
• Quick test Professional - Automated functional and regression testing software from HP.
• LoadRunner - Automated performance and load testing software from HP.
• Rational
• SilkTest - Automation tool for testing the functionality of enterprise applications
• Testing Anywhere - Automation testing tool for all types of testing from Automation Anywhere

References
[1] Hope, Paco; Walther, Ben (2008), Web Security Testing Cookbook, O'Reilly Media, Inc., ISBN 978-0-596-51483-9

Further reading
• Hung Nguyen, Robert Johnson, Michael Hackett: Testing Applications on the Web (2nd Edition): Test Planning

for Mobile and Internet-Based Systems ISBN 0-471-20100-6
• James A. Whittaker: How to Break Web Software: Functional and Security Testing of Web Applications and Web

Services, Addison-Wesley Professional, February 2, 2006. ISBN 0-321-36944-0
• Lydia Ash: The Web Testing Companion: The Insider's Guide to Efficient and Effective Tests, Wiley, May 2,

2003. ISBN 0471430218
• S. Sampath, R. Bryce, Gokulanand Viswanath, Vani Kandimalla, A. Gunes Koru. Prioritizing

User-Session-Based Test Cases for Web Applications Testing. Proceedings of the International Conference on
Software Testing, Verification, and Validation (ICST), Lillehammer, Norway, April 2008.

• "An Empirical Approach to Testing Web Applications Across Diverse Client Platform Configurations" by
Cyntrica Eaton and Atif M. Memon. International Journal on Web Engineering and Technology (IJWET), Special
Issue on Empirical Studies in Web Engineering, vol. 3, no. 3, 2007, pp. 227–253, Inderscience Publishers.

http://en.wikipedia.org/w/index.php?title=JMeter
http://jakarta.apache.org/jmeter/
http://en.wikipedia.org/w/index.php?title=HTTP_Test_Tool
http://htt.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=QTP
http://en.wikipedia.org/w/index.php?title=HP
http://en.wikipedia.org/w/index.php?title=LoadRunner
http://en.wikipedia.org/w/index.php?title=HP
http://en.wikipedia.org/w/index.php?title=Rational_Software
http://en.wikipedia.org/w/index.php?title=Silktest
http://en.wikipedia.org/w/index.php?title=Testing_Anywhere
http://en.wikipedia.org/w/index.php?title=Automation_Anywhere
http://en.wikipedia.org/w/index.php?title=James_A._Whittaker
http://en.wikipedia.org/w/index.php?title=Lydia_Ash


Installation testing 37

Installation testing
Implementation testing installation testing is a kind of quality assurance work in the software industry that focuses
on what customers will need to do to install and set up the new software successfully. The testing process may
involve full, partial or upgrades install/uninstall processes.
This testing is typically done by the software testing engineer in conjunction with the configuration manager.
Implementation testing is usually defined as testing which places a compiled version of code into the testing or
pre-production environment, from which it may or may not progress into production. This generally takes place
outside of the software development environment to limit code corruption from other future releases which may
reside on the development network.
The simplest installation approach is to run an install program, sometimes called package software. This package
software typically uses a setup program which acts as a multi-configuration wrapper and which may allow the
software to be installed on a variety of machine and/or operating environments. Every possible configuration should
receive an appropriate level of testing so that it can be released to customers with confidence.
In distributed systems, particularly where software is to be released into an already live target environment (such as
an operational website) installation (or software deployment as it is sometimes called) can involve database schema
changes as well as the installation of new software. Deployment plans in such circumstances may include back-out
procedures whose use is intended to roll the target environment back if the deployment is unsuccessful. Ideally, the
deployment plan itself should be tested in an environment that is a replica of the live environment. A factor that can
increase the organizational requirements of such an exercise is the need to synchronize the data in the test
deployment environment with that in the live environment with minimum disruption to live operation. This type of
implementation may include testing of the processes which take place during the installation or upgrade of a
multi-tier application. This type of testing is commonly compared to a dress rehearsal or may even be called a “dry
run”.

http://en.wikipedia.org/w/index.php?title=Quality_assurance
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Configuration_Manager
http://en.wikipedia.org/w/index.php?title=Software_deployment
http://en.wikipedia.org/w/index.php?title=Dry_Run_%28testing%29
http://en.wikipedia.org/w/index.php?title=Dry_Run_%28testing%29


38

White-box testing

White-box testing
White-box testing (also known as clear box testing, glass box testing, transparent box testing, and structural
testing) is a method of testing software that tests internal structures or workings of an application, as opposed to its
functionality (i.e. black-box testing). In white-box testing an internal perspective of the system, as well as
programming skills, are required and used to design test cases. The tester chooses inputs to exercise paths through
the code and determine the appropriate outputs. This is analogous to testing nodes in a circuit, e.g. in-circuit testing
(ICT).
While white-box testing can be applied at the unit, integration and system levels of the software testing process, it is
usually done at the unit level. It can test paths within a unit, paths between units during integration, and between
subsystems during a system level test. Though this method of test design can uncover many errors or problems, it
might not detect unimplemented parts of the specification or missing requirements.
White-box test design techniques include:
• Control flow testing
• Data flow testing
• Branch testing
• Path testing

Compare with black-box testing.

Hacking
In penetration testing, white-box testing refers to a methodology where an ethical hacker has full knowledge of the
system being attacked. The goal of a white-box penetration test is to simulate a malicious insider who has some
knowledge and possibly basic credentials to the target system.

External links
• BCS SIGIST (British Computer Society Specialist Interest Group in Software Testing): Standard for Software

Component Testing [1], Working Draft 3.4, 27. April 2001.
• http:/ / agile. csc. ncsu. edu/ SEMaterials/ WhiteBox. pdf has more information on control flow testing and data

flow testing.
• http:/ / research. microsoft. com/ en-us/ projects/ pex/ Pex - Automated white-box testing for .NET

References
[1] http:/ / www. testingstandards. co. uk/ Component%20Testing. pdf

http://en.wikipedia.org/w/index.php?title=In-circuit_test
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Penetration_test
http://en.wikipedia.org/w/index.php?title=Ethical_hacking
http://www.testingstandards.co.uk/Component%20Testing.pdf
http://agile.csc.ncsu.edu/SEMaterials/WhiteBox.pdf
http://research.microsoft.com/en-us/projects/pex/
http://www.testingstandards.co.uk/Component%20Testing.pdf


Code coverage 39

Code coverage
Code coverage is a measure used in software testing. It describes the degree to which the source code of a program
has been tested. It is a form of testing that inspects the code directly and is therefore a form of white box testing.[1]

Code coverage was among the first methods invented for systematic software testing. The first published reference
was by Miller and Maloney in Communications of the ACM in 1963.[2]

Code coverage is one consideration in the safety certification of avionics equipment. The standard by which avionics
gear is certified by the Federal Aviation Administration (FAA) is documented in DO-178B.[3]

Coverage criteria
To measure how well the program is exercised by a test suite, one or more coverage criteria are used.

Basic coverage criteria
There are a number of coverage criteria, the main ones being:[4]

• Function coverage - Has each function (or subroutine) in the program been called?
• Statement coverage - Has each node in the program been executed?
• Decision coverage (not the same as branch coverage.[5] ) - Has every edge in the program been executed? For

instance, have the requirements of each branch of each control structure (such as in IF and CASE statements)
been met as well as not met?

• Condition coverage (or predicate coverage) - Has each boolean sub-expression evaluated both to true and false?
This does not necessarily imply decision coverage.

• Condition/decision coverage - Both decision and condition coverage should be satisfied.
For example, consider the following C++ function:

int foo(int x, int y)

{

    int z = 0;

    if ((x>0) && (y>0)) {

        z = x;

    }

    return z;

}

Assume this function is a part of some bigger program and this program was run with some test suite.
• If during this execution function 'foo' was called at least once, then function coverage for this function is satisfied.
• Statement coverage for this function will be satisfied if it was called e.g. as foo(1,1), as in this case, every line

in the function is executed including z = x;.
• Tests calling foo(1,1) and foo(0,1) will satisfy decision coverage, as in the first case the if condition

and the short circuit condition are satisfied and z = x; is executed, and in the second neither conditional is
satisfied and x is not assigned to z.

• Condition coverage can be satisfied with tests that call foo(1,1), foo(1,0) and foo(0,0). These are
necessary as in the first two cases (x>0) evaluates to true while in the third it evaluates false. At the same
time, the first case makes (y>0) true while the second and third make it false.

In languages, like Pascal, where standard boolean operations are not short circuited, condition coverage does not
necessarily imply decision coverage. For example, consider the following fragment of code:

http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Computer_program
http://en.wikipedia.org/w/index.php?title=White_box_testing
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Federal_Aviation_Administration
http://en.wikipedia.org/w/index.php?title=DO-178B
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Graph_theory
http://en.wikipedia.org/w/index.php?title=Graph_theory
http://en.wikipedia.org/w/index.php?title=Conditional_%28programming%29
http://en.wikipedia.org/w/index.php?title=Short-circuit_evaluation
http://en.wikipedia.org/w/index.php?title=Pascal_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Short-circuit_evaluation


Code coverage 40

if a and b then

Condition coverage can be satisfied by two tests:
• a=true, b=false
• a=false, b=true
However, this set of tests does not satisfy decision coverage as in neither case will the if condition be met.
Fault injection may be necessary to ensure that all conditions and branches of exception handling code have adequate
coverage during testing.

Modified condition/decision coverage
For safety-critical applications (e.g., for avionics software) it is often required that modified condition/decision
coverage (MC/DC) is satisifed. This criteria extends condition/decision criteria with requirements that each
condition should affect the decision outcome independently. For example, consider the following code:

if (a or b) and c then

The condition/decision criteria will be satisfied by the following set of tests:
• a=true, b=true, c=true
• a=false, b=false, c=false
However, the above tests set will not satisfy modified condition/decision coverage, since in the first test, the value of
'b' and in the second test the value of 'c' would not influence the output. So, the following test set is needed to satisfy
MC/DC:
• a=false, b=false, c=true
• a=true, b=false, c=true
• a=false, b=true, c=true
• a=true, b=true, c=false

The bold values influence the output, each variable must be present as an influencing value at least once with false
and once with true.

Multiple condition coverage
This criteria requires that all combinations of conditions inside each decision are tested. For example, the code
fragment from the previous section will require eight tests:
• a=false, b=false, c=false
• a=false, b=false, c=true
• a=false, b=true, c=false
• a=false, b=true, c=true
• a=true, b=false, c=false
• a=true, b=false, c=true
• a=true, b=true, c=false
• a=true, b=true, c=true

http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Safety-critical


Code coverage 41

Other coverage criteria
There are further coverage criteria, which are used less often:
• Linear Code Sequence and Jump (LCSAJ) coverage - has every LCSAJ been executed?
• JJ-Path coverage - have all jump to jump paths [6] (aka LCSAJs) been executed?
• Path coverage - Has every possible route through a given part of the code been executed?
• Entry/exit coverage - Has every possible call and return of the function been executed?
• Loop coverage - Has every possible loop been executed zero times, once, and more than once?
Safety-critical applications are often required to demonstrate that testing achieves 100% of some form of code
coverage.
Some of the coverage criteria above are connected. For instance, path coverage implies decision, statement and
entry/exit coverage. Decision coverage implies statement coverage, because every statement is part of a branch.
Full path coverage, of the type described above, is usually impractical or impossible. Any module with a succession
of decisions in it can have up to paths within it; loop constructs can result in an infinite number of paths.
Many paths may also be infeasible, in that there is no input to the program under test that can cause that particular
path to be executed. However, a general-purpose algorithm for identifying infeasible paths has been proven to be
impossible (such an algorithm could be used to solve the halting problem).[7] Methods for practical path coverage
testing instead attempt to identify classes of code paths that differ only in the number of loop executions, and to
achieve "basis path" coverage the tester must cover all the path classes.

In practice
The target software is built with special options or libraries and/or run under a special environment such that every
function that is exercised (executed) in the program(s) is mapped back to the function points in the source code. This
process allows developers and quality assurance personnel to look for parts of a system that are rarely or never
accessed under normal conditions (error handling and the like) and helps reassure test engineers that the most
important conditions (function points) have been tested. The resulting output is then analyzed to see what areas of
code have not been exercised and the tests are updated to include these areas as necessary. Combined with other code
coverage methods, the aim is to develop a rigorous, yet manageable, set of regression tests.
In implementing code coverage policies within a software development environment one must consider the
following:
• What are coverage requirements for the end product certification and if so what level of code coverage is

required? The typical level of rigor progression is as follows: Statement, Branch/Decision, Modified
Condition/Decision Coverage(MC/DC), LCSAJ (Linear Code Sequence and Jump)

• Will code coverage be measured against tests that verify requirements levied on the system under test
(DO-178B)?

• Is the object code generated directly traceable to source code statements? Certain certifications, (i.e. DO-178B
Level A) require coverage at the assembly level if this is not the case: "Then, additional verification should be
performed on the object code to establish the correctness of such generated code sequences" (DO-178B)
para-6.4.4.2.[3]

Test engineers can look at code coverage test results to help them devise test cases and input or configuration sets
that will increase the code coverage over vital functions. Two common forms of code coverage used by testers are
statement (or line) coverage and path (or edge) coverage. Line coverage reports on the execution footprint of testing
in terms of which lines of code were executed to complete the test. Edge coverage reports which branches or code
decision points were executed to complete the test. They both report a coverage metric, measured as a percentage.
The meaning of this depends on what form(s) of code coverage have been used, as 67% path coverage is more
comprehensive than 67% statement coverage.

http://en.wikipedia.org/w/index.php?title=Linear_Code_Sequence_and_Jump
http://en.wikipedia.org/w/index.php?title=Safety-critical
http://en.wikipedia.org/w/index.php?title=Halting_problem
http://en.wikipedia.org/w/index.php?title=Linear_Code_Sequence_and_Jump
http://en.wikipedia.org/w/index.php?title=DO-178B
http://en.wikipedia.org/w/index.php?title=DO-178B


Code coverage 42

Generally, code coverage tools and libraries exact a performance and/or memory or other resource cost which is
unacceptable to normal operations of the software. Thus, they are only used in the lab. As one might expect, there
are classes of software that cannot be feasibly subjected to these coverage tests, though a degree of coverage
mapping can be approximated through analysis rather than direct testing.
There are also some sorts of defects which are affected by such tools. In particular, some race conditions or similar
real time sensitive operations can be masked when run under code coverage environments; and conversely, some of
these defects may become easier to find as a result of the additional overhead of the testing code.

Software tools

Tools for C / C++

• Cantata++
• DevPartner
• Gcov [8] with graphical summaries LCOV [9] and text/XML summaries gcovr [10]

• Insure++
• NuMega TrueCoverage
• LDRA Testbed
• Tessy
• Testwell CTC++
• Trucov

Tools for C# .NET

• DevPartner
• JetBrains dotCover [11]

• Kalistick
• NCover
• TestDriven.NET [12]

• Visual Studio 2010 [13]

Tools for Java

• Cobertura [14]

• Clover
• DevPartner
• EMMA
• Jtest
• Kalistick
• LDRA Testbed
• Serenity

http://en.wikipedia.org/w/index.php?title=Library_%28computing%29
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Real-time_computing
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=IPL_Information_Processing
http://en.wikipedia.org/w/index.php?title=DevPartner
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php
https://software.sandia.gov/trac/fast/wiki/gcovr
http://en.wikipedia.org/w/index.php?title=Insure%2B%2B
http://en.wikipedia.org/w/index.php?title=DevPartner
http://en.wikipedia.org/w/index.php?title=Liverpool_Data_Research_Associates%23Products
http://en.wikipedia.org/w/index.php?title=Tessy_%28Software%29
http://en.wikipedia.org/w/index.php?title=Testwell_CTC%2B%2B
http://en.wikipedia.org/w/index.php?title=Trucov
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=DevPartner
http://www.jetbrains.com/dotcover/
http://en.wikipedia.org/w/index.php?title=Kalistick
http://en.wikipedia.org/w/index.php?title=NCover
http://testdriven.net/default.aspx
http://msdn.microsoft.com/en-us/library/ms182496.aspx
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://cobertura.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Clover_%28software%29
http://en.wikipedia.org/w/index.php?title=DevPartner
http://en.wikipedia.org/w/index.php?title=EMMA_%28code_coverage_tool%29
http://en.wikipedia.org/w/index.php?title=Jtest
http://en.wikipedia.org/w/index.php?title=Kalistick
http://en.wikipedia.org/w/index.php?title=Liverpool_Data_Research_Associates%23Products
http://en.wikipedia.org/w/index.php?title=Serenity_Code_Coverage


Code coverage 43

Tools for Perl

• Devel::Cover [15] is a complete suite for generating code coverage reports in HTML and other formats.

Tools for PHP

• PHPUnit, also need Xdebug to make coverage reports

Tools for Python

• Coverage.py [16]

• Figleaf [17]

Hardware tools
• Aldec
• Atrenta
• Cadence Design Systems
• JEDA Technologies
• Mentor Graphics
• Nusym Technology
• Simucad Design Automation
• Synopsys

References
[1] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 254. ISBN 0470042125. .
[2] Joan C. Miller, Clifford J. Maloney (February 1963). "Systematic mistake analysis of digital computer programs" (http:/ / doi. acm. org/ 10.

1145/ 366246. 366248). Communications of the ACM (New York, NY, USA: ACM) 6 (2): 58–63. doi:10.1145/366246.366248.
ISSN 0001-0782. .

[3] RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certification, Radio Technical Commission for Aeronautics,
December 1, 1992.

[4] Glenford J. Myers (2004). The Art of Software Testing, 2nd edition. Wiley. ISBN 0471469122.
[5] Position Paper CAST-10 (June 2002). What is a “Decision” in Application of Modified Condition/Decision Coverage (MC/DC) and Decision

Coverage (DC)? (http:/ / www. faa. gov/ aircraft/ air_cert/ design_approvals/ air_software/ cast/ cast_papers/ media/ cast-10. pdf)
[6] M. R. Woodward, M. A. Hennell, "On the relationship between two control-flow coverage criteria: all JJ-paths and MCDC", Information and

Software Technology 48 (2006) pp. 433-440
[7] Dorf, Richard C.: Computers, Software Engineering, and Digital Devices, Chapter 12, pg. 15. CRC Press, 2006. ISBN 0849373409,

9780849373404; via Google Book Search (http:/ / books. google. com/ books?id=jykvlTCoksMC& pg=PT386& lpg=PT386&
dq="infeasible+ path"+ "halting+ problem"& source=web& ots=WUWz3qMPRv& sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA& hl=en&
sa=X& oi=book_result& resnum=1& ct=result)

[8] http:/ / gcc. gnu. org/ onlinedocs/ gcc/ Gcov. html
[9] http:/ / ltp. sourceforge. net/ coverage/ lcov. php
[10] https:/ / software. sandia. gov/ trac/ fast/ wiki/ gcovr
[11] http:/ / www. jetbrains. com/ dotcover/
[12] http:/ / testdriven. net/ default. aspx
[13] http:/ / msdn. microsoft. com/ en-us/ library/ ms182496. aspx
[14] http:/ / cobertura. sourceforge. net/
[15] http:/ / search. cpan. org/ perldoc?Devel::Cover
[16] http:/ / nedbatchelder. com/ code/ coverage/
[17] http:/ / darcs. idyll. org/ ~t/ projects/ figleaf/ doc/

http://en.wikipedia.org/w/index.php?title=Perl
http://search.cpan.org/perldoc?Devel::Cover
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=PHPUnit
http://en.wikipedia.org/w/index.php?title=Xdebug
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://nedbatchelder.com/code/coverage/
http://darcs.idyll.org/~t/projects/figleaf/doc/
http://en.wikipedia.org/w/index.php?title=Aldec
http://en.wikipedia.org/w/index.php?title=Atrenta
http://en.wikipedia.org/w/index.php?title=Cadence_Design_Systems
http://en.wikipedia.org/w/index.php?title=JEDA_Technologies
http://en.wikipedia.org/w/index.php?title=Mentor_Graphics
http://en.wikipedia.org/w/index.php?title=Nusym_Technology
http://en.wikipedia.org/w/index.php?title=Simucad_Design_Automation
http://en.wikipedia.org/w/index.php?title=Synopsys
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://doi.acm.org/10.1145/366246.366248
http://doi.acm.org/10.1145/366246.366248
http://en.wikipedia.org/w/index.php?title=Communications_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://en.wikipedia.org/w/index.php?title=DO-178B
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://books.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://books.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://books.google.com/books?id=jykvlTCoksMC&pg=PT386&lpg=PT386&dq=%22infeasible+path%22+%22halting+problem%22&source=web&ots=WUWz3qMPRv&sig=dSAjrLHBSZJcKWZfGa_IxYlfSNA&hl=en&sa=X&oi=book_result&resnum=1&ct=result
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html
http://ltp.sourceforge.net/coverage/lcov.php
https://software.sandia.gov/trac/fast/wiki/gcovr
http://www.jetbrains.com/dotcover/
http://testdriven.net/default.aspx
http://msdn.microsoft.com/en-us/library/ms182496.aspx
http://cobertura.sourceforge.net/
http://search.cpan.org/perldoc?Devel::Cover
http://nedbatchelder.com/code/coverage/
http://darcs.idyll.org/~t/projects/figleaf/doc/


Code coverage 44

External links
• Branch Coverage for Arbitrary Languages Made Easy (http:/ / www. semdesigns. com/ Company/ Publications/

TestCoverage. pdf)
• Code Coverage Analysis (http:/ / www. bullseye. com/ coverage. html) by Steve Cornett
• Code Coverage Introduction (http:/ / www. javaranch. com/ newsletter/ 200401/ IntroToCodeCoverage. html)
• Development Tools (Java)/ Code coverage (http:/ / www. dmoz. org/ / Computers/ Programming/ Languages/

Java/ Development_Tools/ Performance_and_Testing/ Code_Coverage) at the Open Directory Project
• Development Tools (General)/ Code coverage (http:/ / www. dmoz. org/ / Computers/ Programming/

Software_Testing/ Products_and_Tools) at the Open Directory Project
• FAA CAST Position Papers (http:/ / www. faa. gov/ aircraft/ air_cert/ design_approvals/ air_software/ cast/

cast_papers/ )

Modified Condition/Decision Coverage
Modified Condition/Decision Coverage (MC/DC), is used in the standard DO-178B to ensure that Level A
software is tested adequately.
To satisfy the MC/DC coverage criterion, during testing all of the below must be true at least once[1] :
• Each decision tries every possible outcome
• Each condition in a decision takes on every possible outcome
• Each entry and exit point is invoked
• Each condition in a decision is shown to independently affect the outcome of the decision.
Independence of a condition is shown by proving that only one condition changes at a time.
The most critical (Level A) software, which is defined as that which could prevent continued safe flight and landing
of an aircraft, must satisfy a level of coverage called Modified Condition/Decision Coverage (MC/DC).

Definitions
Condition

A condition is a leaf-level Boolean expression (it cannot be broken down into a simpler Boolean expression).
Decision

A Boolean expression composed of conditions and zero or more Boolean operators. A decision without a
Boolean operator is a condition.

Condition Coverage
Every condition in a decision in the program has taken all possible outcomes at least once.

Decision Coverage
Every point of entry and exit in the program has been invoked at least once, and every decision in the program
has taken all possible outcomes at least once.

Condition/Decision Coverage
Every point of entry and exit in the program has been invoked at least once, every condition in a decision in
the program has taken all possible outcomes at least once, and every decision in the program has taken all
possible outcomes at least once.

Modified Condition/Decision Coverage

http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://www.semdesigns.com/Company/Publications/TestCoverage.pdf
http://www.bullseye.com/coverage.html
http://www.javaranch.com/newsletter/200401/IntroToCodeCoverage.html
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Code_Coverage
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Code_Coverage
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://www.dmoz.org//Computers/Programming/Software_Testing/Products_and_Tools
http://www.dmoz.org//Computers/Programming/Software_Testing/Products_and_Tools
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/
http://en.wikipedia.org/w/index.php?title=DO-178B
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Boolean_algebra_%28logic%29
http://en.wikipedia.org/w/index.php?title=Expression_%28programming%29


Modified Condition/Decision Coverage 45

Every point of entry and exit in the program has been invoked at least once, every condition in a decision in
the program has taken on all possible outcomes at least once, and each condition has been shown to affect that
decision outcome independently. A condition is shown to affect a decision’s outcome independently by
varying just that condition while holding fixed all other possible conditions. The condition/decision criterion
does not guarantee the coverage of all conditions in the module because in many test cases, some conditions of
a decision are masked by the other conditions. Using the modified condition/decision criterion, each condition
must be shown to be able to act on the decision outcome by itself, everything else being held fixed. The
MC/DC criterion is thus much stronger than the condition/decision coverage.

External links
• What is a "Decision" in Application of Modified Condition/Decision Coverage (MC/DC) and Decision Coverage

(DC)? [2]

References
[1] Hayhurst, Kelly; Veerhusen, Dan; Chilenski, John; Rierson, Leanna (May 2001). "A Practical Tutorial on Modified Condition/ Decision

Coverage" (http:/ / shemesh. larc. nasa. gov/ fm/ papers/ Hayhurst-2001-tm210876-MCDC. pdf). NASA. .
[2] http:/ / www. faa. gov/ aircraft/ air_cert/ design_approvals/ air_software/ cast/ cast_papers/ media/ cast-10. pdf

Fault injection
In software testing, fault injection is a technique for improving the coverage of a test by introducing faults to test
code paths, in particular error handling code paths, that might otherwise rarely be followed. It is often used with
stress testing and is widely considered to be an important part of developing robust software[1] . Robustness testing[2]

(also known as Syntax Testing, Fuzzing or Fuzz testing) is a type of fault injection commonly used to test for
vulnerabilities in communication interfaces such as protocols, command line parameters, or APIs.
The propagation of a fault through to an observable failure follows a well defined cycle. When executed, a fault may
cause an error, which is an invalid state within a system boundary. An error may cause further errors within the
system boundary, therefore each new error acts as a fault, or it may propagate to the system boundary and be
observable. When error states are observed at the system boundary they are termed failures. This mechanism is
termed the fault-error-failure cycle [3] and is a key mechanism in dependability.

History
The technique of fault injection dates back to the 1970s [4] when it was first used to induce faults at a hardware level.
This type of fault injection is called Hardware Implemented Fault Injection (HWIFI) and attempts to simulate
hardware failures within a system. The first experiments in hardware fault injection involved nothing more than
shorting connections on circuit boards and observing the effect on the system (bridging faults). It was used primarily
as a test of the dependability of the hardware system. Later specialised hardware was developed to extend this
technique, such as devices to bombard specific areas of a circuit board with heavy radiation. It was soon found that
faults could be induced by software techniques and that aspects of this technique could be useful for assessing
software systems. Collectively these techniques are known as Software Implemented Fault Injection (SWIFI).

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://shemesh.larc.nasa.gov/fm/papers/Hayhurst-2001-tm210876-MCDC.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://en.wikipedia.org/w/index.php?title=Error_handling
http://en.wikipedia.org/w/index.php?title=Stress_testing
http://en.wikipedia.org/w/index.php?title=Robustness_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Fuzzing
http://en.wikipedia.org/w/index.php?title=Fault-error-failure_cycle
http://en.wikipedia.org/w/index.php?title=Dependability


Fault injection 46

Software Implemented fault injection
SWIFI techniques for software fault injection can be categorized into two types: compile-time injection and runtime
injection.
Compile-time injection is an injection technique where source code is modified to inject simulated faults into a
system. One method is called mutation testing which changes existing lines of code so that they contain faults. A
simple example of this technique could be changing

 a = a + 1

   to

 a = a – 1

Code mutation produces faults which are very similar to those unintentionally added by programmers.
A refinement of code mutation is Code Insertion Fault Injection which adds code, rather than modifies existing code.
This is usually done through the use of perturbation functions which are simple functions which take an existing
value and perturb it via some logic into another value, for example

 int pFunc(int value) {

   return value + 20;

 }

 int main(int argc, char * argv[]) {

   int a = pFunc(aFunction(atoi(argv[1])));

   if (a > 20) {

     /* do something */

   } else {

     /* do something else */

   }

 }

In this case pFunc is the perturbation function and it is applied to the return value of the function that has been called
introducing a fault into the system.
Runtime Injection techniques use a software trigger to inject a fault into a running software system. Faults can be
injected via a number of physical methods and triggers can be implemented in a number of ways, such as: Time
Based triggers (When the timer reaches a specified time an interrupt is generated and the interrupt handler associated
with the timer can inject the fault. ); Interrupt Based Triggers (Hardware exceptions and software trap mechanisms
are used to generate an interrupt at a specific place in the system code or on a particular event within the system, for
instance access to a specific memory location).
Runtime injection techniques can use a number of different techniques to insert faults into a system via a trigger.
• Corruption of memory space: This technique consists of corrupting RAM, processor registers, and I/O map.
• Syscall interposition techniques: This is concerned with the fault propagation from operating system kernel

interfaces to executing systems software. This is done by intercepting operating system calls made by user-level
software and injecting faults into them.

• Network Level fault injection: This technique is concerned with the corruption, loss or reordering of network
packets at the network interface.

These techniques are often based around the debugging facilities provided by computer processor architectures.



Fault injection 47

Protocol software fault injection
Complex software systems, especially multi-vendor distributed systems based on open standards, perform
input/output operations to exchange data via stateful, structured exchanges known as "protocols." One kind of fault
injection that is particularly useful to test protocol implementations (a type of software code that has the unusual
characteristic in that it cannot predict or control its input) is fuzzing. Fuzzing is an especially useful form of
Black-box testing since the various invalid inputs that are submitted to the software system do not depend on, and
are not created based on knowledge of, the details of the code running inside the system.

Fault injection tools
Although these types of faults can be injected by hand the possibility of introducing an unintended fault is high, so
tools exist to parse a program automatically and insert faults.

Research tools
A number of SWIFI Tools have been developed and a selection of these tools is given here. Six commonly used fault
injection tools are Ferrari, FTAPE , Doctor, Orchestra, Xception and Grid-FIT.
• MODIFI (MODel-Implemented Fault Injection) is a fault injection tool for robustness evaluation of Simulink

behavior models. It supports fault modelling in XML for implementation of domain-specific fault models.[5] .
• Ferrari (Fault and ERRor Automatic Real-time Injection) is based around software traps that inject errors into a

system. The traps are activated by either a call to a specific memory location or a timeout. When a trap is called
the handler injects a fault into the system. The faults can either be transient or permanent. Research conducted
with Ferrari shows that error detection is dependent on the fault type and where the fault is inserted [6] .

• FTAPE (Fault Tolerance and Performance Evaluator) can inject faults, not only into memory and registers, but
into disk accesses as well. This is achieved by inserting a special disk driver into the system that can inject faults
into data sent and received from the disk unit. FTAPE also has a synthetic load unit that can simulate specific
amounts of load for robustness testing purposes [7] .

• DOCTOR (IntegrateD SOftware Fault InjeCTiOn EnviRonment) allows injection of memory and register faults,
as well as network communication faults. It uses a combination of time-out, trap and code modification. Time-out
triggers inject transient memory faults and traps inject transient emulated hardware failures, such as register
corruption. Code modification is used to inject permanent faults [8] .

• Orchestra is a script driven fault injector which is based around Network Level Fault Injection. Its primary use is
the evaluation and validation of the fault-tolerance and timing characteristics of distributed protocols. Orchestra
was initially developed for the Mach Operating System and uses certain features of this platform to compensate
for latencies introduced by the fault injector. It has also been successfully ported to other operating systems[9] .

• Xception is designed to take advantage of the advanced debugging features available on many modern processors.
It is written to require no modification of system source and no insertion of software traps, since the processor's
exception handling capabilities trigger fault injection. These triggers are based around accesses to specific
memory locations. Such accesses could be either for data or fetching instructions. It is therefore possible to
accurately reproduce test runs because triggers can be tied to specific events, instead of timeouts [10] .

• Grid-FIT (Grid – Fault Injection Technology) [11] is a dependability assessment method and tool for assessing
Grid services by fault injection. Grid-FIT is derived from an earlier fault injector WS-FIT [12] which was targeted
towards Java Web Services implemented using Apache Axis transport. Grid-FIT utilises a novel fault injection
mechanism that allows network level fault injection to be used to give a level of control similar to Code Insertion
fault injection whilst being less invasive [13] .

• LFI (Library-level Fault Injector) [14] is an automatic testing tool suite, used to simulate in a controlled testing 
environment, exceptional situations that programs need to handle at runtime but that are not easy to check via 
input testing alone. LFI automatically identifies the errors exposed by shared libraries, finds potentially buggy

http://en.wikipedia.org/w/index.php?title=Communications_protocol


Fault injection 48

error recovery code in program binaries and injects the desired faults at the boundary between shared libraries and
applications.

Commercial tools
• ExhaustiF is a commercial software tool used for grey box testing based on software fault injection (SWIFI) to

improve reliability of software intensive systems. The tool can be used during system integration and system
testing phases of any software development lifecycle, complementing other testing tools as well. ExhaustiF is able
to inject faults into both software and hardware. When injecting simulated faults in software, ExhaustiF offers the
following fault types: Variable Corruption and Procedure Corruption. The catalogue for hardware fault injections
includes faults in Memory (I/O, RAM) and CPU (Integer Unit, Floating Unit). There are different versions
available for RTEMS/ERC32, RTEMS/Pentium, Linux/Pentium and MS-Windows/Pentium. [15]

• Holodeck[16] is a test tool developed by Security Innovation that uses fault injection to simulate real-world
application and system errors for Windows applications and services. Holodeck customers include many major
commercial software development companies, including Microsoft, Symantec, EMC and Adobe. It provides a
controlled, repeatable environment in which to analyze and debug error-handling code and application attack
surfaces for fragility and security testing. It simulates file and network fuzzing faults as well as a wide range of
other resource, system and custom-defined faults. It analyzes code and recommends test plans and also performs
function call logging, API interception, stress testing, code coverage analysis and many other application security
assurance functions.

• Codenomicon Defensics [17] is a blackbox test automation framework that does fault injection to more than 150
different interfaces including network protocols, API interfaces, files, and XML structures. The commercial
product was launched in 2001, after five years of research at University of Oulu in the area of software fault
injection. A thesis work explaining the used fuzzing principles was published by VTT, one of the PROTOS
consortium members.[18]

• The Mu Service Analyzer[19] is a commercial service testing tool developed by Mu Dynamics[20] . The Mu
Service Analyzer performs black box and white box testing of services based on their exposed software
interfaces, using denial-of-service simulations, service-level traffic variations (to generate invalid inputs) and the
replay of known vulnerability triggers. All these techniques exercise input validation and error handling and are
used in conjunction with valid protocol monitors and SNMP to characterize the effects of the test traffic on the
software system. The Mu Service Analyzer allows users to establish and track system-level reliability, availability
and security metrics for any exposed protocol implementation. The tool has been available in the market since
2005 by customers in the North America, Asia and Europe, especially in the critical markets of network operators
(and their vendors) and Industrial control systems (including Critical infrastructure).

• Xception[21] is a commercial software tool developed by Critical Software SA[22] used for black box and white
box testing based on software fault injection (SWIFI) and Scan Chain fault injection (SCIFI). Xception allows
users to test the robustness of their systems or just part of them, allowing both Software fault injection and
Hardware fault injection for a specific set of architectures. The tool has been used in the market since 1999 and
has customers in the American, Asian and European markets, especially in the critical market of aerospace and
the telecom market. The full Xception product family includes: a) The main Xception tool, a state-of-the-art
leader in Software Implemented Fault Injection (SWIFI) technology; b) The Easy Fault Definition (EFD) and
Xtract (Xception Analysis Tool) add-on tools; c) The extended Xception tool (eXception), with the fault injection
extensions for Scan Chain and pin-level forcing.

http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods
http://en.wikipedia.org/w/index.php?title=Codenomicon
http://en.wikipedia.org/w/index.php?title=Mu_Dynamics
http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods
http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods
http://en.wikipedia.org/w/index.php?title=Industrial_control_systems
http://en.wikipedia.org/w/index.php?title=Critical_infrastructure
http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods
http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods
http://en.wikipedia.org/w/index.php?title=Software_testing%23Testing_methods


Fault injection 49

Libraries
• libfiu [23] (Fault injection in userspace), C library to simulate faults in POSIX routines without modifying the

source code. An API is included to simulate arbitrary faults at run-time at any point of the program.
• TestApi [24] is a shared-source API library, which provides facilities for fault injection testing as well as other

testing types, data-structures and algorithms for .NET applications.

Application of fault injection
Fault injection can take many forms. In the testing of operating systems for example, fault injection is often
performed by a driver (kernel-mode software) that intercepts system calls (calls into the kernel) and randomly
returning a failure for some of the calls. This type of fault injection is useful for testing low level user mode
software. For higher level software, various methods inject faults. In managed code, it is common to use
instrumentation. Although fault injection can be undertaken by hand a number of fault injection tools exist to
automate the process of fault injection [25] .
Depending on the complexity of the API for the level where faults are injected, fault injection tests often must be
carefully designed to minimise the number of false positives. Even a well designed fault injection test can sometimes
produce situations that are impossible in the normal operation of the software. For example, imagine there are two
API functions, Commit and PrepareForCommit, such that alone, each of these functions can possibly fail, but
if PrepareForCommit is called and succeeds, a subsequent call to Commit is guaranteed to succeed. Now
consider the following code:

 error = PrepareForCommit();

 if (error == SUCCESS) {

   error = Commit();

   assert(error == SUCCESS);

 }

Often, it will be infeasible for the fault injection implementation to keep track of enough state to make the guarantee
that the API functions make. In this example, a fault injection test of the above code might hit the assert, whereas
this would never happen in normal operation.

References
[1] J. Voas, "Fault Injection for the Masses," Computer, vol. 30, pp. 129–130, 1997.
[2] Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security. 2001. (http:/ / www. vtt. fi/ inf/ pdf/ publications/

2001/ P448. pdf)
[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, "Basic Concepts and Taxonomy of Dependable and Secure Computing,"

Dependable and Secure Computing, vol. 1, pp. 11–33, 2004.
[4] J. V. Carreira, D. Costa, and S. J. G, "Fault Injection Spot-Checks Computer System Dependability," IEEE Spectrum, pp. 50–55, 1999.
[5] Rickard Svenningsson, Jonny Vinter, Henrik Eriksson and Martin Torngren, "MODIFI: A MODel-Implemented Fault Injection Tool,",

Lecture Notes in Computer Science, 2010, Volume 6351/2010, 210-222.
[6] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, "FERRARI: A Flexible Software-Based Fault and Error Injection System," IEEE

Transactions on Computers, vol. 44, pp. 248, 1995.
[7] T. Tsai and R. Iyer, "FTAPE: A Fault Injection Tool to Measure Fault Tolerance," presented at Computing in aerospace, San Antonio; TX,

1995.
[8] S. Han, K. G. Shin, and H. A. Rosenberg, "DOCTOR: An IntegrateD SOftware Fault InjeCTiOn EnviRonment for Distributed Real-time

Systems," presented at International Computer Performance and Dependability Symposium, Erlangen; Germany, 1995.
[9] S. Dawson, F. Jahanian, and T. Mitton, "ORCHESTRA: A Probing and Fault Injection Environment for Testing Protocol Implementations,"

presented at International Computer Performance and Dependability Symposium, Urbana-Champaign, USA, 1996.
[10] J. V. Carreira, D. Costa, and S. J. G, "Fault Injection Spot-Checks Computer System Dependability," IEEE Spectrum, pp. 50–55, 1999.
[11] Grid-FIT Web-site (http:/ / wiki. grid-fit. org/ )
[12] N. Looker, B. Gwynne, J. Xu, and M. Munro, "An Ontology-Based Approach for Determining the Dependability of Service-Oriented

Architectures," in the proceedings of the 10th IEEE International Workshop on Object-oriented Real-time Dependable Systems, USA, 2005.

http://blitiri.com.ar/p/libfiu/
http://testapi.codeplex.com
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Kernel_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Managed_code
http://en.wikipedia.org/w/index.php?title=Instrumentation_%28computer_programming%29
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Function_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://wiki.grid-fit.org/


Fault injection 50

[13] N. Looker, M. Munro, and J. Xu, "A Comparison of Network Level Fault Injection with Code Insertion," in the proceedings of the 29th
IEEE International Computer Software and Applications Conference, Scotland, 2005.

[14] LFI Website (http:/ / lfi. epfl. ch/ )
[15] ExhaustiF SWIFI Tool Site (http:/ / www. exhaustif. es)
[16] Holodeck product overview (http:/ / www. securityinnovation. com/ holodeck/ index. shtml)
[17] Codenomicon Defensics product overview (http:/ / www. codenomicon. com/ defensics/ )
[18] Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security. 2001. (http:/ / www. vtt. fi/ inf/ pdf/ publications/

2001/ P448. pdf)
[19] Mu Service Analyzer (http:/ / www. mudynamics. com/ products/ overview. html)
[20] Mu Dynamics, Inc. (http:/ / www. mudynamics. com/ )
[21] Xception Web Site (http:/ / www. xception. org)
[22] Critical Software SA (http:/ / www. criticalsoftware. com)
[23] http:/ / blitiri. com. ar/ p/ libfiu/
[24] http:/ / testapi. codeplex. com
[25] N. Looker, M. Munro, and J. Xu, "Simulating Errors in Web Services," International Journal of Simulation Systems, Science & Technology,

vol. 5, 2004.

External links
• Using Fault Injection to Test Software Recovery Code (http:/ / www. cs. colostate. edu/ casi/ REPORTS/

Bieman95. pdf) by Colorado Advanced Software Institute.
• Certitude Software from Certess Inc. (http:/ / www. certess. com/ product/ )

Bebugging
Bebugging (or fault seeding) is a popular software engineering technique used in the 1970s to measure test
coverage. Known bugs are randomly added to a program source code and the programmer is tasked to find them.
The percentage of the known bugs not found gives an indication of the real bugs that remain.
The earliest application of bebugging was Harlan Mills's fault seeding approach [1] which was later refined by
stratified fault-seeding [2] . These techniques worked by adding a number of known faults to a software system for
the purpose of monitoring the rate of detection and removal. This assumed that it is possible to estimate the number
of remaining faults in a software system still to be detected by a particular test methodology.
Bebugging is a type of fault injection.

References
[1] H. D. Mills, "On the Statistical Validation of Computer Programs," IBM Federal Systems Division 1972.
[2] L. J. Morell and J. M. Voas, "Infection and Propagation Analysis: A Fault-Based Approach to Estimating Software Reliability," College of

William and Mary in Virginia, Department of Computer Science September, 1988.

http://lfi.epfl.ch/
http://www.exhaustif.es
http://www.securityinnovation.com/holodeck/index.shtml
http://www.codenomicon.com/defensics/
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.vtt.fi/inf/pdf/publications/2001/P448.pdf
http://www.mudynamics.com/products/overview.html
http://www.mudynamics.com/
http://www.xception.org
http://www.criticalsoftware.com
http://blitiri.com.ar/p/libfiu/
http://testapi.codeplex.com
http://www.cs.colostate.edu/casi/REPORTS/Bieman95.pdf
http://www.cs.colostate.edu/casi/REPORTS/Bieman95.pdf
http://www.certess.com/product/
http://en.wikipedia.org/w/index.php?title=Test_coverage
http://en.wikipedia.org/w/index.php?title=Test_coverage
http://en.wikipedia.org/w/index.php?title=Programmer
http://en.wikipedia.org/w/index.php?title=Harlan_Mills
http://en.wikipedia.org/w/index.php?title=Harlan_Mills


Mutation testing 51

Mutation testing
For the biological term, see: Gene mutation analysis.

Mutation testing (or Mutation analysis or Program mutation) is a method of software testing, which involves
modifying programs' source code or byte code in small ways.[1] A test suite that does not detect and reject the
mutated code is considered defective. These so-called mutations, are based on well-defined mutation operators that
either mimic typical programming errors (such as using the wrong operator or variable name) or force the creation of
valuable tests (such as driving each expression to zero). The purpose is to help the tester develop effective tests or
locate weaknesses in the test data used for the program or in sections of the code that are seldom or never accessed
during execution.

Aim
Tests can be created to verify the correctness of the implementation of a given software system, but the creation of
tests still poses the question whether the tests are correct and sufficiently cover the requirements that have originated
the implementation. (This technological problem is itself an instance of a deeper philosophical problem named "Quis
custodiet ipsos custodes?" ["Who will guard the guards?"].) In this context, mutation testing was pioneered in the
1970s to locate and expose weaknesses in test suites. The theory was that if a mutation was introduced without the
behavior (generally output) of the program being affected, this indicated either that the code that had been mutated
was never executed (redundant code) or that the testing suite was unable to locate the injected fault. In order for this
to function at any scale, a large number of mutations had to be introduced into a large program, leading to the
compilation and execution of an extremely large number of copies of the program. This problem of the expense of
mutation testing had reduced its practical use as a method of software testing, but the increased use of object oriented
programming languages and unit testing frameworks has led to the creation of mutation testing tools for many
programming languages as a means to test individual portions of an application.

Historical overview
Mutation testing was originally proposed by Richard Lipton as a student in 1971,[2] and first developed and
published by DeMillo, Lipton and Sayward. The first implementation of a mutation testing tool was by Timothy
Budd as part of his PhD work (titled Mutation Analysis) in 1980 from Yale University.
Recently, with the availability of massive computing power, there has been a resurgence of mutation analysis within
the computer science community, and work has been done to define methods of applying mutation testing to object
oriented programming languages and non-procedural languages such as XML, SMV, and finite state machines.
In 2004 a company called Certess Inc. extended many of the principles into the hardware verification domain.
Whereas mutation analysis only expects to detect a difference in the output produced, Certess extends this by
verifying that a checker in the testbench will actually detect the difference. This extension means that all three stages
of verification, namely: activation, propagation and detection are evaluated. They have called this functional
qualification.
Fuzzing is a special area of mutation testing. In fuzzing, the messages or data exchanged inside communication
interfaces (both inside and between software instances) are mutated, in order to catch failures or differences in
processing the data. Codenomicon[3] (2001) and Mu Dynamics (2005) evolved fuzzing concepts to a fully stateful
mutation testing platform, complete with monitors for thoroughly exercising protocol implementations.

http://en.wikipedia.org/w/index.php?title=Gene_mutation_analysis
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Byte_code
http://en.wikipedia.org/w/index.php?title=Execution_%28computers%29
http://en.wikipedia.org/w/index.php?title=Quis_custodiet_ipsos_custodes%3F
http://en.wikipedia.org/w/index.php?title=Quis_custodiet_ipsos_custodes%3F
http://en.wikipedia.org/w/index.php?title=Output
http://en.wikipedia.org/w/index.php?title=Object_oriented_programming_language
http://en.wikipedia.org/w/index.php?title=Object_oriented_programming_language
http://en.wikipedia.org/w/index.php?title=Timothy_Budd
http://en.wikipedia.org/w/index.php?title=Timothy_Budd
http://en.wikipedia.org/w/index.php?title=PhD
http://en.wikipedia.org/w/index.php?title=Yale_University
http://en.wikipedia.org/w/index.php?title=Object_oriented_programming_language
http://en.wikipedia.org/w/index.php?title=Object_oriented_programming_language
http://en.wikipedia.org/w/index.php?title=Non-procedural_language
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=Symbolic_Model_Verification
http://en.wikipedia.org/w/index.php?title=Finite_state_machines
http://en.wikipedia.org/w/index.php?title=Fuzzing
http://en.wikipedia.org/w/index.php?title=Codenomicon
http://en.wikipedia.org/w/index.php?title=Mu_Dynamics


Mutation testing 52

Mutation testing overview
Mutation testing is done by selecting a set of mutation operators and then applying them to the source program one
at a time for each applicable piece of the source code. The result of applying one mutation operator to the program is
called a mutant. If the test suite is able to detect the change (i.e. one of the tests fails), then the mutant is said to be
killed.
For example, consider the following C++ code fragment:

if (a && b) {

    c = 1;

} else {

    c = 0;

}

The condition mutation operator would replace && with || and produce the following mutant:

if (a || b) {

    c = 1;

} else {

    c = 0;

}

Now, for the test to kill this mutant, the following condition should be met:
• Test input data should cause different program states for the mutant and the original program. For example, a test

with a = 1 and b = 0 would do this.
• The value of 'c' should be propagated to the program's output and checked by the test.
Weak mutation testing (or weak mutation coverage) requires that only the first condition is satisfied. Strong mutation
testing requires that both conditions are satisfied. Strong mutation is more powerful, since it ensures that the test
suite can really catch the problems. Weak mutation is closely related to code coverage methods. It requires much less
computing power to ensure that the test suite satisfies weak mutation testing than strong mutation testing.

Equivalent mutants
Many mutation operators can produce equivalent mutants. For example, consider the following code fragment:

int index = 0;

while (…)

{

    …; 

    index++;

    if (index == 10) {

        break;

    }

}

Boolean relation mutation operator will replace == with >= and produce the following mutant:

int index = 0;



Mutation testing 53

while (…)

{

    …; 

    index++;

    if (index >= 10) {

        break;

    }

}

However, it is not possible to find a test case that could kill this mutant. The resulting program is equivalent to the
original one. Such mutants are called equivalent mutants.
Equivalent mutants detection is one of biggest obstacles for practical usage of mutation testing. The effort needed to
check if mutants are equivalent or not, can be very high even for small programs.[4]

Mutation operators
A variety of mutation operators were explored by researchers. Here are some examples of mutation operators for
imperative languages:
• Statement deletion.
• Replace each boolean subexpression with true and false.
• Replace each arithmetic operation with another one, e.g. + with *, - and /.
• Replace each boolean relation with another one, e.g. > with >=, == and <=.
• Replace each variable with another variable declared in the same scope (variable types should be the same).
These mutation operators are also called traditional mutation operators. Beside this, there are mutation operators for
object-oriented languages[5] , for concurrent constructions[6] , complex objects like containers[7] etc. They are called
class-level mutation operators. For example the MuJava tool offers various class-level mutation operators such as:
Access Modifier Change, Type Cast Operator Insertion, Type Cast Operator Deletion. Moreover, mutation operators
have been developed to perform security vulnerability testing of programs [8]

References
[1] A Practical System for Mutation Testing: Help for the Common Programmer (http:/ / cs. gmu. edu/ ~offutt/ rsrch/ papers/ practical. pdf) by A.

Jefferson Offutt.
[2] Mutation 2000: Uniting the Orthogonal (http:/ / cs. gmu. edu/ ~offutt/ rsrch/ papers/ mut00. pdf) by A. Jefferson Offutt and Roland H. Untch.
[3] Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security (Licentiate thesis). Espoo. 2001. (http:/ / www.

codenomicon. com/ resources/ publications. shtml)
[4] P. G. Frankl, S. N. Weiss, and C. Hu. All-uses versus mutation testing: An experimental comparison of effectiveness. Journal of Systems and

Software, 38:235–253, 1997.
[5] MuJava: An Automated Class Mutation System (http:/ / www. cs. gmu. edu/ ~offutt/ rsrch/ papers/ mujava. pdf) by Yu-Seung Ma, Jeff Offutt

and Yong Rae Kwo.
[6] Mutation Operators for Concurrent Java (J2SE 5.0) (http:/ / www. irisa. fr/ manifestations/ 2006/ Mutation2006/ papers/ 14_Final_version.

pdf) by Jeremy S. Bradbury, James R. Cordy, Juergen Dingel.
[7] Mutation of Java Objects (http:/ / www. cs. colostate. edu/ ~bieman/ Pubs/ AlexanderBiemanGhoshJiISSRE02. pdf) by Roger T. Alexander,

James M. Bieman, Sudipto Ghosh, Bixia Ji.
[8] Mutation-based Testing of Buffer Overflows, SQL Injections, and Format String Bugs (http:/ / qspace. library. queensu. ca/ handle/ 1974/

1359) by H. Shahriar and M. Zulkernine.

http://cs.gmu.edu/~offutt/rsrch/papers/practical.pdf
http://cs.gmu.edu/~offutt/rsrch/papers/mut00.pdf
http://www.codenomicon.com/resources/publications.shtml
http://www.codenomicon.com/resources/publications.shtml
http://www.cs.gmu.edu/~offutt/rsrch/papers/mujava.pdf
http://www.irisa.fr/manifestations/2006/Mutation2006/papers/14_Final_version.pdf
http://www.irisa.fr/manifestations/2006/Mutation2006/papers/14_Final_version.pdf
http://www.cs.colostate.edu/~bieman/Pubs/AlexanderBiemanGhoshJiISSRE02.pdf
http://qspace.library.queensu.ca/handle/1974/1359
http://qspace.library.queensu.ca/handle/1974/1359


Mutation testing 54

Further reading
• Aristides Dasso, Ana Funes (2007). Verification, Validation and Testing in Software Engineering. Idea Group

Inc. ISBN 1591408512. See Ch. VII Test-Case Mutation for overview on mutation testing.
• Paul Ammann, Jeff Offutt (2008). Introduction to Software Testing. Cambridge University Press. ISBN

0-52188-038-1. See Ch. V Syntax Testing for an overview of mutation testing.
• Yue Jia, Mark Harman (September 2009). "An Analysis and Survey of the Development of Mutation Testing"

(http:/ / www. dcs. kcl. ac. uk/ pg/ jiayue/ repository/ TR-09-06. pdf) (PDF). CREST Centre, King's College
London, Technical Report TR-09-06.

External links
• Mutation testing (http:/ / cs. gmu. edu/ ~offutt/ rsrch/ mut. html) list of tools and publications by Jeff Offutt.
• Mutation Testing Repository (http:/ / www. dcs. kcl. ac. uk/ pg/ jiayue/ repository/ ) A publication repository that

aims to provide a full coverage of the publications in the literature on Mutation Testing.
• Jumble (http:/ / jumble. sourceforge. net/ ) Bytecode based mutation testing tool for Java
• PIT (http:/ / pitest. org/ ) Bytecode based mutation testing tool for Java
• Jester (http:/ / jester. sourceforge. net/ ) Source based mutation testing tool for Java
• Heckle (http:/ / glu. ttono. us/ articles/ 2006/ 12/ 19/ tormenting-your-tests-with-heckle) Mutation testing tool for

Ruby
• Nester (http:/ / nester. sourceforge. net/ ) Mutation testing tool for C#
• Mutagenesis (https:/ / github. com/ padraic/ mutagenesis) Mutation testing tool for PHP

http://www.dcs.kcl.ac.uk/pg/jiayue/repository/TR-09-06.pdf
http://cs.gmu.edu/~offutt/rsrch/mut.html
http://www.dcs.kcl.ac.uk/pg/jiayue/repository/
http://jumble.sourceforge.net/
http://pitest.org/
http://jester.sourceforge.net/
http://glu.ttono.us/articles/2006/12/19/tormenting-your-tests-with-heckle
http://nester.sourceforge.net/
https://github.com/padraic/mutagenesis


55

Testing of non functional software aspects

Non-functional testing
Non-functional testing is the testing of a software application for its non-functional requirements. The names of
many non-functional tests are often used interchangeably because of the overlap in scope between various
non-functional requirements. For example, software performance is a broad term that includes many specific
requirements like reliability and scalability.
Non-functional testing includes:
• Baseline testing
• Compatibility testing
• Compliance testing
• Documentation testing
• Endurance testing
• Load testing
• Localization testing and Internationalization testing
• Performance testing
• Recovery testing
• Resilience testing
• Security testing
• Scalability testing
• Stress testing
• Usability testing
• Volume testing

http://en.wikipedia.org/w/index.php?title=Non-functional_requirements
http://en.wikipedia.org/w/index.php?title=Performance_engineering
http://en.wikipedia.org/w/index.php?title=Reliability_engineering
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Compliance_testing
http://en.wikipedia.org/w/index.php?title=Endurance_testing
http://en.wikipedia.org/w/index.php?title=Stress_testing


Software performance testing 56

Software performance testing
In software engineering, performance testing is testing that is performed, to determine how fast some aspect of a
system performs under a particular workload. It can also serve to validate and verify other quality attributes of the
system, such as scalability, reliability and resource usage.
Performance testing is a subset of Performance engineering, an emerging computer science practice which strives to
build performance into the design and architecture of a system, prior to the onset of actual coding effort.

Performance Testing Sub-Genres

Load Testing
Load testing is the simplest form of performance testing. A load test is usually conducted to understand the behavior
of the application under a specific expected load. This load can be the expected concurrent number of users on the
application performing a specific number of transactions within the set duration. This test will give out the response
times of all the important business critical transactions. If the database, application server, etc. are also monitored,
then this simple test can itself point towards any bottlenecks in the application software...

Stress Testing
Stress testing is normally used to understand the upper limits of capacity within the application landscape. This kind
of test is done to determine the application's robustness in terms of extreme load and helps application administrators
to determine if the application will perform sufficiently if the current load goes well above the expected maximum.

Endurance Testing (Soak Testing)
Endurance testing is usually done to determine if the application can sustain the continuous expected load. During
endurance tests, memory utilization is monitored to detect potential leaks. Also important, but often overlooked is
performance degradation. That is, to ensure that the throughput and/or response times after some long period of
sustained activity are as good or better than at the beginning of the test. It essentially involves applying a significant
load to a system for an extended, significant period of time. The goal is to discover how the system behaves under
sustained use.

Spike Testing
Spike testing, as the name suggests is done by spiking the number of users and understanding the behavior of the
application; whether performance will suffer, the application will fail, or it will be able to handle dramatic changes in
load.

Configuration Testing
Configuration testing is another variation on traditional performance testing. Rather than testing for performance
from the perspective of load you are testing the effects of configuration changes in the application landscape on
application performance and behaviour. A common example would be experimenting with different methods of
load-balancing.

http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=System
http://en.wikipedia.org/w/index.php?title=Quality
http://en.wikipedia.org/w/index.php?title=Attribute
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Reliability
http://en.wikipedia.org/w/index.php?title=Performance_engineering
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Transaction
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Application_server
http://en.wikipedia.org/w/index.php?title=Bottleneck
http://en.wikipedia.org/w/index.php?title=Stress_testing
http://en.wikipedia.org/w/index.php?title=Endurance_testing
http://en.wikipedia.org/w/index.php?title=Spike_testing
http://en.wikipedia.org/w/index.php?title=Spiking
http://en.wikipedia.org/w/index.php?title=Configuration_testing


Software performance testing 57

Isolation Testing
Isolation testing is not unique to performance testing but a term used to describe repeating a test execution that
resulted in an application problem. Often used to isolate and confirm the fault domain.

Setting performance goals
Performance testing can serve different purposes.
• It can demonstrate that the system meets performance criteria.
• It can compare two systems to find which performs better.
• Or it can measure what parts of the system or workload causes the system to perform badly.
Many performance tests are undertaken without due consideration to the setting of realistic performance goals. The
first question from a business perspective should always be "why are we performance testing?". These considerations
are part of the business case of the testing. Performance goals will differ depending on the application technology
and purpose however they should always include some of the following:

Concurrency/Throughput
If an application identifies end-users by some form of login procedure then a concurrency goal is highly desirable.
By definition this is the largest number of concurrent application users that the application is expected to support at
any given moment. The work-flow of your scripted transaction may impact true application concurrency especially if
the iterative part contains the Login & Logout activity
If your application has no concept of end-users then your performance goal is likely to be based on a maximum
throughput or transaction rate. A common example would be casual browsing of a web site such as Wikipedia.

Server response time
This refers to the time taken for one application node to respond to the request of another. A simple example would
be a HTTP 'GET' request from browser client to web server. In terms of response time this is what all load testing
tools actually measure. It may be relevant to set server response time goals between all nodes of the application
landscape.

Render response time
A difficult thing for load testing tools to deal with as they generally have no concept of what happens within a node
apart from recognizing a period of time where there is no activity 'on the wire'. To measure render response time it is
generally necessary to include functional test scripts as part of the performance test scenario which is a feature not
offered by many load testing tools.

Performance specifications
It is critical to detail performance specifications (requirements) and document them in any performance test plan.
Ideally, this is done during the requirements development phase of any system development project, prior to any
design effort. See Performance Engineering for more details.
However, performance testing is frequently not performed against a specification i.e. no one will have expressed 
what the maximum acceptable response time for a given population of users should be. Performance testing is 
frequently used as part of the process of performance profile tuning. The idea is to identify the “weakest link” – there 
is inevitably a part of the system which, if it is made to respond faster, will result in the overall system running 
faster. It is sometimes a difficult task to identify which part of the system represents this critical path, and some test 
tools include (or can have add-ons that provide) instrumentation that runs on the server (agents) and report 
transaction times, database access times, network overhead, and other server monitors, which can be analyzed

http://en.wikipedia.org/w/index.php?title=Isolation_testing
http://en.wikipedia.org/w/index.php?title=Business_case
http://en.wikipedia.org/w/index.php?title=Concurrency
http://en.wikipedia.org/w/index.php?title=Node_%28networking%29
http://en.wikipedia.org/w/index.php?title=Performance_Engineering


Software performance testing 58

together with the raw performance statistics. Without such instrumentation one might have to have someone
crouched over Windows Task Manager at the server to see how much CPU load the performance tests are generating
(assuming a Windows system is under test).
Performance testing can be performed across the web, and even done in different parts of the country, since it is
known that the response times of the internet itself vary regionally. It can also be done in-house, although routers
would then need to be configured to introduce the lag what would typically occur on public networks. Loads should
be introduced to the system from realistic points. For example, if 50% of a system's user base will be accessing the
system via a 56K modem connection and the other half over a T1, then the load injectors (computers that simulate
real users) should either inject load over the same connections (ideal) or simulate the network latency of such
connections, following the same user profile.
It is always helpful to have a statement of the likely peak numbers of users that might be expected to use the system
at peak times. If there can also be a statement of what constitutes the maximum allowable 95 percentile response
time, then an injector configuration could be used to test whether the proposed system met that specification.

Questions to ask
Performance specifications should ask the following questions, at a minimum:
• In detail, what is the performance test scope? What subsystems, interfaces, components, etc. are in and out of

scope for this test?
• For the user interfaces (UIs) involved, how many concurrent users are expected for each (specify peak vs.

nominal)?
• What does the target system (hardware) look like (specify all server and network appliance configurations)?
• What is the Application Workload Mix of each application component? (for example: 20% login, 40% search,

30% item select, 10% checkout).
• What is the System Workload Mix? [Multiple workloads may be simulated in a single performance test] (for

example: 30% Workload A, 20% Workload B, 50% Workload C)
• What are the time requirements for any/all back-end batch processes (specify peak vs. nominal)?

Pre-requisites for Performance Testing
A stable build of the application which must resemble the Production environment as close to possible.
The performance testing environment should not be clubbed with User acceptance testing (UAT) or development
environment. This is dangerous as if an UAT or Integration test or other tests are going on in the same environment,
then the results obtained from the performance testing may not be reliable. As a best practice it is always advisable to
have a separate performance testing environment resembling the production environment as much as possible.

Test conditions
In performance testing, it is often crucial (and often difficult to arrange) for the test conditions to be similar to the
expected actual use. This is, however, not entirely possible in actual practice. The reason is that the workloads of
production systems have a random nature, and while the test workloads do their best to mimic what may happen in
the production environment, it is impossible to exactly replicate this workload variability - except in the most simple
system.
Loosely-coupled architectural implementations (e.g.: SOA) have created additional complexities with performance 
testing. Enterprise services or assets (that share a common infrastructure or platform) require coordinated 
performance testing (with all consumers creating production-like transaction volumes and load on shared 
infrastructures or platforms) to truly replicate production-like states. Due to the complexity and financial and time 
requirements around this activity, some organizations now employ tools that can monitor and create production-like

http://en.wikipedia.org/w/index.php?title=Windows_Task_Manager
http://en.wikipedia.org/w/index.php?title=Router_%28computing%29
http://en.wikipedia.org/w/index.php?title=T1
http://en.wikipedia.org/w/index.php?title=User_acceptance_testing
http://en.wikipedia.org/w/index.php?title=Integration_test
http://en.wikipedia.org/w/index.php?title=Service-oriented_architecture
http://en.wikipedia.org/w/index.php?title=Infrastructure


Software performance testing 59

conditions (also referred as "noise") in their performance testing environments (PTE) to understand capacity and
resource requirements and verify / validate quality attributes.

Timing
It is critical to the cost performance of a new system, that performance test efforts begin at the inception of the
development project and extend through to deployment. The later a performance defect is detected, the higher the
cost of remediation. This is true in the case of functional testing, but even more so with performance testing, due to
the end-to-end nature of its scope.

Tools
In the diagnostic case, software engineers use tools such as profilers to measure what parts of a device or software
contributes most to the poor performance or to establish throughput levels (and thresholds) for maintained acceptable
response time.

Myths of Performance Testing
Some of the very common myths are given below.
1. Performance Testing is done to break the system.

Stress Testing is done to understand the break point of the system. Otherwise normal load testing is generally done to
understand the behavior of the application under the expected user load. Depending on other requirements, such as
expectation of spike load, continued load for an extended period of time would demand spike, endurance soak or
stress testing.
2. Performance Testing should only be done after the System Integration Testing

Although this is mostly the norm in the industry, performance testing can also be done while the initial development
of the application is taking place. This kind of approach is known as the Early Performance Testing. This approach
would ensure a holistic development of the application keeping the performance parameters in mind. Thus the
finding of a performance bug just before the release of the application and the cost involved in rectifying the bug is
reduced to a great extent.
3. Performance Testing only involves creation of scripts and any application changes would cause a simple
refactoring of the scripts.

Performance Testing in itself is an evolving science in the Software Industry. Scripting itself although important, is
only one of the components of the performance testing. The major challenge for any performance tester is to
determine the type of tests needed to execute and analyzing the various performance counters to determine the
performance bottleneck.
The other segment of the myth concerning the change in application would result only in little refactoring in the
scripts is also untrue as any form of change on the UI especially in the Web protocol would entail complete
re-development of the scripts from scratch. This problem becomes bigger if the protocols involved include Web
Services, Siebel, Citrix, and SAP.

Technology
Performance testing technology employs one or more PCs or Unix servers to act as injectors – each emulating the 
presence of numbers of users and each running an automated sequence of interactions (recorded as a script, or as a 
series of scripts to emulate different types of user interaction) with the host whose performance is being tested. 
Usually, a separate PC acts as a test conductor, coordinating and gathering metrics from each of the injectors and 
collating performance data for reporting purposes. The usual sequence is to ramp up the load – starting with a small

http://en.wikipedia.org/w/index.php?title=PTE
http://en.wikipedia.org/w/index.php?title=Software_engineer
http://en.wikipedia.org/w/index.php?title=Profiler_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Software_Industry
http://en.wikipedia.org/w/index.php?title=Web_protocol
http://en.wikipedia.org/w/index.php?title=Siebel
http://en.wikipedia.org/w/index.php?title=Citrix
http://en.wikipedia.org/w/index.php?title=SAP_ERP


Software performance testing 60

number of virtual users and increasing the number over a period to some maximum. The test result shows how the
performance varies with the load, given as number of users vs response time. Various tools, are available to perform
such tests. Tools in this category usually execute a suite of tests which will emulate real users against the system.
Sometimes the results can reveal oddities, e.g., that while the average response time might be acceptable, there are
outliers of a few key transactions that take considerably longer to complete – something that might be caused by
inefficient database queries, pictures etc.
Performance testing can be combined with stress testing, in order to see what happens when an acceptable load is
exceeded –does the system crash? How long does it take to recover if a large load is reduced? Does it fail in a way
that causes collateral damage?
Analytical Performance Modeling is a method to model the behaviour of an application in a spreadsheet. The model
is fed with measurements of transaction resource demands (CPU, disk I/O, LAN, WAN), weighted by the
transaction-mix (business transactions per hour). The weighted transaction resource demands are added-up to obtain
the hourly resource demands and divided by the hourly resource capacity to obtain the resource loads. Using the
responsetime formula (R=S/(1-U), R=responsetime, S=servicetime, U=load), responsetimes can be calculated and
calibrated with the results of the performance tests. Analytical performance modelling allows evaluation of design
options and system sizing based on actual or anticipated business usage. It is therefore much faster and cheaper than
performance testing, though it requires thorough understanding of the hardware platforms.

Tasks to undertake
Tasks to perform such a test would include:
• Decide whether to use internal or external resources to perform the tests, depending on inhouse expertise (or lack

thereof)
• Gather or elicit performance requirements (specifications) from users and/or business analysts
• Develop a high-level plan (or project charter), including requirements, resources, timelines and milestones
• Develop a detailed performance test plan (including detailed scenarios and test cases, workloads, environment

info, etc.)
• Choose test tool(s)
• Specify test data needed and charter effort (often overlooked, but often the death of a valid performance test)
• Develop proof-of-concept scripts for each application/component under test, using chosen test tools and strategies
• Develop detailed performance test project plan, including all dependencies and associated timelines
• Install and configure injectors/controller
• Configure the test environment (ideally identical hardware to the production platform), router configuration, quiet

network (we don’t want results upset by other users), deployment of server instrumentation, database test sets
developed, etc.

• Execute tests – probably repeatedly (iteratively) in order to see whether any unaccounted for factor might affect
the results

• Analyze the results - either pass/fail, or investigation of critical path and recommendation of corrective action

http://en.wikipedia.org/w/index.php?title=Analytical_Performance_Modeling
http://en.wikipedia.org/w/index.php?title=CPU
http://en.wikipedia.org/w/index.php?title=LAN
http://en.wikipedia.org/w/index.php?title=WAN
http://en.wikipedia.org/w/index.php?title=Plan
http://en.wikipedia.org/w/index.php?title=Test_tool
http://en.wikipedia.org/w/index.php?title=Proof-of-concept


Software performance testing 61

Methodology

Performance Testing Web Applications Methodology
According to the Microsoft Developer Network the Performance Testing Methodology [1] consists of the following
activities:
• Activity 1. Identify the Test Environment. Identify the physical test environment and the production

environment as well as the tools and resources available to the test team. The physical environment includes
hardware, software, and network configurations. Having a thorough understanding of the entire test environment
at the outset enables more efficient test design and planning and helps you identify testing challenges early in the
project. In some situations, this process must be revisited periodically throughout the project’s life cycle.

• Activity 2. Identify Performance Acceptance Criteria. Identify the response time, throughput, and resource
utilization goals and constraints. In general, response time is a user concern, throughput is a business concern, and
resource utilization is a system concern. Additionally, identify project success criteria that may not be captured by
those goals and constraints; for example, using performance tests to evaluate what combination of configuration
settings will result in the most desirable performance characteristics.

• Activity 3. Plan and Design Tests. Identify key scenarios, determine variability among representative users and
how to simulate that variability, define test data, and establish metrics to be collected. Consolidate this
information into one or more models of system usage to be implemented, executed, and analyzed.

• Activity 4. Configure the Test Environment. Prepare the test environment, tools, and resources necessary to
execute each strategy as features and components become available for test. Ensure that the test environment is
instrumented for resource monitoring as necessary.

• Activity 5. Implement the Test Design. Develop the performance tests in accordance with the test design.
• Activity 6. Execute the Test. Run and monitor your tests. Validate the tests, test data, and results collection.

Execute validated tests for analysis while monitoring the test and the test environment.
• Activity 7. Analyze Results, Tune, and Retest. Analyse, Consolidate and share results data. Make a tuning

change and retest. Improvement or degradation? Each improvement made will return smaller improvement than
the previous improvement. When do you stop? When you reach a CPU bottleneck, the choices then are either
improve the code or add more CPU.

External links
• The Art of Application Performance Testing - O'Reilly ISBN 978-0-596-52066-3 [2] (Book)
• Performance Testing Guidance for Web Applications [3] (MSDN)
• Performance Testing Guidance for Web Applications [4] (Book)
• Performance Testing Guidance for Web Applications [5] (PDF)
• Performance Testing Guidance [6] (Online KB)
• Performance Testing Videos [7] (MSDN)
• Open Source Performance Testing tools [8]

• "User Experience, not Metrics" and "Beyond Performance Testing" [9]

• "Performance Testing Traps / Pitfalls" [10]

http://msdn2.microsoft.com/en-us/library/bb924376.aspx
http://en.wikipedia.org/w/index.php?title=Test_environment
http://en.wikipedia.org/w/index.php?title=Test_design
http://en.wikipedia.org/w/index.php?title=Life_cycle
http://en.wikipedia.org/w/index.php?title=Scenario
http://en.wikipedia.org/w/index.php?title=Simulate
http://en.wikipedia.org/w/index.php?title=Results_collection
http://oreilly.com/catalog/9780596520670
http://msdn2.microsoft.com/en-us/library/bb924375.aspx
http://www.amazon.com/dp/0735625700
http://www.codeplex.com/PerfTestingGuide/Release/ProjectReleases.aspx?ReleaseId=6690
http://www.codeplex.com/PerfTesting
http://msdn2.microsoft.com/en-us/library/bb671346.aspx
http://www.opensourcetesting.org/performance.php
http://www.perftestplus.com/pubs.htm
http://www.mercury-consulting-ltd.com/wp/Performance_Testing_Traps.html


Software performance testing 62

References
[1] http:/ / msdn2. microsoft. com/ en-us/ library/ bb924376. aspx
[2] http:/ / oreilly. com/ catalog/ 9780596520670
[3] http:/ / msdn2. microsoft. com/ en-us/ library/ bb924375. aspx
[4] http:/ / www. amazon. com/ dp/ 0735625700
[5] http:/ / www. codeplex. com/ PerfTestingGuide/ Release/ ProjectReleases. aspx?ReleaseId=6690
[6] http:/ / www. codeplex. com/ PerfTesting
[7] http:/ / msdn2. microsoft. com/ en-us/ library/ bb671346. aspx
[8] http:/ / www. opensourcetesting. org/ performance. php
[9] http:/ / www. perftestplus. com/ pubs. htm
[10] http:/ / www. mercury-consulting-ltd. com/ wp/ Performance_Testing_Traps. html

Stress testing
In software testing, stress testing refers to tests that determine the robustness of software by testing beyond the
limits of normal operation. Stress testing is particularly important for "mission critical" software, but is used for all
types of software. Stress tests commonly put a greater emphasis on robustness, availability, and error handling under
a heavy load, than on what would be considered correct behavior under normal circumstances.

Field experience
Failures may be related to:
• use of non production like environments, e.g. databases of smaller size
• complete lack of load or stress testing

Rationale
Reasons for stress testing include:
• The software being tested is "mission critical", that is, failure of the software (such as a crash) would have

disastrous consequences.
• The amount of time and resources dedicated to testing is usually not sufficient, with traditional testing methods, to

test all of the situations in which the software will be used when it is released.
• Even with sufficient time and resources for writing tests, it may not be possible to determine beforehand all of the

different ways in which the software will be used. This is particularly true for operating systems and middleware,
which will eventually be used by software that doesn't even exist at the time of the testing.

• Customers may use the software on computers that have significantly fewer computational resources (such as
memory or disk space) than the computers used for testing.

• Concurrency is particularly difficult to test with traditional testing methods. Stress testing may be necessary to
find race conditions and deadlocks.

• Software such as web servers that will be accessible over the Internet may be subject to denial of service attacks.
• Under normal conditions, certain types of bugs, such as memory leaks, can be fairly benign and difficult to detect

over the short periods of time in which testing is performed. However, these bugs can still be potentially serious.
In a sense, stress testing for a relatively short period of time can be seen as simulating normal operation for a
longer period of time.

http://msdn2.microsoft.com/en-us/library/bb924376.aspx
http://oreilly.com/catalog/9780596520670
http://msdn2.microsoft.com/en-us/library/bb924375.aspx
http://www.amazon.com/dp/0735625700
http://www.codeplex.com/PerfTestingGuide/Release/ProjectReleases.aspx?ReleaseId=6690
http://www.codeplex.com/PerfTesting
http://msdn2.microsoft.com/en-us/library/bb671346.aspx
http://www.opensourcetesting.org/performance.php
http://www.perftestplus.com/pubs.htm
http://www.mercury-consulting-ltd.com/wp/Performance_Testing_Traps.html
http://en.wikipedia.org/w/index.php?title=Stress_testing
http://en.wikipedia.org/w/index.php?title=Robustness_of_software
http://en.wikipedia.org/w/index.php?title=Mission_critical
http://en.wikipedia.org/w/index.php?title=Availability
http://en.wikipedia.org/w/index.php?title=Error_handling
http://en.wikipedia.org/w/index.php?title=Crash_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Random_access_memory
http://en.wikipedia.org/w/index.php?title=Disk_storage
http://en.wikipedia.org/w/index.php?title=Concurrency_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Deadlock
http://en.wikipedia.org/w/index.php?title=Web_server
http://en.wikipedia.org/w/index.php?title=Internet
http://en.wikipedia.org/w/index.php?title=Denial_of_service
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Memory_leak


Stress testing 63

Relationship to branch coverage
Branch coverage (a specific type of code coverage) is a metric of the number of branches executed under test, where
"100% branch coverage" means that every branch in a program has been executed at least once under some test.
Branch coverage is one of the most important metrics for software testing; software for which the branch coverage is
low is not generally considered to be thoroughly tested. Note that code coverage metrics are a property of the tests
for a piece of software, not of the software being tested.
Achieving high branch coverage often involves writing negative test variations, that is, variations where the software
is supposed to fail in some way, in addition to the usual positive test variations, which test intended usage. An
example of a negative variation would be calling a function with illegal parameters. There is a limit to the branch
coverage that can be achieved even with negative variations, however, as some branches may only be used for
handling of errors that are beyond the control of the test. For example, a test would normally have no control over
memory allocation, so branches that handle an "out of memory" error are difficult to test.
Stress testing can achieve higher branch coverage by producing the conditions under which certain error handling
branches are followed. The coverage can be further improved by using fault injection.

Examples
• A web server may be stress tested using scripts, bots, and various denial of service tools to observe the

performance of a web site during peak loads.

Load testing
Load testing is the process of putting demand on a system or device and measuring its response. Load testing is
performed to determine a system’s behavior under both normal and anticipated peak load conditions. It helps to
identify the maximum operating capacity of an application as well as any bottlenecks and determine which element
is causing degradation. When the load placed on the system is raised beyond normal usage patterns, in order to test
the system's response at unusually high or peak loads, it is known as stress testing. The load is usually so great that
error conditions are the expected result, although no clear boundary exists when an activity ceases to be a load test
and becomes a stress test.
There is little agreement on what the specific goals of load testing are. The term is often used synonymously with
software performance testing, reliability testing, and volume testing. Load testing is a type of non-functional testing.

Software load testing
The term load testing is used in different ways in the professional software testing community. Load testing
generally refers to the practice of modeling the expected usage of a software program by simulating multiple users
accessing the program concurrently. As such, this testing is most relevant for multi-user systems; often one built
using a client/server model, such as web servers. However, other types of software systems can also be load tested.
For example, a word processor or graphics editor can be forced to read an extremely large document; or a financial
package can be forced to generate a report based on several years' worth of data. The most accurate load testing
simulates actual use, as opposed to testing using theoretical or analytical modeling.
Load testing lets you measure your website's QOS performance based on actual customer behavior. Nearly all the
load testing tools and frame-works follow the classical load testing paradigm, which is listed in Figure 1. When
customers visit your web site, a script recorder records the communication and then creates related interaction
scripts. A load generator tries to replay the recorded scripts, which could possibly be modified with different test
parameters before replay. In the replay procedure, both the hardware and software statistics will be monitored and

http://en.wikipedia.org/w/index.php?title=Branch_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Function_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Web_server
http://en.wikipedia.org/w/index.php?title=Shell_script
http://en.wikipedia.org/w/index.php?title=Internet_bot
http://en.wikipedia.org/w/index.php?title=Denial_of_service
http://en.wikipedia.org/w/index.php?title=Stress_testing
http://en.wikipedia.org/w/index.php?title=Reliability_testing


Load testing 64

collected by the conductor, these statistics include the CPU, memory, disk IO of the physical servers and the
response time, throughput of the System Under Test (short as SUT), etc. And at last, all these statistics will be
analyzed and a load testing report will be generated.
Load and performance testing analyzes software intended for a multi-user audience by subjecting the software to
different amounts of virtual and live users while monitoring performance measurements under these different loads.
Load and performance testing is usually conducted in a test environment identical to the production environment
before the software system is permitted to go live.
As an example, a web site with shopping cart capability is required to support 100 concurrent users broken out into
following activities:
• 25 Virtual Users (VUsers) log in, browse through items and then log off
• 25 VUsers log in, add items to their shopping cart, check out and then log off
• 25 VUsers log in, return items previously purchased and then log off
• 25 VUsers just log in without any subsequent activity
A test analyst can use various load testing tools to create these VUsers and their activities. Once the test has started
and reached a steady state, the application is being tested at the 100 VUser load as described above. The application’s
performance can then be monitored and captured.
The specifics of a load test plan or script will generally vary across organizations. For example, in the bulleted list
above, the first item could represent 25 VUsers browsing unique items, random items, or a selected set of items
depending upon the test plan or script developed. However, all load test plans attempt to simulate system
performance across a range of anticipated peak workflows and volumes. The criteria for passing or failing a load test
(pass/fail criteria) are generally different across organizations as well. There are no standards specifying acceptable
load testing performance metrics.
A common misconception is that load testing software provides record and playback capabilities like regression
testing tools. Load testing tools analyze the entire OSI protocol stack whereas most regression testing tools focus on
GUI performance. For example, a regression testing tool will record and playback a mouse click on a button on a
web browser, but a load testing tool will send out hypertext the web browser sends after the user clicks the button. In
a multiple-user environment, load testing tools can send out hypertext for multiple users with each user having a
unique login ID, password, etc.
The popular load testing tools available also provide insight into the causes for slow performance. There are
numerous possible causes for slow system performance, including, but not limited to, the following:
• Application server(s) or software
• Database server(s)
• Network – latency, congestion, etc.
• Client-side processing
• Load balancing between multiple servers
Load testing is especially important if the application, system or service will be subject to a service level agreement
or SLA.

http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Shopping_cart_software
http://en.wikipedia.org/w/index.php?title=OSI_Model
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=Latency_%28engineering%29
http://en.wikipedia.org/w/index.php?title=Network_congestion
http://en.wikipedia.org/w/index.php?title=Service_level_agreement


Load testing 65

User Experience Under Load test
In the example above, while the device under test (DUT) is under production load - 100 VUsers, run the target
application. The performance of the target application here would be the User Experience Under Load. It describe
how fast or slow the DUT responds, and how satisfied or how the user actually perceives performance.
Many performance testers are running this test, but they call it different names. This name was selected by the
Panelists and many Performance Testers in 2011 Online Performance Summit by STP [1].
There are already many tools and frameworks available to do the load testing from both commercial and open
source.

Load testing tools

 Tool Name  Company Name  Notes 

AppLoader NRG Global Load and Performance testing Solution. Automates tests on the GUI level of the application. Can
be used for unit, integration, and regression testing as well. Licensed.

blitz.io [2] Mu Dynamics Blitz enables self-service load and performance testing for cloud and mobile applications.
Solution is focused on continuous testing for DevOps that commonly make multiple changes
every day.

IBM Rational
Performance Tester

IBM Eclipse based large scale performance testing tool primarily used for executing large volume
performance tests to measure system response time for server based applications. Licensed.

IXIA IxLoad Ixia (company) Chassis based Load and Performance Testing System with High Performance
(10G/40G/100G-Multiport Cards). Licensed.

JMeter An Apache Jakarta
open source project

Java desktop application for load testing and performance measurement.

Load Test (included
with Soatest

Parasoft Performance testing tool that verifies functionality and performance under load. Supports
SOAtest tests, JUnits, lightweight socket-based components. Detects concurrency issues.

LoadRunner HP Performance testing tool primarily used for executing large numbers of tests (or a large number or
virtual users) concurrently. Can be used for unit and integration testing as well. Licensed.

OpenSTA Open System Testing
Architecture

Open source web load/stress testing application, licensed under the Gnu GPL. Utilizes a
distributed software architecture based on CORBA. OpenSTA binaries available for Windows.

SilkPerformer Micro Focus Performance testing in an open and sharable model which allows realistic load tests for thousands
of users running business scenarios across a broad range of enterprise application environments.

SLAMD Open source, 100% Java web application, scriptable, distributed with Tomcat.

Visual Studio Load
Test

Microsoft Visual Studio includes a load test tool which enables a developer to execute a variety of tests
(web, unit etc...) with a combination of configurations to simulate real user load.[3]

Mechanical load testing
The purpose of a mechanical load test is to verify that all the component parts of a structure including materials,
base-fixings are fit for task and loading it is designed for.
The Supply of Machinery (Safety) Regulation 1992 UK state that load testing is undertaken before the equipment is
put into service for the first time.
Load testing can be either Performance,Static or Dynamic.
Performance testing is when the stated safe working load (SWL) for a configuration is used to determine that the
item performs to the manufactures specification. If an item fails this test then any further tests are pointless.
Static testing is when a load at a factor above the SWL is applied. The item is not operated through all
configurations as it is not a requirement of this test.

http://www.softwaretestpro.com/
http://en.wikipedia.org/w/index.php?title=AppLoader
http://blitz.io/
http://en.wikipedia.org/w/index.php?title=DevOps
http://en.wikipedia.org/w/index.php?title=IBM_Rational_Performance_Tester
http://en.wikipedia.org/w/index.php?title=IBM_Rational_Performance_Tester
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=IXIA_IxLoad
http://en.wikipedia.org/w/index.php?title=Ixia_%28company%29
http://en.wikipedia.org/w/index.php?title=JMeter
http://en.wikipedia.org/w/index.php?title=Soatest
http://en.wikipedia.org/w/index.php?title=Parasoft
http://en.wikipedia.org/w/index.php?title=LoadRunner
http://en.wikipedia.org/w/index.php?title=HP
http://en.wikipedia.org/w/index.php?title=OpenSTA
http://en.wikipedia.org/w/index.php?title=Borland
http://en.wikipedia.org/w/index.php?title=SLAMD
http://en.wikipedia.org/w/index.php?title=Tomcat
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Microsoft


Load testing 66

Dynamic testing is when a load at a factor above the SWL is applied. The item is then operated fully through all
configurations and motions. Care must be taken during this test as there is a great risk of catastrophic failure if
incorrectly carried out.
The design criteria, relevant legislation or the Competent Person will dictate what test is required.
Under the Lifting Operations and Lifting Equipment Regulations 1998 UK load testing after the initial test is required
if a major component is replaced, if the item is moved from one location to another or as dictated by the Competent
Person

The loads required for a test are stipulated by the item under test, but here are a few to be aware off. Powered lifting
equipment Static test to 1.25 SWL and dynamic test to 1.1 SWL. Manual lifting equipment Static test to 1.5 SWL
For lifting accessories. 2 SWL for items up to 30 tonne capacity. 1.5 SWL for items above 30 tonne capacity. 1 SWL
for items above 100 tonnes.

Car charging system
A load test can be used to evaluate the health of a car's battery. The tester consists of a large resistor that has a
resistance similar to a car's starter motor and a meter to read the battery's output voltage both in the unloaded and
loaded state. When the tester is used, the battery's open circuit voltage is checked first. If the open circuit voltage is
below spec (12.6 volts for a fully charged battery), the battery is charged first. After reading the battery's open circuit
voltage, the load is applied. When applied, it draws approximately the same current the car's starter motor would
draw during cranking. Based on the specified cold cranking amperes of the battery, if the voltage under load falls
below a certain point, the battery is bad. Load tests are also used on running cars to check the output of the car's
alternator.

References
[1] http:/ / www. softwaretestpro. com/
[2] http:/ / blitz. io/
[3] http:/ / www. eggheadcafe. com/ tutorials/ aspnet/ 13e16f83-4cf2-4c9d-b75b-aa67fc309108/ load-testing-aspnet-appl. aspx

http:/ / ieeexplore. ieee. org/ xpls/ abs_all. jsp?arnumber=5634372& tag=1 Supply of Machinery (Safety)
Regulations 1992 UK. Lifting Operations and Lifting Equipment Regulations 1998 UK.

External links
• Modeling the Real World for Load Testing Web Sites (http:/ / www. methodsandtools. com/ archive/ archive.

php?id=38) by Steven Splaine

http://en.wikipedia.org/w/index.php?title=Battery_%28electricity%29
http://en.wikipedia.org/w/index.php?title=Starter_motor
http://en.wikipedia.org/w/index.php?title=Cold_cranking_ampere
http://en.wikipedia.org/w/index.php?title=Alternator
http://www.softwaretestpro.com/
http://blitz.io/
http://www.eggheadcafe.com/tutorials/aspnet/13e16f83-4cf2-4c9d-b75b-aa67fc309108/load-testing-aspnet-appl.aspx
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5634372&tag=1
http://www.methodsandtools.com/archive/archive.php?id=38
http://www.methodsandtools.com/archive/archive.php?id=38


Volume testing 67

Volume testing
Volume Testing belongs to the group of non-functional tests, which are often misunderstood and/or used
interchangeably. Volume testing refers to testing a software application with a certain amount of data. This amount
can, in generic terms, be the database size or it could also be the size of an interface file that is the subject of volume
testing. For example, if you want to volume test your application with a specific database size, you will expand your
database to that size and then test the application's performance on it. Another example could be when there is a
requirement for your application to interact with an interface file (could be any file such as .dat, .xml); this
interaction could be reading and/or writing on to/from the file. You will create a sample file of the size you want and
then test the application's functionality with that file in order to test the performance.

Scalability testing
Scalability Testing, part of the battery of non-functional tests, is the testing of a software application for measuring
its capability to scale up or scale out [1] - in terms of any of its non-functional capability - be it the user load
supported, the number of transactions, the data volume etc.
Performance, scalability and reliability are usually considered together by software quality analysts.

References
[1] Scalability (http:/ / msdn2. microsoft. com/ en-us/ library/ aa292172(VS. 71). aspx)

Further reading
Designing Distributed Applications with Visual Studio .NET: Scalability (http:/ / msdn2. microsoft. com/ en-us/
library/ aa292172(VS. 71). aspx)

http://en.wikipedia.org/w/index.php?title=Non-functional_tests
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Performance
http://en.wikipedia.org/w/index.php?title=Non-functional_tests
http://en.wikipedia.org/w/index.php?title=Scale_up
http://en.wikipedia.org/w/index.php?title=Scale_out
http://en.wikipedia.org/w/index.php?title=Performance_analysis
http://en.wikipedia.org/w/index.php?title=Scalability
http://en.wikipedia.org/w/index.php?title=Reliability_engineering
http://msdn2.microsoft.com/en-us/library/aa292172(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/aa292172(VS.71).aspx
http://msdn2.microsoft.com/en-us/library/aa292172(VS.71).aspx


Compatibility testing 68

Compatibility testing
Compatibility testing, part of software non-functional tests, is testing conducted on the application to evaluate the
application's compatibility with the computing environment. Computing environment may contain some or all of the
below mentioned elements:
• Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..
• Bandwidth handling capacity of networking hardware
• Compatibility of peripherals (Printer, DVD drive, etc.)
• Operating systems (MVS, UNIX, Windows, etc.)
• Database (Oracle, Sybase, DB2, etc.)
• Other System Software (Web server, networking/ messaging tool, etc.)
• Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)
Browser compatibility testing, can be more appropriately referred to as user experience testing. This requires that the
web applications are tested on different web browsers, to ensure the following:
• Users have the same visual experience irrespective of the browsers through which they view the web application.
• In terms of functionality, the application must behave and respond the same way across different browsers.
For more information please visit the link BCT [1]

• Carrier compatibility (Verizon, Sprint, Orange, O2, AirTel, etc.)
• Backwards compatibility.
• Hardware (different phones)
• Different Compilers (compile the code correctly)
• Runs on multiple host/guest Emulators
Certification testing falls within the scope of Compatibility testing. Product Vendors run the complete suite of
testing on the newer computing environment to get their application certified for a specific Operating Systems or
Databases.

References
[1] http:/ / essentiaserve. com/ bct. html

http://en.wikipedia.org/w/index.php?title=Non-functional_tests
http://essentiaserve.com/bct.html
http://en.wikipedia.org/w/index.php?title=Emulators
http://essentiaserve.com/bct.html


Portability testing 69

Portability testing
Portability testing refers to the process of testing the ease with which a computer software component can be
moved from one environment to another, e.g. moving from Windows 2000 to Windows XP. This is typically
measured in terms of the maximum amount of effort permitted. Result are expressed in terms of the time required to
move the software and complete data conversion and documentation updates.

Security testing
Security testing is a process to determine that an information system protects data and maintains functionality as
intended.
The six basic security concepts that need to be covered by security testing are: confidentiality, integrity,
authentication, availability, authorization and non-repudiation. Security testing as a term has a number of different
meanings and can be completed in a number of different ways. As such a Security Taxonomy helps us to understand
these different approaches and meanings by providing a base level to work from.

Confidentiality
• A security measure which protects against the disclosure of information to parties other than the intended

recipient that is by no means the only way of ensuring the security....

Integrity
• A measure intended to allow the receiver to determine that the information which it is providing is correct.

Authentication
This might involve confirming the identity of a person, tracing the origins of an artifact, ensuring that a product is
what its packaging and labeling claims to be, or assuring that a computer program is a trusted one.

Authorization
• The process of determining that a requester is allowed to receive a service or perform an operation.
• Access control is an example of authorization.......

Availability
• Assuring information and communications services will be ready for use when expected.
• Information must be kept available to authorized persons when they need it.

Non-repudiation
• In reference to digital security, nonrepudiation means to ensure that a transferred message has been sent and

received by the parties claiming to have sent and received the message. Nonrepudiation is a way to guarantee that
the sender of a message cannot later deny having sent the message and that the recipient cannot deny having
received the message.

http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Windows_2000
http://en.wikipedia.org/w/index.php?title=Windows_XP
http://en.wikipedia.org/w/index.php?title=Data_conversion
http://en.wikipedia.org/w/index.php?title=Information_system
http://en.wikipedia.org/w/index.php?title=Access_control


Security testing 70

Security Testing Taxonomy
Common terms used for the delivery of security testing;
• Discovery - The purpose of this stage is to identify systems within scope and the services in use. It is not intended

to discover vulnerabilities, but version detection may highlight deprecated versions of software / firmware and
thus indicate potential vulnerabilities.

• Vulnerability Scan - Following the discovery stage this looks for known security issues by using automated tools
to match conditions with known vulnerabilities. The reported risk level is set automatically by the tool with no
manual verification or interpretation by the test vendor. This can be supplemented with credential based scanning
that looks to remove some common false positives by using supplied credentials to authenticate with a service
(such as local windows accounts).

• Vulnerability Assessment - This uses discovery and vulnerability scanning to identify security vulnerabilities
and places the findings into the context of the environment under test. An example would be removing common
false positives from the report and deciding risk levels that should be applied to each report finding to improve
business understanding and context.

• Security Assessment - Builds upon Vulnerability Assessment by adding manual verification to confirm exposure,
but does not include the exploitation of vulnerabilities to gain further access. Verification could be in the form of
authorised access to a system to confirm system settings and involve examining logs, system responses, error
messages, codes, etc. A Security Assessment is looking to gain a broad coverage of the systems under test but not
the depth of exposure that a specific vulnerability could lead to.

• Penetration Test - Penetration test simulates an attack by a malicious party. Building on the previous stages and
involves exploitation of found vulnerabilities to gain further access. Using this approach will result in an
understanding of the ability of an attacker to gain access to confidential information, affect data integrity or
availability of a service and the respective impact. Each test is approached using a consistent and complete
methodology in a way that allows the tester to use their problem solving abilities, the output from a range of tools
and their own knowledge of networking and systems to find vulnerabilities that would/ could not be identified by
automated tools. This approach looks at the depth of attack as compared to the Security Assessment approach that
looks at the broader coverage.

• Security Audit - Driven by an Audit / Risk function to look at a specific control or compliance issue.
Characterised by a narrow scope, this type of engagement could make use of any of the earlier approaches
discussed (vulnerability assessment, security assessment, penetration test).

• Security Review - Verification that industry or internal security standards have been applied to system
components or product. This is typically completed through gap analysis and utilises build / code reviews or by
reviewing design documents and architecture diagrams. This activity does not utilise any of the earlier approaches
(Vulnerability Assessment, Security Assessment, Penetration Test, Security Audit)

http://en.wikipedia.org/w/index.php?title=Penetration_test


Attack patterns 71

Attack patterns
In computer science, attack patterns are a group of rigorous methods for finding bugs or errors in code related to
computer security.
Attack patterns are often used for testing purposes and are very important for ensuring that potential vulnerabilities
are prevented. The attack patterns themselves can be used to highlight areas which need to be considered for security
hardening in a software application. They also provide, either physically or in reference, the common solution
pattern for preventing the attack. Such a practice can be termed defensive coding patterns.
Attack patterns define a series of repeatable steps that can be applied to simulate an attack against the security of a
system.

Categories
There are several different ways to categorize attack patterns. One way is to group them into general categories, such
as: Architectural, Physical, and External (see details below). Another way of categorizing attack patterns is to group
them by a specific technology or type of technology (e.g. database attack patterns, web application attack patterns,
network attack patterns, etc. or SQL Server attack patterns, Oracle Attack Patterns, .Net attack patterns, Java attack
patterns, etc.)

Using General Categories
Architectural attack patterns are used to attack flaws in the architectural design of the system. These are things like
weaknesses in protocols, authentication strategies, and system modularization. These are more logic-based attacks
than actual bit-manipulation attacks.
Physical attack patterns are targeted at the code itself. These are things such as SQL injection attacks, buffer
overflows, race conditions, and some of the more common forms of attacks that have become popular in the news.
External attack patterns include attacks such as trojan horse attacks, viruses, and worms. These are not generally
solvable by software-design approaches, because they operate relatively independently from the attacked program.
However, vulnerabilities in a piece of software can lead to these attacks being successful on a system running the
vulnerable code. An example of this is the vulnerable edition of Microsoft SQL Server, which allowed the Slammer
worm to propagate itself.[1] The approach taken to these attacks is generally to revise the vulnerable code.

Structure
Attack Patterns are structured very much like structure of Design patterns. Using this format is helpful for
standardizing the development of attack patterns and ensures that certain information about each pattern is always
documented the same way.
A recommended structure for recording Attack Patterns is as follows:
• Pattern Name 

The label given to the pattern which is commonly used to refer to the pattern in question.
• Type & Subtypes

The pattern type and its associated subtypes aid in classification of the pattern. This allows users to rapidly locate
and identify pattern groups that they will have to deal with in their security efforts.
Each pattern will have a type, and zero or more subtypes that identify the category of the attack pattern. Typical
types include Injection Attack, Denial of Service Attack, Cryptanalysis Attack, etc. Examples of typical subtypes for
Denial Of Service for example would be: DOS – Resource Starvation, DOS-System Crash, DOS-Policy Abuse.

http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Computer_security
http://en.wikipedia.org/w/index.php?title=Vulnerability_%28computing%29
http://en.wikipedia.org/w/index.php?title=Hardening_%28computing%29
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=System
http://en.wikipedia.org/w/index.php?title=Protocol_%28computing%29
http://en.wikipedia.org/w/index.php?title=Authentication
http://en.wikipedia.org/w/index.php?title=SQL_injection
http://en.wikipedia.org/w/index.php?title=Buffer_overflow
http://en.wikipedia.org/w/index.php?title=Buffer_overflow
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Trojan_horse_%28computing%29
http://en.wikipedia.org/w/index.php?title=Computer_virus
http://en.wikipedia.org/w/index.php?title=Computer_worm
http://en.wikipedia.org/w/index.php?title=Microsoft_SQL_Server
http://en.wikipedia.org/w/index.php?title=SQL_Slammer
http://en.wikipedia.org/w/index.php?title=SQL_Slammer
http://en.wikipedia.org/w/index.php?title=Design_pattern_%28computer_science%29%23Documentation
http://en.wikipedia.org/w/index.php?title=SQL_injection
http://en.wikipedia.org/w/index.php?title=Denial_of_Service
http://en.wikipedia.org/w/index.php?title=Cryptanalysis
http://en.wikipedia.org/w/index.php?title=Resource_starvation


Attack patterns 72

Another important use of this field is to ensure that true patterns are not repeated unnecessarily. Often it is easy to
confuse a new exploit with a new attack. New exploits are created all the time for the same attack patterns. The
Buffer Overflow Attack Pattern is a good example. There are many known exploits, and viruses that take advantage
of a Buffer Overflow vulnerability. But they all follow the same pattern. Therefore the Type and Subtype
classification mechanism provides a way to classify a pattern. If the pattern you are creating doesn't have a unique
Type and Subtype, chances are it’s a new exploit for an existing pattern.
This section is also used to indicate if it is possible to automate the attack. If it is possible to automate the attack, it is
recommended to provide a sample in the Sample Attack Code section which is described below.
• Also Known As

Certain attacks may be known by several different names. This field is used to list those other names.
• Description

This is a description of the attack itself, and where it may have originated from. It is essentially a free-form field that
can be used to record information that doesn’t easily fit into the other fields.
• Attacker Intent

This field identifies the intended result of the attacker. This indicates the attacker’s main target and goal for the
attack itself. For example, The Attacker Intent of a DOS – Bandwidth Starvation attack is to make the target web site
unreachable to legitimate traffic.
• Motivation

This field records the attacker’s reason for attempting this attack. It may be to crash a system in order to cause
financial harm to the organization, or it may be to execute the theft of critical data in order to create financial gain for
the attacker.
This field is slightly different than the Attacker Intent field in that it describes why the attacker may want to achieve
the Intent listed in the Attacker Intent field, rather than the physical result of the attack.
• Exploitable Vulnerability

This field indicates the specific or type of vulnerability that creates the attack opportunity in the first place. An
example of this in an Integer Overflow attack would be that the integer based input field is not checking size of the
value of the incoming data to ensure that the target variable is capable of managing the incoming value. This is the
vulnerability that the associated exploit will take advantage of in order to carry out the attack.
• Participants

The Participants are one or more entities that are required for this attack to succeed. This includes the victim systems
as well as the attacker and the attacker’s tools or system components. The name of the entity should be accompanied
by a brief description of their role in the attack and how they interact with each other.
• Process Diagram

These are one or more diagrams of the attack to visually explain how the attack is executed. This diagram can take
whatever form is appropriate but it is recommended that the diagram be similar to a system or class diagram showing
data flows and the components involved.
• Dependencies and Conditions

Every attack must have some context to operate in and the conditions that make the attack possible. This section
describes what conditions are required and what other systems or situations need to be in place in order for the attack
to succeed. For example, for the attacker to be able to execute an Integer Overflow attack, they must have access to
the vulnerable application. That will be common amongst most of the attacks. However if the vulnerability only
exposes itself when the target is running on a remote RPC server, that would also be a condition that would be noted
here.

http://en.wikipedia.org/w/index.php?title=Integer_overflow
http://en.wikipedia.org/w/index.php?title=Class_diagram


Attack patterns 73

• Sample Attack Code

If it is possible to demonstrate the exploit code, this section provides a location to store the demonstration code. In
some cases, such as a Denial of Service attack, specific code may not be possible. However in Overflow, and Cross
Site Scripting type attacks, sample code would be very useful.
• Existing Exploits

Exploits can be automated or manual. Automated exploits are often found as viruses, worms and hacking tools. If
there are any existing exploits known for the attack this section should be used to list a reference to those exploits.
These references can be internal such as corporate knowledge bases, or external such as the various CERT, and Virus
databases.
Exploits are not to be confused with vulnerabilities. An Exploit is an automated or manual attack that utilises the
vulnerability. It is not a listing of a vulnerability found in a particular product for example.
• Follow-On Attacks

Follow-on attacks are any other attacks that may be enabled by this particular attack pattern. For example, a Buffer
Overflow attack pattern, is usually followed by Escalation of Privilege attacks, Subversion attacks or setting up for
Trojan Horse / Backdoor attacks. This field can be particularly useful when researching an attack and identifying
what other potential attacks may have been carried out or set up.
• Mitigation Types

The mitigation types are the basic types of mitigation strategies that would be used to prevent the attack pattern. This
would commonly refer to Security Patterns and Defensive Coding Patterns. Mitigation Types can also be used as a
means of classifying various attack patterns. By classifying Attack Patterns in this manner, libraries can be
developed to implement particular mitigation types which can then be used to mitigate entire classes of Attack
Patterns. This libraries can then be used and reused throughout various applications to ensure consistent and reliable
coverage against particular types of attacks.
• Recommended Mitigation

Since this is an attack pattern, the recommended mitigation for the attack can be listed here in brief. Ideally this will
point the user to a more thorough mitigation pattern for this class of attack.
• Related Patterns

This section will have a few subsections such as Related Patterns, Mitigation Patterns, Security Patterns, and
Architectural Patterns. These are references to patterns that can support, relate to or mitigate the attack and the listing
for the related pattern should note that.
An example of related patterns for an Integer Overflow Attack Pattern is:
Mitigation Patterns – Filtered Input Pattern, Self Defending Properties pattern
Related Patterns – Buffer Overflow Pattern
• Related Alerts, Listings and Publications

This section lists all the references to related alerts listings and publications such as listings in the Common
Vulnerabilities and Exposures list, CERT, SANS, and any related vendor alerts. These listings should be hyperlinked
to the online alerts and listings in order to ensure it references the most up to date information possible.
• CVE: [2]
• CWE: [3]
• CERT: [4]
Various Vendor Notification Sites.

http://en.wikipedia.org/w/index.php?title=Cross-site_scripting
http://en.wikipedia.org/w/index.php?title=Cross-site_scripting
http://en.wikipedia.org/w/index.php?title=Common_Vulnerabilities_and_Exposures
http://en.wikipedia.org/w/index.php?title=Common_Vulnerabilities_and_Exposures
http://cve.mitre.org/
http://cwe.mitre.org/
http://www.cert.org/nav/index_red.html


Attack patterns 74

Further reading
• Alexander, Christopher; Ishikawa, Sara; & Silverstein, Murray. A Pattern Language. New York, NY: Oxford

University Press, 1977
• Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Elements of Reusable Object-Oriented

Software ISBN 0201633612, Addison-Wesley, 1995
• Thompson, Herbert; Chase, Scott, The Software Vulnerability Guide ISBN 1584503580, Charles River Media,

2005
• Gegick, Michael & Williams, Laurie. “Matching Attack Patterns to Security Vulnerabilities in Software-Intensive

System Designs.” ACM SIGSOFT Software Engineering Notes, Proceedings of the 2005 workshop on Software
engineering for secure systems—building trustworthy applications SESS '05, Volume 30, Issue 4, ACM Press,
2005

• Howard, M.; & LeBlanc, D. Writing Secure Code ISBN 0735617228, Microsoft Press, 2002.
• Moore, A. P.; Ellison, R. J.; & Linger, R. C. Attack Modeling for Information Security and Survivability, Software

Engineering Institute, Carnegie Mellon University, 2001
• Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code ISBN 0201786958, Addison-Wesley,

2004
• McGraw, Gary. Software Security: Building Security In ISBN 0321356705, Addison-Wesley, 2006
• Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security Problems the Right Way ISBN

020172152X, Addison-Wesley, 2001
• Schumacher, Markus; Fernandez-Buglioni, Eduardo; Hybertson, Duane; Buschmann, Frank; Sommerlad, Peter

Security Patterns ISBN 0470858842, John Wiley & Sons, 2006
• Koizol, Jack; Litchfield, D.; Aitel, D.; Anley, C.; Eren, S.; Mehta, N.; & Riley. H. The Shellcoder's Handbook:

Discovering and Exploiting Security Holes ISBN 0764544683, Wiley, 2004
• Schneier, Bruce. Attack Trees: Modeling Security Threats Dr. Dobb’s Journal, December, 1999

References
[1] PSS Security Response Team Alert - New Worm: W32.Slammer (http:/ / www. microsoft. com/ technet/ security/ alerts/ slammer. mspx)
[2] http:/ / cve. mitre. org/
[3] http:/ / cwe. mitre. org/
[4] http:/ / www. cert. org/ nav/ index_red. html

• fuzzdb: (http:/ / fuzzdb. googlecode. com)

http://en.wikipedia.org/w/index.php?title=A_Pattern_Language
http://en.wikipedia.org/w/index.php?title=Oxford_University_Press
http://en.wikipedia.org/w/index.php?title=Oxford_University_Press
http://en.wikipedia.org/w/index.php?title=Pearson_PLC
http://en.wikipedia.org/w/index.php?title=Association_for_Computing_Machinery
http://en.wikipedia.org/w/index.php?title=Microsoft_Press
http://en.wikipedia.org/w/index.php?title=Software_Engineering_Institute
http://en.wikipedia.org/w/index.php?title=Software_Engineering_Institute
http://en.wikipedia.org/w/index.php?title=Carnegie_Mellon_University
http://en.wikipedia.org/w/index.php?title=John_Viega
http://en.wikipedia.org/w/index.php?title=John_Wiley_%26_Sons
http://www.microsoft.com/technet/security/alerts/slammer.mspx
http://cve.mitre.org/
http://cwe.mitre.org/
http://www.cert.org/nav/index_red.html
http://fuzzdb.googlecode.com


Localization testing 75

Localization testing
Localization testing is a part of software testing process focused on internationalization and localization aspects of
software. Localization is the process of adapting a globalized application to a particular culture/locale. Localizing an
application requires a basic understanding of the character sets typically used in modern software development and
an understanding of the issues associated with them. Localization includes the translation of the application user
interface and adapting graphics for a specific culture/locale. The localization process can also include translating any
help content associated with the application.
Localization of business solutions requires that you implement the correct business processes and practices for a
culture/locale. Differences in how cultures/locales conduct business are heavily shaped by governmental and
regulatory requirements. Therefore, localization of business logic can be a massive task.
Localization testing checks how well the build has been Localized into a particular target language. This test is based
on the results of globalized testing where the functional support for that particular locale has already been verified. If
the product is not globalized enough to support a given language, you probably will not try to localize it into that
language in the first place!
You still have to check that the application you're shipping to a particular market really works and the following
section shows you some of the general areas on which to focus when performing a localization test.
The following needs to be considered in localization testing:
• Things that are often altered during localization, such as the UserInterface and content files.
• Operating System
• Keyboards
• Text Filters
• Hot keys
• Spelling Rules
• Sorting Rules
• Upper and Lower case conversions
• Printers
• Size of Papers
• Mouse
• Date formats
• Rulers and Measurements
• Memory Availability
• Voice User Interface language/accent
• Video Content
It's also a good idea to check that everything you are going to distribute in a local market complies with the local
laws and regulations.

http://en.wikipedia.org/w/index.php?title=Internationalization_and_localization
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Operating_System
http://en.wikipedia.org/w/index.php?title=Computer_keyboard
http://en.wikipedia.org/w/index.php?title=Measurements
http://en.wikipedia.org/w/index.php?title=Memory
http://en.wikipedia.org/w/index.php?title=Voice_User_Interface
http://en.wikipedia.org/w/index.php?title=Law
http://en.wikipedia.org/w/index.php?title=Regulations


Pseudolocalization 76

Pseudolocalization
Pseudolocalization is a software testing method that is used to test internationalization aspects of software.
Specifically, it brings to light potential difficulties with localization by replacing localizable text (particularly in a
graphical user interface) with text that imitates the most problematic characteristics of text from a wide variety of
languages, and by forcing the application to deal with similar input text.
If used properly, it provides a cheap but effective sanity test for localizability that can be helpful in the early stages
of a software project.

Rationale
If software is not designed with localizability in mind, certain problems can occur when the software is localized.
Text in a target language may tend to be significantly longer than the corresponding text in the original language of
the program, causing the ends of text to be cut off if insufficient space is allocated. Words in a target language may
be longer, causing awkward line breaks. In addition, individual characters in a target language may require more
space, causing modified characters to be cut off vertically, for example. Even worse, characters of a target language
may fail to render properly (or at all) if support for an appropriate font is not included. (This is a larger problem for
legacy software than for newer programs.) On the input side, programmers may make inappropriate assumptions
about the form that user input can take.

Method
For small changes to mature software products, for which a large amount of target text is already available, directly
testing several target languages may be the best option. For newer software (or for larger user-interface changes),
however, waiting for text to be translated can introduce a significant lag into the testing schedule. In addition, it may
not be cost-effective to translate UI text early in the development cycle, as it might change and need to be
retranslated. Here, pseudolocalization can be the best option, as no real translation is needed.
Typically, pseudolocalized text (pseudo-translation) for a program will be generated and used as if it were for a real
locale. Pseudolocalized text should be longer than the original text (perhaps twice as long), contain longer unbroken
strings of characters to test line breaking, and contain characters from different writing systems. A tester will then
inspect each element of the UI to make sure everything is displayed properly. To make it easier for the tester to find
his or her way around the UI, the text may include the original text, or perhaps characters that look similar to the
original text. For example, the string:

Edit program settings

might be replaced with:

[!!! εÐiţ Þr0ģЯãm səTτıИğ§ !!!]

The brackets on either side of the text helps to spot the following issues:
• text that is cut off
• concatenated strings
• hard-coded strings
This type of transformation can be performed by a simple tool and does not require a human translator, resulting in
time and cost savings.
Alternatively, a machine translation system can be used for automatically generating translated strings. This type of
machine-generated pseudolocalization has the advantage of the translated strings featuring the characteristics specific
to the target language and being available in real time at very low cost.

http://en.wikipedia.org/w/index.php?title=Internationalization_and_localization
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Language
http://en.wikipedia.org/w/index.php?title=Sanity_test
http://en.wikipedia.org/w/index.php?title=Diacritic
http://en.wikipedia.org/w/index.php?title=Locale
http://en.wikipedia.org/w/index.php?title=Writing_system
http://en.wikipedia.org/w/index.php?title=Machine_translation


Pseudolocalization 77

One approach to automatically generating translated strings is to add non-ASCII characters at the beginning and end
of the existing text. This allows the existing text to still be read, but clearly identifies what text has been externalized
and what text has not been externalized and exposes UI issues such as the need to accommodate longer text strings.
This allows regular QA staff to test that the code has been properly internationalized.
Tools such as Alchemy Catalyst from Alchemy Software Development and SDL Passolo from SDL have advanced
pseudo translation/localization capability including ability to view rendered Pseudolocalized dialog's and forms in
the tools themselves for formats such as .net, wpf .rc .dll and .exe.

References
Engineering Windows 7 for a Global Market [1]

[1] http:/ / blogs. msdn. com/ b/ e7/ archive/ 2009/ 07/ 07/ engineering-windows-7-for-a-global-market. aspx

Recovery testing
In software testing, recovery testing is the activity of testing how well an application is able to recover from crashes,
hardware failures and other similar problems.
Recovery testing is the forced failure of the software in a variety of ways to verify that recovery is properly
performed. Recovery testing should not be confused with reliability testing, which tries to discover the specific point
at which failure occurs.Recovery testing is basically done in order to check how fast and better the application can
recover against any type of crash or hardware failure etc. Type or extent of recovery is specified in the requirement
specifications. It is basically testing how well a system recovers from crashes, hardware failures, or other
catastrophic problems
Examples of recovery testing:
1. While an application is running, suddenly restart the computer, and afterwards check the validness of the

application's data integrity.
2. While an application is receiving data from a network, unplug the connecting cable. After some time, plug the

cable back in and analyze the application's ability to continue receiving data from the point at which the network
connection disappeared.

3. Restart the system while a browser has a definite number of sessions. Afterwards, check that the browser is able
to recover all of them.

http://en.wikipedia.org/w/index.php?title=Alchemy_Catalyst
http://en.wikipedia.org/w/index.php?title=SDL_Passolo
http://blogs.msdn.com/b/e7/archive/2009/07/07/engineering-windows-7-for-a-global-market.aspx
http://blogs.msdn.com/b/e7/archive/2009/07/07/engineering-windows-7-for-a-global-market.aspx
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Reliability_testing
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Web_browser


Soak testing 78

Soak testing
Soak testing involves testing a system with a significant load extended over a significant period of time, to discover
how the system behaves under sustained use.
For example, in software testing, a system may behave exactly as expected when tested for 1 hour. However, when it
is tested for 3 hours, problems such as memory leaks cause the system to fail or behave randomly.
Soak tests are used primarily to check the reaction of a subject under test under a possible simulated environment for
a given duration and for a given threshold. Observations made during the soak test are used to improve the
characteristics of the subject under test further.
In electronics, soak testing may involve testing a system up to or above its maximum ratings for a long period of
time. Some companies may soak test a product for a period of many months, while also applying external stresses
such as elevated temperatures.
This falls under stress testing.

Characterization test
In computer programming, a characterization test is a means to describe (characterize) the actual behaviour of an
existing piece of software, and therefore protect existing behaviour of legacy code against unintended changes via
automated testing. This term was coined by Michael Feathers [1]

The goal of characterization tests is to help developers verify that the modifications made to a reference version of a
software system did not modify its behaviour in unwanted or undesirable ways. They enable, and provide a safety
net for, extending and refactoring code that does not have adequate unit tests.
When creating a characterization test, one must observe what outputs occur for a given set of inputs. Given an
observation that the legacy code gives a certain output based on given inputs, then a test can be written that asserts
that the output of the legacy code matches the observed result for the given inputs. For example, if one observes that
f(3.14) == 42, then this could be created as a characterization test. Then, after modifications to the system, the test
can determine if the modifications caused changes in the results when given the same inputs.
Unfortunately, as with any testing, it is generally not possible to create a characterization test for every possible input
and output. As such, many people opt for either statement or branch coverage. However, even this can be difficult.
Test writers must use their judgment to decide how much testing is appropriate. It is often sufficient to write
characterization tests that only cover the specific inputs and outputs that are known to occur, paying special attention
to edge cases.
Unlike regression tests, to which they are very similar, characterization tests do not verify the correct behaviour of
the code, which can be impossible to determine. Instead they verify the behaviour that was observed when they were
written. Often no specification or test suite is available, leaving only characterization tests as an option, since the
conservative path is to assume that the old behaviour is the required behaviour. Characterization tests are, essentially,
change detectors. It is up to the person analyzing the results to determine if the detected change was expected and/or
desirable, or unexpected and/or undesirable.
One of the interesting aspects of characterization tests is that, since they are based on existing code, it's possible to
generate some characterization tests automatically. An automated characterization test tool will exercise existing
code with a wide range of relevant and/or random input values, record the output values (or state changes) and
generate a set of characterization tests. When the generated tests are executed against a new version of the code, they
will produce one or more failures/warnings if that version of the code has been modified in a way that changes a
previously established behaviour.

http://en.wikipedia.org/w/index.php?title=Memory_leak
http://en.wikipedia.org/w/index.php?title=Computer_programming
http://en.wikipedia.org/w/index.php?title=Legacy_code
http://en.wikipedia.org/w/index.php?title=Automated_testing
http://en.wikipedia.org/w/index.php?title=Michael_Feathers
http://en.wikipedia.org/w/index.php?title=Refactoring
http://en.wikipedia.org/w/index.php?title=Unit_test


Characterization test 79

References
[1] Feathers, Michael C. Working Effectively with Legacy Code (ISBN 0-13-117705-2).

External links
• Characterization Tests (http:/ / c2. com/ cgi/ wiki?CharacterizationTest)
• Working Effectively With Characterization Tests (http:/ / www. artima. com/ weblogs/ viewpost.

jsp?thread=198296) first in a blog-based series of tutorials on characterization tests.
• Change Code Without Fear (http:/ / www. ddj. com/ development-tools/ 206105233) DDJ article on

characterization tests.

http://c2.com/cgi/wiki?CharacterizationTest
http://www.artima.com/weblogs/viewpost.jsp?thread=198296
http://www.artima.com/weblogs/viewpost.jsp?thread=198296
http://www.ddj.com/development-tools/206105233


80

Unit testing

Unit testing
In computer programming, unit testing is a method by which individual units of source code are tested to determine
if they are fit for use. A unit is the smallest testable part of an application. In procedural programming a unit may be
an individual function or procedure. In object-oriented programming a unit is usually an interface, such as a class.
Unit tests are created by programmers or occasionally by white box testers during the development process.
Ideally, each test case is independent from the others: substitutes like method stubs, mock objects,[1] fakes and test
harnesses can be used to assist testing a module in isolation. Unit tests are typically written and run by software
developers to ensure that code meets its design and behaves as intended. Its implementation can vary from being
very manual (pencil and paper) to being formalized as part of build automation.

Benefits
The goal of unit testing is to isolate each part of the program and show that the individual parts are correct.[2] A unit
test provides a strict, written contract that the piece of code must satisfy. As a result, it affords several benefits. Unit
tests find problems early in the development cycle.

Facilitates change
Unit testing allows the programmer to refactor code at a later date, and make sure the module still works correctly
(e.g., in regression testing). The procedure is to write test cases for all functions and methods so that whenever a
change causes a fault, it can be quickly identified and fixed.
Readily-available unit tests make it easy for the programmer to check whether a piece of code is still working
properly.
In continuous unit testing environments, through the inherent practice of sustained maintenance, unit tests will
continue to accurately reflect the intended use of the executable and code in the face of any change. Depending upon
established development practices and unit test coverage, up-to-the-second accuracy can be maintained.

Simplifies integration
Unit testing may reduce uncertainty in the units themselves and can be used in a bottom-up testing style approach.
By testing the parts of a program first and then testing the sum of its parts, integration testing becomes much easier.
An elaborate hierarchy of unit tests does not equal integration testing. Integration with peripheral units should be
included in integration tests, but not in unit tests. Integration testing typically still relies heavily on humans testing
manually; high-level or global-scope testing can be difficult to automate, such that manual testing often appears
faster and cheaper.

http://en.wikipedia.org/w/index.php?title=Computer_programming
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Procedural_programming
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Mock_object%23Mocks_and_fakes
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Build_automation
http://en.wikipedia.org/w/index.php?title=Development_cycle
http://en.wikipedia.org/w/index.php?title=Refactoring
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Top-down_and_bottom-up_design


Unit testing 81

Documentation
Unit testing provides a sort of living documentation of the system. Developers looking to learn what functionality is
provided by a unit and how to use it can look at the unit tests to gain a basic understanding of the unit's API.
Unit test cases embody characteristics that are critical to the success of the unit. These characteristics can indicate
appropriate/inappropriate use of a unit as well as negative behaviors that are to be trapped by the unit. A unit test
case, in and of itself, documents these critical characteristics, although many software development environments do
not rely solely upon code to document the product in development.
By contrast, ordinary narrative documentation is more susceptible to drifting from the implementation of the
program and will thus become outdated (e.g., design changes, feature creep, relaxed practices in keeping documents
up-to-date).

Design
When software is developed using a test-driven approach, the unit test may take the place of formal design. Each unit
test can be seen as a design element specifying classes, methods, and observable behaviour. The following Java
example will help illustrate this point.
Here is a test class that specifies a number of elements of the implementation. First, that there must be an interface
called Adder, and an implementing class with a zero-argument constructor called AdderImpl. It goes on to assert that
the Adder interface should have a method called add, with two integer parameters, which returns another integer. It
also specifies the behaviour of this method for a small range of values.

public class TestAdder {

    public void testSum() {

        Adder adder = new AdderImpl();

        assert(adder.add(1, 1) == 2);

        assert(adder.add(1, 2) == 3);

        assert(adder.add(2, 2) == 4);

        assert(adder.add(0, 0) == 0);

        assert(adder.add(-1, -2) == -3);

        assert(adder.add(-1, 1) == 0);

        assert(adder.add(1234, 988) == 2222);

    }

}

In this case the unit test, having been written first, acts as a design document specifying the form and behaviour of a
desired solution, but not the implementation details, which are left for the programmer. Following the "do the
simplest thing that could possibly work" practice, the easiest solution that will make the test pass is shown below.

interface Adder {

    int add(int a, int b);

}

class AdderImpl implements Adder {

    int add(int a, int b) {

        return a + b;

    }

}

Unlike other diagram-based design methods, using a unit-test as a design has one significant advantage. The design
document (the unit-test itself) can be used to verify that the implementation adheres to the design. With the unit-test

http://en.wikipedia.org/w/index.php?title=Application_programming_interface
http://en.wikipedia.org/w/index.php?title=Feature_creep
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29


Unit testing 82

design method, the tests will never pass if the developer does not implement the solution according to the design.
It is true that unit testing lacks some of the accessibility of a diagram, but UML diagrams are now easily generated
for most modern languages by free tools (usually available as extensions to IDEs). Free tools, like those based on the
xUnit framework, outsource to another system the graphical rendering of a view for human consumption.

Separation of interface from implementation
Because some classes may have references to other classes, testing a class can frequently spill over into testing
another class. A common example of this is classes that depend on a database: in order to test the class, the tester
often writes code that interacts with the database. This is a mistake, because a unit test should usually not go outside
of its own class boundary, and especially should not cross such process/network boundaries because this can
introduce unacceptable performance problems to the unit test-suite. Crossing such unit boundaries turns unit tests
into integration tests, and when test cases fail, makes it less clear which component is causing the failure. See also
Fakes, mocks and integration tests
Instead, the software developer should create an abstract interface around the database queries, and then implement
that interface with their own mock object. By abstracting this necessary attachment from the code (temporarily
reducing the net effective coupling), the independent unit can be more thoroughly tested than may have been
previously achieved. This results in a higher quality unit that is also more maintainable.

Parameterized Unit Testing (PUT)
Parameterized Unit Tests (PUTs) are tests that take parameters. Unlike traditional unit tests, which are usually closed
methods, PUTs take any set of parameters. PUTs have been supported by JUnit 4 and various .NET test frameworks.
Suitable parameters for the unit tests may be supplied manually or in some cases are automatically generated by the
test framework. Various industrial testing tools also exist to generate test inputs for PUTs.

Unit testing limitations
Testing cannot be expected to catch every error in the program: it is impossible to evaluate every execution path in
all but the most trivial programs. The same is true for unit testing. Additionally, unit testing by definition only tests
the functionality of the units themselves. Therefore, it will not catch integration errors or broader system-level errors
(such as functions performed across multiple units, or non-functional test areas such as performance). Unit testing
should be done in conjunction with other software testing activities. Like all forms of software testing, unit tests can
only show the presence of errors; they cannot show the absence of errors.
Software testing is a combinatorial problem. For example, every boolean decision statement requires at least two
tests: one with an outcome of "true" and one with an outcome of "false". As a result, for every line of code written,
programmers often need 3 to 5 lines of test code.[3] This obviously takes time and its investment may not be worth
the effort. There are also many problems that cannot easily be tested at all – for example those that are
nondeterministic or involve multiple threads. In addition, writing code for a unit test is as likely to be at least as
buggy as the code it is testing. Fred Brooks in The Mythical Man-Month quotes: never take two chronometers to sea.
Always take one or three. Meaning, if two chronometers contradict, how do you know which one is correct?
To obtain the intended benefits from unit testing, rigorous discipline is needed throughout the software development
process. It is essential to keep careful records not only of the tests that have been performed, but also of all changes
that have been made to the source code of this or any other unit in the software. Use of a version control system is
essential. If a later version of the unit fails a particular test that it had previously passed, the version-control software
can provide a list of the source code changes (if any) that have been applied to the unit since that time.
It is also essential to implement a sustainable process for ensuring that test case failures are reviewed daily and 
addressed immediately.[4] If such a process is not implemented and ingrained into the team's workflow, the

http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Reference_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Test-driven_development%23Fakes%2C_mocks_and_integration_tests
http://en.wikipedia.org/w/index.php?title=Performance_testing
http://en.wikipedia.org/w/index.php?title=Nondeterministic_algorithm
http://en.wikipedia.org/w/index.php?title=Thread_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=The_Mythical_Man-Month
http://en.wikipedia.org/w/index.php?title=Marine_chronometer
http://en.wikipedia.org/w/index.php?title=Version_control


Unit testing 83

application will evolve out of sync with the unit test suite, increasing false positives and reducing the effectiveness of
the test suite.

Applications

Extreme Programming
Unit testing is the cornerstone of Extreme Programming, which relies on an automated unit testing framework. This
automated unit testing framework can be either third party, e.g., xUnit, or created within the development group.
Extreme Programming uses the creation of unit tests for test-driven development. The developer writes a unit test
that exposes either a software requirement or a defect. This test will fail because either the requirement isn't
implemented yet, or because it intentionally exposes a defect in the existing code. Then, the developer writes the
simplest code to make the test, along with other tests, pass.
Most code in a system is unit tested, but not necessarily all paths through the code. Extreme Programming mandates
a "test everything that can possibly break" strategy, over the traditional "test every execution path" method. This
leads developers to develop fewer tests than classical methods, but this isn't really a problem, more a restatement of
fact, as classical methods have rarely ever been followed methodically enough for all execution paths to have been
thoroughly tested. Extreme Programming simply recognizes that testing is rarely exhaustive (because it is often too
expensive and time-consuming to be economically viable) and provides guidance on how to effectively focus limited
resources.
Crucially, the test code is considered a first class project artifact in that it is maintained at the same quality as the
implementation code, with all duplication removed. Developers release unit testing code to the code repository in
conjunction with the code it tests. Extreme Programming's thorough unit testing allows the benefits mentioned
above, such as simpler and more confident code development and refactoring, simplified code integration, accurate
documentation, and more modular designs. These unit tests are also constantly run as a form of regression test.
Unit testing is also critical to the concept of Emergent Design. As Emergent Design is heavily dependent upon
Refactoring, unit tests are integral component.[5]

Techniques
Unit testing is commonly automated, but may still be performed manually. The IEEE does not favor one over the
other.[6] A manual approach to unit testing may employ a step-by-step instructional document. Nevertheless, the
objective in unit testing is to isolate a unit and validate its correctness. Automation is efficient for achieving this, and
enables the many benefits listed in this article. Conversely, if not planned carefully, a careless manual unit test case
may execute as an integration test case that involves many software components, and thus preclude the achievement
of most if not all of the goals established for unit testing.
To fully realize the effect of isolation while using an automated approach, the unit or code body under test is
executed within a framework outside of its natural environment. In other words, it is executed outside of the product
or calling context for which it was originally created. Testing in such an isolated manner reveals unnecessary
dependencies between the code being tested and other units or data spaces in the product. These dependencies can
then be eliminated.
Using an automation framework, the developer codes criteria into the test to verify the unit's correctness. During test
case execution, the framework logs tests that fail any criterion. Many frameworks will also automatically flag these
failed test cases and report them in a summary. Depending upon the severity of a failure, the framework may halt
subsequent testing.
As a consequence, unit testing is traditionally a motivator for programmers to create decoupled and cohesive code 
bodies. This practice promotes healthy habits in software development. Design patterns, unit testing, and refactoring

http://en.wikipedia.org/w/index.php?title=Extreme_Programming
http://en.wikipedia.org/w/index.php?title=Refactoring
http://en.wikipedia.org/w/index.php?title=Regression_test
http://en.wikipedia.org/w/index.php?title=Emergent_Design
http://en.wikipedia.org/w/index.php?title=Institute_of_Electrical_and_Electronics_Engineers
http://en.wikipedia.org/w/index.php?title=Coupling_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Cohesion_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Design_pattern_%28computer_science%29


Unit testing 84

often work together so that the best solution may emerge.

Unit testing frameworks
Unit testing frameworks are most often third-party products that are not distributed as part of the compiler suite.
They help simplify the process of unit testing, having been developed for a wide variety of languages. Examples of
testing frameworks include open source solutions such as the various code-driven testing frameworks known
collectively as xUnit, and proprietary/commercial solutions such as TBrun, Testwell CTA++ and VectorCAST/C++.
It is generally possible to perform unit testing without the support of a specific framework by writing client code that
exercises the units under test and uses assertions, exception handling, or other control flow mechanisms to signal
failure. Unit testing without a framework is valuable in that there is a barrier to entry for the adoption of unit testing;
having scant unit tests is hardly better than having none at all, whereas once a framework is in place, adding unit
tests becomes relatively easy.[7] In some frameworks many advanced unit test features are missing or must be
hand-coded.

Language-level unit testing support
Some programming languages directly support unit testing. Their grammar allows the direct declaration of unit tests
without importing a library (whether third party or standard). Additionally, the boolean conditions of the unit tests
can be expressed in the same syntax as boolean expressions used in non-unit test code, such as what is used for
<syntaxhighlight lang="java" enclose="none"> if </syntaxhighlight> and
<syntaxhighlight lang="java" enclose="none"> while </syntaxhighlight> statements.
Languages that directly support unit testing include:
• Cobra
• D
• Java

Notes
[1] Fowler, Martin (2007-01-02). "Mocks aren't Stubs" (http:/ / martinfowler. com/ articles/ mocksArentStubs. html). . Retrieved 2008-04-01.
[2] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 75. ISBN 0470042125. .
[3] Cramblitt, Bob (2007-09-20). "Alberto Savoia sings the praises of software testing" (http:/ / searchsoftwarequality. techtarget. com/

originalContent/ 0,289142,sid92_gci1273161,00. html). . Retrieved 2007-11-29.
[4] daVeiga, Nada (2008-02-06). "Change Code Without Fear: Utilize a regression safety net" (http:/ / www. ddj. com/ development-tools/

206105233). . Retrieved 2008-02-08.
[5] http:/ / www. agilesherpa. org/ agile_coach/ engineering_practices/ emergent_design/
[6] IEEE Standards Board, "IEEE Standard for Software Unit Testing: An American National Standard, ANSI/IEEE Std 1008-1987" (http:/ /

iteso. mx/ ~pgutierrez/ calidad/ Estandares/ IEEE 1008. pdf) in IEEE Standards: Software Engineering, Volume Two: Process Standards;
1999 Edition; published by The Institute of Electrical and Electronics Engineers, Inc. Software Engineering Technical Committee of the IEEE
Computer Society.

[7] Bullseye Testing Technology (2006–2008). "Intermediate Coverage Goals" (http:/ / www. bullseye. com/ coverage. html#intermediate). .
Retrieved 24 March 2009.

http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Control_flow
http://en.wikipedia.org/w/index.php?title=Barrier_to_entry
http://en.wikipedia.org/w/index.php?title=Cobra_%28programming_language_from_Cobra_Language_LLC%29
http://en.wikipedia.org/w/index.php?title=D_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Martin_Fowler
http://martinfowler.com/articles/mocksArentStubs.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://en.wikipedia.org/w/index.php?title=Bob_Cramblitt
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://searchsoftwarequality.techtarget.com/originalContent/0,289142,sid92_gci1273161,00.html
http://en.wikipedia.org/w/index.php?title=Nada_daVeiga
http://www.ddj.com/development-tools/206105233
http://www.ddj.com/development-tools/206105233
http://www.agilesherpa.org/agile_coach/engineering_practices/emergent_design/
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://iteso.mx/~pgutierrez/calidad/Estandares/IEEE%201008.pdf
http://www.bullseye.com/coverage.html#intermediate


Unit testing 85

External links
• Unit Testing Guidelines from GeoSoft (http:/ / geosoft. no/ development/ unittesting. html)
• Test Driven Development (Ward Cunningham's Wiki) (http:/ / c2. com/ cgi/ wiki?TestDrivenDevelopment)
• Unit Testing 101 for the Non-Programmer (http:/ / www. saravanansubramanian. com/ Saravanan/

Articles_On_Software/ Entries/ 2010/ 1/ 19_Unit_Testing_101_For_Non-Programmers. html)
• Step-by-Step Guide to JPA-Enabled Unit Testing (Java EE) (http:/ / www. sizovpoint. com/ 2010/ 01/

step-by-step-guide-to-jpa-enabled-unit. html)

Self-testing code
Self-testing code is software which incorporates built-in tests (see test-first development).
In Java, to execute a unit test from the command line, a class can have methods like the following.

// Executing <code>main</code> runs the unit test. 

public static void main(String[] args) {

    test();

}

static void test() {

    assert foo == bar;

}

To invoke a full system test, a class can incorporate a method call.

public static void main(String[] args) {

    test();

    TestSuite.test();    // invokes full system test

}

http://geosoft.no/development/unittesting.html
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmers.html
http://www.saravanansubramanian.com/Saravanan/Articles_On_Software/Entries/2010/1/19_Unit_Testing_101_For_Non-Programmers.html
http://www.sizovpoint.com/2010/01/step-by-step-guide-to-jpa-enabled-unit.html
http://www.sizovpoint.com/2010/01/step-by-step-guide-to-jpa-enabled-unit.html
http://en.wikipedia.org/w/index.php?title=Test-first_development
http://en.wikipedia.org/w/index.php?title=Java_%28programming%29
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Command_line
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=System_test


Test fixture 86

Test fixture
A test fixture is something used to consistently test some item, device, or piece of software.

Electronics
Circuit boards, electronic components, and chips are held in place and subjected to controlled electronic test signals.
One example is a bed of nails tester.

Software
Test fixture refers to the fixed state used as a baseline for running tests in software testing. The purpose of a test
fixture is to ensure that there is a well known and fixed environment in which tests are run so that results are
repeatable. Some people call this the test context.
Examples of fixtures:
• Loading a database with a specific, known set of data
• Erasing a hard disk and installing a known clean operating system installation
• Copying a specific known set of files
• Preparation of input data and set-up/creation of fake or mock objects

Test fixture in xUnit
In generic xUnit, a test fixture is all the things that must be in place in order to run a test and expect a particular
outcome.
Frequently fixtures are created by handling setUp() and tearDown() events of the unit testing framework. In setUp()
one would create the expected state for the test, and in tearDown() it would clean up what had been set up.
Four phases of a test:
1. Set up -- Setting up the test fixture.
2. Exercise -- Interact with the system under test.
3. Verify -- Determine whether the expected outcome has been obtained.
4. Tear down -- Tear down the test fixture to return to the original state.

Use of fixtures
Some advantages of fixtures include separation of the test initialization (and destruction) from the testing, reusing a
known state for more than one test, and special assumption by the testing framework that the fixture set up works.

Physical testing
In physical testing, a fixture is a device or apparatus to hold or support the test specimen during the test. The
influence of test fixtures on test results is important and is an ongoing subject of research.[1]

Many test methods detail the requirements of test fixtures in the text of the document.[2] [3]

http://en.wikipedia.org/w/index.php?title=Bed_of_nails_tester
http://en.wikipedia.org/w/index.php?title=Physical_test
http://en.wikipedia.org/w/index.php?title=Specimen
http://en.wikipedia.org/w/index.php?title=Test_method


Test fixture 87

Test fixture on universal
testing machine for three point

flex test

Hydraulic system
testing on fixture

Test structure fixtures on
large seismic table for

earthquake tests

jet engine fixtures for operational
testing

Some fixtures employ clamps, wedge grips and pincer grips.

pincer clamps max. 50kN
spring-biased

offset compensated wedge grip
max.50kN

different vice and screw grips of a German
manufacturer

Further types of construction are eccentric roller fixtures, thread grips and button head grips as well as rope grips.

symmetric roller grip, self
closing and self adjusting

multiple button head
grip for speedy tests on

series

small rope grip 200N to test fine
wires

very compact
wedge grip for

temperature
chambers providing

extreme
temperatures

Mechanical holding apparatus provide the clamping force via arms, wedges or eccentric wheel to the jaws.
Additional there are pneumatic and hydraulic fixtures for tensile testing that do allow very fast clamping procedures
and very high clamping forces

pneumatic grip, symmetrical,
clamping force 2.4kN

heavy duty hydraulic clamps,
clamping force 700kN

Bending device for tensile
testing machines

Equipment to proof pealing
forces up to 10kN

http://en.wikipedia.org/w/index.php?title=Universal_testing_machine
http://en.wikipedia.org/w/index.php?title=Universal_testing_machine
http://en.wikipedia.org/w/index.php?title=File%3AThree_point_flexural_test.jpg
http://en.wikipedia.org/w/index.php?title=File%3AUS_Navy_070409-N-3038W-002_Aviation_Structural_Mechanic_3rd_Class_Rene_Tovar_adjusts_a_connection_point_on_a_fixture_hydraulic_supply_servo_cylinder_test_station_in_the_hydraulics_shop_aboard_the_Nimitz-class_aircraft_carrier_U.jpg
http://en.wikipedia.org/w/index.php?title=File%3A2009-0709-earthquake.jpg
http://en.wikipedia.org/w/index.php?title=File%3AUS_Navy_070804-N-1745W-122_A_Sailor_assigned_to_Aircraft_Intermediate_Maintenance_Department_%28AIMD%29_tests_an_aircraft_jet_engine_for_defects_while_performing_Jet_Engine_Test_Instrumentation%2C_%28JETI%29_Certification-Engine_Runs.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATH11-50kN-pincer-grip.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATHS527-50.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATH-screw-grips.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATHS766-5.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATHS314-2.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATHS13k-02-200N.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATemperaturkammer-spannzeug_THS321-250-5.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATH149_.jpg
http://en.wikipedia.org/w/index.php?title=File%3ATHS137-4-fr.jpg
http://en.wikipedia.org/w/index.php?title=File%3ABiegevorrichtung_TH165.jpg
http://en.wikipedia.org/w/index.php?title=File%3AAbzugsvorrichtung_TH50%2BSW_.jpg


Test fixture 88

References
[1] Abadalah, MG; Gascoigne, HE (1989). The Influence of Test Fixture Design on the Shear Test for Fiber Composite Materials. ASTM STP.
[2] ASTM B829 Test for Determining the Formability of copper Strip
[3] ASTM D6641 Compressive Properties of Polymer Matrix Using a Combined Loading Compression Test Fixture

• http:/ / www. cs. utep. edu/ ~cheon/ cs3331/ notes/ unit-testing. ppt (http:/ / www. cs. utep. edu/ ~cheon/ cs3331/
notes/ unit-testing. ppt)

• http:/ / manuals. rubyonrails. com/ read/ chapter/ 26

Method stub
A method stub or simply stub in software development is a piece of code used to stand in for some other
programming functionality. A stub may simulate the behavior of existing code (such as a procedure on a remote
machine) or be a temporary substitute for yet-to-be-developed code. Stubs are therefore most useful in porting,
distributed computing as well as general software development and testing.
An example of a stub in pseudocode might be as follows:

   BEGIN

       Temperature = ThermometerRead(Outside)

       IF Temperature > 40 THEN

            PRINT "It's HOT!"

       END IF

   END

   BEGIN ThermometerRead(Source insideOrOutside)

        RETURN 28

   END ThermometerRead

The above pseudocode utilises the function ThermometerRead, which returns a temperature. While
ThermometerRead would be intended to read some hardware device, this function currently does not contain the
necessary code. So ThermometerRead does not, in essence, simulate any process, yet it does return a legal
value, allowing the main program to be at least partly tested. Also note that although it accepts the parameter of type
Source, which determines whether inside or outside temperature is needed, it does not use the actual value passed
(argument insideOrOutside) by the caller in its logic.
A stub[1] is a routine that doesn't actually do anything other than declare itself and the parameters it accepts and
returns something that is usually the values expected in one of the "happy scenarios" for the caller. Stubs are used
commonly as placeholders for implementation of a known interface, where the interface is finalized/known but the
implementation is not yet known/finalized. The stub contains just enough code to allow it to be compiled and linked
with the rest of the program.

http://en.wikipedia.org/w/index.php?title=ASTM
http://www.cs.utep.edu/~cheon/cs3331/notes/unit-testing.ppt
http://www.cs.utep.edu/~cheon/cs3331/notes/unit-testing.ppt
http://www.cs.utep.edu/~cheon/cs3331/notes/unit-testing.ppt
http://manuals.rubyonrails.com/read/chapter/26
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Simulation
http://en.wikipedia.org/w/index.php?title=Subroutine
http://en.wikipedia.org/w/index.php?title=Porting
http://en.wikipedia.org/w/index.php?title=Distributed_computing
http://en.wikipedia.org/w/index.php?title=Pseudocode
http://en.wikipedia.org/w/index.php?title=Simulation
http://en.wikipedia.org/w/index.php?title=Parameter_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Argument_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29


Method stub 89

References
[1] http:/ / www. webopedia. com/ (http:/ / www. webopedia. com/ TERM/ S/ stub. html)

External links
• A Stub Generation System For C++ (http:/ / www. cs. ncl. ac. uk/ research/ pubs/ articles/ papers/ 94. pdf) (PDF)
• Stub/mock frameworks for Java (http:/ / www. sizovpoint. com/ 2009/ 03/ java-mock-frameworks-comparison.

html) Review and comparison of stub & mock frameworks for Java

Mock object
In object-oriented programming, mock objects are simulated objects that mimic the behavior of real objects in
controlled ways. A computer programmer typically creates a mock object to test the behavior of some other object,
in much the same way that a car designer uses a crash test dummy to simulate the dynamic behavior of a human in
vehicle impacts.

Reasons for use
In a unit test, mock objects can simulate the behavior of complex, real (non-mock) objects and are therefore useful
when a real object is impractical or impossible to incorporate into a unit test. If an object has any of the following
characteristics, it may be useful to use a mock object in its place:
• supplies non-deterministic results (e.g. the current time or the current temperature);
• has states that are difficult to create or reproduce (e.g. a network error);
• is slow (e.g. a complete database, which would have to be initialized before the test);
• does not yet exist or may change behavior;
• would have to include information and methods exclusively for testing purposes (and not for its actual task).
For example, an alarm clock program which causes a bell to ring at a certain time might get the current time from the
outside world. To test this, the test must wait until the alarm time to know whether it has rung the bell correctly. If a
mock object is used in place of the real object, it can be programmed to provide the bell-ringing time (whether it is
actually that time or not) so that the alarm clock program can be tested in isolation.

Technical details
Mock objects have the same interface as the real objects they mimic, allowing a client object to remain unaware of
whether it is using a real object or a mock object. Many available mock object frameworks allow the programmer to
specify which, and in what order, methods will be invoked on a mock object and what parameters will be passed to
them, as well as what values will be returned. Thus, the behavior of a complex object such as a network socket can
be mimicked by a mock object, allowing the programmer to discover whether the object being tested responds
appropriately to the wide variety of states such objects may be in.

http://www.webopedia.com/
http://www.webopedia.com/TERM/S/stub.html
http://www.cs.ncl.ac.uk/research/pubs/articles/papers/94.pdf
http://www.sizovpoint.com/2009/03/java-mock-frameworks-comparison.html
http://www.sizovpoint.com/2009/03/java-mock-frameworks-comparison.html
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Computer_programming
http://en.wikipedia.org/w/index.php?title=Crash_test_dummy
http://en.wikipedia.org/w/index.php?title=Simulation
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Simulation
http://en.wikipedia.org/w/index.php?title=Nondeterministic_algorithm
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Method_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Parameter_%28computer_science%29


Mock object 90

Mocks, fakes and stubs
Some authors[1] draw a distinction between fake and mock objects. Fakes are the simpler of the two, simply
implementing the same interface as the object that they represent and returning pre-arranged responses. Thus a fake
object merely provides a set of method stubs.
In the book "The Art of Unit Testing"[2] mocks are described as a fake object that helps decide if a test failed or
passed, by verifying if an interaction on an object occurred or not. Everything else is defined as a stub. In that book,
"Fakes" are anything that is not real. Based on their usage, they are either stubs or mocks.
Mock objects in this sense do a little more: their method implementations contain assertions of their own. This
means that a true mock, in this sense, will examine the context of each call— perhaps checking the order in which its
methods are called, perhaps performing tests on the data passed into the method calls as arguments.

Setting expectations
Consider an example where an authorization sub-system has been mocked. The mock object implements an
isUserAllowed(task : Task) : boolean[3] method to match that in the real authorization class. Many
advantages follow if it also exposes an isAllowed : boolean property, which is not present in the real class.
This allows test code easily to set the expectation that a user will, or will not, be granted permission in the next call
and therefore readily to test the behavior of the rest of the system in either case.
Similarly, a mock-only setting could ensure that subsequent calls to the sub-system will cause it to throw an
exception, or hang without responding, or return null etc. Thus it is possible to develop and test client behaviors
for all realistic fault conditions in back-end sub-systems as well as for their expected responses. Without such a
simple and flexible mock system, testing each of these situations may be too laborious for them to be given proper
consideration.

Writing log strings
A mock database object's save(person : Person) method may not contain much (if any) implementation
code. It might or might not check the existence and perhaps the validity of the Person object passed in for saving (see
fake vs. mock discussion above), but beyond that there might be no other implementation.
This is a missed opportunity. The mock method could add an entry to a public log string. The entry need be no more
than "Person saved",[4] :146–7 or it may include some details from the person object instance, such as a name or ID. If
the test code also checks the final contents of the log string after various series of operations involving the mock
database then it is possible to verify that in each case exactly the expected number of database saves have been
performed. This can find otherwise invisible performance-sapping bugs, for example, where a developer, nervous of
losing data, has coded repeated calls to save() where just one would have sufficed.

Use in test-driven development
Programmers working with the test-driven development (TDD) method make use of mock objects when writing
software. Mock objects meet the interface requirements of, and stand in for, more complex real ones; thus they allow
programmers to write and unit-test functionality in one area without actually calling complex underlying or
collaborating classes.[4] :144–5 Using mock objects allows developers to focus their tests on the behavior of the
system under test (SUT) without worrying about its dependencies. For example, testing a complex algorithm based
on multiple objects being in particular states can be clearly expressed using mock objects in place of real objects.
Apart from complexity issues and the benefits gained from this separation of concerns, there are practical speed 
issues involved. Developing a realistic piece of software using TDD may easily involve several hundred unit tests. If 
many of these induce communication with databases, web services and other out-of-process or networked systems, 
then the suite of unit tests will quickly become too slow to be run regularly. This in turn leads to bad habits and a

http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Hang_%28computing%29
http://en.wikipedia.org/w/index.php?title=Nullable_type
http://en.wikipedia.org/w/index.php?title=Client%E2%80%93server_model
http://en.wikipedia.org/w/index.php?title=Front-end_and_back-end
http://en.wikipedia.org/w/index.php?title=Data_validation
http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Class_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Separation_of_concerns
http://en.wikipedia.org/w/index.php?title=Inter-process_communication
http://en.wikipedia.org/w/index.php?title=Computer_network


Mock object 91

reluctance by the developer to maintain the basic tenets of TDD.
When mock objects are replaced by real ones then the end-to-end functionality will need further testing. These will
be integration tests rather than unit tests.

Limitations
The use of mock objects can closely couple the unit tests to the actual implementation of the code that is being
tested. For example, many mock object frameworks allow the developer to specify the order of and number of times
that the methods on a mock object are invoked; subsequent refactoring of the code that is being tested could
therefore cause the test to fail even though the method still obeys the contract of the previous implementation. This
illustrates that unit tests should test a method's external behavior rather than its internal implementation. Over-use of
mock objects as part of a suite of unit tests can result in a dramatic increase in the amount of maintenance that needs
to be performed on the tests themselves during system evolution as refactoring takes place. The improper
maintenance of such tests during evolution could allow bugs to be missed that would otherwise be caught by unit
tests that use instances of real classes. Conversely, simply mocking one method might require far less configuration
than setting up an entire real class and therefore reduce maintenance needs.
Mock objects have to accurately model the behavior of the object they are mocking, which can be difficult to achieve
if the object being mocked comes from another developer or project or if it has not even been written yet. If the
behavior is not modeled correctly then the unit tests may register a pass even though a failure would occur at run
time under the same conditions that the unit test is exercising, thus rendering the unit test inaccurate.[5]

References
[1] Feathers, Michael (2005). "Sensing and separation". Working effectively with legacy code. NJ: Prentice Hall. p. 23 et seq.

ISBN 0-13-117705-2.
[2] Osherove, Roy (2009). "Interaction testing with mock objects et seq". The art of unit testing. Manning. ISBN 978-1933988276.
[3] These examples use a nomenclature that is similar to that used in Unified Modeling Language
[4] Beck, Kent (2003). Test-Driven Development By Example. Boston: Addison Wesley. ISBN 0-321-14653-0.
[5] InJava.com (http:/ / www. onjava. com/ pub/ a/ onjava/ 2004/ 02/ 11/ mocks. html#Approaches) to Mocking | O'Reilly Media

External links
• Tim Mackinnon (8 September 2009). "A Brief History of Mock Objects" (http:/ / www. mockobjects. com/ 2009/

09/ brief-history-of-mock-objects. html). Mockobjects.com/.
• The Art of Unit Testing (two free PDF chapters and lots of videos) (http:/ / ArtOfUnitTesting. com)
• Interaction Testing with the Typemock Isolator Mocking framework (http:/ / typemock. org/

getting-started-step-1-set/ )
• Great Java mock frameworks comparison article: Java mock framework comparison (http:/ / www. sizovpoint.

com/ 2009/ 03/ java-mock-frameworks-comparison. html)
• Test Doubles (http:/ / xunitpatterns. com/ Test Double. html): a section of a book on unit testing patterns.
• All about mock objects! Portal concerning mock objects (http:/ / www. mockobjects. com)
• Mock Roles, not Objects (http:/ / www. jmock. org/ oopsla2004. pdf), a paper on the technique that was presented

at OOPSLA 2004.
• Using mock objects for complex unit tests (http:/ / www-128. ibm. com/ developerworks/ rational/ library/ oct06/

pollice/ index. html) IBM developerWorks
• Unit testing with mock objects (http:/ / www. ibm. com/ developerworks/ java/ library/ j-mocktest/ index. html)

IBM developerWorks
• Using Mock Objects with Test Driven Development (http:/ / www. theserverside. com/ tt/ articles/ article.

tss?l=JMockTestDrivenDev)

http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Refactoring
http://en.wikipedia.org/w/index.php?title=Unified_Modeling_Language
http://www.onjava.com/pub/a/onjava/2004/02/11/mocks.html#Approaches
http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html
http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html
http://ArtOfUnitTesting.com
http://typemock.org/getting-started-step-1-set/
http://typemock.org/getting-started-step-1-set/
http://www.sizovpoint.com/2009/03/java-mock-frameworks-comparison.html
http://www.sizovpoint.com/2009/03/java-mock-frameworks-comparison.html
http://xunitpatterns.com/Test%20Double.html
http://www.mockobjects.com
http://www.jmock.org/oopsla2004.pdf
http://www-128.ibm.com/developerworks/rational/library/oct06/pollice/index.html
http://www-128.ibm.com/developerworks/rational/library/oct06/pollice/index.html
http://www.ibm.com/developerworks/java/library/j-mocktest/index.html
http://www.theserverside.com/tt/articles/article.tss?l=JMockTestDrivenDev
http://www.theserverside.com/tt/articles/article.tss?l=JMockTestDrivenDev


Mock object 92

• Mock Object Patterns at Hillside (http:/ / hillside. net/ plop/ plop2003/ Papers/ Brown-mock-objects. pdf) Mock
Object Design Patterns

• Mocks Aren't Stubs (http:/ / martinfowler. com/ articles/ mocksArentStubs. html) (Martin Fowler) Article about
developing tests with Mock objects. Identifies and compares the "classical" and "mockist" schools of testing.
Touches on points about the impact on design and maintenance.

• Mocking the Embedded World (http:/ / www. atomicobject. com/ pages/ Embedded+
Software#MockingEmbeddedWorld) Paper and sample project concerned with adapting mocking and Presenter
First for embedded software development.

• Surviving Mock Abuse (http:/ / www. ibm. com/ developerworks/ library/ j-mocktest. html) Pitfalls of overuse of
mocks and advice for avoiding them

• Responsibility Driven Design with Mock Objects (http:/ / www. methodsandtools. com/ archive/ archive.
php?id=90)

• The Art of Unit Testing in Java (http:/ / manning. com/ koskela2/ )
• Mock framework for Microsoft Dynamics AX 2009 (http:/ / axmocks. codeplex. com/ )
• Interaction Based Testing with Rhino Mocks (http:/ / www. testingtv. com/ 2009/ 08/ 28/

interaction-based-testing-with-rhino-mocks/ )
• Unit Testing with Mock Objects via MockBox (http:/ / blog. coldbox. org/ post. cfm/

unit-testing-with-mock-objects-amp-mockbox)
• Mockups (http:/ / www. mockuptiger. com/ mockups) Low Fidelity mockups for UI design

Lazy systematic unit testing
Lazy Systematic Unit Testing[1] is a software unit testing method based on the two notions of lazy specification, the
ability to infer the evolving specification of a unit on-the-fly by dynamic analysis, and systematic testing, the ability
to explore and test the unit's state space exhaustively to bounded depths. A testing toolkit JWalk exists to support
lazy systematic unit testing in the Java programming language[2] .

Lazy Specification
Lazy specification refers to a flexible approach to software specification, in which a specification evolves rapidly in
parallel with frequently modified code[1] . The specification is inferred by a semi-automatic analysis of a prototype
software unit. This can include static analysis (of the unit's interface) and dynamic analysis (of the unit's behaviour).
The dynamic analysis is usually supplemented by limited interaction with the programmer.
The term Lazy specification is coined by analogy with lazy evaluation in functional programming. The latter
describes the delayed evaluation of sub-expressions, which are only evaluated on demand. The analogy is with the
late stabilization of the specification, which evolves in parallel with the changing code, until this is deemed stable.

http://hillside.net/plop/plop2003/Papers/Brown-mock-objects.pdf
http://martinfowler.com/articles/mocksArentStubs.html
http://en.wikipedia.org/w/index.php?title=Martin_Fowler
http://www.atomicobject.com/pages/Embedded+Software#MockingEmbeddedWorld
http://www.atomicobject.com/pages/Embedded+Software#MockingEmbeddedWorld
http://en.wikipedia.org/w/index.php?title=Presenter_First
http://en.wikipedia.org/w/index.php?title=Presenter_First
http://www.ibm.com/developerworks/library/j-mocktest.html
http://www.methodsandtools.com/archive/archive.php?id=90
http://www.methodsandtools.com/archive/archive.php?id=90
http://manning.com/koskela2/
http://axmocks.codeplex.com/
http://www.testingtv.com/2009/08/28/interaction-based-testing-with-rhino-mocks/
http://www.testingtv.com/2009/08/28/interaction-based-testing-with-rhino-mocks/
http://blog.coldbox.org/post.cfm/unit-testing-with-mock-objects-amp-mockbox
http://blog.coldbox.org/post.cfm/unit-testing-with-mock-objects-amp-mockbox
http://www.mockuptiger.com/mockups
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=JWalk
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Formal_specification
http://en.wikipedia.org/w/index.php?title=Dynamic_program_analysis
http://en.wikipedia.org/w/index.php?title=Lazy_evaluation
http://en.wikipedia.org/w/index.php?title=Functional_programming


Lazy systematic unit testing 93

Systematic Testing
Systematic testing refers to a complete, conformance testing approach to software testing, in which the tested unit is
shown to conform exhaustively to a specification, up to the testing assumptions[3] . This contrasts with exploratory,
incomplete or random forms of testing. The aim is to provide repeatable guarantees of correctness after testing is
finished.
Examples of systematic testing methods include the Stream X-Machine testing method[4] and equivalence partition
testing with full boundary value analysis.

References
[1] A J H Simons, JWalk: Lazy systematic unit testing of Java classes by design introspection and user interaction, Automated Software

Engineering, 14 (4), December, ed. B. Nuseibeh, (Boston: Springer, 2007), 369-418.
[2] The JWalk Home Page, http:/ / www. dcs. shef. ac. uk/ ~ajhs/ jwalk/
[3] A J H Simons, A theory of regression testing for behaviourally compatible object types, Software Testing, Verification and Reliability, 16 (3),

UKTest 2005 Special Issue, September, eds. M Woodward, P McMinn, M Holcombe and R Hierons (Chichester: John Wiley, 2006), 133-156.
[4] F Ipate and W M L Holcombe, Specification and testing using generalised machines: a presentation and a case study, Software Testing,

Verification and Reliability, 8 (2), (Chichester: John Wiley, 1998), 61-81.

Test Anything Protocol
The Test Anything Protocol (TAP) is a protocol to allow communication between unit tests and a test harness. It
allows individual tests (TAP producers) to communicate test results to the testing harness in a language-agnostic
way. Originally developed for unit testing of the Perl interpreter in 1987, producers and parsers are now available for
many development platforms.

History
TAP was created for the first version of Perl (released in 1987), as part of the Perl's core test harness (t/TEST). The
Test::Harness module was written by Tim Bunce and Andreas König to allow Perl module authors to take
advantage of TAP.
Development of TAP, including standardization of the protocol, writing of test producers and consumers, and
evangelizing the language is coordinated at the TestAnything website[1] .

Specification
Despite being about 20 years old and widely used, no formal specification exists for this protocol. The behavior of
the Test::Harness module is the de-facto TAP standard, along with a writeup of the specification on CPAN[2] .
A project to produce an IETF standard for TAP was initiated in August 2008, at YAPC::Europe 2008.[1] .

Usage examples
TAP's general format is:

    1..N

    ok 1 Description # Directive

    # Diagnostic

    ....

    ok 47 Description

    ok 48 Description

http://en.wikipedia.org/w/index.php?title=Conformance_testing
http://en.wikipedia.org/w/index.php?title=Stream_X-Machine
http://en.wikipedia.org/w/index.php?title=Equivalence_partition
http://en.wikipedia.org/w/index.php?title=Boundary_value_analysis
http://www.dcs.shef.ac.uk/~ajhs/jwalk/
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Perl_module
http://en.wikipedia.org/w/index.php?title=Tim_Bunce
http://en.wikipedia.org/w/index.php?title=Andreas_K%C3%B6nig
http://en.wikipedia.org/w/index.php?title=CPAN
http://en.wikipedia.org/w/index.php?title=IETF
http://en.wikipedia.org/w/index.php?title=YAPC


Test Anything Protocol 94

    more tests....

For example, a test file's output might look like:

    1..4

    ok 1 - Input file opened

    not ok 2 - First line of the input valid.

        More output from test 2. There can be

        arbitrary number of lines for any output

        so long as there is at least some kind

        of whitespace at beginning of line.

    ok 3 - Read the rest of the file

    #TAP meta information

    not ok 4 - Summarized correctly # TODO Not written yet

External links
• http:/ / testanything. org/ [3] is a site dedicated to the discussion, development and promotion of TAP.

List of TAP Parsers
These are libraries which parse TAP and display the results.
• Test::Harness [4] is the oldest and most complete TAP parser. It is limited in how it displays TAP. Though it most

often runs tests written in Perl, it can launch any process which generates TAP. Most of the TAP spec is taken
from the behavior of Test::Harness.
• The original Test::Harness has now been deprecated, the new Test::Harness provides a minimal compatibility

layer with previous behavior, but any new development shouldn't use this module, rather the TAP::Harness
module.

• The t/TEST parser contained in the Perl source code.
• Test::Harness [4] is a new and more flexible parser being written by Curtis "Ovid" Poe, Andy Armstrong and other

people. It is a wrapper around TAP::Parser [5].
• Test::Run [6] is a fork of Test::Harness being written by Shlomi Fish.
• test-harness.php [7] A TAP parser for PHP.
• nqpTAP [8] A TAP parser written in NotQuitePerl (NQP), a smaller subset of the Perl 6 language.
• Tapir [9] A TAP parser written in Parrot Intermediate Representation (PIR).
• tap4j [10] A TAP implementation for Java.

List of TAP Producers
These are libraries for writing tests which output TAP.
• Test::More [11] is the most popular testing module for Perl 5.
• Test::Most [12] puts the most commonly used Perl 5 testing modules needed in one place. It is a superset of

Test::More.
• PHPUnit [13] is the xUnit implementation for PHP.
• test-more.php [14] is a testing module for PHP based on Test::More.
• test-more-php [15] implements Test::Simple & Test::More for PHP.
• libtap [16] is a TAP producer written in C.
• libtap++ [17] is a TAP producer for C++
• Test.Simple [18] is a port of the Perl Test::Simple and Test::More modules to JavaScript by David Wheeler.
• PyTAP [19] A beginning TAP implementation for Python.

http://testanything.org/
http://testanything.org/
http://search.cpan.org/dist/Test-Harness/
http://search.cpan.org/dist/Test-Harness/
http://search.cpan.org/dist/TAP-Parser/
http://web-cpan.berlios.de/modules/Test-Run/
http://www.digitalsandwich.com/archives/52-TAP-Compliant-PHP-Testing-Harness.html
http://github.com/leto/nqptap
http://github.com/leto/tapir
http://en.wikipedia.org/w/index.php?title=Parrot_Intermediate_Representation
http://www.tap4j.org/
http://search.cpan.org/perldoc?Test::More
http://search.cpan.org/dist/Test-Most/
http://www.phpunit.de/
http://shiflett.org/code/test-more.php
http://code.google.com/p/test-more-php/
http://jc.ngo.org.uk/trac-bin/trac.cgi/wiki/LibTap
http://github.com/Leont/libperl--/blob/master/tap++/doc/libtap%2B%2B.pod#NAME
http://openjsan.org/doc/t/th/theory/Test/Simple/
http://git.codesimply.com/?p=PyTAP.git;a=summary


Test Anything Protocol 95

• MyTAP [20] MySQL unit test library used for writing TAP producers in C or C++
• Bacon [21] A Ruby library that supports a spec-based syntax and that can produce TAP output
• PLUTO [22] PL/SQL Unit Testing for Oracle
• pgTAP [23] PostgreSQL stored procedures that emit TAP
• SnapTest [24] A PHP unit testing framework with TAP v13 compliant output.
• etap [25] is a simple erlang testing library that provides TAP compliant output.
• lua-TestMore [26] is a port of the Perl Test::More framework to Lua.
• tap4j [10] A TAP implementation for Java.
• lime [27] A testing framework bundled with the Symfony PHP framework.
• yuitest [28] A JavaScript testing library (standalone)

References
[1] "The Test Anything Protocol website" (http:/ / www. testanything. org/ ). . Retrieved 2008-09-04.
[2] "TAP specification" (http:/ / search. cpan. org/ ~petdance/ Test-Harness-2. 64/ lib/ Test/ Harness/ TAP. pod). CPAN. . Retrieved 2010-12-31.
[3] http:/ / testanything. org/
[4] http:/ / search. cpan. org/ dist/ Test-Harness/
[5] http:/ / search. cpan. org/ dist/ TAP-Parser/
[6] http:/ / web-cpan. berlios. de/ modules/ Test-Run/
[7] http:/ / www. digitalsandwich. com/ archives/ 52-TAP-Compliant-PHP-Testing-Harness. html
[8] http:/ / github. com/ leto/ nqptap
[9] http:/ / github. com/ leto/ tapir
[10] http:/ / www. tap4j. org/
[11] http:/ / search. cpan. org/ perldoc?Test::More
[12] http:/ / search. cpan. org/ dist/ Test-Most/
[13] http:/ / www. phpunit. de/
[14] http:/ / shiflett. org/ code/ test-more. php
[15] http:/ / code. google. com/ p/ test-more-php/
[16] http:/ / jc. ngo. org. uk/ trac-bin/ trac. cgi/ wiki/ LibTap
[17] http:/ / github. com/ Leont/ libperl--/ blob/ master/ tap+ + / doc/ libtap%2B%2B. pod#NAME
[18] http:/ / openjsan. org/ doc/ t/ th/ theory/ Test/ Simple/
[19] http:/ / git. codesimply. com/ ?p=PyTAP. git;a=summary
[20] http:/ / www. kindahl. net/ mytap/ doc/
[21] http:/ / rubyforge. org/ projects/ test-spec
[22] http:/ / code. google. com/ p/ pluto-test-framework/
[23] http:/ / pgtap. projects. postgresql. org/
[24] http:/ / www. snaptest. net
[25] http:/ / github. com/ ngerakines/ etap/ tree/ master
[26] http:/ / fperrad. github. com/ lua-TestMore/
[27] http:/ / www. symfony-project. org/ book/ 1_2/ 15-Unit-and-Functional-Testing#The%20Lime%20Testing%20Framework
[28] http:/ / yuilibrary. com/ yuitest/

http://www.kindahl.net/mytap/doc/
http://rubyforge.org/projects/test-spec
http://code.google.com/p/pluto-test-framework/
http://pgtap.projects.postgresql.org/
http://www.snaptest.net
http://github.com/ngerakines/etap/tree/master
http://fperrad.github.com/lua-TestMore/
http://www.tap4j.org/
http://www.symfony-project.org/book/1_2/15-Unit-and-Functional-Testing#The%20Lime%20Testing%20Framework
http://yuilibrary.com/yuitest/
http://www.testanything.org/
http://search.cpan.org/~petdance/Test-Harness-2.64/lib/Test/Harness/TAP.pod
http://en.wikipedia.org/w/index.php?title=CPAN
http://testanything.org/
http://search.cpan.org/dist/Test-Harness/
http://search.cpan.org/dist/TAP-Parser/
http://web-cpan.berlios.de/modules/Test-Run/
http://www.digitalsandwich.com/archives/52-TAP-Compliant-PHP-Testing-Harness.html
http://github.com/leto/nqptap
http://github.com/leto/tapir
http://www.tap4j.org/
http://search.cpan.org/perldoc?Test::More
http://search.cpan.org/dist/Test-Most/
http://www.phpunit.de/
http://shiflett.org/code/test-more.php
http://code.google.com/p/test-more-php/
http://jc.ngo.org.uk/trac-bin/trac.cgi/wiki/LibTap
http://github.com/Leont/libperl--/blob/master/tap++/doc/libtap%2B%2B.pod#NAME
http://openjsan.org/doc/t/th/theory/Test/Simple/
http://git.codesimply.com/?p=PyTAP.git;a=summary
http://www.kindahl.net/mytap/doc/
http://rubyforge.org/projects/test-spec
http://code.google.com/p/pluto-test-framework/
http://pgtap.projects.postgresql.org/
http://www.snaptest.net
http://github.com/ngerakines/etap/tree/master
http://fperrad.github.com/lua-TestMore/
http://www.symfony-project.org/book/1_2/15-Unit-and-Functional-Testing#The%20Lime%20Testing%20Framework
http://yuilibrary.com/yuitest/


xUnit 96

xUnit
Various code-driven testing frameworks have come to be known collectively as xUnit. These frameworks allow
testing of different elements (units) of software, such as functions and classes. The main advantage of xUnit
frameworks is that they provide an automated solution with no need to write the same tests many times, and no need
to remember what should be the result of each test. Such frameworks are based on a design by Kent Beck, originally
implemented for Smalltalk as SUnit. Erich Gamma and Kent Beck ported SUnit to Java, creating JUnit. From there,
the framework was also ported to other languages, e.g., CppUnit (for C++), NUnit (for .NET). They are all referred
to as xUnit and are usually free, open source software. They are now available for many programming languages and
development platforms.

xUnit architecture
All xUnit frameworks share the following basic component architecture, with some varied implementation details.

Test case
This is the most elemental class. All unit tests are inherited from here.

Test fixtures
A test fixture (also known as a test context) is the set of preconditions or state needed to run a test. The developer
should set up a known good state before the tests, and after the tests return to the original state.

Test suites
A test suite is a set of tests that all share the same fixture. The order of the tests shouldn't matter.

Test execution
The execution of an individual unit test proceeds as follows:

setup(); /* First, we should prepare our 'world' to make an isolated 

environment for testing */

...

/* Body of test - Here we make all the tests */

...

teardown(); /* In the end, whether succeed or fail we should clean up 

our 'world' to 

not disturb other tests or code */

The setup() and teardown() methods serve to initialize and clean up test fixtures.

http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Erich_Gamma
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=Precondition


xUnit 97

Assertions
An assertion is a function or macro that verifies the behavior (or the state) of the unit under test. Failure of an
assertion typically throws an exception, aborting the execution of the current test.

xUnit Frameworks
Many xUnit frameworks exist for various programming languages and development platforms.
• List of unit testing frameworks

xUnit Extensions
Extensions are available to extend xUnit frameworks with additional specialized functionality. Examples of such
extensions include XMLUnit [1], DbUnit [2], HtmlUnit and HttpUnit.

External links
• Kent Beck's original testing framework paper [3]

• Other list of various unit testing frameworks [4]

• OpenSourceTesting.org lists many unit testing frameworks, performance testing tools and other tools
programmers/developers may find useful [5]

• Test automation patterns for writing tests/specs in xUnit. [6]

• Martin Fowler on the background of xUnit. [7]

References
[1] http:/ / xmlunit. sourceforge. net/
[2] http:/ / www. dbunit. org/
[3] http:/ / www. xprogramming. com/ testfram. htm
[4] http:/ / www. xprogramming. com/ software. htm
[5] http:/ / opensourcetesting. org/
[6] http:/ / xunitpatterns. com/
[7] http:/ / www. martinfowler. com/ bliki/ Xunit. html

http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://xmlunit.sourceforge.net/
http://www.dbunit.org/
http://en.wikipedia.org/w/index.php?title=HttpUnit
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/software.htm
http://opensourcetesting.org/
http://xunitpatterns.com/
http://www.martinfowler.com/bliki/Xunit.html
http://xmlunit.sourceforge.net/
http://www.dbunit.org/
http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/software.htm
http://opensourcetesting.org/
http://xunitpatterns.com/
http://www.martinfowler.com/bliki/Xunit.html


List of unit testing frameworks 98

List of unit testing frameworks
This page is a list of tables of code-driven unit testing frameworks for various programming languages. Some but not
all of these are based on xUnit.

Columns (Classification)
• Name: This column contains the name of the framework and will usually link to it.
• xUnit: This column indicates whether a framework should be considered of xUnit type.
• TAP: This column indicates whether a framework can emit TAP output for TAP-compliant testing harnesses.
• Generators: Indicates whether a framework supports data generators. Data generators generate input data for a

test and the test is run for each input data that the generator produces.
• Fixtures: Indicates whether a framework supports test-local fixtures. Test-local fixtures ensure a specified

environment for a single test.
• Group fixtures: Indicates whether a framework supports group fixtures. Group fixtures ensure a specified

environment for a whole group of Tests
• Other columns: These columns indicate whether a specific language / tool feature is available / used by a

framework.
• Remarks: Any remarks.

Languages

ABAP

 Name xUnit  Homepage  Remarks 

ABAP Unit Yes [1] since SAP NetWeaver 2004

ActionScript / Adobe Flex

 Name xUnit  Homepage  Remarks 

FlexUnit [2]

FlexUnit 4 Yes [3] Metadata-driven unit testing for Flex 2,3 and 4 and ActionScript 3 projects

Reflex
Unit

[4] Metadata-driven unit testing framework for Flex 2 and 3

FUnit Yes [5] Metadata-driven unit testing for Flex

ASTUce
Yes [6] Unit testing for ActionScript 3 (also JS, AS1, AS2), that can also run on the command-line with a cross-platform

executable (support OS X / Linux / Windows)

AsUnit [7] Flash Players 6, 7, 8, 9 and 10

dpUInt [8] Unit and Integration testing framework for Flex 2 and 3

Fluint [9] Unit and Integration testing framework for Flex 2 and 3

mojotest Yes [10] (under development) Unit testing for ActionScript 3, Flash Player 10

http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=ABAP
http://en.wikipedia.org/w/index.php?title=ABAP_Unit
http://help.sap.com/saphelp_nw2004s/helpdata/en/a2/8a1b602e858645b8aac1559b638ea4/frameset.htm
http://en.wikipedia.org/w/index.php?title=ActionScript
http://en.wikipedia.org/w/index.php?title=Adobe_Flex
http://en.wikipedia.org/w/index.php?title=FlexUnit
http://code.google.com/p/as3flexunitlib/
http://en.wikipedia.org/w/index.php?title=FlexUnit_4
http://www.flexunit.org
http://en.wikipedia.org/w/index.php?title=Reflex_Unit
http://en.wikipedia.org/w/index.php?title=Reflex_Unit
http://code.google.com/p/reflex-unit/
http://www.funit.org/
http://en.wikipedia.org/w/index.php?title=ASTUce
http://code.google.com/p/astuce/
http://en.wikipedia.org/w/index.php?title=AsUnit
http://www.asunit.org/
http://en.wikipedia.org/w/index.php?title=DpUInt
http://code.google.com/p/dpuint/
http://en.wikipedia.org/w/index.php?title=Fluint
http://fluint.googlecode.com/
http://en.wikipedia.org/w/index.php?title=Mojotest
http://code.google.com/p/mojotest/


List of unit testing frameworks 99

Ada

 Name xUnit  Homepage  Remarks 

AUnit [11]

AdaTEST 95 [12]

Ahven [13]

TBrun [14]

VectorCAST/Ada [15]

AppleScript

 Name xUnit  Homepage  Remarks 

ASUnit Yes [16] Testing framework for AppleScript, influenced by SUnit, ASTest and Python unittest

ASTest Yes [17] A testing framework for AppleScript

ASP

 Name xUnit  Homepage  Remarks 

ASPUnit [18]

BPEL

 Name xUnit  Homepage  Remarks 

BPELUnit [19]

C

 Name xUnit Fixtures  Group
fixtures Generators Homepage

 License  Remarks 

AceUnit

Yes Yes 

[20] AceUnit is JUnit 4.x style, easy, modular and
flexible. AceUnit can be used in resource
constraint environments, e.g. embedded software
development, as well as on PCs, Workstations
and Servers (Windows and UNIX).

API Sanity
Autotest Yes 

Yes
(spectypes) 

Yes
(spectypes) 

Yes 
[21] LGPL Unit test generator for C/C++ libraries. Can

automatically generate reasonable input data for
every API function.

Automated
Testing
Framework

[22] BSD Originally developed for the NetBSD operating
system but works well in most Unix-like
platforms. Ability to install tests as part of a
release.

Autounit (GNU) [23] LGPL In beta/under construction

http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=AUnit
http://libre.adacore.com/libre/tools/aunit/
http://en.wikipedia.org/w/index.php?title=AdaTEST_95
http://www.ipl.com/adatest
http://en.wikipedia.org/w/index.php?title=Ahven
http://ahven.stronglytyped.org/
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://www.ldra.com/tbrun.asp
http://en.wikipedia.org/w/index.php?title=VectorCAST/Ada
http://www.vectorcast.com
http://en.wikipedia.org/w/index.php?title=AppleScript
http://en.wikipedia.org/w/index.php?title=ASUnit
http://nirs.freeshell.org/asunit/
http://en.wikipedia.org/w/index.php?title=ASTest
http://applemods.sourceforge.net/mods/Development/ASTest.php
http://en.wikipedia.org/w/index.php?title=Active_Server_Pages
http://en.wikipedia.org/w/index.php?title=ASPUnit
http://aspunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=BPEL
http://en.wikipedia.org/w/index.php?title=BPELUnit
http://portal.acm.org/citation.cfm?id=1145723t
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=AceUnit
http://aceunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=API_Sanity_Autotest
http://en.wikipedia.org/w/index.php?title=API_Sanity_Autotest
http://ispras.linux-foundation.org/index.php/API_Sanity_Autotest
http://en.wikipedia.org/w/index.php?title=Automated_Testing_Framework
http://en.wikipedia.org/w/index.php?title=Automated_Testing_Framework
http://en.wikipedia.org/w/index.php?title=Automated_Testing_Framework
http://www.NetBSD.org/~jmmv/atf/
http://en.wikipedia.org/w/index.php?title=Autounit_%28GNU%29
http://autounit.tigris.org/


List of unit testing frameworks 100

C++test
Yes Yes Yes Yes 

[24] Commercial Automated software quality solution that includes
unit test generation and execution as well as
reporting industry standard code coverage.

Cantata++

 No Yes Yes Yes 
[25] Commercial Automated unit and integration testing on host

and embedded systems with code coverage and
unique call interface control to simulate and
intercept calls.

Catsrunner [26] GPL nice unit testing framework for cross-platform
embedded development

cfix
Yes 

[27] Specialized for Windows development—both
Win32 and NT kernel mode. Compatible to
WinUnit.

Cgreen [28] LGPL includes mocks

Check Yes [29] LGPL

Cmockery
Yes [30] Apache

License 2.0
Google sponsored project.

CU [31] LGPL CU is a simple unit testing framework for
handling automated tests in C.

CUnit
Yes [32] LGPL OS Independent (Windows, Linux, Mac OS X

and probably others)

CUnitWin32
Yes [33] For Win32. Minimalistic framework. Executes

each test as a separate process.

CUT  No [34] BSD

CuTest
Yes [35] zlib Simple, straightforward, fast. Single .c file. Used

in the Apache Portable Runtime Library.

Cutter Yes [36] LGPL A Unit Testing Framework for C.

EmbeddedUnit Yes Yes [37] MIT Embedded C

FCTX
Yes 

[38] BSD Fast and complete unit testing framework all in
one header. Declare and write your functions in
one step. No dependencies. Cross platform.

GLib Testing Yes Yes [39] Part of GLib

GUnit [40] for GNOME

LibU

Yes  No 
[41] BSD multiplatform (UNIXes and Windows); explicit

test case/suite dependencies; parallel and
sandboxed execution; xml, txt and customizable
report formatting.

MinUnit [42] as-is extreme minimalist unit testing using 2 C macros

RCUNIT Yes [43] GPL A robust C unit testing framework

RTRT [44]

SeaTest Yes Yes [45] MIT Simple, pure C, unit testing framework

Smarttester [46] Automated unit and integration testing, and code
coverage

TBrun [14] Automated unit and integration testing, and code
coverage

http://en.wikipedia.org/w/index.php?title=C%2B%2Btest
http://www.parasoft.com/jsp/solutions/cpp_solution.jsp?itemId=340
http://en.wikipedia.org/w/index.php?title=Cantata%2B%2B
http://www.ipl.com/products/tools/pt413.php
http://en.wikipedia.org/w/index.php?title=Catsrunner
http://www.agilerules.com/projects/catsrunner/index.phtml
http://en.wikipedia.org/w/index.php?title=Cfix
http://www.cfix-testing.org
http://en.wikipedia.org/w/index.php?title=Cgreen
http://www.lastcraft.com/cgreen.php
http://en.wikipedia.org/w/index.php?title=Check_%28unit_testing_framework%29
http://check.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Cmockery
http://code.google.com/p/cmockery/
http://en.wikipedia.org/w/index.php?title=Google
http://en.wikipedia.org/w/index.php?title=CU_%28unit_testing_framework%29
http://cu.danfis.cz/
http://en.wikipedia.org/w/index.php?title=CUnit
http://cunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=CUnitWin32
http://code.google.com/p/cunitwin32/
http://en.wikipedia.org/w/index.php?title=CUT_%28unit_testing_framework%29
http://www.falvotech.com/content/cut/
http://en.wikipedia.org/w/index.php?title=CuTest
http://cutest.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Cutter_%28unit_testing_framework%29
http://cutter.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=EmbeddedUnit
http://embunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=FCTX
http://fctx.wildbearsoftware.com
http://en.wikipedia.org/w/index.php?title=GLib_Testing
http://library.gnome.org/devel/glib/2.20/glib-Testing.html
http://en.wikipedia.org/w/index.php?title=GLib
http://en.wikipedia.org/w/index.php?title=GUnit
https://garage.maemo.org/projects/gunit
http://en.wikipedia.org/w/index.php?title=GNOME
http://en.wikipedia.org/w/index.php?title=LibU
http://koanlogic.com/libu
http://en.wikipedia.org/w/index.php?title=MinUnit
http://www.jera.com/techinfo/jtns/jtn002.html
http://en.wikipedia.org/w/index.php?title=RCUNIT
http://rcunit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=RTRT
http://www.rational.com
http://en.wikipedia.org/w/index.php?title=SeaTest
http://seatest.googlecode.com
http://en.wikipedia.org/w/index.php?title=Smarttester
http://www.accord-soft.com/dynamicanalyser.html
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://www.ldra.com/tbrun.asp


List of unit testing frameworks 101

Tessy [47] Automated unit and integration testing, and code
coverage

TestApe [48] Test and mocking framework. Automatic default
mocks for unresolved externals

Test Dept.
Yes 

[49] GPL Can modify calls from software under test; e.g.
test error conditions by stubbing malloc and
letting it return null. Well documented

TPT
Yes Yes Yes Yes

[50] Commercial Time Partition Testing:Automated model based
unit and integration testing for embedded
systems.

Unity

Yes Yes 

[51] MIT Lightweight & includes features for embedded
development. Can work with Mocks and
Exceptions via CMock [52] and CException [53].
Also integrated with test build environment
Ceedling [54].

VectorCAST/C [15] Automated unit and integration testing, and code
coverage

Visual Assert
Yes [55] Unit-Testing Add-In for Visual Studio. Based on

the cfix testing framework.

xTests [56] BSD Depends on STLSoft C & C++ Libraries

LCUT
Yes Yes Yes [57] Apache

License 2.0
a Lightweight C Unit Testing framework,
including mock support

C#
See .NET Programming languages below.

C++

 Name xUnit Fixtures  Group
fixtures Generators

Mocks
Exceptions Macros Templates

 Grouping 
Homepage

 Remarks 

Aeryn  No Yes Yes  No  No Yes Yes Yes Yes [58]

API Sanity
Autotest

Yes 
Yes

(spectypes)
Yes

(spectypes) Yes 

[21] Unit test generator
for C/C++ libraries.
Can automatically
generate reasonable
input data for every
API function. LGPL.

ATF

Yes Yes Yes Yes 

[22] BSD Licensed.
Originally developed
for the NetBSD
operating system but
works well in most
Unix-like platforms.
Ability to install
tests as part of a
release.

Boost Test
Library No[59] Yes[60] Yes[61] Yes  No Yes 

User
decision

Yes 
Suites [62] Part of Boost

http://en.wikipedia.org/w/index.php?title=Tessy_%28Software%29
http://www.hitex.de/perm/tessy.htm
http://en.wikipedia.org/w/index.php?title=TestApe
http://www.testape.com
http://en.wikipedia.org/w/index.php?title=Test_Dept_%28unit_testing_framework%29
http://test-dept.googlecode.com
http://en.wikipedia.org/w/index.php?title=TPT_%28Software%29
http://www.piketec.com/products/tpt.php?lang=en
http://en.wikipedia.org/w/index.php?title=Time_Partition_Testing
http://en.wikipedia.org/w/index.php?title=Unity_%28unit_testing_framework%29
http://unity.sourceforge.net
http://cmock.sourceforge.net
http://cexception.sourceforge.net
http://ceedling.sourceforge.net
http://en.wikipedia.org/w/index.php?title=VectorCAST/C
http://www.vectorcast.com
http://en.wikipedia.org/w/index.php?title=Visual_Assert
http://www.visualassert.com
http://en.wikipedia.org/w/index.php?title=XTests
http://xtests.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=STLSoft_C%2B%2B_Libraries
http://en.wikipedia.org/w/index.php?title=LCUT
http://code.google.com/p/lcut/
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=List_of_unit_testing_frameworks%23.NET_programming_languages
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Aeryn_%28Software%29
http://aeryn.tigris.org/
http://en.wikipedia.org/w/index.php?title=API_Sanity_Autotest
http://en.wikipedia.org/w/index.php?title=API_Sanity_Autotest
http://ispras.linux-foundation.org/index.php/API_Sanity_Autotest
http://en.wikipedia.org/w/index.php?title=ATF
http://www.NetBSD.org/~jmmv/atf/
http://en.wikipedia.org/w/index.php?title=Boost_Test_Library
http://en.wikipedia.org/w/index.php?title=Boost_Test_Library
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/index.html
http://en.wikipedia.org/w/index.php?title=Boost_library


List of unit testing frameworks 102

C++test

Yes Yes Yes Yes  No Yes Yes Yes Yes 

[24] Commercial.
Automated software
quality solution that
includes unit test
generation and
execution as well as
reporting industry
standard code
coverage.

Cantata++

 No Yes Yes Yes  No Yes Yes Yes Yes 

[63] Commercial.
Automated OO unit
and integration
testing on host and
embedded systems
with code coverage
and unique call
interface control to
simulate and
intercept calls.

CATCH

 No Yes Yes Yes  No Yes Yes Yes Yes 

[64] Header only, no
external
dependencies,
auto-registration, tdd
and bdd features

cfix

Yes Yes  No  No  No Yes Yes  No 

[65] Specialized for
Windows
development—both
Win32 and NT
kernel mode.
Compatible to
WinUnit.

Cput

Yes Yes Yes Yes Yes Yes  No 

Suites [66] Library and MS
Visual Studio add-in
to create and run
unit tests. Open
Source.

CppTest
Yes Yes 

Suites [67] Released under
LGPL

CppUnit Yes Yes Yes  No  No Yes Yes  No Suites [68]

CppUTest

Yes Yes Yes  No  No  No Yes  No 

Suites [69] Limited C++ set by
design to keep usage
easy and allow it to
work on embedded
platforms. Ported to
Symbian and IAR

CppUnitLite Yes  No  No  No Yes  No Suites [70]

CPUnit
Yes Yes Yes  No  No Yes Yes Yes Yes [71] Released under

BSD.

http://en.wikipedia.org/w/index.php?title=C%2B%2Btest
http://www.parasoft.com/jsp/solutions/cpp_solution.jsp?itemId=340
http://en.wikipedia.org/w/index.php?title=Cantata%2B%2B
http://www.ipl.com/products/tools/pt411.php
http://en.wikipedia.org/w/index.php?title=CATCH_%28Software%29
https://github.com/philsquared/Catch
http://en.wikipedia.org/w/index.php?title=Cfix
http://www.cfix-testing.org/
http://en.wikipedia.org/w/index.php?title=Cput
http://cput.codeplex.com/
http://en.wikipedia.org/w/index.php?title=CppTest
http://cpptest.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=LGPL
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://en.wikipedia.org/w/index.php?title=CppUTest
http://sourceforge.net/projects/cpputest
http://en.wikipedia.org/w/index.php?title=CppUnitLite
http://c2.com/cgi/wiki?CppUnitLite
http://en.wikipedia.org/w/index.php?title=CPUnit
http://cpunit.sourceforge.net/


List of unit testing frameworks 103

CUTE

Yes Yes  No  No  No Yes 

Suites [72] CUTE (C++ Unit
Testing Easier) with
Eclipse CDT
integration. Single
line include, without
inheritance.

cutee  No  No  No Yes [73]

CxxTest

Yes Yes Yes  No Yes* 

Optional

Yes  No 

Suites [74] Uses a simple C++
parser and code
generator (requiring
Perl or Python) for
test registration. *
Has a framework for
generating mocks of
global functions, but
not for generating
mocks of objects.

Exercisix

 No  No  No  No  No Yes Yes Yes 

Executables [75] BSD-licensed.
Aimed to make
adding tests as fast
and easy as possible.

FCTX

Yes Yes Yes  No  No  No Yes  No Yes 

[38] Fast and complete
unit testing
framework all in one
header. Declare and
write your functions
in one step. No
dependencies. Cross
platform.

Fructose
 No Yes  No  No  No Yes Yes Yes  No 

[76] A simple unit test
framework. See also
Accu [77]

 Name xUnit Fixtures  Group
fixtures Generators

Mocks
Exceptions Macros Templates

 Grouping 
Homepage

 Remarks 

Google C++
Mocking
Framework

Yes  No Yes Yes 
[78]

Google C++
Testing
Framework

Yes Yes Yes Yes Yes Yes 

[79] Supports automatic
test discovery, a rich
set of assertions,
user-defined
assertions, death
tests, fatal and
non-fatal failures,
various options for
running the tests,
and XML test report
generation.

http://en.wikipedia.org/w/index.php?title=CUTE_%28software%29
http://www.cute-test.com/
http://en.wikipedia.org/w/index.php?title=Cutee
http://codesink.org/cutee_unit_testing.html
http://en.wikipedia.org/w/index.php?title=CxxTest
http://cxxtest.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Exercisix
http://alexanderchuranov.com/software/exercisix/
http://en.wikipedia.org/w/index.php?title=FCTX
http://fctx.wildbearsoftware.com
http://en.wikipedia.org/w/index.php?title=Fructose_%28Software%29
http://sourceforge.net/projects/fructose/
http://accu.org/index.php/journals/1305
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Mocking_Framework
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Mocking_Framework
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Mocking_Framework
http://code.google.com/p/googlemock/
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Testing_Framework
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Testing_Framework
http://en.wikipedia.org/w/index.php?title=Google_C%2B%2B_Testing_Framework
http://code.google.com/p/googletest/


List of unit testing frameworks 104

Hestia

 No Yes Yes  No  No Yes Yes  No 

Suites [80] Open source. Can
test servers,
libraries, and
applications, and
also test embedded
software.

Igloo Yes
(Contexts) 

 No  No  No Yes Yes Yes 
Yes (nested
contexts) 

[81] BDD style unit
testing in C++

Isolator++ Commercial.
Isolation/Mocking
Framework for C++

mock++/mockcpp
Yes Yes  No Yes Yes Yes Yes 

Suites [82] Simple testing
framework for C++
(requires cmake)

mockitopp
Yes [83] C++ implementation

of mockito

mockpp
Yes Yes Yes Yes Yes Yes Yes 

Suites [84] A C++ mocking
framework hosted
by Google

NanoCppUnit  No Yes Yes  No  No  No Yes Yes Suites [85] Proof-of-concept

OAKUT
 No  No Yes 

Yes (XML)
 No Yes Yes Yes 

XML [86] Uses shared libraries
/ DLLs

QtTest

Yes Yes  No  No  No  No  No  No 

[87] Built on the ultra
cross platform Qt
Library. Allows
testing on Windows,
MacOSX, Linux,
BSD, Sybian, and
any other platform
Qt can build on.

QuickTest  No  No  No  No  No Yes Yes Yes  No [88]

ShortCUT  No Yes [89]

Symbian OS Unit Yes [90] Based on CxxTest

TBrun [91] Commercial.

Tessy [47] Commercial.

TEST-DOG Yes Yes Yes Yes  No Yes Yes  No Suites [92] Open Source.

Test soon
 No Yes Yes Yes  No 

Auto-detect
Yes Yes 

Macro
(namespaces)

[93] Complex macro
logic (deliberately)

Testwell CTA++ Yes  No  No Yes  No Yes Yes Yes [94] Commercial.

tpunit++

Yes Yes  No  No Optional Yes Yes 
[95] A highly portable,

simple C++ xUnit
library contained in
a single header.

http://en.wikipedia.org/w/index.php?title=Hestia_%28Software%29
http://sourceforge.net/projects/hestia/
http://en.wikipedia.org/w/index.php?title=Igloo_%28Software%29
http://igloo-testing.org
http://en.wikipedia.org/w/index.php?title=Isolator%2B%2B
http://en.wikipedia.org/w/index.php?title=Mockcpp
http://en.wikipedia.org/w/index.php?title=Mockcpp
http://code.google.com/p/mockcpp/
http://en.wikipedia.org/w/index.php?title=Mockitopp
http://code.google.com/p/mockitopp/
http://en.wikipedia.org/w/index.php?title=Mockpp
http://mockpp.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=NanoCppUnit
http://www.xpsd.org/cgi-bin/wiki?NanoCppUnit
http://en.wikipedia.org/w/index.php?title=OAKUT
http://www.oaklib.org/oakut/index.html
http://en.wikipedia.org/w/index.php?title=QtTest
http://doc.qt.nokia.com/latest/qtestlib-tutorial.html
http://en.wikipedia.org/w/index.php?title=QuickTest
http://quicktest.sf.net
http://en.wikipedia.org/w/index.php?title=ShortCUT
http://www.codeproject.com/KB/applications/shortcut.aspx?print=true
http://en.wikipedia.org/w/index.php?title=Symbian_OS_Unit
http://www.symbianosunit.co.uk/
http://en.wikipedia.org/w/index.php?title=CxxTest
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://www.ldra.co.uk/tbrun.asp
http://en.wikipedia.org/w/index.php?title=Tessy_%28Software%29
http://www.hitex.de/perm/tessy.htm
http://en.wikipedia.org/w/index.php?title=TEST-DOG
http://www.bigangrydog.com/testdog/unit_testing.xhtml
http://en.wikipedia.org/w/index.php?title=Test_soon
http://testsoon.sourceforge.net
http://en.wikipedia.org/w/index.php?title=Testwell_CTA%2B%2B
http://www.testwell.fi/ctadesc.html
http://en.wikipedia.org/w/index.php?title=Tpunit%2B%2B
http://github.com/tpounds/tpunitpp


List of unit testing frameworks 105

TUT

 No  No Yes  No  No Yes Yes Yes 

Templates [96] Based on templates.
Automatic test
registration/discovery,
customizable reports
generation process,
various tests run
options. Easy
adaptable to work on
Windows CE.

Unit++ [97]

UnitTest Yes Yes  No  No  No Yes Yes  No  No [98]

UnitTest++

 No Yes Yes  No Yes Yes Yes 

Suites [99] UnitTest++ is free
software. Simplicity,
portability, speed,
and small footprint
are all important
aspects of
UnitTest++.

UquoniTest

Yes Yes Yes  No Yes Yes Yes Yes Yes 

[100] Commercial. Adds
features like easy
creation of
(reusable) test
directories, Rich
Booleans in
assertions, and more.

VectorCAST/C++ [101] Commercial.
Automated unit and
integration testing,
and code coverage.

Visual Assert

Yes Yes  No  No  No Yes Yes  No 
[102] Unit-Testing Add-In

for Visual Studio.
Based on the cfix
testing framework.

WinUnit [103] Focused more
toward C/C++ than
.NET developers

xTests
Yes Yes [56] Depends on STLSoft

C & C++ Libraries

Yaktest [104]

 Name xUnit Fixtures  Group
fixtures Generators

Mocks
Exceptions Macros Templates

 Grouping 
Homepage

 Remarks 

http://en.wikipedia.org/w/index.php?title=TUT_%28software%29
http://tut-framework.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Unit%2B%2B
http://unitpp.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=UnitTest
http://devmentor.org#UnitTest
http://en.wikipedia.org/w/index.php?title=UnitTest%2B%2B
http://unittest-cpp.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=UquoniTest
http://www.q-mentum.com/uquonitest.php
http://en.wikipedia.org/w/index.php?title=VectorCAST/C%2B%2B
http://www.vectorcast.com/
http://en.wikipedia.org/w/index.php?title=Visual_Assert
http://www.visualassert.com/
http://en.wikipedia.org/w/index.php?title=WinUnit
http://winunit.codeplex.com/
http://en.wikipedia.org/w/index.php?title=XTests
http://xtests.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=STLSoft_C%2B%2B_Libraries
http://en.wikipedia.org/w/index.php?title=STLSoft_C%2B%2B_Libraries
http://en.wikipedia.org/w/index.php?title=Yaktest
http://yaktest.sourceforge.net/


List of unit testing frameworks 106

Cg

 Name xUnit  Homepage  Remarks 

UnitTestCg  No [105] Pixel and Vertex Shaders supported.

CFML (ColdFusion)

 Name xUnit  Homepage  Remarks 

CFUnit

cfcUnit Yes 

MXUnit Yes Unit Test Framework and Eclipse Plugin for CFML (ColdFusion)

MockBox  No Mocking/Stubbing Framework for CFML (ColdFusion)

Clojure

 Name xUnit  Homepage  Remarks 

Fact Yes [106]

Cobol

 Name xUnit  Homepage  Remarks 

COBOLUnit
(CBU)

Yes [107]

savvytest
 No [108] Commercial tool (rather than a framework) to edit and perform component tests on the IBM mainframe

platform

Common Lisp

 Name xUnit  Homepage  Remarks 

CLUnit [109]

CyberTiggyr Test [110]

FiveAM [111]

FReT [112]

grand-prix [113]

HEUTE [114]

LIFT [115]

lisp-unit [116]

RT [117]

http://en.wikipedia.org/w/index.php?title=Cg_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=UnitTestCg
http://code.google.com/p/unittestcg/source
http://en.wikipedia.org/w/index.php?title=CFML
http://en.wikipedia.org/w/index.php?title=ColdFusion
http://en.wikipedia.org/w/index.php?title=CFUnit
http://en.wikipedia.org/w/index.php?title=CfcUnit
http://en.wikipedia.org/w/index.php?title=MXUnit
http://en.wikipedia.org/w/index.php?title=MockBox
http://en.wikipedia.org/w/index.php?title=Clojure
http://en.wikipedia.org/w/index.php?title=Fact_%28software%29
http://github.com/weavejester/fact/tree/
http://en.wikipedia.org/w/index.php?title=Cobol
http://en.wikipedia.org/w/index.php?title=COBOLUnit
http://sites.google.com/site/cobolunit/
http://en.wikipedia.org/w/index.php?title=Savvytest
http://www.savignano.net/savvytest
http://en.wikipedia.org/w/index.php?title=IBM_mainframe
http://en.wikipedia.org/w/index.php?title=Common_Lisp
http://en.wikipedia.org/w/index.php?title=CLUnit
http://www.ancar.org/CLUnit/docs/CLUnit.html
http://en.wikipedia.org/w/index.php?title=CyberTiggyr_Test
http://cybertiggyr.com/gene/lut/
http://en.wikipedia.org/w/index.php?title=FiveAM
http://common-lisp.net/project/bese/FiveAM.html
http://en.wikipedia.org/w/index.php?title=FReT
http://common-lisp.net/project/fret/
http://common-lisp.net/project/grand-prix/
http://en.wikipedia.org/w/index.php?title=HEUTE
http://www.rdrop.com/~jimka/lisp/heute/heute.html
http://common-lisp.net/project/lift/
http://en.wikipedia.org/w/index.php?title=Lisp-unit
http://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/testing/rt/0.html


List of unit testing frameworks 107

stefil [118]

XLUnit [119]

Curl

 Name xUnit  Homepage  Remarks 

CurlUnit [120]

Delphi

 Name xUnit  Homepage  Remarks 

DUnit Yes [121] -

DUnit2 Yes [122] -

Emacs Lisp

 Name xUnit  Homepage  Remarks 

ElUnit [123]

elk-test  No [124]

Unit-test.el [125]

Erlang

 Name xUnit  Fixtures  Group Fixtures  Generators  Homepage  Remarks 

EUnit Yes Yes Yes Yes [126] Included in Erlang release R12B5 and later

Fortran

 Name xUnit
Fixtures

 Group
fixtures Generators Homepage

 Remarks 

FUnit
Yes Yes Yes  No [127] Minimum Fortran plus assertions and boiler plate expanded via

Ruby.

FRUIT
Yes Yes Yes Yes 

[128] Written in Fortran 95 yet works with code written in any version
of Fortran. Has assertions, fixture, setup, teardown, reporting and
more. Generator in Ruby.

Ftnunit [129]

pFUnit [130]

http://en.wikipedia.org/w/index.php?title=Stefil
http://common-lisp.net/project/stefil/
http://en.wikipedia.org/w/index.php?title=XLUnit
http://www.cliki.net/xlunit
http://en.wikipedia.org/w/index.php?title=Curl_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=CurlUnit
http://www.curl.com
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=DUnit
http://dunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=DUnit2
http://sourceforge.net/projects/dunit2/
http://en.wikipedia.org/w/index.php?title=Emacs_Lisp
http://en.wikipedia.org/w/index.php?title=ElUnit
http://www.emacswiki.org/cgi-bin/wiki/ElUnit
http://en.wikipedia.org/w/index.php?title=Elk-test
http://www.emacswiki.org/cgi-bin/wiki/ElkTest
http://en.wikipedia.org/w/index.php?title=Unit-test.el
http://www.emacswiki.org/cgi-bin/wiki/unit-test.el
http://en.wikipedia.org/w/index.php?title=Erlang_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=EUnit
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=FUnit
http://nasarb.rubyforge.org/funit
http://en.wikipedia.org/w/index.php?title=FRUIT
http://sourceforge.net/projects/fortranxunit
http://en.wikipedia.org/w/index.php?title=Ftnunit
http://flibs.sf.net/ftnunit.html
http://en.wikipedia.org/w/index.php?title=PFUnit
http://sourceforge.net/projects/pfunit/


List of unit testing frameworks 108

ObjexxFTK:UnitTest [131] Easy: user only writes Fortran tests: Python script automatically
finds all tests and generates the Fortran test driver. Supports
F77-F2003. Assertion support and useful string and array libs
included.

Lutin77 [132] Running F77 unit tests. It is very light (97 lines of code) and only
requires a C compiler. Hack it yourself and enjoy !

F#

 Name xUnit  Homepage  Remarks 

FsCheck  No [133] Random testing (Fuzzing) combinator library based on QuickCheck for Haskell.

FsTest
Yes [134] Domain specific language for writing language oriented programming specifications in F#. Based on FsUnit

syntax, but targeting xUnit.net.

NaturalSpec  No [135] Domain specific language for writing specifications in a natural language. Based on NUnit.

FsUnit  No [136] Stand-alone Behavior Driven Development framework, with natural syntax for writing specifications.

Other - See also listing for .NET programming languages, elsewhere on this page.

Groovy

 Name xUnit  Homepage  Remarks 

easyb [137] BDD

geb [138] Functional testing framework

Spock Yes [139]

Genexus

 Name xUnit  Homepage  Remarks 

GXUnit Yes [140] It's a framework (prototype) to perform unit testing for Genexus.

Haskell

http://en.wikipedia.org/w/index.php?title=ObjexxFTK:UnitTest
http://objexx.com/ObjexxFTK.html
http://en.wikipedia.org/w/index.php?title=Lutin77
http://www.logilab.org/project/lutin77
http://en.wikipedia.org/w/index.php?title=F_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=FsCheck
http://www.codeplex.com/fscheck/
http://en.wikipedia.org/w/index.php?title=Fuzzing
http://en.wikipedia.org/w/index.php?title=Combinator_library
http://en.wikipedia.org/w/index.php?title=QuickCheck
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=FsTest
http://www.codeplex.com/FsTest
http://en.wikipedia.org/w/index.php?title=Domain_specific_language
http://en.wikipedia.org/w/index.php?title=Language_oriented_programming
http://en.wikipedia.org/w/index.php?title=FsUnit
http://en.wikipedia.org/w/index.php?title=XUnit.net
http://en.wikipedia.org/w/index.php?title=NaturalSpec
http://bitbucket.org/forki/naturalspec/wiki/Home
http://en.wikipedia.org/w/index.php?title=Domain_specific_language
http://en.wikipedia.org/w/index.php?title=FsUnit
http://fsunit.codeplex.com/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=List_of_unit_testing_frameworks%23.NET_programming_languages
http://en.wikipedia.org/w/index.php?title=Groovy_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Easyb
http://www.easyb.org/
http://en.wikipedia.org/w/index.php?title=Behavior_driven_development
http://en.wikipedia.org/w/index.php?title=Geb
http://geb.codehaus.org/
http://en.wikipedia.org/w/index.php?title=Functional_testing_framework
http://code.google.com/p/spock/
http://en.wikipedia.org/w/index.php?title=Genexus
http://en.wikipedia.org/w/index.php?title=GXUnit
http://wiki.gxtechnical.com/commwiki/servlet/hwiki?GXUnit
http://en.wikipedia.org/w/index.php?title=Genexus
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29


List of unit testing frameworks 109

 Name xUnit  Homepage  Remarks 

HUnit Yes [141]

QuickCheck [142] QuickCheck

HLSL

 Name xUnit  Homepage  Remarks 

UnitTestCg  No [105] Pixel and Vertex Shaders supported.

ITT IDL

 Name xUnit  Homepage  Remarks 

MGunit Yes [143]

white paper [144] only a white paper, not a framework

Internet

 Name xUnit  Homepage  Remarks 

HtmlUnit [145] Java headless browser emulator

HttpUnit testing framework for web applications, typically used in combination with JUnit

IEUnit [146] testing framework for web applications, based on IE browser and Javascript

Canoo WebTest [147]

Selenium Testing framework whose playback can run in most modern web browsers to test webpages.

soapUI [148] Open Source Web Service testing platform for Service Oriented Architectures.

SOAtest [149] Commercial. Testing platform whose record/playback runs in most modern web browsers to test webpages.

Java

 Name xUnit
Homepage

 Remarks 

JTiger

SpryTest Yes [150] Commercial. Automated Unit Testing Framework for Java

Jtest
Yes [151] Commercial. Automated software quality solution that includes unit test generation and execution as well as

reporting industry standard code coverage.

JUnit Yes [152]

JWalk Fast, semi-automatic creation of exhaustive unit test-sets

TestNG
Yes 

Actually an integration testing framework, which means its tests include unit tests, functional tests, and
integration tests.

http://en.wikipedia.org/w/index.php?title=HUnit
http://hunit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=QuickCheck
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://en.wikipedia.org/w/index.php?title=QuickCheck
http://en.wikipedia.org/w/index.php?title=HLSL
http://en.wikipedia.org/w/index.php?title=UnitTestCg
http://code.google.com/p/unittestcg/source
http://en.wikipedia.org/w/index.php?title=IDL_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=MGunit
http://mgunit.idldev.com
http://www.barnett.id.au/idl/UnitRun.html
http://en.wikipedia.org/w/index.php?title=Internet
http://htmlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=HttpUnit
http://en.wikipedia.org/w/index.php?title=IEUnit
http://code.google.com/p/ieunit/
http://en.wikipedia.org/w/index.php?title=Canoo_WebTest
http://webtest.canoo.com/
http://en.wikipedia.org/w/index.php?title=Selenium_%28software%29
http://en.wikipedia.org/w/index.php?title=SoapUI
http://www.soapui.org/
http://en.wikipedia.org/w/index.php?title=Parasoft_SOAtest_%28software%29
http://www.parasoft.com/jsp/solutions/soa_solution.jsp
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JTiger
http://en.wikipedia.org/w/index.php?title=SpryTest
http://www.sprystone.com
http://en.wikipedia.org/w/index.php?title=Jtest
http://www.parasoft.com/jsp/products/jtest.jsp?itemId=14
http://junit.org/
http://en.wikipedia.org/w/index.php?title=JWalk
http://en.wikipedia.org/w/index.php?title=TestNG


List of unit testing frameworks 110

NUTester [153] Testing framework developed at Northeastern University to aid in teaching introductory computer science
courses in Java

Concordion [154] Acceptance Test Driven Development

JExample
Yes [155] A JUnit extension that uses dependencies between test cases to reduce code duplication and improves defect

localization.

DbUnit [2] A JUnit extension to perform unit testing with database-driven programs

JUnitEE [156] A JUnit extension for testing Java EE applications

Cactus A JUnit extension for testing Java EE and web applications. Cactus tests are executed inside the Java EE/web
container.

JSST [157] Java Server-Side Testing framework which is based on the similar idea to the one of Apache CACTUS, but
unlike CACTUS it's not coupled to JUnit 3.x and can be used in conjunction with any testing framework.

GroboUtils [158] A JUnit extension providing Automated documentation, class hierarchy unit testing, code coverage, and
multi-threaded tests.

Mockrunner [159] A JUnit extension for testing testing servlets, filters, tag classes and Struts actions and forms.

Unitils [160] Offers general utilities and features for helping with persistence layer testing and testing with mock objects.
Offers specific support for testing application code that makes use of JPA, hibernate and spring. Unitils
integrates with the test frameworks JUnit and TestNG.

JBehave [161] Behavior Driven Development

Instinct [162] Behavior Driven Development

JDave [163] Behavior Driven Development

beanSpec [164] Behavior Driven Development

XMLUnit [1] JUnit and NUnit testing for XML

EasyMock [165] A mock framework

JMock [166] A mock framework

Mockito [167] A mock framework, using the Hamcrest [168] library

Mockachino [169] A mock framework

Concutest [170] A framework for testing concurrent programs

SureAssert [171] An integrated Java unit testing solution for Eclipse. Contract-First Design and Test Driven Development

JavaScript

http://en.wikipedia.org/w/index.php?title=NUTester
http://www.ccs.neu.edu/javalib
http://en.wikipedia.org/w/index.php?title=Concordion
http://www.concordion.org
http://en.wikipedia.org/w/index.php?title=Acceptance_Test_Driven_Development
http://en.wikipedia.org/w/index.php?title=JExample
http://scg.unibe.ch/research/jexample/
http://en.wikipedia.org/w/index.php?title=DbUnit
http://www.dbunit.org/
http://en.wikipedia.org/w/index.php?title=JUnitEE
http://www.junitee.org/
http://en.wikipedia.org/w/index.php?title=Java_EE
http://en.wikipedia.org/w/index.php?title=Jakarta_Cactus
http://en.wikipedia.org/w/index.php?title=Java_EE
http://en.wikipedia.org/w/index.php?title=Java_EE
http://en.wikipedia.org/w/index.php?title=Java_Server-Side_Testing_framework
https://github.com/shyiko/jsst/wiki
http://en.wikipedia.org/w/index.php?title=GroboUtils
http://groboutils.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Mockrunner
http://mockrunner.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Unitils
http://www.unitils.org
http://en.wikipedia.org/w/index.php?title=JBehave
http://jbehave.org/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://code.google.com/p/instinct/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=JDave
http://www.jdave.org/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=BeanSpec
http://sourceforge.net/projects/beanspec
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=XMLUnit
http://xmlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=EasyMock
http://easymock.org/
http://en.wikipedia.org/w/index.php?title=JMock
http://www.jmock.org/
http://en.wikipedia.org/w/index.php?title=Mockito
http://code.google.com/p/mockito/
http://code.google.com/p/hamcrest/
http://en.wikipedia.org/w/index.php?title=Mockachino
http://code.google.com/p/mockachino/
http://en.wikipedia.org/w/index.php?title=Concutest
http://www.concutest.org/
http://en.wikipedia.org/w/index.php?title=SureAssert
http://www.sureassert.com/
http://en.wikipedia.org/w/index.php?title=JavaScript


List of unit testing frameworks 111

 Name xUnit TAP Client-side Server-side Homepage  Remarks 

DOH
Yes Yes [172] Dojo Objective Harness that can be run in-browser or independently via

Rhino

JSUnit Yes  No Yes  No [173] JSUnit is no longer actively maintained

QUnit Yes Yes [174] jQuery test harness

Crosscheck  No Yes [175] Browserless java-based framework

J3Unit Yes  No [176]

JSNUnit Yes  No [177]

YUI Test Yes  No [178]

JSSpec Yes  No [179] Behaviour-driven development framework

UnitTesting Yes  No [180] script.aculo.us javascript test harness

JSpec
Yes Yes [181] Highly readable BDD, 50+ matchers, DOM / framework independent,

async, rhino, node.js support and more (no longer maintained)

Jasmine
Yes Yes 

[182] BDD, framework independent, easy integration with Ruby projects and
continuous builds. Allows for both DOM-less testing and asynchronous
testing.

screw-unit Yes  No [183] Requires jQuery

Test.Simple
No[184] Yes Yes  No [18] Write TAP-emitting unit tests in JavaScript and run them in your

browser.

Test.More
 No[1] Yes Yes  No [185] Write TAP-emitting unit tests in JavaScript and run them in your

browser.

TestCase Yes  No [186]

TestIt Yes Yes [187] Light-weight, non-polluting, and easy to setup and use

jsUnitTest Yes Yes[188] Based on TestCase but without the Prototype dependency

JSTest Yes  No [189] Light-weight, non-polluting browser-based framework

JSTest.NET
 No Yes [190] Browserless JavaScript unit test runner for use with MsTest, XUnit,

NUnit, etc.

jsUnity Yes  No Yes Yes [191] Context-agnostic (JavaScript, JScript (ASP/WSH), Rhino, etc.)

RhinoUnit  No Yes [192] Rhino-based framework that allows tests to be run in Ant

JasUnit
Yes  No Yes  No [193] Light-weight framework. Part of a project that provides Mocks and

IoC.)

FireUnit
Yes  No [194] Testing framework that provides logging and viewing within a new tab

of Firebug.

Js-test-driver
Yes Yes  No 

[195] The goal of JsTestDriver is to build a JavaScript test runner which
easily integrates with continuous builds systems and allows running
tests on multiple browsers quickly to ease TDD style development.

Sinon.js Compatible
Yes Yes [196] Standalone test spies, stubs and mocks for JavaScript. No dependencies,

works with any unit testing framework.

http://en.wikipedia.org/w/index.php?title=Client_side
http://en.wikipedia.org/w/index.php?title=Server-side
http://en.wikipedia.org/w/index.php?title=DOH_%28software%29
http://www.dojotoolkit.org/reference-guide/util/doh.html
http://en.wikipedia.org/w/index.php?title=Dojo_Toolkit
http://en.wikipedia.org/w/index.php?title=Rhino_%28JavaScript_engine%29
http://en.wikipedia.org/w/index.php?title=JSUnit
http://www.jsunit.net/
http://en.wikipedia.org/w/index.php?title=QUnit
http://docs.jquery.com/QUnit
http://en.wikipedia.org/w/index.php?title=JQuery
http://en.wikipedia.org/w/index.php?title=Crosscheck_%28software%29
http://thefrontside.net/crosscheck
http://en.wikipedia.org/w/index.php?title=J3Unit
http://j3unit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=JSNUnit
http://www.valleyhighlands.com/testingframeworks/
http://en.wikipedia.org/w/index.php?title=YUI_Test
http://developer.yahoo.com/yui/yuitest/
http://en.wikipedia.org/w/index.php?title=JSSpec
http://jania.pe.kr/aw/moin.cgi/JSSpec
http://en.wikipedia.org/w/index.php?title=Behaviour-driven_development
http://en.wikipedia.org/w/index.php?title=UnitTesting
http://github.com/madrobby/scriptaculous/wikis/unit-testing
http://en.wikipedia.org/w/index.php?title=Script.aculo.us
http://en.wikipedia.org/w/index.php?title=JSpec
http://visionmedia.github.com/jspec
http://en.wikipedia.org/w/index.php?title=Jasmine_%28JavaScript_framework%29
http://pivotal.github.com/jasmine
http://en.wikipedia.org/w/index.php?title=Screw-unit
http://github.com/nkallen/screw-unit/tree/master
http://en.wikipedia.org/w/index.php?title=Test.Simple
http://openjsan.org/doc/t/th/theory/Test/Simple/
http://en.wikipedia.org/w/index.php?title=Test.More
http://openjsan.org/doc/t/th/theory/Test/Simple/0.21/lib/Test/More.html
http://en.wikipedia.org/w/index.php?title=TestCase
http://rubyforge.org/projects/testcase/
http://en.wikipedia.org/w/index.php?title=TestIt
http://github.com/DouglasMeyer/test_it
http://en.wikipedia.org/w/index.php?title=JsUnitTest
http://en.wikipedia.org/w/index.php?title=JSTest
http://github.com/willurd/JSTest
http://en.wikipedia.org/w/index.php?title=JSTest.NET
http://jstest.codeplex.com
http://en.wikipedia.org/w/index.php?title=JsUnity
http://jsunity.com/
http://en.wikipedia.org/w/index.php?title=RhinoUnit
http://code.google.com/p/rhinounit/
http://en.wikipedia.org/w/index.php?title=Rhino_%28JavaScript_engine%29
http://en.wikipedia.org/w/index.php?title=JasUnit
http://code.google.com/p/jasproject/
http://en.wikipedia.org/w/index.php?title=FireUnit
http://fireunit.org/
http://en.wikipedia.org/w/index.php?title=Firebug_%28Firefox_extension%29
http://en.wikipedia.org/w/index.php?title=Js-test-driver
http://code.google.com/p/js-test-driver/
http://en.wikipedia.org/w/index.php?title=Sinon.js
http://cjohansen.no/sinon/


List of unit testing frameworks 112

SOAtest
 No Yes  No 

[149] Commercial. Testing platform whose record/playback runs in most
modern web browsers where client-side Javascript can be tested both
through static analysis and functional verification.

Vows  No Yes [197]

Nodeunit Yes Yes [198] Asynchronous Javascript testing framework

Lasso

 Name xUnit  Homepage  Remarks 

L-Unit [199]

LaTeX

 Name xUnit  Homepage  Remarks 

qsunit [200]

LabVIEW

 Name xUnit  Homepage  Remarks 

LabVIEW Unit Test
Framework

 No 
Generate test harnesses for VIs in LabVIEW automatically.

VI Tester
Yes [201] native LabVIEW object-oriented implementation of xUnit framework. Unit tests are written as

VIs in LabVIEW.

LISP

 Name xUnit  Homepage  Remarks 

FiveAM [111]

LIFT [115]

lisp-unit [116]

http://en.wikipedia.org/w/index.php?title=SOAtest
http://www.parasoft.com/jsp/solutions/soa_solution.jsp
http://en.wikipedia.org/w/index.php?title=Vows_%28JavaScript%29
http://vowsjs.org
http://en.wikipedia.org/w/index.php?title=Nodeunit
https://github.com/caolan/nodeunit
http://en.wikipedia.org/w/index.php?title=Lasso_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=L-Unit
http://www.l-unit.org/
http://en.wikipedia.org/w/index.php?title=LaTeX
http://en.wikipedia.org/w/index.php?title=Qsunit
http://www.ctan.org/tex-archive/help/Catalogue/entries/qstest.html
http://en.wikipedia.org/w/index.php?title=LabVIEW
http://en.wikipedia.org/w/index.php?title=VI_Tester
http://jkisoft.com/vi-tester
http://en.wikipedia.org/w/index.php?title=LISP_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=FiveAM
http://common-lisp.net/project/bese/FiveAM.html
http://common-lisp.net/project/lift/
http://en.wikipedia.org/w/index.php?title=Lisp-unit
http://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html


List of unit testing frameworks 113

Lua

 Name xUnit  Homepage  Remarks 

LuaUnit [202]

lunit [203]

MATLAB

 Name xUnit  Homepage  Remarks 

mlUnit Yes [204]

mlUnit_2008a Yes [205]

Phelan's MUnit [206] The code is not available for download and an additional license restriction appears to violate
the GPL, under which the code is purportedly licensed.

Lombardi's MUnit [207] Similar to xUnit

MATLAB xUnit
Test Framework

Yes [208] MATLAB r2008a and later (uses OOP features introduced in this release). Renamed from
mtest. Accepts both xUnit-style subclass or simple MATLAB function test cases.

 Doctest

 No 

Bitbucket repository -
source and
documentation [209]

Allows automated test cases to be put in the documentation so your usage examples double
as test cases and vice versa. A TAP producer. Inspired by the Python module of the same
name. As of August 2011, it can only handle single line test-cases and its exception handling
facility cannot handle exceptions that are generated after other output [210] .

MySQL

 Name xUnit  Homepage  Remarks 

utMySQL Yes [211]

.NET programming languages

 Name xUnit
Homepage

 Remarks 

csUnit
Yes 

includes GUI, command line, VS2005 plug-in; supports C#, VB.NET, Managed C++, J#, other .NET
languages, supports .NET 3.5 and earlier versions; integrated with ReSharper

DbUnit.NET [212] A .NET 2.0 unit testing framework for database access code

EMTF  No [213] open source

Gallio [214] Extensible, and neutral automation platform that provides a common object model, runtime services and
tools (such as test runners) that may be leveraged by any number of test frameworks.

MbUnit Yes [215] Extensible, model-based nUnit compatible framework. Part of the Gallio Test Automation Platform.

MSTest
 No 

A command-line tool for executing Visual Studio created unit tests outside of the Visual Studio IDE - not
really a testing framework as it is a part of the Visual Studio Unit Testing Framework.

NaturalSpec  No [135] Domain specific language for writing specifications in a natural language. Based on NUnit.

http://en.wikipedia.org/w/index.php?title=Lua_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=LuaUnit
http://phil.freehackers.org/programs/luaunit/index.html
http://en.wikipedia.org/w/index.php?title=Lunit
http://www.nessie.de/mroth/lunit/
http://en.wikipedia.org/w/index.php?title=MATLAB
http://en.wikipedia.org/w/index.php?title=MlUnit
http://mlunit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=MlUnit_2008a
http://www.mathworks.com/matlabcentral/fileexchange/21888
http://xtargets.com/cms/Tutorials/Matlab-Programming/MUnit-Matlab-Unit-Testing.html
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11306&objectType=File
http://en.wikipedia.org/w/index.php?title=MATLAB_xUnit_Test_Framework
http://en.wikipedia.org/w/index.php?title=MATLAB_xUnit_Test_Framework
http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework
http://en.wikipedia.org/w/index.php?title=Object-oriented_programming
http://en.wikipedia.org/w/index.php?title=Doctest_%28MATLAB%29
https://bitbucket.org/tgs/doctest-for-matlab/overview
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=MySQL
http://en.wikipedia.org/w/index.php?title=UtMySQL
http://utmysql.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=ReSharper
http://en.wikipedia.org/w/index.php?title=DbUnit.NET
http://dbunit-net.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=EMTF
http://emtf.codeplex.com/
http://en.wikipedia.org/w/index.php?title=Gallio_Test_Automation_Platform
http://gallio.org
http://en.wikipedia.org/w/index.php?title=MbUnit
http://mbunit.com
http://en.wikipedia.org/w/index.php?title=Gallio_Test_Automation_Platform
http://en.wikipedia.org/w/index.php?title=MSTest
http://en.wikipedia.org/w/index.php?title=Visual_Studio_Unit_Testing_Framework
http://en.wikipedia.org/w/index.php?title=NaturalSpec
http://bitbucket.org/forki/naturalspec/wiki/Home
http://en.wikipedia.org/w/index.php?title=Domain_specific_language


List of unit testing frameworks 114

NMate [216] NUnit and PartCover Code Generation and integration Addin for Microsoft Visual Studio 2005/2008

NUnit Yes includes GUI, command line, integrates into VisualStudio with ReSharper

NUnitAsp Based on NUnit

Pex
Yes [217] Microsoft Research project providing White box testing for .NET, using the Z3 constraint solver to

generate unit test input (rather than Fuzzing).

Quality Gate One
Studio  No 

[218] Commercial/freeware test framework for unit and integration testing that analyses dependencies between
test cases to flow data between them. Supports combinatorial testing, multithreading and
time-dependencies.

QuickUnit.net  No [219] Implement unit tests without coding. Minimalist approach to test driven development.

Rhino Mocks Yes [220] A dynamic mock object framework for the .NET platform.

Roaster Yes [221] NUnit based framework and tools for the .NET Compact Framework

SpecFlow
Yes [222] Behavior Driven Development framework for .Net. Inspired by [[Cucumber (software)|Cucumber].

Inegrates with NUnit, MSTest, MbUnit, and others.

Specter
Yes [223] Behavior Driven Development with an easy and readable syntax for writing specifications. Includes

command line, optional integration with NUnit

TestDriven.NET [224] [commercial]

.TEST
Yes [225] Commercial. Automated software quality solution that includes unit test generation and execution as well

as reporting industry standard code coverage.

Typemock Isolator
Yes [226] Commercial unit testing framework with simple API and test code generation features, supports C#,

ASP.NET, SharePoint, Silverlight.

Visual Studio
 No 

The Visual Studio Unit Testing Framework is included with Visual Studio Team System 2005 and later
editions, integrated with Visual Studio IDE. It is not included with Visual Studio Standard Edition or
Visual Studio Express editions.

Visual T#
Yes 

[227] Visual T# is a unit testing framework and development environment integrated with Visual Studio. It
includes T#, a programming language designed specifically to naturally express unit test intentions, and
tools for compiling, running and maintaining them.

xUnit.net
Yes 

[228] Developed by the original inventor of NUnit to be its successor. xUnit.net is currently the highest rated
.NET unit testing framework [229] due to it being leaner with a more refined syntax and lower friction
usage then NUnit.

Objective-C

 Name xUnit  Homepage  Remarks 

GHUnit [230] A easy to integrate, use and visual test framework for simulator and devices.

CATCH [231] A modern, fully featured, unit test framework with no external dependencies - all implemented in
headers

Cedar [232] BDD for Objective-C

iPhone Unit
Testing

[233] Unit testing framework based on OCUnit that works on the iPhone simulator and device.

Kiwi [234] RSpec-style BDD for Objective-C with support for mocks and stubs.

ObjcUnit [235]

OCUnit [236]

http://en.wikipedia.org/w/index.php?title=NMate
http://code.google.com/p/nmate
http://en.wikipedia.org/w/index.php?title=ReSharper
http://en.wikipedia.org/w/index.php?title=Pex_%28software%29
http://research.microsoft.com/en-us/projects/Pex
http://en.wikipedia.org/w/index.php?title=Microsoft_Research
http://en.wikipedia.org/w/index.php?title=White_box_testing
http://en.wikipedia.org/w/index.php?title=Z3_%28software%29
http://en.wikipedia.org/w/index.php?title=Fuzzing
http://en.wikipedia.org/w/index.php?title=Quality_Gate_One_Studio
http://en.wikipedia.org/w/index.php?title=Quality_Gate_One_Studio
http://www.qgonestudio.com
http://en.wikipedia.org/w/index.php?title=QuickUnit.net
http://www.quickunit.com/
http://en.wikipedia.org/w/index.php?title=Rhino_Mocks
http://www.ayende.com/projects/rhino-mocks.aspx
http://en.wikipedia.org/w/index.php?title=Roaster_%28software%29
http://www.codeplex.com/roaster
http://en.wikipedia.org/w/index.php?title=SpecFlow
http://specflow.org/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=MSTest
http://en.wikipedia.org/w/index.php?title=MbUnit
http://en.wikipedia.org/w/index.php?title=Specter_%28software%29
http://specter.sf.net
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=TestDriven.NET
http://www.testdriven.net
http://en.wikipedia.org/w/index.php?title=.TEST
http://www.parasoft.com/jsp/solutions/dotnet_solution.jsp?itemId=342
http://en.wikipedia.org/w/index.php?title=Typemock
http://www.typemock.org
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Visual_Studio_Unit_Testing_Framework
http://en.wikipedia.org/w/index.php?title=Visual_T_Sharp
http://www.prettyobjects.com/en/Products/TSharp
http://en.wikipedia.org/w/index.php?title=XUnit.net
http://xunit.codeplex.com
http://stackoverflow.com/questions/261139/nunit-vs-mbunit-vs-mstest-vs-xunit-net
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=GHUnit
https://github.com/gabriel/gh-unit
http://en.wikipedia.org/w/index.php?title=CATCH
https://github.com/philsquared/Catch/wiki/Catch-for-Objective-C
https://github.com/pivotal/cedar
http://en.wikipedia.org/w/index.php?title=IPhone_Unit_Testing
http://en.wikipedia.org/w/index.php?title=IPhone_Unit_Testing
http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting
http://kiwi-lib.info/
http://en.wikipedia.org/w/index.php?title=ObjcUnit
http://oops.se/objcunit/
http://en.wikipedia.org/w/index.php?title=OCUnit
http://www.sente.ch/software/ocunit/


List of unit testing frameworks 115

WiteBox for
iPhone

[237] Exclusively for iPhone unit testing, provides visual feedback, hierarchical results display, and test
durations.

WOTest [238]

Ocaml

 Name xUnit TAP  Homepage  Remarks 

OUnit [239] Based on HUnit, which is based on JUnit

TestSimple Yes [240] Generates TAP

FORT [241]

Object Pascal (Free Pascal)

 Name xUnit TAP  Homepage  Remarks 

FPCUnit Yes  No [242] This is a port to Free Pascal of the JUnit core framework.

Tap4Pascal  No Yes [243] A Pascal implementation of the Test Anything Protocol

FPTest Yes  No [244] This is a fork of DUnit2, specifically for use with the Free Pascal Compiler.

PegaRULES Process Commander

 Name xUnit  Homepage  Remarks 

PRUnit Yes [http://prunit.sourceforge.net/ xUnit style testing adapted to PRPC

Perl

 Name xUnit TAP  Homepage  Remarks 

TAP N/A Yes [245] the Test Anything Protocol used by most Perl tests

Test::Harness N/A Yes [246] the standard Perl test runner and TAP parser

Test::More
 No Yes [247] The baseline testing module, included with all modern Perl

installations

Test::Class Yes Yes [248] xUnit style testing adapted to Perl

Test::Builder N/A
Yes [249] a module for making more testing modules. These modules can be

combined in a single test program

Test::Unit (a.k.a.
PerlUnit) Yes  No [250]

([251])
a fairly straight port of JUnit to Perl. Note: This code seems to be
abandoned as noted here [252] and here [253].

Test::DBUnit N/A Yes [254] The database testing modules for both clear box and black box testing

Test::Unit::Lite
Yes 

Yes (via
Test::Unit::HarnessUnit) 

[255] Test::Unit replacement without external dependencies and with some
bugs fixed

Test::Able Yes Yes [256] xUnit style testing with Moose [257]

http://en.wikipedia.org/w/index.php?title=WiteBox_for_iPhone
http://en.wikipedia.org/w/index.php?title=WiteBox_for_iPhone
http://code.google.com/p/witebox/
http://en.wikipedia.org/w/index.php?title=WOTest
http://test.wincent.com/
http://en.wikipedia.org/w/index.php?title=Ocaml
http://en.wikipedia.org/w/index.php?title=OUnit
http://www.xs4all.nl/~mmzeeman/ocaml
http://en.wikipedia.org/w/index.php?title=TestSimple
http://www.iinteractive.com/ocaml/
http://en.wikipedia.org/w/index.php?title=FORT
http://sourceforge.net/projects/fort
http://en.wikipedia.org/w/index.php?title=Object_Pascal
http://en.wikipedia.org/w/index.php?title=Free_Pascal
http://en.wikipedia.org/w/index.php?title=FPCUnit
http://camelos.sourceforge.net/fpcUnit.html
http://en.wikipedia.org/w/index.php?title=Free_Pascal
http://en.wikipedia.org/w/index.php?title=Tap4Pascal
http://sourceforge.net/projects/tap4pascal
http://en.wikipedia.org/w/index.php?title=FPTest
http://github.com/graemeg/fptest
http://en.wikipedia.org/w/index.php?title=DUnit2
http://en.wikipedia.org/w/index.php?title=Free_Pascal
http://en.wikipedia.org/w/index.php?title=PegaRULES_Process_Commander
http://en.wikipedia.org/w/index.php?title=PRUnit
http://en.wikipedia.org/w/index.php?title=Perl
http://search.cpan.org/perldoc/TAP
http://en.wikipedia.org/w/index.php?title=Test::Harness
http://search.cpan.org/perldoc/Test::Harness
http://search.cpan.org/perldoc/Test::More
http://en.wikipedia.org/w/index.php?title=Test::Class
http://search.cpan.org/perldoc/Test::Class
http://en.wikipedia.org/w/index.php?title=Test::Builder
http://search.cpan.org/perldoc/Test::Builder
http://en.wikipedia.org/w/index.php?title=Test::Unit
http://en.wikipedia.org/w/index.php?title=PerlUnit
http://search.cpan.org/perldoc/Test::Unit
http://perlunit.sourceforge.net/
http://www.nntp.perl.org/group/perl.qa/2005/02/msg3562.html
http://www.nntp.perl.org/group/perl.qa/2005/02/msg3571.html
http://en.wikipedia.org/w/index.php?title=Test::DBUnit
http://search.cpan.org/perldoc/Test::DBUnit
http://en.wikipedia.org/w/index.php?title=Test::Unit::Lite
http://search.cpan.org/perldoc/Test::Unit::Lite
http://en.wikipedia.org/w/index.php?title=Test::Able
http://search.cpan.org/perldoc/Test::Able
http://search.cpan.org/perldoc/Moose


List of unit testing frameworks 116

PHP

 Name xUnit TAP  Homepage  Remarks 

PHPUnit Yes Yes [13]

PHP Unit Testing Framework Yes  No [258] It produces ASCII, XML or XHTML Output and runs from the command line.

SimpleTest Yes  No [259]

Testilence Yes  No [260]

lime  No Yes [261] Sub-project of symfony

Apache-Test  No Yes [14] PHP implementation of Test::More (test-more.php) Info [262]

ojes  No  No [263] Documentation Driven Testing

SnapTest Yes Yes [24]

OnionTest  No Yes [264] Write an Onion! No coding needed just some txt files.

PL/SQL

 Name xUnit  Homepage  Remarks 

utPLSQL
Yes utSQL

[265]
Initially developed by Steven Feuerstein, an open source unit testing framework for PL/SQL
development modeled on the Junit and xUnit frameworks.

Quest Code Tester for Oracle [266] A commercial PL/SQL testing tool from Quest Software (the makers of Toad) and Steven
Feuerstein.

pl/unit [267]

PL/SQL Unit Testing for
Oracle (PLUTO)

Yes [22] Open source unit testing framework modeled after JUnit and based on the Oracle PL/SQL
object system

ruby-plsql-spec [268] PL/SQL unit testing with Ruby open source libraries

DBFit [269] DbFit is a set of FIT fixtures which enables FIT/FitNesse tests to execute directly against a
database.

PostgreSQL

http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=PHPUnit
http://www.phpunit.de/
http://en.wikipedia.org/w/index.php?title=PHP_Unit_Testing_Framework
http://php-unit-test.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=SimpleTest
http://www.simpletest.org/
http://en.wikipedia.org/w/index.php?title=Testilence
http://www.testilence.org/
http://en.wikipedia.org/w/index.php?title=Lime_%28software%29
http://trac.symfony-project.com/trac/browser/tools/lime/trunk
http://en.wikipedia.org/w/index.php?title=Symfony
http://en.wikipedia.org/w/index.php?title=Apache-Test
http://shiflett.org/code/test-more.php
http://shiflett.org/blog/2006/jan/test-simple-for-php
http://en.wikipedia.org/w/index.php?title=Ojes
http://ojesunit.blogspot.com/
http://en.wikipedia.org/w/index.php?title=SnapTest
http://www.snaptest.net
http://en.wikipedia.org/w/index.php?title=OnionTest
http://www.oniontest.org/
http://en.wikipedia.org/w/index.php?title=UtPLSQL
http://utplsql.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Steven_Feuerstein
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=PL/SQL
http://en.wikipedia.org/w/index.php?title=Quest_Code_Tester
http://unittest.inside.quest.com/index.jspa
http://en.wikipedia.org/w/index.php?title=Quest_Software
http://en.wikipedia.org/w/index.php?title=TOAD_%28software%29
http://en.wikipedia.org/w/index.php?title=Steven_Feuerstein
http://en.wikipedia.org/w/index.php?title=Steven_Feuerstein
http://en.wikipedia.org/w/index.php?title=Pl/unit
http://plunit.com/
http://en.wikipedia.org/w/index.php?title=PL/SQL_Unit_Testing_for_Oracle
http://en.wikipedia.org/w/index.php?title=PL/SQL_Unit_Testing_for_Oracle
http://code.google.com/p/pluto-test-framework/
http://en.wikipedia.org/w/index.php?title=Ruby-plsql-spec
http://github.com/rsim/ruby-plsql-spec
http://en.wikipedia.org/w/index.php?title=DBFit
http://www.fitnesse.info/dbfit
http://en.wikipedia.org/w/index.php?title=PostgreSQL


List of unit testing frameworks 117

 Name xUnit TAP  Homepage  Remarks 

Epic [270] Epic is a unit test framework for PostgreSQL stored procedures. It requires PG 8.1 or higher.

pgTAP Yes Yes [271] Write tests in SQL or xUnit-style functions.

PGtools [272] Schema loading and testing tools for PostgreSQL.

PGUnit Yes  No [273] xUnit-style framework for stored procedures.

PowerBuilder

 Name xUnit  Homepage  Remarks 

PBUnit [274]

Progress 4GL

 Name xUnit  Homepage  Remarks 

proUnit Yes [275] xUnit-style framework for Progress OpenEdge procedures and objects

Prolog

 Name xUnit  Homepage  Remarks 

PlUnit [276]

Python

 Name xUnit  Generators  Fixtures  Group Fixtures  Homepage  Remarks 

PyUnit Yes Yes Yes  No it's part of Python's standard library

XPyUnit adding XML report generation to PyUnit

TestOOB an extended test framework for PyUnit

Doctest easy, Pythonic, and part of Python's standard library

Nose Yes Yes Yes [277] a discovery-based unittest extension

py.test Yes Yes Yes Yes [278] distributed testing tool

TwistedTrial Yes Yes Yes  No [279] PyUnit extensions for asynchronous and event-driven code

http://en.wikipedia.org/w/index.php?title=Epic_%28software%29
http://www.epictest.org/
http://en.wikipedia.org/w/index.php?title=PgTAP
http://pgtap.org/
http://en.wikipedia.org/w/index.php?title=PGtools
http://sourceforge.net/projects/pgtools/
http://en.wikipedia.org/w/index.php?title=PGUnit
http://en.dklab.ru/lib/dklab_pgunit/
http://en.wikipedia.org/w/index.php?title=PowerBuilder
http://en.wikipedia.org/w/index.php?title=PBUnit
http://web.archive.org/web/20090728170628/http://geocities.com/pbunit/
http://en.wikipedia.org/w/index.php?title=Progress_4GL
http://en.wikipedia.org/w/index.php?title=ProUnit
http://prounit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=Prolog
http://en.wikipedia.org/w/index.php?title=PlUnit
http://www.swi-prolog.org/packages/plunit.html
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PyUnit
http://en.wikipedia.org/w/index.php?title=XPyUnit
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=PyUnit
http://en.wikipedia.org/w/index.php?title=TestOOB
http://en.wikipedia.org/w/index.php?title=PyUnit
http://en.wikipedia.org/w/index.php?title=Doctest
http://en.wikipedia.org/w/index.php?title=Pythonic
http://somethingaboutorange.com/mrl/projects/nose/
http://en.wikipedia.org/w/index.php?title=Py.test
http://pytest.org
http://en.wikipedia.org/w/index.php?title=TwistedTrial
http://twistedmatrix.com/trac/wiki/TwistedTrial
http://en.wikipedia.org/w/index.php?title=PyUnit


List of unit testing frameworks 118

R programming language

 Name xUnit  Homepage  Remarks 

RUnit No [280] Open source

testthat No [281] Open source

REALbasic

 Name xUnit  Homepage  Remarks 

RBUnit No [282]

Rebol

 Name xUnit  Homepage  Remarks 

Runit [283]

RPG

 Name xUnit  Homepage  Remarks 

RPGUnit Yes [284]

Ruby

 Name xUnit  Homepage  Remarks 

Test::Unit Yes [285]

RSpec Behaviour-driven development framework

Shoulda [286]

microtest

Bacon

minitest [287] [288] Ruby Gem by Ryan Davis

http://en.wikipedia.org/w/index.php?title=R_programming_language
http://en.wikipedia.org/w/index.php?title=RUnit
http://sourceforge.net/projects/runit/
http://en.wikipedia.org/w/index.php?title=Testthat
http://cran.r-project.org/web/packages/testthat/index.html
http://en.wikipedia.org/w/index.php?title=REALbasic
http://en.wikipedia.org/w/index.php?title=RBUnit
http://logicalvue.com/blog/2007/02/rbunit-is-now-free/
http://en.wikipedia.org/w/index.php?title=Rebol
http://en.wikipedia.org/w/index.php?title=Runit
http://www.rebol.org
http://en.wikipedia.org/w/index.php?title=IBM_RPG
http://en.wikipedia.org/w/index.php?title=RPGUnit
http://rpgunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Ruby_%28programming_language%29
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://en.wikipedia.org/w/index.php?title=RSpec
http://en.wikipedia.org/w/index.php?title=Behaviour-driven_development
http://en.wikipedia.org/w/index.php?title=Shoulda
http://www.thoughtbot.com/projects/shoulda
http://rubydoc.info/gems/minitest/2.0.2/frames
http://blog.zenspider.com/minitest/


List of unit testing frameworks 119

SAS

 Name xUnit  Homepage  Remarks 

FUTS Yes [289] the Framework for Unit Testing SAS

SCLUnit Yes [290] SAS/AF implementation of the xUnit unit testing framework SAS

Scala

 Name xUnit  Homepage  Remarks 

Rehersal (sic) [291] with JMock like Expectations and natural language test names

ScUnit [292] JUnit style testing with fixture method injection and matchers for assertion

specs [293] Behavior Driven Development

ScalaCheck [294] Similar to QuickCheck

Scheme

 Name xUnit  Homepage  Remarks 

SchemeUnit Yes [295]

Shell

 Name xUnit  Homepage  Remarks 

assert.sh [296] LGPL licensed. Lightweight..

ATF [22] BSD Licensed. Originally developed for the NetBSD operating system but works well in most Unix-like
platforms. Ability to install tests as part of a release.

Roundup  No [297]

ShUnit Yes [298]

shUnit2 Yes [299] Originally developed for log4sh

filterunit [300] Test framework for filters and other command-line programs

Tap-functions [301] A TAP-producing BASH library

Simulink

http://en.wikipedia.org/w/index.php?title=SAS_System
http://en.wikipedia.org/w/index.php?title=FUTS
http://thotwave.com/products/futs.jsp
http://en.wikipedia.org/w/index.php?title=SAS_System
http://en.wikipedia.org/w/index.php?title=SCLUnit
http://www.sascommunity.org/mwiki/index.php?title=SclUnit&redirect=no
http://en.wikipedia.org/w/index.php?title=SAS_System
http://en.wikipedia.org/w/index.php?title=Scala_%28programming_language%29
http://rehersal.sourceforge.net
http://en.wikipedia.org/w/index.php?title=JMock
http://en.wikipedia.org/w/index.php?title=ScUnit
http://code.google.com/p/scunit/
http://en.wikipedia.org/w/index.php?title=Specs_%28software%29
http://code.google.com/p/specs/
http://en.wikipedia.org/w/index.php?title=Behavior_Driven_Development
http://en.wikipedia.org/w/index.php?title=ScalaCheck
http://code.google.com/p/scalacheck/
http://en.wikipedia.org/w/index.php?title=QuickCheck
http://en.wikipedia.org/w/index.php?title=Scheme_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SchemeUnit
http://planet.plt-scheme.org/display.ss?package=schemeunit.plt&owner=schematics
http://en.wikipedia.org/w/index.php?title=Shell_%28computing%29
http://en.wikipedia.org/w/index.php?title=Assert.sh
https://github.com/lehmannro/assert.sh
http://en.wikipedia.org/w/index.php?title=Automated_Testing_Framework
http://www.NetBSD.org/~jmmv/atf/
http://en.wikipedia.org/w/index.php?title=Roundup_%28unit_testing_software%29
http://itsbonus.heroku.com/p/2010-11-01-roundup
http://en.wikipedia.org/w/index.php?title=ShUnit
http://shunit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=ShUnit2
http://code.google.com/p/shunit2/
http://en.wikipedia.org/w/index.php?title=Log4sh
http://en.wikipedia.org/w/index.php?title=Filterunit
http://www.merten-home.de/FreeSoftware/filterunit/
http://en.wikipedia.org/w/index.php?title=Tap-functions
http://testanything.org/wiki/index.php/Tap-functions
http://en.wikipedia.org/w/index.php?title=Simulink


List of unit testing frameworks 120

 Name xUnit  Homepage  Remarks 

slUnit [302]

TPT
Yes [50] Time Partition Testing: Automated interface analysis, testframe generation, test execution, test assessment,

reporting.

Smalltalk

 Name xUnit  Homepage  Remarks 

SUnit Yes The original source of the xUnit design

SQL

 Name xUnit  Homepage  Remarks 

SQLUnit [303]

DbFit [269] Compare FitNesse.

TargetLink

 Name xUnit  Homepage  Remarks 

TPT [50] Time Partition Testing: Automated interface analysis, testframe generation, test execution, test assessment,
reporting.

Tcl

 Name xUnit  Homepage  Remarks 

tcltest [304]

tclUnit Yes [305]

TinyOS/nesC

 Name xUnit  Homepage  Remarks 

TUnit Yes [306] Embedded multi-platform wireless testing and characterization

Transact-SQL

http://en.wikipedia.org/w/index.php?title=SlUnit
http://mlunit.sourceforge.net/index.php/The_slUnit_Testing_Framework
http://en.wikipedia.org/w/index.php?title=TPT_%28Software%29
http://www.piketec.com/products/tpt.php?lang=en
http://en.wikipedia.org/w/index.php?title=Time_Partition_Testing
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=SQL
http://en.wikipedia.org/w/index.php?title=SQLUnit
http://sqlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=DbFit
http://www.fitnesse.info/dbfit
http://en.wikipedia.org/w/index.php?title=FitNesse
http://en.wikipedia.org/w/index.php?title=TargetLink
http://en.wikipedia.org/w/index.php?title=TPT_%28Software%29
http://www.piketec.com/products/tpt.php?lang=en
http://en.wikipedia.org/w/index.php?title=Time_Partition_Testing
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Tcltest
http://www.tcl.tk/man/tcl8.4/TclCmd/tcltest.htm
http://en.wikipedia.org/w/index.php?title=TclUnit
http://sourceforge.net/projects/tclunit/
http://en.wikipedia.org/w/index.php?title=TinyOS
http://en.wikipedia.org/w/index.php?title=NesC
http://en.wikipedia.org/w/index.php?title=TUnit
http://www.lavalampmotemasters.com
http://en.wikipedia.org/w/index.php?title=Transact-SQL


List of unit testing frameworks 121

 Name xUnit  Homepage  Remarks 

TSQLUnit Yes [307]

utTSQL Yes [308]

Visual Studio Team Edition for Database Professionals [309]

T.S.T. [310]

Slacker [311] Yes [311] Based on RSpec

Visual FoxPro

 Name xUnit  Homepage  Remarks 

FoxUnit [312]

Visual Basic (VB6)
For unit testing frameworks for VB.NET, see the .NET programming languages section.

 Name xUnit  Homepage  Remarks 

vbUnit [313] Visual Basic and COM objects

vbUnitFree [314] Visual Basic and COM objects

VbaUnit [315] Visual Basic for Applications

ExcelVbaUnit [316] Similar to VbaUnit, but specifically for testing Excel VBA (written as an Excel add-in)

TinyUnit [317] Visual Basic 6, VB .NET, and PHP5

SimplyVBUnit Yes [318] VB6 Unit Testing Framework modeled after the popular NUnit for .NET

Visual Lisp

 Name xUnit  Homepage  Remarks 

vl-unit [319] Unit testing framework for Visual Lisp.

XML

http://en.wikipedia.org/w/index.php?title=TSQLUnit
http://tsqlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=UtTSQL
http://utTSQL.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Visual_Studio_Team_Edition_for_Database_Professionals
http://www.microsoft.com/downloads/details.aspx?FamilyID=7DE00386-893D-4142-A778-992B69D482AD&displaylang=en
http://en.wikipedia.org/w/index.php?title=T.S.T.
http://TST.Codeplex.com/
http://github.com/vassilvk/slacker/wiki/
http://github.com/vassilvk/slacker/wiki/
http://en.wikipedia.org/w/index.php?title=RSpec
http://en.wikipedia.org/w/index.php?title=Visual_FoxPro
http://en.wikipedia.org/w/index.php?title=FoxUnit
http://www.foxunit.org/
http://en.wikipedia.org/w/index.php?title=Visual_Basic
http://en.wikipedia.org/w/index.php?title=VbUnit
http://vbunit.com/
http://en.wikipedia.org/w/index.php?title=VbUnitFree
http://vbunitfree.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=VbaUnit
http://www.c2.com/cgi/wiki?VbaUnit
http://en.wikipedia.org/w/index.php?title=ExcelVbaUnit
http://code.google.com/p/excelvbaunit/
http://en.wikipedia.org/w/index.php?title=TinyUnit
http://www.w-p.dds.nl/tinyunit.htm
http://en.wikipedia.org/w/index.php?title=SimplyVBUnit
http://simplyvbunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Visual_Lisp
http://en.wikipedia.org/w/index.php?title=Vl-unit
http://code.google.com/p/vl-unit/
http://en.wikipedia.org/w/index.php?title=XML


List of unit testing frameworks 122

 Name xUnit
Homepage

 Remarks 

XUnit [320] for testing

• native XML programs,
• individual XSLT templates,
• and Java programs that deal with XML data

WUnit [321] for testing Web applications

• tests are written in XML/XPath (XUnit),
• AJAX applications are supported,
• can also test server-side functionalities if they are made with Java servlets (for example, it is possible to

store authoritatively an object in the user session server-side without sending an HTTP request and then
get with HTTP the page that renders it)

SOAtest
 No [149] Commercial. Parasoft's full-lifecycle quality platform for ensuring secure, reliable, compliant business

processes.

Vibz
Automation

 No [322] Open Source. Vibzworld's Fully featured Open source test framework.

 Name xUnit  Homepage  Remarks 

AntUnit [323] for testing Apache Ant tasks

XSLT

 Name xUnit
Homepage

 Remarks 

juxy [324] a library for unit testing XSLT stylesheets from Java

Tennison
Tests

[325] allows to write unit-tests in XML, exercising XSLT from Apache Ant. When incorporated in a continuous
integration environment, it allows to run multiple XSLT tests as part of a build, failing the build when they go
wrong.

UTF-X [326] unit testing framework for XSLT that strongly supports the test-first-design principle with test rendition and test
validation features

XMLUnit Yes [1] Plugin for JUnit and NUnit, allowing Assertion-style tests to be written for XSLT documents in Java or C#

XSLTunit [327] proof of concept unit testing framework for XSLT

http://reflex.gforge.inria.fr/xunit.html
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=WUnit
http://reflex.gforge.inria.fr/wunit.html
http://en.wikipedia.org/w/index.php?title=SOAtest
http://www.parasoft.com/jsp/solutions/soa_solution.jsp
http://en.wikipedia.org/w/index.php?title=Vibz_Automation
http://en.wikipedia.org/w/index.php?title=Vibz_Automation
http://code.google.com/p/vauto/
http://en.wikipedia.org/w/index.php?title=AntUnit
http://ant.apache.org/antlibs/antunit/
http://en.wikipedia.org/w/index.php?title=Apache_Ant
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=Juxy
http://juxy.tigris.org/
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Tennison_Tests
http://en.wikipedia.org/w/index.php?title=Tennison_Tests
http://tennison-tests.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=Apache_Ant
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=UTF-X
http://utf-x.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=XSLT
http://en.wikipedia.org/w/index.php?title=XMLUnit
http://xmlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=XSLTunit
http://xsltunit.org/
http://en.wikipedia.org/w/index.php?title=XSLT


List of unit testing frameworks 123

Other

 Name xUnit  Homepage  Remarks 

Test Manager [328]

IdMUnit Yes [329] Identity management

References
[1] http:/ / help. sap. com/ saphelp_nw2004s/ helpdata/ en/ a2/ 8a1b602e858645b8aac1559b638ea4/ frameset. htm
[2] http:/ / code. google. com/ p/ as3flexunitlib/
[3] http:/ / www. flexunit. org
[4] http:/ / code. google. com/ p/ reflex-unit/
[5] http:/ / www. funit. org/
[6] http:/ / code. google. com/ p/ astuce/
[7] http:/ / www. asunit. org/
[8] http:/ / code. google. com/ p/ dpuint/
[9] http:/ / fluint. googlecode. com/
[10] http:/ / code. google. com/ p/ mojotest/
[11] http:/ / libre. adacore. com/ libre/ tools/ aunit/
[12] http:/ / www. ipl. com/ adatest
[13] http:/ / ahven. stronglytyped. org/
[14] http:/ / www. ldra. com/ tbrun. asp
[15] http:/ / www. vectorcast. com
[16] http:/ / nirs. freeshell. org/ asunit/
[17] http:/ / applemods. sourceforge. net/ mods/ Development/ ASTest. php
[18] http:/ / aspunit. sourceforge. net/
[19] http:/ / portal. acm. org/ citation. cfm?id=1145723t
[20] http:/ / aceunit. sourceforge. net/
[21] http:/ / ispras. linux-foundation. org/ index. php/ API_Sanity_Autotest
[22] http:/ / www. NetBSD. org/ ~jmmv/ atf/
[23] http:/ / autounit. tigris. org/
[24] http:/ / www. parasoft. com/ jsp/ solutions/ cpp_solution. jsp?itemId=340
[25] http:/ / www. ipl. com/ products/ tools/ pt413. php
[26] http:/ / www. agilerules. com/ projects/ catsrunner/ index. phtml
[27] http:/ / www. cfix-testing. org
[28] http:/ / www. lastcraft. com/ cgreen. php
[29] http:/ / check. sourceforge. net/
[30] http:/ / code. google. com/ p/ cmockery/
[31] http:/ / cu. danfis. cz/
[32] http:/ / cunit. sourceforge. net/
[33] http:/ / code. google. com/ p/ cunitwin32/
[34] http:/ / www. falvotech. com/ content/ cut/
[35] http:/ / cutest. sourceforge. net/
[36] http:/ / cutter. sourceforge. net/
[37] http:/ / embunit. sourceforge. net/
[38] http:/ / fctx. wildbearsoftware. com
[39] http:/ / library. gnome. org/ devel/ glib/ 2. 20/ glib-Testing. html
[40] https:/ / garage. maemo. org/ projects/ gunit
[41] http:/ / koanlogic. com/ libu
[42] http:/ / www. jera. com/ techinfo/ jtns/ jtn002. html
[43] http:/ / rcunit. sourceforge. net
[44] http:/ / www. rational. com
[45] http:/ / seatest. googlecode. com
[46] http:/ / www. accord-soft. com/ dynamicanalyser. html
[47] http:/ / www. hitex. de/ perm/ tessy. htm
[48] http:/ / www. testape. com

http://en.wikipedia.org/w/index.php?title=Test_Manager
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=366928&fromcon
http://en.wikipedia.org/w/index.php?title=IdMUnit
http://idmunit.sourceforge.net
http://help.sap.com/saphelp_nw2004s/helpdata/en/a2/8a1b602e858645b8aac1559b638ea4/frameset.htm
http://code.google.com/p/as3flexunitlib/
http://www.flexunit.org
http://code.google.com/p/reflex-unit/
http://www.funit.org/
http://code.google.com/p/astuce/
http://www.asunit.org/
http://code.google.com/p/dpuint/
http://fluint.googlecode.com/
http://code.google.com/p/mojotest/
http://libre.adacore.com/libre/tools/aunit/
http://www.ipl.com/adatest
http://ahven.stronglytyped.org/
http://www.ldra.com/tbrun.asp
http://www.vectorcast.com
http://nirs.freeshell.org/asunit/
http://applemods.sourceforge.net/mods/Development/ASTest.php
http://aspunit.sourceforge.net/
http://portal.acm.org/citation.cfm?id=1145723t
http://aceunit.sourceforge.net/
http://ispras.linux-foundation.org/index.php/API_Sanity_Autotest
http://www.NetBSD.org/~jmmv/atf/
http://autounit.tigris.org/
http://www.parasoft.com/jsp/solutions/cpp_solution.jsp?itemId=340
http://www.ipl.com/products/tools/pt413.php
http://www.agilerules.com/projects/catsrunner/index.phtml
http://www.cfix-testing.org
http://www.lastcraft.com/cgreen.php
http://check.sourceforge.net/
http://code.google.com/p/cmockery/
http://cu.danfis.cz/
http://cunit.sourceforge.net/
http://code.google.com/p/cunitwin32/
http://www.falvotech.com/content/cut/
http://cutest.sourceforge.net/
http://cutter.sourceforge.net/
http://embunit.sourceforge.net/
http://fctx.wildbearsoftware.com
http://library.gnome.org/devel/glib/2.20/glib-Testing.html
https://garage.maemo.org/projects/gunit
http://koanlogic.com/libu
http://www.jera.com/techinfo/jtns/jtn002.html
http://rcunit.sourceforge.net
http://www.rational.com
http://seatest.googlecode.com
http://www.accord-soft.com/dynamicanalyser.html
http://www.hitex.de/perm/tessy.htm
http://www.testape.com


List of unit testing frameworks 124

[49] http:/ / test-dept. googlecode. com
[50] http:/ / www. piketec. com/ products/ tpt. php?lang=en
[51] http:/ / unity. sourceforge. net
[52] http:/ / cmock. sourceforge. net
[53] http:/ / cexception. sourceforge. net
[54] http:/ / ceedling. sourceforge. net
[55] http:/ / www. visualassert. com
[56] http:/ / xtests. sourceforge. net/
[57] http:/ / code. google. com/ p/ lcut/
[58] http:/ / aeryn. tigris. org/
[59] Llopis, Noel. "Exploring the C++ Unit Testing Framework Jungle" (http:/ / gamesfromwithin. com/

exploring-the-c-unit-testing-framework-jungle#boost), 2004-12-28. Retrieved on 2010-2-13.
[60] Rozental, Gennadiy "Boost Test Fixture Documentation" (http:/ / www. boost. org/ doc/ libs/ 1_42_0/ libs/ test/ doc/ html/ utf/ user-guide/

fixture. html). Retrieved on 2010-2-13.
[61] Rozental, Gennadiy "Boost Test Test Suite Level Fixture Documentation" (http:/ / www. boost. org/ doc/ libs/ 1_42_0/ libs/ test/ doc/ html/

utf/ user-guide/ fixture/ test-suite-shared. html). Retrieved on 2010-2-13.
[62] http:/ / www. boost. org/ doc/ libs/ 1_42_0/ libs/ test/ doc/ html/ index. html
[63] http:/ / www. ipl. com/ products/ tools/ pt411. php
[64] https:/ / github. com/ philsquared/ Catch
[65] http:/ / www. cfix-testing. org/
[66] http:/ / cput. codeplex. com/
[67] http:/ / cpptest. sourceforge. net/
[68] http:/ / sourceforge. net/ apps/ mediawiki/ cppunit/ index. php?title=Main_Page
[69] http:/ / sourceforge. net/ projects/ cpputest
[70] http:/ / c2. com/ cgi/ wiki?CppUnitLite
[71] http:/ / cpunit. sourceforge. net/
[72] http:/ / www. cute-test. com/
[73] http:/ / codesink. org/ cutee_unit_testing. html
[74] http:/ / cxxtest. sourceforge. net/
[75] http:/ / alexanderchuranov. com/ software/ exercisix/
[76] http:/ / sourceforge. net/ projects/ fructose/
[77] http:/ / accu. org/ index. php/ journals/ 1305
[78] http:/ / code. google. com/ p/ googlemock/
[79] http:/ / code. google. com/ p/ googletest/
[80] http:/ / sourceforge. net/ projects/ hestia/
[81] http:/ / igloo-testing. org
[82] http:/ / code. google. com/ p/ mockcpp/
[83] http:/ / code. google. com/ p/ mockitopp/
[84] http:/ / mockpp. sourceforge. net/
[85] http:/ / www. xpsd. org/ cgi-bin/ wiki?NanoCppUnit
[86] http:/ / www. oaklib. org/ oakut/ index. html
[87] http:/ / doc. qt. nokia. com/ latest/ qtestlib-tutorial. html
[88] http:/ / quicktest. sf. net
[89] http:/ / www. codeproject. com/ KB/ applications/ shortcut. aspx?print=true
[90] http:/ / www. symbianosunit. co. uk/
[91] http:/ / www. ldra. co. uk/ tbrun. asp
[92] http:/ / www. bigangrydog. com/ testdog/ unit_testing. xhtml
[93] http:/ / testsoon. sourceforge. net
[94] http:/ / www. testwell. fi/ ctadesc. html
[95] http:/ / github. com/ tpounds/ tpunitpp
[96] http:/ / tut-framework. sourceforge. net/
[97] http:/ / unitpp. sourceforge. net/
[98] http:/ / devmentor. org#UnitTest
[99] http:/ / unittest-cpp. sourceforge. net/
[100] http:/ / www. q-mentum. com/ uquonitest. php
[101] http:/ / www. vectorcast. com/
[102] http:/ / www. visualassert. com/
[103] http:/ / winunit. codeplex. com/
[104] http:/ / yaktest. sourceforge. net/

http://test-dept.googlecode.com
http://www.piketec.com/products/tpt.php?lang=en
http://unity.sourceforge.net
http://cmock.sourceforge.net
http://cexception.sourceforge.net
http://ceedling.sourceforge.net
http://www.visualassert.com
http://xtests.sourceforge.net/
http://code.google.com/p/lcut/
http://aeryn.tigris.org/
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle#boost
http://gamesfromwithin.com/exploring-the-c-unit-testing-framework-jungle#boost
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/utf/user-guide/fixture.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/utf/user-guide/fixture.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/utf/user-guide/fixture/test-suite-shared.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/utf/user-guide/fixture/test-suite-shared.html
http://www.boost.org/doc/libs/1_42_0/libs/test/doc/html/index.html
http://www.ipl.com/products/tools/pt411.php
https://github.com/philsquared/Catch
http://www.cfix-testing.org/
http://cput.codeplex.com/
http://cpptest.sourceforge.net/
http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=Main_Page
http://sourceforge.net/projects/cpputest
http://c2.com/cgi/wiki?CppUnitLite
http://cpunit.sourceforge.net/
http://www.cute-test.com/
http://codesink.org/cutee_unit_testing.html
http://cxxtest.sourceforge.net/
http://alexanderchuranov.com/software/exercisix/
http://sourceforge.net/projects/fructose/
http://accu.org/index.php/journals/1305
http://code.google.com/p/googlemock/
http://code.google.com/p/googletest/
http://sourceforge.net/projects/hestia/
http://igloo-testing.org
http://code.google.com/p/mockcpp/
http://code.google.com/p/mockitopp/
http://mockpp.sourceforge.net/
http://www.xpsd.org/cgi-bin/wiki?NanoCppUnit
http://www.oaklib.org/oakut/index.html
http://doc.qt.nokia.com/latest/qtestlib-tutorial.html
http://quicktest.sf.net
http://www.codeproject.com/KB/applications/shortcut.aspx?print=true
http://www.symbianosunit.co.uk/
http://www.ldra.co.uk/tbrun.asp
http://www.bigangrydog.com/testdog/unit_testing.xhtml
http://testsoon.sourceforge.net
http://www.testwell.fi/ctadesc.html
http://github.com/tpounds/tpunitpp
http://tut-framework.sourceforge.net/
http://unitpp.sourceforge.net/
http://devmentor.org#UnitTest
http://unittest-cpp.sourceforge.net/
http://www.q-mentum.com/uquonitest.php
http://www.vectorcast.com/
http://www.visualassert.com/
http://winunit.codeplex.com/
http://yaktest.sourceforge.net/


List of unit testing frameworks 125

[105] http:/ / code. google. com/ p/ unittestcg/ source
[106] http:/ / github. com/ weavejester/ fact/ tree/
[107] http:/ / sites. google. com/ site/ cobolunit/
[108] http:/ / www. savignano. net/ savvytest
[109] http:/ / www. ancar. org/ CLUnit/ docs/ CLUnit. html
[110] http:/ / cybertiggyr. com/ gene/ lut/
[111] http:/ / common-lisp. net/ project/ bese/ FiveAM. html
[112] http:/ / common-lisp. net/ project/ fret/
[113] http:/ / common-lisp. net/ project/ grand-prix/
[114] http:/ / www. rdrop. com/ ~jimka/ lisp/ heute/ heute. html
[115] http:/ / common-lisp. net/ project/ lift/
[116] http:/ / www. cs. northwestern. edu/ academics/ courses/ 325/ readings/ lisp-unit. html
[117] http:/ / www. cs. cmu. edu/ afs/ cs/ project/ ai-repository/ ai/ lang/ lisp/ code/ testing/ rt/ 0. html
[118] http:/ / common-lisp. net/ project/ stefil/
[119] http:/ / www. cliki. net/ xlunit
[120] http:/ / www. curl. com
[121] http:/ / dunit. sourceforge. net/
[122] http:/ / sourceforge. net/ projects/ dunit2/
[123] http:/ / www. emacswiki. org/ cgi-bin/ wiki/ ElUnit
[124] http:/ / www. emacswiki. org/ cgi-bin/ wiki/ ElkTest
[125] http:/ / www. emacswiki. org/ cgi-bin/ wiki/ unit-test. el
[126] http:/ / svn. process-one. net/ contribs/ trunk/ eunit/ doc/ overview-summary. html
[127] http:/ / nasarb. rubyforge. org/ funit
[128] http:/ / sourceforge. net/ projects/ fortranxunit
[129] http:/ / flibs. sf. net/ ftnunit. html
[130] http:/ / sourceforge. net/ projects/ pfunit/
[131] http:/ / objexx. com/ ObjexxFTK. html
[132] http:/ / www. logilab. org/ project/ lutin77
[133] http:/ / www. codeplex. com/ fscheck/
[134] http:/ / www. codeplex. com/ FsTest
[135] http:/ / bitbucket. org/ forki/ naturalspec/ wiki/ Home
[136] http:/ / fsunit. codeplex. com/
[137] http:/ / www. easyb. org/
[138] http:/ / geb. codehaus. org/
[139] http:/ / code. google. com/ p/ spock/
[140] http:/ / wiki. gxtechnical. com/ commwiki/ servlet/ hwiki?GXUnit
[141] http:/ / hunit. sourceforge. net
[142] http:/ / www. cs. chalmers. se/ ~rjmh/ QuickCheck/
[143] http:/ / mgunit. idldev. com
[144] http:/ / www. barnett. id. au/ idl/ UnitRun. html
[145] http:/ / htmlunit. sourceforge. net/
[146] http:/ / code. google. com/ p/ ieunit/
[147] http:/ / webtest. canoo. com/
[148] http:/ / www. soapui. org/
[149] http:/ / www. parasoft. com/ jsp/ solutions/ soa_solution. jsp
[150] http:/ / www. sprystone. com
[151] http:/ / www. parasoft. com/ jsp/ products/ jtest. jsp?itemId=14
[152] http:/ / junit. org/
[153] http:/ / www. ccs. neu. edu/ javalib
[154] http:/ / www. concordion. org
[155] http:/ / scg. unibe. ch/ research/ jexample/
[156] http:/ / www. junitee. org/
[157] https:/ / github. com/ shyiko/ jsst/ wiki
[158] http:/ / groboutils. sourceforge. net/
[159] http:/ / mockrunner. sourceforge. net/
[160] http:/ / www. unitils. org
[161] http:/ / jbehave. org/
[162] http:/ / code. google. com/ p/ instinct/
[163] http:/ / www. jdave. org/

http://code.google.com/p/unittestcg/source
http://github.com/weavejester/fact/tree/
http://sites.google.com/site/cobolunit/
http://www.savignano.net/savvytest
http://www.ancar.org/CLUnit/docs/CLUnit.html
http://cybertiggyr.com/gene/lut/
http://common-lisp.net/project/bese/FiveAM.html
http://common-lisp.net/project/fret/
http://common-lisp.net/project/grand-prix/
http://www.rdrop.com/~jimka/lisp/heute/heute.html
http://common-lisp.net/project/lift/
http://www.cs.northwestern.edu/academics/courses/325/readings/lisp-unit.html
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/lisp/code/testing/rt/0.html
http://common-lisp.net/project/stefil/
http://www.cliki.net/xlunit
http://www.curl.com
http://dunit.sourceforge.net/
http://sourceforge.net/projects/dunit2/
http://www.emacswiki.org/cgi-bin/wiki/ElUnit
http://www.emacswiki.org/cgi-bin/wiki/ElkTest
http://www.emacswiki.org/cgi-bin/wiki/unit-test.el
http://svn.process-one.net/contribs/trunk/eunit/doc/overview-summary.html
http://nasarb.rubyforge.org/funit
http://sourceforge.net/projects/fortranxunit
http://flibs.sf.net/ftnunit.html
http://sourceforge.net/projects/pfunit/
http://objexx.com/ObjexxFTK.html
http://www.logilab.org/project/lutin77
http://www.codeplex.com/fscheck/
http://www.codeplex.com/FsTest
http://bitbucket.org/forki/naturalspec/wiki/Home
http://fsunit.codeplex.com/
http://www.easyb.org/
http://geb.codehaus.org/
http://code.google.com/p/spock/
http://wiki.gxtechnical.com/commwiki/servlet/hwiki?GXUnit
http://hunit.sourceforge.net
http://www.cs.chalmers.se/~rjmh/QuickCheck/
http://mgunit.idldev.com
http://www.barnett.id.au/idl/UnitRun.html
http://htmlunit.sourceforge.net/
http://code.google.com/p/ieunit/
http://webtest.canoo.com/
http://www.soapui.org/
http://www.parasoft.com/jsp/solutions/soa_solution.jsp
http://www.sprystone.com
http://www.parasoft.com/jsp/products/jtest.jsp?itemId=14
http://junit.org/
http://www.ccs.neu.edu/javalib
http://www.concordion.org
http://scg.unibe.ch/research/jexample/
http://www.junitee.org/
https://github.com/shyiko/jsst/wiki
http://groboutils.sourceforge.net/
http://mockrunner.sourceforge.net/
http://www.unitils.org
http://jbehave.org/
http://code.google.com/p/instinct/
http://www.jdave.org/


List of unit testing frameworks 126

[164] http:/ / sourceforge. net/ projects/ beanspec
[165] http:/ / easymock. org/
[166] http:/ / www. jmock. org/
[167] http:/ / code. google. com/ p/ mockito/
[168] http:/ / code. google. com/ p/ hamcrest/
[169] http:/ / code. google. com/ p/ mockachino/
[170] http:/ / www. concutest. org/
[171] http:/ / www. sureassert. com/
[172] http:/ / www. dojotoolkit. org/ reference-guide/ util/ doh. html
[173] http:/ / www. jsunit. net/
[174] http:/ / docs. jquery. com/ QUnit
[175] http:/ / thefrontside. net/ crosscheck
[176] http:/ / j3unit. sourceforge. net/
[177] http:/ / www. valleyhighlands. com/ testingframeworks/
[178] http:/ / developer. yahoo. com/ yui/ yuitest/
[179] http:/ / jania. pe. kr/ aw/ moin. cgi/ JSSpec
[180] http:/ / github. com/ madrobby/ scriptaculous/ wikis/ unit-testing
[181] http:/ / visionmedia. github. com/ jspec
[182] http:/ / pivotal. github. com/ jasmine
[183] http:/ / github. com/ nkallen/ screw-unit/ tree/ master
[184] TAP output can easily be transformed into JUnit XML via the CPAN module TAP::Formatter::JUnit.
[185] http:/ / openjsan. org/ doc/ t/ th/ theory/ Test/ Simple/ 0. 21/ lib/ Test/ More. html
[186] http:/ / rubyforge. org/ projects/ testcase/
[187] http:/ / github. com/ DouglasMeyer/ test_it
[188] TAP available with the latest repository version http:/ / code. google. com/ p/ jsunity/ source/ browse/ trunk/ jsunity/ jsunity. js
[189] http:/ / github. com/ willurd/ JSTest
[190] http:/ / jstest. codeplex. com
[191] http:/ / jsunity. com/
[192] http:/ / code. google. com/ p/ rhinounit/
[193] http:/ / code. google. com/ p/ jasproject/
[194] http:/ / fireunit. org/
[195] http:/ / code. google. com/ p/ js-test-driver/
[196] http:/ / cjohansen. no/ sinon/
[197] http:/ / vowsjs. org
[198] https:/ / github. com/ caolan/ nodeunit
[199] http:/ / www. l-unit. org/
[200] http:/ / www. ctan. org/ tex-archive/ help/ Catalogue/ entries/ qstest. html
[201] http:/ / jkisoft. com/ vi-tester
[202] http:/ / phil. freehackers. org/ programs/ luaunit/ index. html
[203] http:/ / www. nessie. de/ mroth/ lunit/
[204] http:/ / mlunit. sourceforge. net
[205] http:/ / www. mathworks. com/ matlabcentral/ fileexchange/ 21888
[206] http:/ / xtargets. com/ cms/ Tutorials/ Matlab-Programming/ MUnit-Matlab-Unit-Testing. html
[207] http:/ / www. mathworks. com/ matlabcentral/ fileexchange/ loadFile. do?objectId=11306& objectType=File
[208] http:/ / www. mathworks. com/ matlabcentral/ fileexchange/ 22846-matlab-xunit-test-framework
[209] https:/ / bitbucket. org/ tgs/ doctest-for-matlab/ overview
[210] Smith, Thomas. "Doctest - embed testable examples in your function's help comments" (https:/ / bitbucket. org/ tgs/ doctest-for-matlab/

overview). . Retrieved 5 August 2011.
[211] http:/ / utmysql. sourceforge. net/
[212] http:/ / dbunit-net. sourceforge. net/
[213] http:/ / emtf. codeplex. com/
[214] http:/ / gallio. org
[215] http:/ / mbunit. com
[216] http:/ / code. google. com/ p/ nmate
[217] http:/ / research. microsoft. com/ en-us/ projects/ Pex
[218] http:/ / www. qgonestudio. com
[219] http:/ / www. quickunit. com/
[220] http:/ / www. ayende. com/ projects/ rhino-mocks. aspx
[221] http:/ / www. codeplex. com/ roaster

http://sourceforge.net/projects/beanspec
http://easymock.org/
http://www.jmock.org/
http://code.google.com/p/mockito/
http://code.google.com/p/hamcrest/
http://code.google.com/p/mockachino/
http://www.concutest.org/
http://www.sureassert.com/
http://www.dojotoolkit.org/reference-guide/util/doh.html
http://www.jsunit.net/
http://docs.jquery.com/QUnit
http://thefrontside.net/crosscheck
http://j3unit.sourceforge.net/
http://www.valleyhighlands.com/testingframeworks/
http://developer.yahoo.com/yui/yuitest/
http://jania.pe.kr/aw/moin.cgi/JSSpec
http://github.com/madrobby/scriptaculous/wikis/unit-testing
http://visionmedia.github.com/jspec
http://pivotal.github.com/jasmine
http://github.com/nkallen/screw-unit/tree/master
http://openjsan.org/doc/t/th/theory/Test/Simple/0.21/lib/Test/More.html
http://rubyforge.org/projects/testcase/
http://github.com/DouglasMeyer/test_it
http://code.google.com/p/jsunity/source/browse/trunk/jsunity/jsunity.js
http://github.com/willurd/JSTest
http://jstest.codeplex.com
http://jsunity.com/
http://code.google.com/p/rhinounit/
http://code.google.com/p/jasproject/
http://fireunit.org/
http://code.google.com/p/js-test-driver/
http://cjohansen.no/sinon/
http://vowsjs.org
https://github.com/caolan/nodeunit
http://www.l-unit.org/
http://www.ctan.org/tex-archive/help/Catalogue/entries/qstest.html
http://jkisoft.com/vi-tester
http://phil.freehackers.org/programs/luaunit/index.html
http://www.nessie.de/mroth/lunit/
http://mlunit.sourceforge.net
http://www.mathworks.com/matlabcentral/fileexchange/21888
http://xtargets.com/cms/Tutorials/Matlab-Programming/MUnit-Matlab-Unit-Testing.html
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11306&objectType=File
http://www.mathworks.com/matlabcentral/fileexchange/22846-matlab-xunit-test-framework
https://bitbucket.org/tgs/doctest-for-matlab/overview
https://bitbucket.org/tgs/doctest-for-matlab/overview
https://bitbucket.org/tgs/doctest-for-matlab/overview
http://utmysql.sourceforge.net/
http://dbunit-net.sourceforge.net/
http://emtf.codeplex.com/
http://gallio.org
http://mbunit.com
http://code.google.com/p/nmate
http://research.microsoft.com/en-us/projects/Pex
http://www.qgonestudio.com
http://www.quickunit.com/
http://www.ayende.com/projects/rhino-mocks.aspx
http://www.codeplex.com/roaster


List of unit testing frameworks 127

[222] http:/ / specflow. org/
[223] http:/ / specter. sf. net
[224] http:/ / www. testdriven. net
[225] http:/ / www. parasoft. com/ jsp/ solutions/ dotnet_solution. jsp?itemId=342
[226] http:/ / www. typemock. org
[227] http:/ / www. prettyobjects. com/ en/ Products/ TSharp
[228] http:/ / xunit. codeplex. com
[229] http:/ / stackoverflow. com/ questions/ 261139/ nunit-vs-mbunit-vs-mstest-vs-xunit-net
[230] https:/ / github. com/ gabriel/ gh-unit
[231] https:/ / github. com/ philsquared/ Catch/ wiki/ Catch-for-Objective-C
[232] https:/ / github. com/ pivotal/ cedar
[233] http:/ / code. google. com/ p/ google-toolbox-for-mac/ wiki/ iPhoneUnitTesting
[234] http:/ / kiwi-lib. info/
[235] http:/ / oops. se/ objcunit/
[236] http:/ / www. sente. ch/ software/ ocunit/
[237] http:/ / code. google. com/ p/ witebox/
[238] http:/ / test. wincent. com/
[239] http:/ / www. xs4all. nl/ ~mmzeeman/ ocaml
[240] http:/ / www. iinteractive. com/ ocaml/
[241] http:/ / sourceforge. net/ projects/ fort
[242] http:/ / camelos. sourceforge. net/ fpcUnit. html
[243] http:/ / sourceforge. net/ projects/ tap4pascal
[244] http:/ / github. com/ graemeg/ fptest
[245] http:/ / search. cpan. org/ perldoc/ TAP
[246] http:/ / search. cpan. org/ perldoc/ Test::Harness
[247] http:/ / search. cpan. org/ perldoc/ Test::More
[248] http:/ / search. cpan. org/ perldoc/ Test::Class
[249] http:/ / search. cpan. org/ perldoc/ Test::Builder
[250] http:/ / search. cpan. org/ perldoc/ Test::Unit
[251] http:/ / perlunit. sourceforge. net/
[252] http:/ / www. nntp. perl. org/ group/ perl. qa/ 2005/ 02/ msg3562. html
[253] http:/ / www. nntp. perl. org/ group/ perl. qa/ 2005/ 02/ msg3571. html
[254] http:/ / search. cpan. org/ perldoc/ Test::DBUnit
[255] http:/ / search. cpan. org/ perldoc/ Test::Unit::Lite
[256] http:/ / search. cpan. org/ perldoc/ Test::Able
[257] http:/ / search. cpan. org/ perldoc/ Moose
[258] http:/ / php-unit-test. sourceforge. net/
[259] http:/ / www. simpletest. org/
[260] http:/ / www. testilence. org/
[261] http:/ / trac. symfony-project. com/ trac/ browser/ tools/ lime/ trunk
[262] http:/ / shiflett. org/ blog/ 2006/ jan/ test-simple-for-php
[263] http:/ / ojesunit. blogspot. com/
[264] http:/ / www. oniontest. org/
[265] http:/ / utplsql. sourceforge. net/
[266] http:/ / unittest. inside. quest. com/ index. jspa
[267] http:/ / plunit. com/
[268] http:/ / github. com/ rsim/ ruby-plsql-spec
[269] http:/ / www. fitnesse. info/ dbfit
[270] http:/ / www. epictest. org/
[271] http:/ / pgtap. org/
[272] http:/ / sourceforge. net/ projects/ pgtools/
[273] http:/ / en. dklab. ru/ lib/ dklab_pgunit/
[274] http:/ / web. archive. org/ web/ 20090728170628/ http:/ / geocities. com/ pbunit/
[275] http:/ / prounit. sourceforge. net
[276] http:/ / www. swi-prolog. org/ packages/ plunit. html
[277] http:/ / somethingaboutorange. com/ mrl/ projects/ nose/
[278] http:/ / pytest. org
[279] http:/ / twistedmatrix. com/ trac/ wiki/ TwistedTrial
[280] http:/ / sourceforge. net/ projects/ runit/

http://specflow.org/
http://specter.sf.net
http://www.testdriven.net
http://www.parasoft.com/jsp/solutions/dotnet_solution.jsp?itemId=342
http://www.typemock.org
http://www.prettyobjects.com/en/Products/TSharp
http://xunit.codeplex.com
http://stackoverflow.com/questions/261139/nunit-vs-mbunit-vs-mstest-vs-xunit-net
https://github.com/gabriel/gh-unit
https://github.com/philsquared/Catch/wiki/Catch-for-Objective-C
https://github.com/pivotal/cedar
http://code.google.com/p/google-toolbox-for-mac/wiki/iPhoneUnitTesting
http://kiwi-lib.info/
http://oops.se/objcunit/
http://www.sente.ch/software/ocunit/
http://code.google.com/p/witebox/
http://test.wincent.com/
http://www.xs4all.nl/~mmzeeman/ocaml
http://www.iinteractive.com/ocaml/
http://sourceforge.net/projects/fort
http://camelos.sourceforge.net/fpcUnit.html
http://sourceforge.net/projects/tap4pascal
http://github.com/graemeg/fptest
http://search.cpan.org/perldoc/TAP
http://search.cpan.org/perldoc/Test::Harness
http://search.cpan.org/perldoc/Test::More
http://search.cpan.org/perldoc/Test::Class
http://search.cpan.org/perldoc/Test::Builder
http://search.cpan.org/perldoc/Test::Unit
http://perlunit.sourceforge.net/
http://www.nntp.perl.org/group/perl.qa/2005/02/msg3562.html
http://www.nntp.perl.org/group/perl.qa/2005/02/msg3571.html
http://search.cpan.org/perldoc/Test::DBUnit
http://search.cpan.org/perldoc/Test::Unit::Lite
http://search.cpan.org/perldoc/Test::Able
http://search.cpan.org/perldoc/Moose
http://php-unit-test.sourceforge.net/
http://www.simpletest.org/
http://www.testilence.org/
http://trac.symfony-project.com/trac/browser/tools/lime/trunk
http://shiflett.org/blog/2006/jan/test-simple-for-php
http://ojesunit.blogspot.com/
http://www.oniontest.org/
http://utplsql.sourceforge.net/
http://unittest.inside.quest.com/index.jspa
http://plunit.com/
http://github.com/rsim/ruby-plsql-spec
http://www.fitnesse.info/dbfit
http://www.epictest.org/
http://pgtap.org/
http://sourceforge.net/projects/pgtools/
http://en.dklab.ru/lib/dklab_pgunit/
http://web.archive.org/web/20090728170628/http://geocities.com/pbunit/
http://prounit.sourceforge.net
http://www.swi-prolog.org/packages/plunit.html
http://somethingaboutorange.com/mrl/projects/nose/
http://pytest.org
http://twistedmatrix.com/trac/wiki/TwistedTrial
http://sourceforge.net/projects/runit/


List of unit testing frameworks 128

[281] http:/ / cran. r-project. org/ web/ packages/ testthat/ index. html
[282] http:/ / logicalvue. com/ blog/ 2007/ 02/ rbunit-is-now-free/
[283] http:/ / www. rebol. org
[284] http:/ / rpgunit. sourceforge. net/
[285] http:/ / www. ruby-doc. org/ stdlib/ libdoc/ test/ unit/ rdoc/ classes/ Test/ Unit. html
[286] http:/ / www. thoughtbot. com/ projects/ shoulda
[287] http:/ / rubydoc. info/ gems/ minitest/ 2. 0. 2/ frames
[288] http:/ / blog. zenspider. com/ minitest/
[289] http:/ / thotwave. com/ products/ futs. jsp
[290] http:/ / www. sascommunity. org/ mwiki/ index. php?title=SclUnit& redirect=no
[291] http:/ / rehersal. sourceforge. net
[292] http:/ / code. google. com/ p/ scunit/
[293] http:/ / code. google. com/ p/ specs/
[294] http:/ / code. google. com/ p/ scalacheck/
[295] http:/ / planet. plt-scheme. org/ display. ss?package=schemeunit. plt& owner=schematics
[296] https:/ / github. com/ lehmannro/ assert. sh
[297] http:/ / itsbonus. heroku. com/ p/ 2010-11-01-roundup
[298] http:/ / shunit. sourceforge. net
[299] http:/ / code. google. com/ p/ shunit2/
[300] http:/ / www. merten-home. de/ FreeSoftware/ filterunit/
[301] http:/ / testanything. org/ wiki/ index. php/ Tap-functions
[302] http:/ / mlunit. sourceforge. net/ index. php/ The_slUnit_Testing_Framework
[303] http:/ / sqlunit. sourceforge. net/
[304] http:/ / www. tcl. tk/ man/ tcl8. 4/ TclCmd/ tcltest. htm
[305] http:/ / sourceforge. net/ projects/ tclunit/
[306] http:/ / www. lavalampmotemasters. com
[307] http:/ / tsqlunit. sourceforge. net/
[308] http:/ / utTSQL. sourceforge. net/
[309] http:/ / www. microsoft. com/ downloads/ details. aspx?FamilyID=7DE00386-893D-4142-A778-992B69D482AD& displaylang=en
[310] http:/ / TST. Codeplex. com/
[311] http:/ / github. com/ vassilvk/ slacker/ wiki/
[312] http:/ / www. foxunit. org/
[313] http:/ / vbunit. com/
[314] http:/ / vbunitfree. sourceforge. net/
[315] http:/ / www. c2. com/ cgi/ wiki?VbaUnit
[316] http:/ / code. google. com/ p/ excelvbaunit/
[317] http:/ / www. w-p. dds. nl/ tinyunit. htm
[318] http:/ / simplyvbunit. sourceforge. net/
[319] http:/ / code. google. com/ p/ vl-unit/
[320] http:/ / reflex. gforge. inria. fr/ xunit. html
[321] http:/ / reflex. gforge. inria. fr/ wunit. html
[322] http:/ / code. google. com/ p/ vauto/
[323] http:/ / ant. apache. org/ antlibs/ antunit/
[324] http:/ / juxy. tigris. org/
[325] http:/ / tennison-tests. sourceforge. net/
[326] http:/ / utf-x. sourceforge. net/
[327] http:/ / xsltunit. org/
[328] http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=366928& fromcon
[329] http:/ / idmunit. sourceforge. net

http://cran.r-project.org/web/packages/testthat/index.html
http://logicalvue.com/blog/2007/02/rbunit-is-now-free/
http://www.rebol.org
http://rpgunit.sourceforge.net/
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit.html
http://www.thoughtbot.com/projects/shoulda
http://rubydoc.info/gems/minitest/2.0.2/frames
http://blog.zenspider.com/minitest/
http://thotwave.com/products/futs.jsp
http://www.sascommunity.org/mwiki/index.php?title=SclUnit&redirect=no
http://rehersal.sourceforge.net
http://code.google.com/p/scunit/
http://code.google.com/p/specs/
http://code.google.com/p/scalacheck/
http://planet.plt-scheme.org/display.ss?package=schemeunit.plt&owner=schematics
https://github.com/lehmannro/assert.sh
http://itsbonus.heroku.com/p/2010-11-01-roundup
http://shunit.sourceforge.net
http://code.google.com/p/shunit2/
http://www.merten-home.de/FreeSoftware/filterunit/
http://testanything.org/wiki/index.php/Tap-functions
http://mlunit.sourceforge.net/index.php/The_slUnit_Testing_Framework
http://sqlunit.sourceforge.net/
http://www.tcl.tk/man/tcl8.4/TclCmd/tcltest.htm
http://sourceforge.net/projects/tclunit/
http://www.lavalampmotemasters.com
http://tsqlunit.sourceforge.net/
http://utTSQL.sourceforge.net/
http://www.microsoft.com/downloads/details.aspx?FamilyID=7DE00386-893D-4142-A778-992B69D482AD&displaylang=en
http://TST.Codeplex.com/
http://github.com/vassilvk/slacker/wiki/
http://www.foxunit.org/
http://vbunit.com/
http://vbunitfree.sourceforge.net/
http://www.c2.com/cgi/wiki?VbaUnit
http://code.google.com/p/excelvbaunit/
http://www.w-p.dds.nl/tinyunit.htm
http://simplyvbunit.sourceforge.net/
http://code.google.com/p/vl-unit/
http://reflex.gforge.inria.fr/xunit.html
http://reflex.gforge.inria.fr/wunit.html
http://code.google.com/p/vauto/
http://ant.apache.org/antlibs/antunit/
http://juxy.tigris.org/
http://tennison-tests.sourceforge.net/
http://utf-x.sourceforge.net/
http://xsltunit.org/
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=366928&fromcon
http://idmunit.sourceforge.net


List of unit testing frameworks 129

External links
• Oracle Unit Testing - tutorial site (http:/ / www. oracleunittesting. com/ )
• Other list of various unit testing frameworks (http:/ / xprogramming. com/ software)
• OpenSourceTesting.org lists many unit testing frameworks, performance testing tools and other tools

programmers/developers may find useful (http:/ / opensourcetesting. org/ )
• Testing Framework (http:/ / c2. com/ cgi/ wiki?TestingFramework)

SUnit
SUnit is a unit testing framework for the programming language Smalltalk. It is the original source of the xUnit
design, originally written by the creator of Extreme Programming, Kent Beck. SUnit allows writing tests and
checking results in Smalltalk. The resulting tests are very stable, but this method has the disadvantage that testers
must be able to write simple Smalltalk programs.

History
Originally published as chapter 30 "Simple Smalltalk Testing", in the book Kent Beck's Guide to Better Smalltalk
by Kent Beck, Donald G. Firesmith (Editor) (Publisher: Cambridge University Press, Pub. Date: December 1998,
ISBN 9780521644372, 408pp)

External links
• Official website [1] @ Camp Smalltalk
• Sunit @ Ward Cunningham's Wiki [2]

• Kent Beck's original SUnit paper [3]

References
[1] http:/ / http:/ / sunit. sourceforge. net
[2] http:/ / c2. com/ cgi/ wiki?SmalltalkUnit

http://www.oracleunittesting.com/
http://xprogramming.com/software
http://opensourcetesting.org/
http://c2.com/cgi/wiki?TestingFramework
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Smalltalk
http://en.wikipedia.org/w/index.php?title=Extreme_Programming
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Donald_G._Firesmith
http://http://sunit.sourceforge.net
http://c2.com/cgi/wiki?SmalltalkUnit
http://www.xprogramming.com/testfram.htm
http://http://sunit.sourceforge.net
http://c2.com/cgi/wiki?SmalltalkUnit


JUnit 130

JUnit

JUnit

Developer(s) Kent Beck, Erich Gamma, David Saff

Stable release 4.8.2 / April 8, 2010

Preview release 4.9 Beta 2 / January 21, 2011

Written in Java

Operating system Cross-platform

Type Unit testing tool

License Common Public License

Website http:/ / junit. sourceforge. net

JUnit is a unit testing framework for the Java programming language. JUnit has been important in the development
of test-driven development, and is one of a family of unit testing frameworks collectively known as xUnit that
originated with SUnit.
JUnit is linked as a JAR at compile-time; the framework resides under packages junit.framework for JUnit 3.8
and earlier and under org.junit for JUnit 4 and later.

Example of JUnit test fixture
A JUnit Test fixture inherits from junit.framework.TestCase. Test methods must be annotated by the
@Test annotation. It is also possible to define a method to execute before (or after) each (or all) of the test methods
with the @Before (or @After) and @BeforeClass (or @AfterClass) annotations.[1]

import junit.framework.TestCase;

import org.junit.*;

public class TestFoobar extends TestCase{

    @BeforeClass

    public static void setUpClass() throws Exception {

        // Code executed before the first test method       

    }

    @AfterClass

    public static void tearDownClass() throws Exception {

        // Code executed after the last test method 

    }

    @Before

    public void setUp() throws Exception {

        // Code executed before each test    

    }

 

    @After

    public void tearDown() throws Exception {

http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Erich_Gamma
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Java_programming_language
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Cross-platform
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Common_Public_License
http://junit.sourceforge.net
http://en.wikipedia.org/w/index.php?title=Software_framework
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JAR_%28file_format%29
http://en.wikipedia.org/w/index.php?title=Java_annotation


JUnit 131

        // Code executed after each test   

    }

 

    @Test

    public void test() {

        assertTrue(true);

    }

}

Ports
JUnit has been ported to other languages including:
• Actionscript (FlexUnit [2])
• Ada (AUnit [11])
• C (CUnit [32])
• C# (NUnit)
• C++ (CPPUnit)
• Fortran (fUnit)
• Delphi (DUnit)
• Free Pascal (FPCUnit [242])
• JavaScript (JSUnit)
• Objective-C (OCUnit [236])
• Perl (Test::Class [3] and Test::Unit [4])
• PHP (PHPUnit)
• Python (PyUnit)
• R (RUnit [5])
• Haskell (HUnit [6])
• Qt (QTestLib)

References
[1] Kent Beck, Erich Gamma. "JUnit Cookbook" (http:/ / junit. sourceforge. net/ doc/ cookbook/ cookbook. htm). junit.sourceforge.net. .

Retrieved 2011-05-21.
[2] http:/ / www. flexunit. org/
[3] http:/ / search. cpan. org/ ~adie/ Test-Class-0. 31/ lib/ Test/ Class. pm
[4] http:/ / search. cpan. org/ ~mcast/ Test-Unit-0. 25/ lib/ Test/ Unit. pm
[5] http:/ / RUnit. sourceforge. net/
[6] http:/ / hackage. haskell. org/ package/ HUnit

External links
• JUnit home page (http:/ / junit. org/ )
• JUnit antipatterns (developerWorks) (http:/ / www. ibm. com/ developerworks/ opensource/ library/ os-junit/

?ca=dgr-lnxw07JUnite) and JUnit antipatterns (Exubero) (http:/ / www. exubero. com/ junit/ antipatterns. html)
• An early look at JUnit 4 (http:/ / www. ibm. com/ developerworks/ java/ library/ j-junit4.

html?ca=dgr-lnxw01JUnit4)
• JUnit Presentation (http:/ / www. methodsandtools. com/ tools/ tools. php?junit)
• JUnits (http:/ / www. bunker37. com/ 2011/ 02/ junits/ )

http://en.wikipedia.org/w/index.php?title=Actionscript
http://www.flexunit.org/
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://libre.adacore.com/libre/tools/aunit/
http://en.wikipedia.org/w/index.php?title=C
http://cunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=CPPUnit
http://en.wikipedia.org/w/index.php?title=Fortran
http://en.wikipedia.org/w/index.php?title=FUnit
http://en.wikipedia.org/w/index.php?title=CodeGear_Delphi
http://en.wikipedia.org/w/index.php?title=DUnit
http://en.wikipedia.org/w/index.php?title=Free_Pascal
http://camelos.sourceforge.net/fpcUnit.html
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=JSUnit
http://en.wikipedia.org/w/index.php?title=Objective-C
http://www.sente.ch/software/ocunit/
http://en.wikipedia.org/w/index.php?title=Perl
http://search.cpan.org/~adie/Test-Class-0.31/lib/Test/Class.pm
http://search.cpan.org/~mcast/Test-Unit-0.25/lib/Test/Unit.pm
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=PHPUnit
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PyUnit
http://en.wikipedia.org/w/index.php?title=R_%28programming_language%29
http://RUnit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Haskell_%28programming_language%29
http://hackage.haskell.org/package/HUnit
http://en.wikipedia.org/w/index.php?title=Qt
http://en.wikipedia.org/w/index.php?title=QTestLib
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Erich_Gamma
http://junit.sourceforge.net/doc/cookbook/cookbook.htm
http://www.flexunit.org/
http://search.cpan.org/~adie/Test-Class-0.31/lib/Test/Class.pm
http://search.cpan.org/~mcast/Test-Unit-0.25/lib/Test/Unit.pm
http://RUnit.sourceforge.net/
http://hackage.haskell.org/package/HUnit
http://junit.org/
http://www.ibm.com/developerworks/opensource/library/os-junit/?ca=dgr-lnxw07JUnite
http://www.ibm.com/developerworks/opensource/library/os-junit/?ca=dgr-lnxw07JUnite
http://www.exubero.com/junit/antipatterns.html
http://www.ibm.com/developerworks/java/library/j-junit4.html?ca=dgr-lnxw01JUnit4
http://www.ibm.com/developerworks/java/library/j-junit4.html?ca=dgr-lnxw01JUnit4
http://www.methodsandtools.com/tools/tools.php?junit
http://www.bunker37.com/2011/02/junits/


CppUnit 132

CppUnit

CppUnit

Stable release 1.12.1 / February 19, 2008

Written in C++

Type Unit testing tool

License GNU Lesser General Public License

Website https:/ / launchpad. net/ cppunit2

CppUnit is a unit testing framework module for the C++ programming language, described as a C++ port of JUnit.
The library is released under the GNU Lesser General Public License. The library can be compiled for a variety of
POSIX platforms, allowing unit-testing of 'C' sources as well as C++ with minimal source modification. The
framework has a neutral UI, running tests in suites. Test result output is sent to a filter, the most basic being a simple
pass or fail count printed out, or more advanced filters allowing XML output compatible with continuous integration
reporting systems .

External links
• Project's site [1].
• Llopis, Noel (2004-12-28). "Exploring the C++ Unit Testing Framework Jungle" [2].
• Unit-tests with C++ using the framework CppUnit [3]

• MiniCppUnit [4]: Another C++ port with a minimalistic approach.
• Unit++ [5]: A Unit-Testing framework designed to be an alternative to CppUnit, because of its focus in being

more adapted to C++ language, instead of being a port of JUnit to C++.

Books
Game Programming Gems 6 (ISBN 1-58450-450-1) contains an article called "Using CPPUnit to implement unit
testing" by Blake Madden

References
[1] https:/ / launchpad. net/ cppunit2
[2] http:/ / www. gamesfromwithin. com/ articles/ 0412/ 000061. html
[3] http:/ / www. evocomp. de/ tutorials/ tutorium_cppunit/ howto_tutorial_cppunit_en. html
[4] http:/ / www. dtic. upf. edu/ ~parumi/ MiniCppUnit/
[5] http:/ / unitpp. sourceforge. net

http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=GNU_Lesser_General_Public_License
https://launchpad.net/cppunit2
http://en.wikipedia.org/w/index.php?title=Unit_Test
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=LGPL
http://en.wikipedia.org/w/index.php?title=POSIX
https://launchpad.net/cppunit2
http://www.gamesfromwithin.com/articles/0412/000061.html
http://www.evocomp.de/tutorials/tutorium_cppunit/howto_tutorial_cppunit_en.html
http://www.dtic.upf.edu/~parumi/MiniCppUnit/
http://unitpp.sourceforge.net
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Game_Programming_Gems
https://launchpad.net/cppunit2
http://www.gamesfromwithin.com/articles/0412/000061.html
http://www.evocomp.de/tutorials/tutorium_cppunit/howto_tutorial_cppunit_en.html
http://www.dtic.upf.edu/~parumi/MiniCppUnit/
http://unitpp.sourceforge.net


Test::More 133

Test::More

Test::More

Original author(s) Michael G Schwern

Initial release April, 2001

Development status Active

Written in Perl

Operating system Cross-platform

Available in English

Type Unit testing module

License Dual-licensed Artistic License and GPL

Test::More is a unit testing module for Perl. Created and maintained by Michael G Schwern with help from Barrie
Slaymaker, Tony Bowden, chromatic, Fergal Daly and perl-qa. Introduced in 2001 to replace Test.pm, Test::More
simplified and re-energized the culture of testing in Perl leading to an explosion of new testing modules and a
strongly test driven community.
Test::More is the most popular Perl testing module, as of this writing about 80% of all CPAN distributions make use
of it. Unlike other testing systems, Test::More is not a framework but can be used in concert with other testing
libraries via a shared Test::Builder object. As a result, Test::More provides only the baseline testing functions
leaving other libraries to implement more specific and sophisticated functionality. This removes what would
otherwise be a development bottleneck and allows a rich eco-system of specialized niche testing functions.
Test::More is not a complete testing framework. Rather, test programs written with Test::More output their results as
TAP which can then either be interpreted by a human, or more usually run through a TAP parser such as
Test::Harness. It is this separation between test program and test result interpreter via a common protocol which
allows Perl programmers to develop so many different testing modules and use them in combination. Additionally,
the TAP output can be stored and reinterpreted later providing a historical record of test results.

External links
• Test::More documentation [11]

• Test::More tutorial [1]

References
[1] http:/ / search. cpan. org/ perldoc?Test::Tutorial

http://en.wikipedia.org/w/index.php?title=Software_design
http://en.wikipedia.org/w/index.php?title=Michael_G_Schwern
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Cross-platform
http://en.wikipedia.org/w/index.php?title=Language
http://en.wikipedia.org/w/index.php?title=English_language
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Dual-licensed
http://en.wikipedia.org/w/index.php?title=Artistic_License
http://en.wikipedia.org/w/index.php?title=GPL
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Michael_G_Schwern
http://en.wikipedia.org/w/index.php?title=Barrie_Slaymaker
http://en.wikipedia.org/w/index.php?title=Barrie_Slaymaker
http://en.wikipedia.org/w/index.php?title=Tony_Bowden
http://en.wikipedia.org/w/index.php?title=Chromatic_%28Person%29
http://en.wikipedia.org/w/index.php?title=Fergal_Daly
http://en.wikipedia.org/w/index.php?title=Perl-qa
http://en.wikipedia.org/w/index.php?title=Test.pm
http://en.wikipedia.org/w/index.php?title=CPAN
http://en.wikipedia.org/w/index.php?title=Test::Builder
http://en.wikipedia.org/w/index.php?title=Test::Harness
http://search.cpan.org/perldoc?Test::More
http://search.cpan.org/perldoc?Test::Tutorial
http://search.cpan.org/perldoc?Test::Tutorial


NUnit 134

NUnit

NUnit

NUnit 2.4.6 GUI on Windows
Stable release 2.5.10 / April 2, 2011

Written in C#

Operating system Microsoft .NET, Mono

Type Unit testing tool

License BSD-style (modified zlib license)

Website [1]

NUnit is an open source unit testing framework for Microsoft .NET. It serves the same purpose as JUnit does in the
Java world, and is one of many in the xUnit family.

Features
Every test can be added to one or more categories, to allow running them selectively.[2]

Example
Example of an NUnit test fixture:

using NUnit.Framework;

 

 [TestFixture]

 public class ExampleTestOfNUnit

 {

   [Test]

   public void TestMultiplication()

   {

     Assert.AreEqual(4, 2*2, "Multiplication");

     

     // Equivalently, since version 2.4 NUnit offers a new and

     // more intuitive assertion syntax based on constraint objects

     // [http://www.nunit.org/index.php?p=constraintModel&r=2.4.7]:

     Assert.That(2*2, Is.EqualTo(4), "Multiplication constraint-based");

   }

 }

http://en.wikipedia.org/w/index.php?title=File:NUnit_GUI.png
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Microsoft_.NET
http://en.wikipedia.org/w/index.php?title=Mono_%28software%29
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Zlib_license
http://www.nunit.org
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Software_framework
http://en.wikipedia.org/w/index.php?title=Microsoft_.NET
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Test_fixture%23Test_fixture_in_xUnit


NUnit 135

The NUnit framework discovers the method ExampleTestOfNUnit.TestMultiplication()

automatically by reflection.

Extensions
FireBenchmarks[3] is an addin able to record execution time of unit tests and generate XML, CSV, XHTML
performances reports with charts and history tracking. Its main purpose is to enable a developer or a team that work
with an agile methodology to integrate performance metrics and analysis into the unit testing environment, to easily
control and monitor the evolution of a software system in terms of algorithmic complexity and system resources
load.
NUnit.Forms is an expansion to the core NUnit framework and is also open source. It specifically looks at
expanding NUnit to be able to handle testing user interface elements in Windows Forms. As of August 2010,
Nunit.Forms is in Alpha release, and no versions have been released since May 2006.
NUnit.ASP is a discontinued[4] expansion to the core NUnit framework and is also open source. It specifically looks
at expanding NUnit to be able to handle testing user interface elements in ASP.NET.

References
[1] http:/ / www. nunit. org
[2] "CategoryAttribute - NUnit documentation" (http:/ / nunit. org/ index. php?p=category& r=2. 4. 7). . Retrieved 2008-04-15.
[3] "Firebenchmarks website main page" (http:/ / www. firebenchmarks. com/ ). .
[4] "NUnit.ASP website main page" (http:/ / nunitasp. sourceforge. net/ ). Sourceforge. . Retrieved 2008-04-15.

Further reading
• Andrew Hunt, David Thomas: Pragmatic Unit Testing in C# with NUnit, 2nd Ed. The Pragmatic Bookshelf,

Raleigh 2007, ISBN 0-9776166-7-3
• Jim Newkirk, Alexei Vorontsov: Test-Driven Development in Microsoft .NET. Microsoft Press, Redmond 2004,

ISBN 0-7356-1948-4
• Bill Hamilton: NUnit Pocket Reference. O'Reilly, Cambridge 2004, ISBN 0-596-00739-6

External links
• Official website (http:/ / http:/ / www. nunit. org)
• Launchpad Site (https:/ / launchpad. net/ nunitv2)
• Test-driven Development with NUnit & Test-driven.NET (http:/ / www. parlezuml. com/ tutorials/ tdd. html)

video demonstration
• FireBenchmarks home page (http:/ / www. firebenchmarks. com/ )
• NUnit.Forms home page (http:/ / nunitforms. sourceforge. net/ )
• NUnitAsp homepage (http:/ / nunitasp. sourceforge. net/ )
• Article Improving Application Quality Using Test-Driven Development (http:/ / www. methodsandtools. com/

archive/ archive. php?id=20) provides an introduction to TDD with concrete examples using Nunit

http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=FireBenchmarks
http://en.wikipedia.org/w/index.php?title=Plug-in_%28computing%29
http://en.wikipedia.org/w/index.php?title=XML
http://en.wikipedia.org/w/index.php?title=CSV
http://en.wikipedia.org/w/index.php?title=XHTML
http://en.wikipedia.org/w/index.php?title=Agile_methodology
http://en.wikipedia.org/w/index.php?title=Performance_metric
http://en.wikipedia.org/w/index.php?title=Algorithmic_complexity
http://en.wikipedia.org/w/index.php?title=Windows_Forms
http://en.wikipedia.org/w/index.php?title=ASP.NET
http://www.nunit.org
http://nunit.org/index.php?p=category&r=2.4.7
http://www.firebenchmarks.com/
http://nunitasp.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Sourceforge
http://en.wikipedia.org/w/index.php?title=O%27Reilly
http://http://www.nunit.org
https://launchpad.net/nunitv2
http://www.parlezuml.com/tutorials/tdd.html
http://www.firebenchmarks.com/
http://nunitforms.sourceforge.net/
http://nunitasp.sourceforge.net/
http://www.methodsandtools.com/archive/archive.php?id=20
http://www.methodsandtools.com/archive/archive.php?id=20


NUnitAsp 136

NUnitAsp
NUnitAsp is a tool for automatically testing ASP.NET web pages. It's an extension to NUnit, a tool for test-driven
development in .NET.

How It Works
NUnitAsp is a class library for use within your NUnit tests. It provides NUnit with the ability to download, parse,
and manipulate ASP.NET web pages.
With NUnitASP, your tests don't need to know how ASP.NET renders controls into HTML. Instead, you can rely on
the NUnitASP library to do this for you, keeping your test code simple and clean. For example, your tests don't need
to know that a DataGrid control renders as an HTML table. You can rely on NUnitASP to handle the details. This
gives you the freedom to focus on functionality questions, like whether the DataGrid holds the expected values.

 [Test]

 public void TestExample()

 {

   // First, instantiate "Tester" objects:

   LabelTester label = new LabelTester("textLabel", CurrentWebForm);

   LinkButtonTester link = new LinkButtonTester("linkButton", CurrentWebForm);

   // Second, visit the page being tested:

   Browser.GetPage("http:/ / localhost/ example/ example. aspx");

   // Third, use tester objects to test the page:

   AssertEquals("Not clicked.", label.Text);

   link.Click();

   AssertEquals("Clicked once.", label.Text);

   link.Click();

   AssertEquals("Clicked twice.", label.Text);

 }

NUnitAsp can test complex web sites involving multiple pages and nested controls.

Credits & History
NUnitAsp was created by Brian Knowles as a simple way to read and manipulate web documents with NUnit. Jim
Shore (known at the time as "Jim Little") took over the project shortly afterwards and refactored it to the
Tester-based approach used for the first release. Since then, more than a dozen people have contributed to the
product. In November 2003, Levi Khatskevitch joined the team as "patch king" and brought new energy to the
project, leading to the long-anticipated release of version 1.4. On January 31, 2008, Jim Shore announced the end of
its development.

http://en.wikipedia.org/w/index.php?title=ASP.NET
http://localhost/example/example.aspx


NUnitAsp 137

External links
• NunitAsp Homepage [1]

References
[1] http:/ / nunitasp. sourceforge. net/ index. html

http://nunitasp.sourceforge.net/index.html
http://nunitasp.sourceforge.net/index.html


csUnit 138

csUnit

csUnit

csUnit 2.5 GUI on Windows
Developer(s) csUnit team

Stable release csUnit 2.6 / March 28, 2009

Written in C#

Operating system Microsoft .NET

Type Unit testing tool

License zlib License

Website [1]

csUnit is a unit testing framework for the .NET Framework. It is designed to work with any .NET compliant
language. It has specifically been tested with C#, Visual Basic .NET, Managed C++, and J#. csUnit is open source
and comes with a flexible license that allows cost-free inclusion in commercial closed-source products as well.
csUnit follows the concepts of other unit testing frameworks in the xUnit family and has had several releases since
2002. The tool offers a native GUI application, a command line, and addins for Visual Studio 2005 and Visual
Studio 2008.
Starting with version 2.4 it also supports execution of NUnit tests without recompiling. This feature works for NUnit
2.4.7 (.NET 2.0 version).
csUnit supports .NET 3.5 and earlier versions, but does not support .NET 4.
csUnit has been integrated with ReSharper.

Special features
Along with the standard features, csUnit offers abilities that are uncommon in other unit testing frameworks for
.NET:
• Categories to group included, excluded tests
• ExpectedException working with concrete instances rather than type only
• Out of the box addins for Visual Studio 2005 and 2008
• A tab for simple performance base lining
• A very rich set of assertions, continuously expanded
• Rich set of attributes for implementing tests
• Parameterized testing, data-driven testing
• Search abilities, saving time when test suites have thousands of tests

http://en.wikipedia.org/w/index.php?title=File:CsUnit2.5Gui.png
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Microsoft_.NET
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Zlib_License
http://www.csunit.org
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=Managed_Extensions_for_C%2B%2B
http://en.wikipedia.org/w/index.php?title=J_Sharp
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Software_framework
http://en.wikipedia.org/w/index.php?title=ReSharper


csUnit 139

External links
• [1]
• SourceForge Site [2]

References
[1] http:/ / www. csunit. org
[2] http:/ / sourceforge. net/ projects/ csunit

http://www.csunit.org
http://sourceforge.net/projects/csunit
http://www.csunit.org
http://sourceforge.net/projects/csunit


HtmlUnit 140

HtmlUnit

HtmlUnit

Initial release May 22, 2002

Stable release 2.8 / August 5, 2010

Written in Java

Operating system Cross-platform (JVM)

Available in English

Type Web browser

License Apache License 2.0

Website htmlunit.sourceforge.net [145]

HtmlUnit is a headless web browser written in Java. It allows high-level manipulation of websites from other Java
code, including filling and submitting forms and clicking hyperlinks. It also provides access to the structure and the
details within received web pages. HtmlUnit emulates parts of browser behaviour including the lower-level aspects
of TCP/IP and HTTP. A sequence such as getPage(url), getLinkWith("Click here"), click()
allows a user to navigate through hypertext and obtain web pages that include HTML, JavaScript, Ajax and cookies.
This headless browser can deal with HTTPS security, basic http authentication, automatic page redirection and other
HTTP headers. It allows Java test code to examine returned pages either as text, an XML DOM, or as collections of
forms, tables, and links.[1]

The most common use of HtmlUnit is test automation of web pages, but sometimes it can be used for web scraping,
or downloading website content.
Version 2.0 includes many new enhancements such as a W3C DOM implementation, Java 5 features, better XPath
support, and improved handling for incorrect HTML, in addition to various JavaScript enhancements, while version
2.1 mainly focuses on tuning some performance issues reported by users.

References
[1] "HtmlUnit Home" (http:/ / htmlunit. sourceforge. net/ ). . Retrieved 23 December 2010.

External links
• HtmlUnit (http:/ / htmlunit. sourceforge. net/ )

http://en.wikipedia.org/w/index.php?title=File:Htmlunit_logo.png
http://en.wikipedia.org/w/index.php?title=Software_release_life_cycle
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Cross-platform
http://en.wikipedia.org/w/index.php?title=JVM
http://en.wikipedia.org/w/index.php?title=Language
http://en.wikipedia.org/w/index.php?title=English_language
http://en.wikipedia.org/w/index.php?title=List_of_software_categories
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Software_license
http://en.wikipedia.org/w/index.php?title=Apache_License
http://htmlunit.sourceforge.net/
http://en.wikipedia.org/w/index.php?title=Web_browser
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Website
http://en.wikipedia.org/w/index.php?title=Form_%28web%29
http://en.wikipedia.org/w/index.php?title=Hyperlink
http://en.wikipedia.org/w/index.php?title=Web_page
http://en.wikipedia.org/w/index.php?title=TCP/IP
http://en.wikipedia.org/w/index.php?title=HTTP
http://en.wikipedia.org/w/index.php?title=Hypertext
http://en.wikipedia.org/w/index.php?title=HTML
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Ajax_%28programming%29
http://en.wikipedia.org/w/index.php?title=HTTP_cookie
http://en.wikipedia.org/w/index.php?title=Web_scraping
http://en.wikipedia.org/w/index.php?title=W3C
http://en.wikipedia.org/w/index.php?title=Document_Object_Model
http://en.wikipedia.org/w/index.php?title=XPath
http://htmlunit.sourceforge.net/
http://htmlunit.sourceforge.net/


141

Test automation

Test automation
Compare with Manual testing.

Test automation is the use of software to control the execution of tests, the comparison of actual outcomes to
predicted outcomes, the setting up of test preconditions, and other test control and test reporting functions.[1]

Commonly, test automation involves automating a manual process already in place that uses a formalized testing
process.

Overview
Although manual tests may find many defects in a software application, it is a laborious and time consuming
process. In addition, it may not be effective in finding certain classes of defects. Test automation is a process of
writing a computer program to do testing that would otherwise need to be done manually. Once tests have been
automated, they can be run quickly and repeatedly. This is often the most cost effective method for software
products that have a long maintenance life, because even minor patches over the lifetime of the application can cause
features to break which were working at an earlier point in time.
There are two general approaches to test automation:
• Code-driven testing. The public (usually) interfaces to classes, modules, or libraries are tested with a variety of

input arguments to validate that the results that are returned are correct.
• Graphical user interface testing. A testing framework generates user interface events such as keystrokes and

mouse clicks, and observes the changes that result in the user interface, to validate that the observable behavior of
the program is correct.

Test automation tools can be expensive, and it is usually employed in combination with manual testing. It can be
made cost-effective in the longer term, especially when used repeatedly in regression testing.
One way to generate test cases automatically is model-based testing through use of a model of the system for test
case generation but research continues into a variety of alternative methodologies for doing so.
What to automate, when to automate, or even whether one really needs automation are crucial decisions which the
testing (or development) team must make. Selecting the correct features of the product for automation largely
determines the success of the automation. Automating unstable features or features that are undergoing changes
should be avoided.[2]

Code-driven testing
A growing trend in software development is the use of testing frameworks such as the xUnit frameworks (for
example, JUnit and NUnit) that allow the execution of unit tests to determine whether various sections of the code
are acting as expected under various circumstances. Test cases describe tests that need to be run on the program to
verify that the program runs as expected.
Code driven test automation is a key feature of Agile software development, where it is known as Test-driven 
development (TDD). Unit tests are written to define the functionality before the code is written. Only when all tests 
pass is the code considered complete. Proponents argue that it produces software that is both more reliable and less 
costly than code that is tested by manual exploration. It is considered more reliable because the code coverage is 
better, and because it is run constantly during development rather than once at the end of a waterfall development

http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Public_interface
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Code
http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Waterfall_model


Test automation 142

cycle. The developer discovers defects immediately upon making a change, when it is least expensive to fix. Finally,
code refactoring is safer; transforming the code into a simpler form with less code duplication, but equivalent
behavior, is much less likely to introduce new defects.

Graphical User Interface (GUI) testing
Many test automation tools provide record and playback features that allow users to interactively record user actions
and replay them back any number of times, comparing actual results to those expected. The advantage of this
approach is that it requires little or no software development. This approach can be applied to any application that
has a graphical user interface. However, reliance on these features poses major reliability and maintainability
problems. Relabelling a button or moving it to another part of the window may require the test to be re-recorded.
Record and playback also often adds irrelevant activities or incorrectly records some activities.
A variation on this type of tool is for testing of web sites. Here, the "interface" is the web page. This type of tool also
requires little or no software development. However, such a framework utilizes entirely different techniques because
it is reading HTML instead of observing window events.
Another variation is scriptless test automation that does not use record and playback, but instead builds a model of
the application under test and then enables the tester to create test cases by simply editing in test parameters and
conditions. This requires no scripting skills, but has all the power and flexibility of a scripted approach. Test-case
maintenance is easy, as there is no code to maintain and as the application under test changes the software objects
can simply be re-learned or added. It can be applied to any GUI-based software application.

What to test
Testing tools can help automate tasks such as product installation, test data creation, GUI interaction, problem
detection (consider parsing or polling agents equipped with oracles), defect logging, etc., without necessarily
automating tests in an end-to-end fashion.
One must keep satisfying popular requirements when thinking of test automation:
• Platform and OS independence
• Data driven capability (Input Data, Output Data, Metadata)
• Customizable Reporting (DB Access, crystal reports)
• Easy debugging and logging
• Version control friendly – minimal binary files
• Extensible & Customizable (Open APIs to be able to integrate with other tools)
• Common Driver (For example, in the Java development ecosystem, that means Ant or Maven and the popular

IDEs). This enables tests to integrate with the developers' workflows.
• Support unattended test runs for integration with build processes and batch runs. Continuous Integration servers

require this.
• Email Notifications (automated notification on failure or threshold levels). This may be the test runner or tooling

that executes it.
• Support distributed execution environment (distributed test bed)
• Distributed application support (distributed SUT)

http://en.wikipedia.org/w/index.php?title=Code_refactoring
http://en.wikipedia.org/w/index.php?title=Computing_platform
http://en.wikipedia.org/w/index.php?title=Operating_system
http://en.wikipedia.org/w/index.php?title=Metadata
http://en.wikipedia.org/w/index.php?title=Crystal_reports
http://en.wikipedia.org/w/index.php?title=Version_control
http://en.wikipedia.org/w/index.php?title=API
http://en.wikipedia.org/w/index.php?title=Apache_Ant
http://en.wikipedia.org/w/index.php?title=Apache_Maven
http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environment
http://en.wikipedia.org/w/index.php?title=Workflows
http://en.wikipedia.org/w/index.php?title=Continuous_Integration
http://en.wikipedia.org/w/index.php?title=Testbed
http://en.wikipedia.org/w/index.php?title=System_Under_Test


Test automation 143

Framework approach in automation
A framework is an integrated system that sets the rules of Automation of a specific product. This system integrates
the function libraries, test data sources, object details and various reusable modules. These components act as small
building blocks which need to be assembled to represent a business process. The framework provides the basis of
test automation and simplifies the automation effort.

Defining boundaries between automation framework and a testing tool
Tools are specifically designed to target some particular test environment. Such as: Windows automation tool, web
automation tool etc. It serves as driving agent for an automation process. However, automation framework is not a
tool to perform some specific task, but is an infrastructure that provides the solution where different tools can plug
itself and do their job in a unified manner. Hence providing a common platform to the automation engineer doing
their job.
There are various types of frameworks. They are categorized on the basis of the automation component they
leverage. These are:
1. Data-driven testing
2. Modularity-driven testing
3. Keyword-driven testing
4. Hybrid testing
5. Model-based testing

Notable test automation tools

 Tool name  Produced by  Latest version 

TestDrive Original Software 7.0

HP QuickTest Professional HP 11.0

IBM Rational Functional Tester IBM Rational 8.2.0.2

Parasoft SOAtest Parasoft 9.0

QF-Test Quality First Software GmbH 3.4.1

Ranorex Ranorex GmbH 3.0

Rational robot IBM Rational 2003

Selenium Open source 1.0.10

HTTP Test Tool Open source 2.0.8

SilkTest Micro Focus 2010 R2 WS2

TestArchitect LogiGear 6.0

TestComplete SmartBear Software 8.5

Testing Anywhere Automation Anywhere 7.0

TestPartner Micro Focus 6.3

TOSCA Testsuite TRICENTIS Technology & Consulting 7.3.0[3]

Visual Studio Test Professional Microsoft 2010

WATIR Open source 1.6.5

WebUI Test Studio Telerik, Inc. 2011.1

http://en.wikipedia.org/w/index.php?title=TestDrive
http://en.wikipedia.org/w/index.php?title=HP_QuickTest_Professional
http://en.wikipedia.org/w/index.php?title=IBM_Rational_Functional_Tester
http://en.wikipedia.org/w/index.php?title=Soatest
http://en.wikipedia.org/w/index.php?title=QF-Test
http://en.wikipedia.org/w/index.php?title=Ranorex
http://en.wikipedia.org/w/index.php?title=Rational_robot
http://en.wikipedia.org/w/index.php?title=Selenium_%28software%29
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=HTTP_Test_Tool
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=SilkTest
http://en.wikipedia.org/w/index.php?title=TestArchitect
http://en.wikipedia.org/w/index.php?title=TestComplete
http://en.wikipedia.org/w/index.php?title=Testing_Anywhere
http://en.wikipedia.org/w/index.php?title=TestPartner
http://en.wikipedia.org/w/index.php?title=Tosca_%28Software%29
http://en.wikipedia.org/w/index.php?title=Visual_Studio_Test_Professional
http://en.wikipedia.org/w/index.php?title=Watir
http://en.wikipedia.org/w/index.php?title=WebUI_Test_Studio


Test automation 144

References
[1] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 74. ISBN 0470042125. .
[2] Brian Marick. "When Should a Test Be Automated?" (http:/ / www. stickyminds. com/ sitewide. asp?Function=edetail& ObjectType=ART&

ObjectId=2010). StickyMinds.com. . Retrieved 2009-08-20.
[3] http:/ / tosca-testsuite. com/ Newsletter/ Apr11/ En/ Newsletter. html

• Elfriede Dustin, et al.: Automated Software Testing. Addison Wesley, 1999, ISBN 0-20143-287-0
• Elfriede Dustin, et al.: Implementing Automated Software Testing. Addison Wesley, ISBN 978-0321580511
• Mark Fewster & Dorothy Graham (1999). Software Test Automation. ACM Press/Addison-Wesley.

ISBN 978-0201331400.
• Roman Savenkov: How to Become a Software Tester. Roman Savenkov Consulting, 2008, ISBN

978-0-615-23372-7
• Hong Zhu et al. (2008). AST '08: Proceedings of the 3rd International Workshop on Automation of Software Test

(http:/ / portal. acm. org/ citation. cfm?id=1370042#). ACM Press. ISBN 978-1-60558-030-2.

External links
• Automation Myths (http:/ / www. benchmarkqa. com/ pdf/ papers_automation_myths. pdf) by M. N. Alam
• Generating Test Cases Automatically (http:/ / www. osc-es. de/ media/ pdf/

dSPACENEWS2007-3_TargetLink_EmbeddedTester_en_701. pdf)
• Practical Experience in Automated Testing (http:/ / www. methodsandtools. com/ archive/ archive. php?id=33)
• Test Automation: Delivering Business Value (http:/ / www. applabs. com/ internal/

app_whitepaper_test_automation_delivering_business_value_1v00. pdf)
• Test Automation Snake Oil (http:/ / www. satisfice. com/ articles/ test_automation_snake_oil. pdf) by James Bach
• When Should a Test Be Automated? (http:/ / www. stickyminds. com/ r. asp?F=DART_2010) by Brian Marick
• Why Automation Projects Fail (http:/ / martproservice. com/ Why_Software_Projects_Fail. pdf) by Art Beall
• Guidelines for Test Automation framework (http:/ / info. allianceglobalservices. com/ Portals/ 30827/ docs/ test

automation framework and guidelines. pdf)
• Advanced Test Automation (http:/ / www. testars. com/ docs/ 5GTA. pdf)
• Seven Steps to Test Automation Success (http:/ / www. io. com/ ~wazmo/ papers/ seven_steps. html)

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=2010
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=ART&ObjectId=2010
http://tosca-testsuite.com/Newsletter/Apr11/En/Newsletter.html
http://portal.acm.org/citation.cfm?id=1370042#
http://www.benchmarkqa.com/pdf/papers_automation_myths.pdf
http://www.osc-es.de/media/pdf/dSPACENEWS2007-3_TargetLink_EmbeddedTester_en_701.pdf
http://www.osc-es.de/media/pdf/dSPACENEWS2007-3_TargetLink_EmbeddedTester_en_701.pdf
http://www.methodsandtools.com/archive/archive.php?id=33
http://www.applabs.com/internal/app_whitepaper_test_automation_delivering_business_value_1v00.pdf
http://www.applabs.com/internal/app_whitepaper_test_automation_delivering_business_value_1v00.pdf
http://www.satisfice.com/articles/test_automation_snake_oil.pdf
http://www.stickyminds.com/r.asp?F=DART_2010
http://martproservice.com/Why_Software_Projects_Fail.pdf
http://info.allianceglobalservices.com/Portals/30827/docs/test%20automation%20framework%20and%20guidelines.pdf
http://info.allianceglobalservices.com/Portals/30827/docs/test%20automation%20framework%20and%20guidelines.pdf
http://www.testars.com/docs/5GTA.pdf
http://www.io.com/~wazmo/papers/seven_steps.html


Test bench 145

Test bench
A test bench is a virtual environment used to verify the correctness or soundness of a design or model (e.g., a
software product).
The term has its roots in the testing of electronic devices, where an engineer would sit at a lab bench with tools for
measurement and manipulation, such as oscilloscopes, multimeters, soldering irons, wire cutters, and so on, and
manually verify the correctness of the device under test.
In the context of software or firmware or hardware engineering, a test bench refers to an environment in which the
product under development is tested with the aid of a collection of testing tools. Often, though not always, the suite
of testing tools is designed specifically for the product under test.
A test bench or testing workbench has four components:
1. Input: The entrance criteria or deliverables needed to perform work,
2. Procedures to do: The tasks or processes that will transform the input into the output,
3. Procedures to check: The processes that determine that the output meets the standards,
4. Output: The exit criteria or deliverables produced from the workbench.

An example of a software test bench
The tools used to automate the testing process in a test bench perform the following functions:
Test manager: manages the running of program tests; keeps track of test data, expected results and program
facilities tested.
Test data generator: generates test data for the program to be tested.
Oracle: generates predictions of the expected test results; the oracle may be either previous program versions or
prototype systems.
File comparator: compares the results of the program tests with previous test results and records any differences in
a document.
Report generator: provides report definition and generation facilities for the test results.
Dynamic analyzer: adds code to a program to count the number of times each statement has been executed. It
generates an execution profile for the statements to show the number of times they are executed in the program run.
Simulator: simulates the testing environment where the software product is to be used.

References

http://en.wikipedia.org/w/index.php?title=Oscilloscope
http://en.wikipedia.org/w/index.php?title=Multimeter
http://en.wikipedia.org/w/index.php?title=Device_under_test
http://en.wikipedia.org/w/index.php?title=Test_Manager_%28General%29


Test execution engine 146

Test execution engine
A test execution engine is a type of software used to test software, hardware or complete systems.
Synonyms of test execution engine:
• Test executive
• Test manager
A test execution engine may appear in two forms:
• Module of a test software suite (test bench) or an integrated development environment
• Stand-alone application software

Concept
The test execution engine does not carry any information about the tested product. Only the test specification and the
test data carries information about the tested product.
The test specification is software. Test specification is sometimes referred to as test sequence, which consists of test
steps.
The test specification should be stored in the test repository in a text format (such as source code). Test data is
sometimes generated by some test data generator tool. Test data can be stored in binary or text files. Test data should
also be stored in the test repository together with the test specification.
Test specification is selected, loaded and executed by the test execution engine similarly, as application software is
selected, loaded and executed by operation systems. The test execution engine should not operate on the tested object
directly, but though plug-in modules similarly as an application software accesses devices through drivers which are
installed on the operation system.
The difference between the concept of test execution engine and operation system is that the test execution engine
monitors, presents and stores the status, results, time stamp, length and other information for every Test Step of a
Test Sequence, but typically an operation system does not perform such profiling of a software execution.
Reasons for using a test execution engine:
• Test results are stored and can be viewed in a uniform way, independent of the type of the test
• Easier to keep track of the changes
• Easier to reuse components developed for testing

Functions
Main functions of a test execution engine:
• Select a test type to execute. Selection can be automatic or manual.
• Load the specification of the selected test type by opening a file from the local file system or downloading it from

a Server, depending on where the test repository is stored.
• Execute the test through the use of testing tools (SW test) or instruments (HW test), while showing the progress

and accepting control from the operator (for example to Abort)
• Present the outcome (such as Passed, Failed or Aborted) of test Steps and the complete Sequence to the operator
• Store the Test Results in report files
An advanced test execution engine may have additional functions, such as:
• Store the test results in a Database
• Load test result back from the Database
• Present the test results as raw data.

http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Computer_hardware
http://en.wikipedia.org/w/index.php?title=Module
http://en.wikipedia.org/w/index.php?title=Integrated_development_environment
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=Test_sequence
http://en.wikipedia.org/w/index.php?title=Test_step
http://en.wikipedia.org/w/index.php?title=Test_step
http://en.wikipedia.org/w/index.php?title=Test_repository
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Test_data_generator
http://en.wikipedia.org/w/index.php?title=Test_repository
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Operation_system
http://en.wikipedia.org/w/index.php?title=Application_software
http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Operation_system
http://en.wikipedia.org/w/index.php?title=Operation_system
http://en.wikipedia.org/w/index.php?title=Operation_system
http://en.wikipedia.org/w/index.php?title=Profiling
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=File_system
http://en.wikipedia.org/w/index.php?title=Server_%28computing%29
http://en.wikipedia.org/w/index.php?title=Test_repository
http://en.wikipedia.org/w/index.php?title=Abort_%28computing%29
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Database


Test execution engine 147

• Present the test results in a processed format. (Statistics)
• Authenticate the operators.
Advanced functions of the test execution engine maybe less important for software testing, but these advanced
features could be essential when executing hardware/system tests.

Operations types
A test execution engine by executing a test specification, it may perform different types of operations on the product,
such as:
• Verification
• Calibration
• Programming

• Downloading firmware to the product's nonvolatile memory (Flash)
• Personalization: programming with unique parameters, like a serial number or a MAC address

If the subject is a software, verification is the only possible operation.

Implementation Examples

Proprietary
Software test:
• IBM's IBM Rational Quality Manager [1]

Hardware or system test:
• National Instruments' TestStand [2] - Test Management Software
• Hiatronics' Hiatronic Development Suite [3] - Test Stand Content Management System
• Geotest's ATEasy [4] - Rapid Application Development Framework

Open Source
Hardware or system test:
• JTStand [5] - Scripting Environment for Data Collection

Choosing a Test execution engine
TBD

References
[1] http:/ / www-01. ibm. com/ software/ awdtools/ rqm/ standard/
[2] http:/ / www. ni. com/ teststand/
[3] http:/ / www. hiatronics. com/
[4] http:/ / www. geotestinc. com/ Product. aspx?model=ATEasy/
[5] http:/ / www. jtstand. com/

http://en.wikipedia.org/w/index.php?title=Statistics
http://en.wikipedia.org/w/index.php?title=Verification_and_Validation
http://en.wikipedia.org/w/index.php?title=Calibration
http://en.wikipedia.org/w/index.php?title=Firmware
http://en.wikipedia.org/w/index.php?title=Nonvolatile_memory
http://en.wikipedia.org/w/index.php?title=Flash_memory
http://en.wikipedia.org/w/index.php?title=Personalization
http://en.wikipedia.org/w/index.php?title=Serial_number
http://en.wikipedia.org/w/index.php?title=MAC_address
http://www-01.ibm.com/software/awdtools/rqm/standard/
http://en.wikipedia.org/w/index.php?title=National_Instruments
http://www.ni.com/teststand/
http://www.hiatronics.com/
http://www.geotestinc.com/Product.aspx?model=ATEasy/
http://www.jtstand.com/
http://www-01.ibm.com/software/awdtools/rqm/standard/
http://www.ni.com/teststand/
http://www.hiatronics.com/
http://www.geotestinc.com/Product.aspx?model=ATEasy/
http://www.jtstand.com/


Test stubs 148

Test stubs
In computer science, test stubs are programs which simulate the behaviors of software components (or modules) that
are the dependent modules of the module being tested.

“Test stubs provide canned answers to calls made during the test, usually not responding at all to anything outside what's programmed in for
the test.[1] ”

Test Stubs are mainly used in incremental testing's Top-Down approach. Stubs are software programs which act as a
module and give the output as given by an actual product/software.

Example
Consider a software program which queries a database to obtain the sum price total of all products stored in the
database. However, the query is slow and consumes a large number of system resources. This reduces the number of
test runs per day. Secondly, the tests need to be conducted on values larger than what is currently in the database.
The method (or call) used to perform this is get_total(). For testing purposes, the source code in get_total() could be
temporarily replaced with a simple statement which returned a specific value. This would be a test stub.
There are several testing frameworks available and there is software that can generate test stubs based on existing
source code and testing requirements.

External links
• http:/ / xunitpatterns. com/ Test%20Stub. html [2]

References
[1] Fowler, Martin (2007), Mocks Aren't Stubs (Online) (http:/ / martinfowler. com/ articles/ mocksArentStubs.

html#TheDifferenceBetweenMocksAndStubs)
[2] http:/ / xunitpatterns. com/ Test%20Stub. html

http://xunitpatterns.com/Test%20Stub.html
http://xunitpatterns.com/Test%20Stub.html
http://martinfowler.com/articles/mocksArentStubs.html#TheDifferenceBetweenMocksAndStubs
http://martinfowler.com/articles/mocksArentStubs.html#TheDifferenceBetweenMocksAndStubs
http://xunitpatterns.com/Test%20Stub.html


Testware 149

Testware
Generally speaking, Testware is a sub-set of software with a special purpose, that is, for software testing, especially
for software testing automation. Automation testware for example is designed to be executed on automation
frameworks.
Testware is an umbrella term for all utilities and application software that serve in combination for testing a software
package but not necessarily contribute to operational purposes. As such, testware is not a standing configuration but
merely a working environment for application software or subsets thereof.
It includes artifacts produced during the test process required to plan, design, and execute tests, such as
documentation, scripts, inputs, expected results, set-up and clear-up procedures, files, databases, environment, and
any additional software or utilities used in testing. [1]

Testware is produced by both verification and validation testing methods. Like software, Testware includes codes
and binaries as well as test cases, test plan, test report and etc. Testware should be placed under the control of a
configuration management system, saved and faithfully maintained.
Compared to general software, testware is special because it has:
1. a different purpose
2. different metrics for quality and
3. different users
The different methods should be adopted when you develop testware with what you use to develop general software.
Testware is also referred as test tools in a narrow sense. [2]

References
[1] Fewster, M.; Graham, D. (1999), Software Test Automation, Effective use of test execution tools, Addison-Wesley, ISBN 0-201-33140-3
[2] http:/ / www. homeoftester. com/ articles/ what_is_testware. htm

http://en.wikipedia.org/w/index.php?title=Software
http://www.homeoftester.com/articles/what_is_testware.htm


Test automation framework 150

Test automation framework
A test automation framework is a set of assumptions, concepts and tools that provide support for automated
software testing. The main advantage of such a framework is the low cost for maintenance. If there is change to any
test case then only the test case file needs to be updated and the Driver Script and Startup script will remain the
same. Ideally, there is no need to update the scripts in case of changes to the application.
Choosing the right framework/scripting technique helps in maintaining lower costs. The costs associated with test
scripting are due to development and maintenance efforts. The approach of scripting used during test automation has
effect on costs.
Various framework/scripting techniques are generally used:
1. Linear (procedural code, possibly generated by tools like those that use record and playback)
2. Structured (uses control structures - typically ‘if-else’, ‘switch’, ‘for’, ‘while’ conditions/ statements)
3. Data-driven (data is persisted outside of tests in a database, spreadsheet, or other mechanism)
4. Keyword-driven
5. Hybrid (two or more of the patterns above are used)
The Testing framework is responsible for:[1]

1. defining the format in which to express expectations
2. creating a mechanism to hook into or drive the application under test
3. executing the tests
4. reporting results
Another view Automation Framework is not a tool to perform some specific task, but is an infrastructure that
provides a complete solution where different tools work together in an unified manner hence providing a common
platform to the automation engineer using them.
Ref: http:/ / code. google. com/ p/ vauto/

References
[1] "Selenium Meet-Up 4/20/2010 Elisabeth Hendrickson on Robot Framework 1of2" (http:/ / www. youtube. com/ watch?v=qf2i-xQ3LoY). .

Retrieved 2010-09-26.

http://en.wikipedia.org/w/index.php?title=Driver_Script
http://en.wikipedia.org/w/index.php?title=Startup_script
http://code.google.com/p/vauto/
http://www.youtube.com/watch?v=qf2i-xQ3LoY


Data-driven testing 151

Data-driven testing
Data-driven testing (DDT) is a term used in the testing of computer software to describe testing done using a table
of conditions directly as test inputs and verifiable outputs as well as the process where test environment settings and
control are not hard-coded. In the simplest form the tester supplies the inputs from a row in the table and expects the
outputs which occur in the same row. The table typically contains values which correspond to boundary or partition
input spaces. In the control methodology, test configuration is "read" from a database.

Introduction
In the testing of software or programs, several methodologies are available for implementing this testing. Each of
these methods co-exist because they differ in the effort required to create and subsequently maintain. The advantage
of Data-driven testing is the ease to add additional inputs to the table when new partitions are discovered or added to
the product or System Under Test. The cost aspect makes DDT cheap for automation but expensive for manual
testing. One could confuse DDT with Table-driven testing, which this article needs to separate more clearly in
future.

Methodology Overview
• Data-driven testing is the creation of test scripts to run together with their related data sets in a framework. The

framework provides re-usable test logic to reduce maintenance and improve test coverage. Input and result (test
criteria) data values can be stored in one or more central data sources or databases, the actual format and
organisation can be implementation specific.

The data comprises variables used for both input values and output verification values. In advanced (mature)
automation environments data can be harvested from a running system using a purpose-built custom tool or sniffer,
the DDT framework thus performs playback of harvested data producing a powerful automated regression testing
tool. Navigation through the program, reading of the data sources, and logging of test status and information are all
coded in the test script.

Data Driven
Anything that has a potential to change (also called "Variability" and includes such as environment, end points, test
data and locations, etc), is separated out from the test logic (scripts) and moved into an 'external asset'. This can be a
configuration or test dataset. The logic executed in the script is dictated by the data values.
• Keyword-driven testing is similar except that the test case is contained in the set of data values and not

embedded or "hard-coded" in the test script itself. The script is simply a "driver" (or delivery mechanism) for the
data that is held in the data source

The databases used for data-driven testing can include:-
• datapools
• ODBC source's
• csv files
• Excel files
• DAO objects
• ADO objects, etc.

http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Computer_program
http://en.wikipedia.org/w/index.php?title=System_Under_Test
http://en.wikipedia.org/w/index.php?title=Table-driven_testing
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=System_Under_Test
http://en.wikipedia.org/w/index.php?title=Open_Database_Connectivity
http://en.wikipedia.org/w/index.php?title=Comma-separated_values
http://en.wikipedia.org/w/index.php?title=Microsoft_Office_Excel
http://en.wikipedia.org/w/index.php?title=Data_Access_Object
http://en.wikipedia.org/w/index.php?title=ActiveX_Data_Objects


Data-driven testing 152

References
• Carl Nagle: Test Automation Frameworks (http:/ / safsdev. sourceforge. net/

FRAMESDataDrivenTestAutomationFrameworks. htm), Software Automation Framework Support on
SourceForge (http:/ / safsdev. sourceforge. net/ Default. htm)

Modularity-driven testing
Modularity-driven testing is a term used in the testing of software.

Test Script Modularity Framework
The test script modularity framework requires the creation of small, independent scripts that represent modules,
sections, and functions of the application-under-test. These small scripts are then used in a hierarchical fashion to
construct larger tests, realizing a particular test case.
Of all the frameworks, this one should be the simplest to grasp and master. It is a well-known programming strategy
to build an abstraction layer in front of a component to hide the component from the rest of the application. This
insulates the application from modifications in the component and provides modularity in the application design. The
test script modularity framework applies this principle of abstraction or encapsulation in order to improve the
maintainability and scalability of automated test suites.

Keyword-driven testing
Keyword-driven testing, also known as table-driven testing or action-word testing, is a software testing
methodology for automated testing that separates the test creation process into two distinct stages: a Planning Stage,
and an Implementation Stage.

Overview
Although keyword testing can be used for manual testing, it is a technique particularly well suited to automated
testing[1] . The advantages for automated tests are the reusability and therefore ease of maintenance of tests that have
been created at a high level of abstraction.

Methodology
The keyword-driven testing methodology divides test creation into two stages:-
• Planning Stage
• Implementation Stage

Planning Stage

Examples of keywords*

• A simple keyword (one action on one object), e.g. entering a username into a textfield.

Object Action Data 

Textfield (username) Enter text <username>

• A more complex keyword (a combination of keywords into a meaningful unit), e.g. logging in.

http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm
http://safsdev.sourceforge.net/Default.htm
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Automated_testing
http://en.wikipedia.org/w/index.php?title=Automated_testing
http://en.wikipedia.org/w/index.php?title=Automated_testing


Keyword-driven testing 153

Object Action Data 

Textfield (domain) Enter text <domain>

Textfield (username) Enter text <username>

Textfield (password) Enter text <password>

Button (login) Click One left click

Implementation Stage
The implementation stage differs depending on the tool or framework. Often, automation engineers implement a
framework that provides keywords like “check” and “enter” [1] . Testers or test designers (who don’t have to know
how to program) write test cases based on the keywords defined in the planning stage that have been implemented by
the engineers. The test is executed using a driver that reads the keywords and executes the corresponding code.
Other methodologies use an all-in-one implementation stage. Instead of separating the tasks of test design and test
engineering, the test design is the test automation. Keywords, such as “edit” or “check” are created using tools in
which the necessary code has already been written. This removes the necessity for extra engineers in the test process,
because the implementation for the keywords is already a part of the tool. Tools such as GUIdancer and QTP

Pros
1. Maintenance is low in a long run

1. Test cases are concise
2. Test Cases are readable for the stake holders
3. Test Cases easy to modify
4. New test cases can reuse existing keywords more easily

2. Keyword re-use across multiple test cases
3. Not dependent on Tool / Language
4. Division of Labor

1. Test Case construction needs stronger domain expertise - lesser tool / programming skills
2. Keyword implementation requires stronger tool/programming skill - with relatively lower domain skill

5. Abstraction of Layers.

Cons
1. Longer Time to Market (as compared to manual testing or record and replay technique)
2. Moderately high learning curve initially

References
[1] (http:/ / www. stickyminds. com/ sitewide. asp?Function=edetail& ObjectType=COL& ObjectId=8186), Danny R. Faught, Keyword-Driven

Testing, Sticky Minds

External links
1. Hans Buwalda (http:/ / www. logigear. com/ newsletter/ key_success_factors_for_keyword_driven_testing. asp),

success factors for keyword driven testing.
2. SAFS (Software Automation Framework Support) (http:/ / safsdev. sourceforge. net)
3. Test automation frameworks (http:/ / safsdev. sourceforge. net/ DataDrivenTestAutomationFrameworks. htm)

http://en.wikipedia.org/w/index.php?title=GUIdancer
http://www.stickyminds.com/sitewide.asp?Function=edetail&ObjectType=COL&ObjectId=8186
http://www.logigear.com/newsletter/key_success_factors_for_keyword_driven_testing.asp
http://safsdev.sourceforge.net
http://safsdev.sourceforge.net/DataDrivenTestAutomationFrameworks.htm


Keyword-driven testing 154

4. Automation Framework - gFast: generic Framework for Automated Software Testing - QTP Framework (http:/ /
www. slideshare. net/ heydaysoft/ g-fast-presentation/ )

5. Robot Framework Open Source Test Automation Framework (http:/ / robotframework. org)

Hybrid testing

Overview
The hybrid Test Automation Framework is what most frameworks evolve into over time and multiple projects. The
most successful automation frameworks generally accommodate both Keyword-driven testing as well as Data-driven
testing. This allows data driven scripts to take advantage of the powerful libraries and utilities that usually
accompany a keyword driven architecture. The framework utilities can make the data driven scripts more compact
and less prone to failure than they otherwise would have been. The utilities can also facilitate the gradual and
manageable conversion of existing scripts to keyword driven equivalents when and where that appears desirable. On
the other hand, the framework can use scripts to perform some tasks that might be too difficult to re-implement in a
pure keyword driven approach, or where the keyword driven capabilities are not yet in place.

The Framework
The framework is defined by the Core Data Driven Engine, the Component Functions, and the Support Libraries (see
adjacent picture) . While the Support Libraries provide generic routines useful even outside the context of a keyword
driven framework, the core engine and component functions are highly dependent on the existence of all three
elements. The test execution starts with the LAUNCH TEST(1) script. This script invokes the Core Data Driven
Engine by providing one or more High-Level Test Tables to CycleDriver(2). CycleDriver processes these test tables
invoking the SuiteDriver(3) for each Intermediate-Level Test Table it encounters. SuiteDriver processes these
intermediate-level tables invoking StepDriver(4) for each Low-Level Test Table it encounters. As StepDriver
processes these low-level tables it attempts to keep the application in synch with the test. When StepDriver
encounters a low-level command for a specific component, it determines what Type of component is involved and
invokes the corresponding Component Function(5) module to handle the task.

http://www.slideshare.net/heydaysoft/g-fast-presentation/
http://www.slideshare.net/heydaysoft/g-fast-presentation/
http://robotframework.org
http://en.wikipedia.org/w/index.php?title=Test_Automation_Framework


Lightweight software test automation 155

Lightweight software test automation
Lightweight software test automation is the process of creating and using relatively short and simple computer
programs, called lightweight test harnesses, designed to test a software system. Lightweight test automation
harnesses are not tied to a particular programming language but are most often implemented with the Java, Perl,
Visual Basic .NET, and C# programming languages. Lightweight test automation harnesses are generally four pages
of source code or less, and are generally written in four hours or less. Lightweight test automation is often associated
with Agile software development methodology.
The three major alternatives to the use of lightweight software test automation are commercial test automation
frameworks, Open Source test automation frameworks, and heavyweight test automation. The primary disadvantage
of lightweight test automation is manageability. Because lightweight automation is relatively quick and easy to
implement, a test effort can be overwhelmed with harness programs, test case data files, test result files, and so on.
However, lightweight test automation has significant advantages. Compared with commercial frameworks,
lightweight automation is less expensive in initial cost and is more flexible. Compared with Open Source
frameworks, lightweight automation is more stable because there are fewer updates and external dependencies.
Compared with heavyweight test automation, lightweight automation is quicker to implement and modify.
Lightweight test automation is generally used to complement, not replace these alternative approaches.
Lightweight test automation is most useful for regression testing, where the intention is to verify that new source
code added to the system under test has not created any new software failures. Lightweight test automation may be
used for other areas of software testing such as performance testing, stress testing, load testing, security testing, code
coverage analysis, mutation testing, and so on. The most widely published proponent of the use of lightweight
software test automation is Dr. James D. McCaffrey.

References
• Definition and characteristics of lightweight software test automation in: McCaffrey, James D., ".NET Test

Automation Recipes", Apress Publishing, 2006. ISBN: 1590596633.
• Discussion of lightweight test automation versus manual testing in: Patton, Ron, "Software Testing, 2nd ed.",

Sams Publishing, 2006. ISBN: 0672327988.
• An example of lightweight software test automation for .NET applications: "Lightweight UI Test Automation

with .NET", MSDN Magazine, January 2005 (Vol. 20, No. 1). See http:/ / msdn2. microsoft. com/ en-us/
magazine/ cc163864. aspx.

• A demonstration of lightweight software test automation applied to stress testing: "Stress Testing", MSDN
Magazine, May 2006 (Vol. 21, No. 6). See http:/ / msdn2. microsoft. com/ en-us/ magazine/ cc163613. aspx.

• A discussion of lightweight software test automation for performance testing: "Web App Diagnostics:
Lightweight Automated Performance Analysis", asp.netPRO Magazine, August 2005 (Vol. 4, No. 8).

• An example of lightweight software test automation for Web applications: "Lightweight UI Test Automation for
ASP.NET Web Applications", MSDN Magazine, April 2005 (Vol. 20, No. 4). See http:/ / msdn2. microsoft. com/
en-us/ magazine/ cc163814. aspx.

• A technique for mutation testing using lightweight software test automation: "Mutant Power: Create a Simple
Mutation Testing System with the .NET Framework", MSDN Magazine, April 2006 (Vol. 21, No. 5). See http:/ /
msdn2. microsoft. com/ en-us/ magazine/ cc163619. aspx.

• An investigation of lightweight software test automation in a scripting environment: "Lightweight Testing with
Windows PowerShell", MSDN Magazine, May 2007 (Vol. 22, No. 5). See http:/ / msdn2. microsoft. com/ en-us/
magazine/ cc163430. aspx.

http://en.wikipedia.org/w/index.php?title=Computer_programs
http://en.wikipedia.org/w/index.php?title=Computer_programs
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Visual_Basic_.NET
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Agile
http://en.wikipedia.org/w/index.php?title=Open_Source
http://en.wikipedia.org/w/index.php?title=James_D._McCaffrey
http://msdn2.microsoft.com/en-us/magazine/cc163864.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163864.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163613.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163814.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163814.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163619.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163619.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163430.aspx.
http://msdn2.microsoft.com/en-us/magazine/cc163430.aspx.


156

Testing process

Software testing controversies
There is considerable variety among software testing writers and consultants about what constitutes responsible
software testing. Members of the "context-driven" school of testing[1] believe that there are no "best practices" of
testing, but rather that testing is a set of skills that allow the tester to select or invent testing practices to suit each
unique situation. In addition, prominent members of the community consider much of the writing about software
testing to be doctrine, mythology, and folklore. Some contend that this belief directly contradicts standards such as
the IEEE 829 test documentation standard, and organizations such as the Food and Drug Administration who
promote them. The context-driven school's retort is that Lessons Learned in Software Testing includes one lesson
supporting the use IEEE 829 and another opposing it; that not all software testing occurs in a regulated environment
and that practices appropriate for such environments would be ruinously expensive, unnecessary, and inappropriate
for other contexts; and that in any case the FDA generally promotes the principle of the least burdensome approach.
Some of the major controversies include:

Agile vs. traditional
Starting around 1990, a new style of writing about testing began to challenge what had come before. The seminal
work in this regard is widely considered to be Testing Computer Software, by Cem Kaner.[2] Instead of assuming
that testers have full access to source code and complete specifications, these writers, including Kaner and James
Bach, argued that testers must learn to work under conditions of uncertainty and constant change. Meanwhile, an
opposing trend toward process "maturity" also gained ground, in the form of the Capability Maturity Model. The
agile testing movement (which includes but is not limited to forms of testing practiced on agile development
projects) has popularity mainly in commercial circles, whereas the CMM was embraced by government and military
software providers.
However, saying that "maturity models" like CMM gained ground against or opposing Agile testing may not be
right. Agile movement is a 'way of working', while CMM is a process improvement idea.
But another point of view must be considered: the operational culture of an organization. While it may be true that
testers must have an ability to work in a world of uncertainty, it is also true that their flexibility must have direction.
In many cases test cultures are self-directed and as a result fruitless; unproductive results can ensue. Furthermore,
providing positive evidence of defects may either indicate that you have found the tip of a much larger problem, or
that you have exhausted all possibilities. A framework is a test of Testing. It provides a boundary that can measure
(validate) the capacity of our work. Both sides have, and will continue to argue the virtues of their work. The proof
however is in each and every assessment of delivery quality. It does little good to test systematically if you are too
narrowly focused. On the other hand, finding a bunch of errors is not an indicator that Agile methods was the driving
force; you may simply have stumbled upon an obviously poor piece of work.

http://en.wikipedia.org/w/index.php?title=Food_and_Drug_Administration
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=James_Bach
http://en.wikipedia.org/w/index.php?title=James_Bach
http://en.wikipedia.org/w/index.php?title=Capability_Maturity_Model
http://en.wikipedia.org/w/index.php?title=Agile_software_development


Software testing controversies 157

Exploratory vs. scripted
Exploratory testing means simultaneous test design and test execution with an emphasis on learning. Scripted testing
means that learning and test design happen prior to test execution, and quite often the learning has to be done again
during test execution. Exploratory testing is very common, but in most writing and training about testing it is barely
mentioned and generally misunderstood. Some writers consider it a primary and essential practice. Structured
exploratory testing is a compromise when the testers are familiar with the software. A vague test plan, known as a
test charter, is written up, describing what functionalities need to be tested but not how, allowing the individual
testers to choose the method and steps of testing.
There are two main disadvantages associated with a primarily exploratory testing approach. The first is that there is
no opportunity to prevent defects, which can happen when the designing of tests in advance serves as a form of
structured static testing that often reveals problems in system requirements and design. The second is that, even with
test charters, demonstrating test coverage and achieving repeatability of tests using a purely exploratory testing
approach is difficult. For this reason, a blended approach of scripted and exploratory testing is often used to reap the
benefits while mitigating each approach's disadvantages.

Manual vs. automated
Some writers believe that test automation is so expensive relative to its value that it should be used sparingly.[3]

Others, such as advocates of agile development, recommend automating 100% of all tests. A challenge with
automation is that automated testing requires automated test oracles (an oracle is a mechanism or principle by which
a problem in the software can be recognized). Such tools have value in load testing software (by signing on to an
application with hundreds or thousands of instances simultaneously), or in checking for intermittent errors in
software. The success of automated software testing depends on complete and comprehensive test planning.
Software development strategies such as test-driven development are highly compatible with the idea of devoting a
large part of an organization's testing resources to automated testing. Many large software organizations perform
automated testing. Some have developed their own automated testing environments specifically for internal
development, and not for resale.

Software design vs. software implementation
Ideally, software testers should not be limited only to testing software implementation, but also to testing software
design. With this assumption, the role and involvement of testers will change dramatically. In such an environment,
the test cycle will change too. To test software design, testers would review requirement and design specifications
together with designer and programmer, potentially helping to identify bugs earlier in software development.

Who watches the watchmen?
One principle in software testing is summed up by the classical Latin question posed by Juvenal: Quis Custodiet
Ipsos Custodes (Who watches the watchmen?), or is alternatively referred informally, as the "Heisenbug" concept (a
common misconception that confuses Heisenberg's uncertainty principle with observer effect). The idea is that any
form of observation is also an interaction, that the act of testing can also affect that which is being tested.
In practical terms the test engineer is testing software (and sometimes hardware or firmware) with other software
(and hardware and firmware). The process can fail in ways that are not the result of defects in the target but rather
result from defects in (or indeed intended features of) the testing tool.
There are metrics being developed to measure the effectiveness of testing. One method is by analyzing code
coverage (this is highly controversial) - where everyone can agree what areas are not being covered at all and try to
improve coverage in these areas.

http://en.wikipedia.org/w/index.php?title=Exploratory_test
http://en.wikipedia.org/w/index.php?title=Agile_development
http://en.wikipedia.org/w/index.php?title=Quis_custodiet_ipsos_custodes%3F
http://en.wikipedia.org/w/index.php?title=Quis_custodiet_ipsos_custodes%3F
http://en.wikipedia.org/w/index.php?title=Heisenbug
http://en.wikipedia.org/w/index.php?title=Werner_Heisenberg
http://en.wikipedia.org/w/index.php?title=Uncertainty_principle
http://en.wikipedia.org/w/index.php?title=Observer_effect
http://en.wikipedia.org/w/index.php?title=Firmware


Software testing controversies 158

Bugs can also be placed into code on purpose, and the number of bugs that have not been found can be predicted
based on the percentage of intentionally placed bugs that were found. The problem is that it assumes that the
intentional bugs are the same type of bug as the unintentional ones.
Finally, there is the analysis of historical find-rates. By measuring how many bugs are found and comparing them to
predicted numbers (based on past experience with similar projects), certain assumptions regarding the effectiveness
of testing can be made. While not an absolute measurement of quality, if a project is halfway complete and there
have been no defects found, then changes may be needed to the procedures being employed by QA.

References
[1] context-driven-testing.com (http:/ / www. context-driven-testing. com)
[2] Kaner, Cem; Jack Falk, Hung Quoc Nguyen (1993). Testing Computer Software (Third Edition ed.). John Wiley and Sons. ISBN

1-85032-908-7.
[3] An example is Mark Fewster, Dorothy Graham: Software Test Automation. Addison Wesley, 1999, ISBN 0-201-33140-3

Test-driven development
Test-driven development (TDD) is a software development process that relies on the repetition of a very short
development cycle: first the developer writes a failing automated test case that defines a desired improvement or new
function, then produces code to pass that test and finally refactors the new code to acceptable standards. Kent Beck,
who is credited with having developed or 'rediscovered' the technique, stated in 2003 that TDD encourages simple
designs and inspires confidence.[1]

Test-driven development is related to the test-first programming concepts of extreme programming, begun in
1999,[2] but more recently has created more general interest in its own right.[3]

Programmers also apply the concept to improving and debugging legacy code developed with older techniques.[4]

http://www.context-driven-testing.com
http://en.wikipedia.org/w/index.php?title=Cem_Kaner
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Code_refactoring
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Extreme_programming
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Legacy_code


Test-driven development 159

Requirements
Test-driven development requires developers to create automated unit tests that define code requirements
(immediately) before writing the code itself. The tests contain assertions that are either true or false. Passing the tests
confirms correct behavior as developers evolve and refactor the code. Developers often use testing frameworks, such
as xUnit, to create and automatically run sets of test cases.

Test-driven development cycle

A graphical representation of the development cycle, using a basic flowchart

The following sequence is based on the
book Test-Driven Development by
Example.[1]

Add a test

In test-driven development, each new
feature begins with writing a test. This
test must inevitably fail because it is
written before the feature has been
implemented. (If it does not fail, then
either the proposed “new” feature
already exists or the test is defective.)
To write a test, the developer must
clearly understand the feature's
specification and requirements. The
developer can accomplish this through
use cases and user stories that cover the requirements and exception conditions. This could also imply a variant, or
modification of an existing test. This is a differentiating feature of test-driven development versus writing unit tests
after the code is written: it makes the developer focus on the requirements before writing the code, a subtle but
important difference.

Run all tests and see if the new one fails
This validates that the test harness is working correctly and that the new test does not mistakenly pass without
requiring any new code. This step also tests the test itself, in the negative: it rules out the possibility that the new test
will always pass, and therefore be worthless. The new test should also fail for the expected reason. This increases
confidence (although it does not entirely guarantee) that it is testing the right thing, and will pass only in intended
cases.

Write some code
The next step is to write some code that will cause the test to pass. The new code written at this stage will not be
perfect and may, for example, pass the test in an inelegant way. That is acceptable because later steps will improve
and hone it.
It is important that the code written is only designed to pass the test; no further (and therefore untested) functionality
should be predicted and 'allowed for' at any stage.

http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=Refactoring
http://en.wikipedia.org/w/index.php?title=Flowchart
http://en.wikipedia.org/w/index.php?title=File%3ATest-driven_development.PNG
http://en.wikipedia.org/w/index.php?title=Test-Driven_Development_by_Example
http://en.wikipedia.org/w/index.php?title=Test-Driven_Development_by_Example
http://en.wikipedia.org/w/index.php?title=Use_case
http://en.wikipedia.org/w/index.php?title=User_story


Test-driven development 160

Run the automated tests and see them succeed
If all test cases now pass, the programmer can be confident that the code meets all the tested requirements. This is a
good point from which to begin the final step of the cycle.

Refactor code
Now the code can be cleaned up as necessary. By re-running the test cases, the developer can be confident that code
refactoring is not damaging any existing functionality. The concept of removing duplication is an important aspect of
any software design. In this case, however, it also applies to removing any duplication between the test code and the
production code — for example magic numbers or strings that were repeated in both, in order to make the test pass
in step 3.

Repeat
Starting with another new test, the cycle is then repeated to push forward the functionality. The size of the steps
should always be small, with as few as 1 to 10 edits between each test run. If new code does not rapidly satisfy a new
test, or other tests fail unexpectedly, the programmer should undo or revert in preference to excessive debugging.
Continuous Integration helps by providing revertible checkpoints. When using external libraries it is important not to
make increments that are so small as to be effectively merely testing the library itself,[3] unless there is some reason
to believe that the library is buggy or is not sufficiently feature-complete to serve all the needs of the main program
being written.

Development style
There are various aspects to using test-driven development, for example the principles of "keep it simple, stupid"
(KISS) and "You ain't gonna need it" (YAGNI). By focusing on writing only the code necessary to pass tests,
designs can be cleaner and clearer than is often achieved by other methods.[1] In Test-Driven Development by
Example, Kent Beck also suggests the principle "Fake it till you make it".
To achieve some advanced design concept (such as a design pattern), tests are written that will generate that design.
The code may remain simpler than the target pattern, but still pass all required tests. This can be unsettling at first but
it allows the developer to focus only on what is important.
Write the tests first. The tests should be written before the functionality that is being tested. This has been claimed
to have two benefits. It helps ensure that the application is written for testability, as the developers must consider
how to test the application from the outset, rather than worrying about it later. It also ensures that tests for every
feature will be written. When writing feature-first code, there is a tendency by developers and the development
organisations to push the developer on to the next feature, neglecting testing entirely. The first test might not even
compile, at first, because all of the classes and methods it requires may not yet exist. Nevertheless, that first test
functions as an executable specification[5] .
First fail the test cases. The idea is to ensure that the test really works and can catch an error. Once this is shown,
the underlying functionality can be implemented. This has been coined the "test-driven development mantra", known
as red/green/refactor where red means fail and green is pass.
Test-driven development constantly repeats the steps of adding test cases that fail, passing them, and refactoring.
Receiving the expected test results at each stage reinforces the programmer's mental model of the code, boosts
confidence and increases productivity.
Advanced practices of test-driven development can lead to Acceptance Test-driven development (ATDD) where the 
criteria specified by the customer are automated into acceptance tests, which then drive the traditional unit 
test-driven development (UTDD) process.[6] This process ensures the customer has an automated mechanism to 
decide whether the software meets their requirements. With ATDD, the development team now has a specific target

http://en.wikipedia.org/w/index.php?title=Code_refactoring
http://en.wikipedia.org/w/index.php?title=Code_refactoring
http://en.wikipedia.org/w/index.php?title=Magic_number_%28programming%29
http://en.wikipedia.org/w/index.php?title=Undo
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Continuous_Integration
http://en.wikipedia.org/w/index.php?title=KISS_principle
http://en.wikipedia.org/w/index.php?title=You_ain%27t_gonna_need_it
http://en.wikipedia.org/w/index.php?title=Fake_it_till_you_make_it
http://en.wikipedia.org/w/index.php?title=Design_pattern


Test-driven development 161

to satisfy, the acceptance tests, which keeps them continuously focused on what the customer really wants from that
user story.

Benefits
A 2005 study found that using TDD meant writing more tests and, in turn, programmers who wrote more tests
tended to be more productive.[7] Hypotheses relating to code quality and a more direct correlation between TDD and
productivity were inconclusive.[8]

Programmers using pure TDD on new ("greenfield") projects report they only rarely feel the need to invoke a
debugger. Used in conjunction with a version control system, when tests fail unexpectedly, reverting the code to the
last version that passed all tests may often be more productive than debugging.[9]

Test-driven development offers more than just simple validation of correctness, but can also drive the design of a
program. By focusing on the test cases first, one must imagine how the functionality will be used by clients (in the
first case, the test cases). So, the programmer is concerned with the interface before the implementation. This benefit
is complementary to Design by Contract as it approaches code through test cases rather than through mathematical
assertions or preconceptions.
Test-driven development offers the ability to take small steps when required. It allows a programmer to focus on the
task at hand as the first goal is to make the test pass. Exceptional cases and error handling are not considered
initially, and tests to create these extraneous circumstances are implemented separately. Test-driven development
ensures in this way that all written code is covered by at least one test. This gives the programming team, and
subsequent users, a greater level of confidence in the code.
While it is true that more code is required with TDD than without TDD because of the unit test code, total code
implementation time is typically shorter.[10] Large numbers of tests help to limit the number of defects in the code.
The early and frequent nature of the testing helps to catch defects early in the development cycle, preventing them
from becoming endemic and expensive problems. Eliminating defects early in the process usually avoids lengthy and
tedious debugging later in the project.
TDD can lead to more modularized, flexible, and extensible code. This effect often comes about because the
methodology requires that the developers think of the software in terms of small units that can be written and tested
independently and integrated together later. This leads to smaller, more focused classes, looser coupling, and cleaner
interfaces. The use of the mock object design pattern also contributes to the overall modularization of the code
because this pattern requires that the code be written so that modules can be switched easily between mock versions
for unit testing and "real" versions for deployment.
Because no more code is written than necessary to pass a failing test case, automated tests tend to cover every code
path. For example, in order for a TDD developer to add an else branch to an existing if statement, the developer
would first have to write a failing test case that motivates the branch. As a result, the automated tests resulting from
TDD tend to be very thorough: they will detect any unexpected changes in the code's behaviour. This detects
problems that can arise where a change later in the development cycle unexpectedly alters other functionality.

http://en.wikipedia.org/w/index.php?title=Greenfield_project
http://en.wikipedia.org/w/index.php?title=Debugger
http://en.wikipedia.org/w/index.php?title=Version_control_system
http://en.wikipedia.org/w/index.php?title=Design_by_Contract


Test-driven development 162

Vulnerabilities
• Test-driven development is difficult to use in situations where full functional tests are required to determine

success or failure. Examples of these are user interfaces, programs that work with databases, and some that
depend on specific network configurations. TDD encourages developers to put the minimum amount of code into
such modules and to maximize the logic that is in testable library code, using fakes and mocks to represent the
outside world.

• Management support is essential. Without the entire organization believing that test-driven development is going
to improve the product, management may feel that time spent writing tests is wasted.[11]

• Unit tests created in a test-driven development environment are typically created by the developer who will also
write the code that is being tested. The tests may therefore share the same blind spots with the code: If, for
example, a developer does not realize that certain input parameters must be checked, most likely neither the test
nor the code will verify these input parameters. If the developer misinterprets the requirements specification for
the module being developed, both the tests and the code will be wrong.

• The high number of passing unit tests may bring a false sense of security, resulting in fewer additional software
testing activities, such as integration testing and compliance testing.

• The tests themselves become part of the maintenance overhead of a project. Badly written tests, for example ones
that include hard-coded error strings or which are themselves prone to failure, are expensive to maintain. This is
especially the case with Fragile Tests.[12] There is a risk that tests that regularly generate false failures will be
ignored, so that when a real failure occurs it may not be detected. It is possible to write tests for low and easy
maintenance, for example by the reuse of error strings, and this should be a goal during the code refactoring phase
described above.

• The level of coverage and testing detail achieved during repeated TDD cycles cannot easily be re-created at a later
date. Therefore these original tests become increasingly precious as time goes by. If a poor architecture, a poor
design or a poor testing strategy leads to a late change that makes dozens of existing tests fail, it is important that
they are individually fixed. Merely deleting, disabling or rashly altering them can lead to undetectable holes in the
test coverage.

Code visibility
Test suite code clearly has to be able to access the code it is testing. On the other hand, normal design criteria such as
information hiding, encapsulation and the separation of concerns should not be compromised. Therefore unit test
code for TDD is usually written within the same project or module as the code being tested.
In object oriented design this still does not provide access to private data and methods. Therefore, extra work
may be necessary for unit tests. In Java and other languages, a developer can use reflection to access fields that are
marked private.[13] Alternatively, an inner class can be used to hold the unit tests so they will have visibility of
the enclosing class's members and attributes. In the .NET Framework and some other programming languages,
partial classes may be used to expose private methods and data for the tests to access.
It is important that such testing hacks do not remain in the production code. In C and other languages, compiler
directives such as #if DEBUG ... #endif can be placed around such additional classes and indeed all other
test-related code to prevent them being compiled into the released code. This then means that the released code is not
exactly the same as that which is unit tested. The regular running of fewer but more comprehensive, end-to-end,
integration tests on the final release build can then ensure (among other things) that no production code exists that
subtly relies on aspects of the test harness.
There is some debate among practitioners of TDD, documented in their blogs and other writings, as to whether it is 
wise to test private and protected methods and data anyway. Some argue that it should be sufficient to test any class 
through its public interface as the private members are a mere implementation detail that may change, and should be 
allowed to do so without breaking numbers of tests. Others say that crucial aspects of functionality may be

http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=Database
http://en.wikipedia.org/w/index.php?title=Computer_network
http://en.wikipedia.org/w/index.php?title=Code_refactoring
http://en.wikipedia.org/w/index.php?title=Information_hiding
http://en.wikipedia.org/w/index.php?title=Separation_of_concerns
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Object_oriented_design
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Reflection_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Inner_class
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=Partial_class
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Directive_%28programming%29
http://en.wikipedia.org/w/index.php?title=Directive_%28programming%29


Test-driven development 163

implemented in private methods, and that developing this while testing it indirectly via the public interface only
obscures the issue: unit testing is about testing the smallest unit of functionality possible.[14] [15]

Fakes, mocks and integration tests
Unit tests are so named because they each test one unit of code. A complex module may have a thousand unit tests
and a simple module may have only ten. The tests used for TDD should never cross process boundaries in a
program, let alone network connections. Doing so introduces delays that make tests run slowly and discourage
developers from running the whole suite. Introducing dependencies on external modules or data also turns unit tests
into integration tests. If one module misbehaves in a chain of interrelated modules, it is not so immediately clear
where to look for the cause of the failure.
When code under development relies on a database, a web service, or any other external process or service,
enforcing a unit-testable separation is also an opportunity and a driving force to design more modular, more testable
and more reusable code.[16] Two steps are necessary:
1. Whenever external access is going to be needed in the final design, an interface should be defined that describes

the access that will be available. See the dependency inversion principle for a discussion of the benefits of doing
this regardless of TDD.

2. The interface should be implemented in two ways, one of which really accesses the external process, and the
other of which is a fake or mock. Fake objects need do little more than add a message such as “Person object
saved” to a trace log, against which a test assertion can be run to verify correct behaviour. Mock objects differ in
that they themselves contain test assertions that can make the test fail, for example, if the person's name and other
data are not as expected. Fake and mock object methods that return data, ostensibly from a data store or user, can
help the test process by always returning the same, realistic data that tests can rely upon. They can also be set into
predefined fault modes so that error-handling routines can be developed and reliably tested. Fake services other
than data stores may also be useful in TDD: Fake encryption services may not, in fact, encrypt the data passed;
fake random number services may always return 1. Fake or mock implementations are examples of dependency
injection.

A corollary of such dependency injection is that the actual database or other external-access code is never tested by
the TDD process itself. To avoid errors that may arise from this, other tests are needed that instantiate the test-driven
code with the “real” implementations of the interfaces discussed above. These tests are quite separate from the TDD
unit tests, and are really integration tests. There will be fewer of them, and they need to be run less often than the
unit tests. They can nonetheless be implemented using the same testing framework, such as xUnit.
Integration tests that alter any persistent store or database should always be designed carefully with consideration of
the initial and final state of the files or database, even if any test fails. This is often achieved using some combination
of the following techniques:
• The TearDown method, which is integral to many test frameworks.
• try...catch...finally exception handling structures where available.
• Database transactions where a transaction atomically includes perhaps a write, a read and a matching delete

operation.
• Taking a “snapshot” of the database before running any tests and rolling back to the snapshot after each test run.

This may be automated using a framework such as Ant or NAnt or a continuous integration system such as
CruiseControl.

• Initialising the database to a clean state before tests, rather than cleaning up after them. This may be relevant
where cleaning up may make it difficult to diagnose test failures by deleting the final state of the database before
detailed diagnosis can be performed.

http://en.wikipedia.org/w/index.php?title=Interface_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Dependency_inversion_principle
http://en.wikipedia.org/w/index.php?title=Tracing_%28software%29
http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=Dependency_injection
http://en.wikipedia.org/w/index.php?title=Dependency_injection
http://en.wikipedia.org/w/index.php?title=Persistent_storage
http://en.wikipedia.org/w/index.php?title=Exception_handling
http://en.wikipedia.org/w/index.php?title=Database_transactions
http://en.wikipedia.org/w/index.php?title=Atomicity
http://en.wikipedia.org/w/index.php?title=Apache_Ant
http://en.wikipedia.org/w/index.php?title=NAnt
http://en.wikipedia.org/w/index.php?title=Continuous_integration
http://en.wikipedia.org/w/index.php?title=CruiseControl


Test-driven development 164

References
[1] Beck, K. Test-Driven Development by Example, Addison Wesley, 2003
[2] Lee Copeland (December 2001). "Extreme Programming" (http:/ / www. computerworld. com/ softwaretopics/ software/ appdev/ story/

0,10801,66192,00. html). Computerworld. . Retrieved January 11, 2011.
[3] Newkirk, JW and Vorontsov, AA. Test-Driven Development in Microsoft .NET, Microsoft Press, 2004.
[4] Feathers, M. Working Effectively with Legacy Code, Prentice Hall, 2004
[5] http:/ / www. agilesherpa. org/ agile_coach/ engineering_practices/ test_driven_development/
[6] Koskela, L. "Test Driven: TDD and Acceptance TDD for Java Developers", Manning Publications, 2007
[7] Erdogmus, Hakan; Morisio, Torchiano. "On the Effectiveness of Test-first Approach to Programming" (http:/ / nparc. cisti-icist. nrc-cnrc. gc.

ca/ npsi/ ctrl?action=shwart& index=an& req=5763742& lang=en). Proceedings of the IEEE Transactions on Software Engineering, 31(1).
January 2005. (NRC 47445). . Retrieved 2008-01-14. "We found that test-first students on average wrote more tests and, in turn, students who
wrote more tests tended to be more productive."

[8] Proffitt, Jacob. "TDD Proven Effective! Or is it?" (http:/ / theruntime. com/ blogs/ jacob/ archive/ 2008/ 01/ 22/ tdd-proven-effective-or-is-it.
aspx). . Retrieved 2008-02-21. "So TDD's relationship to quality is problematic at best. Its relationship to productivity is more interesting. I
hope there's a follow-up study because the productivity numbers simply don't add up very well to me. There is an undeniable correlation
between productivity and the number of tests, but that correlation is actually stronger in the non-TDD group (which had a single outlier
compared to roughly half of the TDD group being outside the 95% band)."

[9] Llopis, Noel (20 February 2005). "Stepping Through the Looking Glass: Test-Driven Game Development (Part 1)" (http:/ / www.
gamesfromwithin. com/ articles/ 0502/ 000073. html). Games from Within. . Retrieved 2007-11-01. "Comparing [TDD] to the non-test-driven
development approach, you're replacing all the mental checking and debugger stepping with code that verifies that your program does exactly
what you intended it to do."

[10] Müller, Matthias M.; Padberg, Frank. "About the Return on Investment of Test-Driven Development" (http:/ / www. ipd. uka. de/
mitarbeiter/ muellerm/ publications/ edser03. pdf) (PDF). Universität Karlsruhe, Germany. pp. 6. . Retrieved 2007-11-01.

[11] Loughran, Steve (November 6, 2006). "Testing" (http:/ / people. apache. org/ ~stevel/ slides/ testing. pdf) (PDF). HP Laboratories. .
Retrieved 2009-08-12.

[12] "Fragile Tests" (http:/ / xunitpatterns. com/ Fragile Test. html). .
[13] Burton, Ross (11/12/2003). "Subverting Java Access Protection for Unit Testing" (http:/ / www. onjava. com/ pub/ a/ onjava/ 2003/ 11/ 12/

reflection. html). O'Reilly Media, Inc.. . Retrieved 2009-08-12.
[14] Newkirk, James (7 June 2004). "Testing Private Methods/Member Variables - Should you or shouldn't you" (http:/ / blogs. msdn. com/

jamesnewkirk/ archive/ 2004/ 06/ 07/ 150361. aspx). Microsoft Corporation. . Retrieved 2009-08-12.
[15] Stall, Tim (1 Mar 2005). "How to Test Private and Protected methods in .NET" (http:/ / www. codeproject. com/ KB/ cs/

testnonpublicmembers. aspx). CodeProject. . Retrieved 2009-08-12.
[16] Fowler, Martin (1999). Refactoring - Improving the design of existing code. Boston: Addison Wesley Longman, Inc.. ISBN 0-201-48567-2.

External links
• TestDrivenDevelopment on WikiWikiWeb
• Test or spec? Test and spec? Test from spec! (http:/ / www. eiffel. com/ general/ monthly_column/ 2004/

september. html), by Bertrand Meyer (September 2004)
• Microsoft Visual Studio Team Test from a TDD approach (http:/ / msdn. microsoft. com/ en-us/ library/

ms379625(VS. 80). aspx)
• Write Maintainable Unit Tests That Will Save You Time And Tears (http:/ / msdn. microsoft. com/ en-us/

magazine/ cc163665. aspx)
• Improving Application Quality Using Test-Driven Development (TDD) (http:/ / www. methodsandtools. com/

archive/ archive. php?id=20)

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,66192,00.html
http://www.agilesherpa.org/agile_coach/engineering_practices/test_driven_development/
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=5763742&lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=shwart&index=an&req=5763742&lang=en
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://theruntime.com/blogs/jacob/archive/2008/01/22/tdd-proven-effective-or-is-it.aspx
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://people.apache.org/~stevel/slides/testing.pdf
http://xunitpatterns.com/Fragile%20Test.html
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://www.onjava.com/pub/a/onjava/2003/11/12/reflection.html
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://blogs.msdn.com/jamesnewkirk/archive/2004/06/07/150361.aspx
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://www.codeproject.com/KB/cs/testnonpublicmembers.aspx
http://c2.com/cgi/wiki?TestDrivenDevelopment
http://www.eiffel.com/general/monthly_column/2004/september.html
http://www.eiffel.com/general/monthly_column/2004/september.html
http://en.wikipedia.org/w/index.php?title=Bertrand_Meyer
http://msdn.microsoft.com/en-us/library/ms379625(VS.80).aspx
http://msdn.microsoft.com/en-us/library/ms379625(VS.80).aspx
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://msdn.microsoft.com/en-us/magazine/cc163665.aspx
http://www.methodsandtools.com/archive/archive.php?id=20
http://www.methodsandtools.com/archive/archive.php?id=20


Agile testing 165

Agile testing
Agile testing is a software testing practice that follows the principles of agile software development. Agile testing
does not emphasize testing procedures and focuses on ongoing testing against newly developed code until quality
software from an end customer's perspective results. Agile testing is built upon the philosophy that testers need to
adapt to rapid deployment cycles and changes in testing patterns.

Overview
Agile testing involves testing from the customer perspective as early as possible, testing early and often as code
becomes available and stable enough, since working increments of the software are released often in agile software
development. This is commonly done by using automated acceptance testing to minimize the amount of manual
labor involved.

Further reading
• Lisa Crispin, Janet Gregory (2009). Agile Testing: A Practical Guide for Testers and Agile Teams.

Addison-Wesley. ISBN 0-321-53446-8.
• Ambler, Scott (2010). "Agile Testing and Quality Strategies: Discipline over Rhetoric" [1]. Retrieved 2010-07-15.
• Kalistick (2011). "Leading Agile testing" [2]. Retrieved 2011-07-11.

References
• Pettichord, Bret. "Agile Testing What is it? Can it work?" [3]. Retrieved 2008-12-11.
• Hendrickson, Elisabeth (2008-08-11). "Agile Testing, Nine Principles and Six Concrete Practices for Testing on

Agile Teams" [4]. Retrieved 2011-04-26.
• Parkinson, Shane (2008-11-26). "Agile Methodology" [5]. Retrieved 2008-11-26.
• Egan, Patrick (2008-12-15). "Video: How does agile affect testing" [6]. Retrieved 2008-11-26.
• Crispin, Lisa (2003-03-21). "XP Testing Without XP: Taking Advantage of Agile Testing Practices" [7].

Retrieved 2009-06-11.
• Lerche-Jensen, Steen (2003-10-18). "Agile Certifications - Agile Testing" [8]. Retrieved 2010-10-18.

Agile testing conference
• "Agile Testing Days Conference - Europe" [9]. 2010-10-04. Retrieved 2009-10-04.

References
[1] http:/ / www. ambysoft. com/ essays/ agileTesting. html
[2] http:/ / www. kalistick. com/ agile-testing-helps-testing-efficiency. html
[3] http:/ / www. io. com/ ~wazmo/ papers/ agile_testing_20021015. pdf
[4] http:/ / testobsessed. com/ wp-content/ uploads/ 2011/ 04/ AgileTestingOverview. pdf
[5] http:/ / agiletesting. com. au/ agile-methodology/ agile-methods-and-software-testing/
[6] http:/ / www. agilejournal. com/ component/ option,com_seyret/ Itemid,0/ task,videodirectlink/ id,49/
[7] http:/ / www. methodsandtools. com/ archive/ archive. php?id=2
[8] http:/ / www. waqb. org
[9] http:/ / www. agiletestingdays. com

http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://www.ambysoft.com/essays/agileTesting.html
http://www.kalistick.com/agile-testing-helps-testing-efficiency.html
http://www.io.com/~wazmo/papers/agile_testing_20021015.pdf
http://testobsessed.com/wp-content/uploads/2011/04/AgileTestingOverview.pdf
http://agiletesting.com.au/agile-methodology/agile-methods-and-software-testing/
http://www.agilejournal.com/component/option,com_seyret/Itemid,0/task,videodirectlink/id,49/
http://www.methodsandtools.com/archive/archive.php?id=2
http://www.waqb.org
http://www.agiletestingdays.com
http://www.ambysoft.com/essays/agileTesting.html
http://www.kalistick.com/agile-testing-helps-testing-efficiency.html
http://www.io.com/~wazmo/papers/agile_testing_20021015.pdf
http://testobsessed.com/wp-content/uploads/2011/04/AgileTestingOverview.pdf
http://agiletesting.com.au/agile-methodology/agile-methods-and-software-testing/
http://www.agilejournal.com/component/option,com_seyret/Itemid,0/task,videodirectlink/id,49/
http://www.methodsandtools.com/archive/archive.php?id=2
http://www.waqb.org
http://www.agiletestingdays.com


Bug bash 166

Bug bash
In software development, a bug bash is where all the developers, testers, program managers, usability researchers,
designers, documentation folks, and even sometimes marketing people, put aside their regular day-to-day duties and
pound on the product to get as many eyes on the product as possible.[1]

Bug bash sounds similar to eat one's own dog food and is a tool used as part of test management approach. Bug bash
is usually declared in advance to the team. The test management team sends out the scope and assigns the testers as
resource to assist in setup and also collect bugs. Test management might use this along with small token prize for
good bugs found and/or have small socials (drinks) at the end of the Bug Bash. Another interesting bug bash prize
was to Pieing test management team members.

References
[1] Ron Patton (2001). Software Testing. Sams. ISBN 0672319837.

Pair Testing
Pair Testing is a software development technique in which two team members work together at one keyboard to test
the software application. One does the testing and the other analyzes or reviews the testing. This can be done
between one Tester and Developer or Business Analyst or between two testers with both participants taking turns at
driving the keyboard.

Description
This can be more related to Pair Programming and Exploratory testing of Agile Software Development where two
team members are sitting together to test the software application. This will help both the members to learn more
about the application. This will narrow down the root cause of the problem while continuous testing. Developer can
find out which portion of the source code is affected by the bug. This track can help to make the solid test cases and
narrowing the problem for the next time.

Benefits and Drawbacks
The developer can learn more about the software application by exploring with the tester. The tester can learn more
about the software application by exploring with the developer.
Less participation is required for testing and for important bugs root cause can be analyzed very easily. The tester
can very easily test the initial bug fixing status with the developer.
This will make the developer to come up with great testing scenarios by their own
This can not be applicable to scripted testing where all the test cases are already written and one has to run the
scripts. This will not help in the evolution of any issue and its impact.

http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Eat_one%27s_own_dog_food
http://en.wikipedia.org/w/index.php?title=Test_management_approach
http://en.wikipedia.org/w/index.php?title=Pieing
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Software_application
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Business_Analyst
http://en.wikipedia.org/w/index.php?title=Pair_Programming
http://en.wikipedia.org/w/index.php?title=Agile_Software_Development
http://en.wikipedia.org/w/index.php?title=Software_application
http://en.wikipedia.org/w/index.php?title=Software_application
http://en.wikipedia.org/w/index.php?title=Software_application


Pair Testing 167

Usage
This is more applicable where the requirements and specifications are not very clear, the team is very new, and needs
to learn the application behavior quickly.
This follows the same principles of pair programming; the two team members should be in the same level.

Manual testing
Compare with Test automation.

Manual testing is the process of manually testing software for defects. It requires a tester to play the role of an end
user, and use most of all features of the application to ensure correct behavior. To ensure completeness of testing, the
tester often follows a written test plan that leads them through a set of important test cases.

Overview
A key step in the process of software engineering is testing the software for correct behavior prior to release to end
users.
For small scale engineering efforts (including prototypes), exploratory testing may be sufficient. With this informal
approach, the tester does not follow any rigorous testing procedure, but rather explores the user interface of the
application using as many of its features as possible, using information gained in prior tests to intuitively derive
additional tests. The success of exploratory manual testing relies heavily on the domain expertise of the tester,
because a lack of knowledge will lead to incompleteness in testing. One of the key advantages of an informal
approach is to gain an intuitive insight to how it feels to use the application.
Large scale engineering projects that rely on manual software testing follow a more rigorous methodology in order to
maximize the number of defects that can be found. A systematic approach focuses on predetermined test cases and
generally involves the following steps.[1]

1. Choose a high level test plan where a general methodology is chosen, and resources such as people, computers,
and software licenses are identified and acquired.

2. Write detailed test cases, identifying clear and concise steps to be taken by the tester, with expected outcomes.
3. Assign the test cases to testers, who manually follow the steps and record the results.
4. Author a test report, detailing the findings of the testers. The report is used by managers to determine whether the

software can be released, and if not, it is used by engineers to identify and correct the problems.
A rigorous test case based approach is often traditional for large software engineering projects that follow a
Waterfall model.[2] However, at least one recent study did not show a dramatic difference in defect detection
efficiency between exploratory testing and test case based testing.[3]

Stages
There are several stages. They are
Unit Testing This initial stage in testing normally carried out by the developer who wrote the code and sometimes
by a peer using the white box testing technique.
Integration Testing This stage is carried out in two modes, as a complete package or as a increment to the earlier
package. Most of the time black box testing technique is used. However, sometimes a combination of Black and
White box testing is also used in this stage.
System Testing In this stage the software is tested from all possible dimensions for all intended purposes and
platforms. In this stage Black box testing technique is normally used.

http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Waterfall_model


Manual testing 168

User Acceptance Testing This testing stage carried out in order to get customer sign-off of finished product. A
'pass' in this stage also ensures that the customer has accepted the software and is ready for their use.
[4]

Comparison to Automated Testing
Test automation may be able to reduce or eliminate the cost of actual testing. A computer can follow a rote sequence
of steps more quickly than a person, and it can run the tests overnight to present the results in the morning. However,
the labor that is saved in actual testing must be spent instead authoring the test program. Depending on the type of
application to be tested, and the automation tools that are chosen, this may require more labor than a manual
approach. In addition, some testing tools present a very large amount of data, potentially creating a time consuming
task of interpreting the results. From a cost-benefit perspective, test automation becomes more cost effective when
the same tests can be reused many times over, such as for regression testing and test-driven development, and when
the results can be interpreted quickly. If future reuse of the test software is unlikely, then a manual approach is
preferred.[5]

Things such as device drivers and software libraries must be tested using test programs. In addition, testing of large
numbers of users (performance testing and load testing) is typically simulated in software rather than performed in
practice.
Conversely, graphical user interfaces whose layout changes frequently are very difficult to test automatically. There
are test frameworks that can be used for regression testing of user interfaces. They rely on recording of sequences of
keystrokes and mouse gestures, then playing them back and observing that the user interface responds in the same
way every time. Unfortunately, these recordings may not work properly when a button is moved or relabeled in a
subsequent release. An automatic regression test may also be fooled if the program output varies significantly (e.g.
the display includes the current system time). In cases such as these, manual testing may be more effective.[6]

References
[1] ANSI/IEEE 829-1983 IEEE Standard for Software Test Documentation
[2] Craig, Rick David; Stefan P. Jaskiel (2002). Systematic Software Testing. Artech House. p. 7. ISBN 1580535089.
[3] Itkonen, Juha; Mika V. Mäntylä and Casper Lassenius (2007). "Defect Detection Efficiency: Test Case Based vs. Exploratory Testing" (http:/

/ www. soberit. hut. fi/ jitkonen/ Publications/ Itkonen_Mäntylä_Lassenius_2007_ESEM. pdf). First International Symposium on Empirical
Software Engineering and Measurement. . Retrieved 2009-01-17.

[4] http:/ / softwaretestinginterviewfaqs. wordpress. com/ category/ testing-in-stages/
[5] Mosley, Daniel (2002). Just Enough Software Test Automation. Prentice Hall. p. 27. ISBN 0130084689.
[6] Bach, James (1996). "Test Automation Snake Oil" (http:/ / www. satisfice. com/ articles/ test_automation_snake_oil. pdf). Windows

Technical Journal 10/96: 40–44. . Retrieved 2009-01-17.

http://en.wikipedia.org/w/index.php?title=Device_driver
http://en.wikipedia.org/w/index.php?title=Software_library
http://en.wikipedia.org/w/index.php?title=Performance_testing
http://www.soberit.hut.fi/jitkonen/Publications/Itkonen_M�ntyl�_Lassenius_2007_ESEM.pdf
http://www.soberit.hut.fi/jitkonen/Publications/Itkonen_M�ntyl�_Lassenius_2007_ESEM.pdf
http://softwaretestinginterviewfaqs.wordpress.com/category/testing-in-stages/
http://www.satisfice.com/articles/test_automation_snake_oil.pdf


Regression testing 169

Regression testing
Regression testing is any type of software testing that seeks to uncover new errors, or regressions, in existing
functionality after changes have been made to a system, such as functional enhancements, patches or configuration
changes.
The intent of regression testing is to ensure that a change, such as a bugfix, did not introduce new faults.[1] "One of
the main reasons for regression testing is that it's often extremely difficult for a programmer to figure out how a
change in one part of the software will echo in other parts of the software."[2]

Common methods of regression testing include rerunning previously run tests and checking whether program
behavior has changed and whether previously fixed faults have re-emerged. Regression testing can be used to test a
system efficiently by systematically selecting the appropriate minimum set of tests needed to adequately cover a
particular change.

Background
Experience has shown that as software is fixed, emergence of new and/or reemergence of old faults is quite common.
Sometimes reemergence occurs because a fix gets lost through poor revision control practices (or simple human
error in revision control). Often, a fix for a problem will be "fragile" in that it fixes the problem in the narrow case
where it was first observed but not in more general cases which may arise over the lifetime of the software.
Frequently, a fix for a problem in one area inadvertently causes a software bug in another area. Finally, often when
some feature is redesigned, some of the same mistakes that were made in the original implementation of the feature
were made in the redesign.
Therefore, in most software development situations it is considered good coding practice that when a bug is located
and fixed, a test that exposes the bug is recorded and regularly retested after subsequent changes to the program.[3]

Although this may be done through manual testing procedures using programming techniques, it is often done using
automated testing tools.[4] Such a test suite contains software tools that allow the testing environment to execute all
the regression test cases automatically; some projects even set up automated systems to automatically re-run all
regression tests at specified intervals and report any failures (which could imply a regression or an out-of-date
test).[5] Common strategies are to run such a system after every successful compile (for small projects), every night,
or once a week. Those strategies can be automated by an external tool, such as BuildBot, Tinderbox, Hudson or
Jenkins.
Regression testing is an integral part of the extreme programming software development method. In this method,
design documents are replaced by extensive, repeatable, and automated testing of the entire software package
throughout each stage of the software development cycle.
In the corporate world, regression testing has traditionally been performed by a software quality assurance team after
the development team has completed work. However, defects found at this stage are the most costly to fix. This
problem is being addressed by the rise of unit testing. Although developers have always written test cases as part of
the development cycle, these test cases have generally been either functional tests or unit tests that verify only
intended outcomes. Developer testing compels a developer to focus on unit testing and to include both positive and
negative test cases.[6]

http://en.wikipedia.org/w/index.php?title=Software_regression
http://en.wikipedia.org/w/index.php?title=Patch_%28computing%29
http://en.wikipedia.org/w/index.php?title=Revision_control
http://en.wikipedia.org/w/index.php?title=Software_brittleness
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Best_Coding_Practices
http://en.wikipedia.org/w/index.php?title=BuildBot
http://en.wikipedia.org/w/index.php?title=Tinderbox_%28software%29
http://en.wikipedia.org/w/index.php?title=Hudson_%28software%29
http://en.wikipedia.org/w/index.php?title=Jenkins_%28software%29
http://en.wikipedia.org/w/index.php?title=Extreme_programming
http://en.wikipedia.org/w/index.php?title=Software_development_cycle
http://en.wikipedia.org/w/index.php?title=Software_quality_assurance
http://en.wikipedia.org/w/index.php?title=Functional_testing


Regression testing 170

Uses
Regression testing can be used not only for testing the correctness of a program, but often also for tracking the
quality of its output.[7] For instance, in the design of a compiler, regression testing could track the code size,
simulation time and time of the test suite cases.
Regression testing should be part of a test plan.[8] Regression testing can be automated.

"Also as a consequence of the introduction of new bugs, program maintenance requires far more system
testing per statement written than any other programming. Theoretically, after each fix one must run the entire
batch of test cases previously run against the system, to ensure that it has not been damaged in an obscure way.
In practice, such regression testing must indeed approximate this theoretical idea, and it is very costly."

— Fred Brooks, The Mythical Man Month, p 122

Regression tests can be broadly categorized as functional tests or unit tests. Functional tests exercise the complete
program with various inputs. Unit tests exercise individual functions, subroutines, or object methods. Both functional
testing tools and unit testing tools tend to be third party products that are not part of the compiler suite, and both tend
to be automated. Functional tests may be a scripted series of program inputs, possibly even an automated mechanism
for controlling mouse movements. Unit tests may be separate functions within the code itself, or driver layer that
links to the code without altering the code being tested.

References
[1] Myers, Glenford (2004). The Art of Software Testing. Wiley. ISBN 978-0471469124.
[2] Savenkov, Roman (2008). How to Become a Software Tester. Roman Savenkov Consulting. p. 386. ISBN 978-0-615-23372-7.
[3] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 73. ISBN 0470042125. .
[4] Automate Regression Tests When Feasible (http:/ / safari. oreilly. com/ 0201794292/ ch08lev1sec4), Automated Testing: Selected Best

Practices, Elfriede Dustin, Safari Books Online
[5] daVeiga, Nada (February 2008). "Change Code Without Fear: Utilize a Regression Safety Net" (http:/ / www. ddj. com/ development-tools/

206105233;jsessionid=2HN1TRYZ4JGVAQSNDLRSKH0CJUNN2JVN). Dr. Dobb's Journal. .
[6] Dudney, Bill (2004-12-08). "Developer Testing Is 'In': An interview with [[Alberto Savoia (http:/ / www. sys-con. com/ read/ 47359. htm)]

and Kent Beck"]. . Retrieved 2007-11-29.
[7] Kolawa, Adam. "Regression Testing, Programmer to Programmer" (http:/ / www. wrox. com/ WileyCDA/ Section/ id-291252. html). Wrox. .
[8] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 269. ISBN 0470042125. .

External links
• Microsoft regression testing recommendations (http:/ / msdn. microsoft. com/ en-us/ library/ aa292167(VS. 71).

aspx)

http://en.wikipedia.org/w/index.php?title=Correctness_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Compiler
http://en.wikipedia.org/w/index.php?title=Fred_Brooks
http://en.wikipedia.org/w/index.php?title=The_Mythical_Man_Month
http://en.wikipedia.org/w/index.php?title=Functional_test
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://safari.oreilly.com/0201794292/ch08lev1sec4
http://www.ddj.com/development-tools/206105233;jsessionid=2HN1TRYZ4JGVAQSNDLRSKH0CJUNN2JVN
http://www.ddj.com/development-tools/206105233;jsessionid=2HN1TRYZ4JGVAQSNDLRSKH0CJUNN2JVN
http://en.wikipedia.org/w/index.php?title=Dr._Dobb%27s_Journal
http://en.wikipedia.org/w/index.php?title=Bill_Dudney
http://www.sys-con.com/read/47359.htm
http://en.wikipedia.org/w/index.php?title=Kent_Beck
http://en.wikipedia.org/w/index.php?title=Adam_Kolawa
http://www.wrox.com/WileyCDA/Section/id-291252.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://msdn.microsoft.com/en-us/library/aa292167(VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa292167(VS.71).aspx


Ad hoc testing 171

Ad hoc testing
Ad hoc testing is a commonly used term for software testing performed without planning and documentation (but
can be applied to early scientific experimental studies).
The tests are intended to be run only once, unless a defect is discovered. Ad hoc testing the least formal test method.
As such, it has been criticized because it is not structured and hence defects found using this method may be harder
to reproduce (since there are no written test cases). However, the strength of ad hoc testing is that important defects
can be found quickly.

It is performed by improvisation: the tester seeks to find bugs by any 

means that seem appropriate. Ad hoc testing can be seen as a light 

version of error guessing, which itself is a light version of

 exploratory testing.

References
• Exploratory Testing Explained [1]

• Context-Driven School of testing [2]

References
[1] http:/ / www. satisfice. com/ articles/ et-article. pdf
[2] http:/ / www. context-driven-testing. com/

Sanity testing
A sanity test or sanity check is a basic test to quickly evaluate whether a claim or the result of a calculation can
possibly be true. It is a simple check to see if the produced material is rational (that the material's creator was
thinking rationally, applying sanity). The point of a sanity test is to rule out certain classes of obviously false results,
not to catch every possible error. A rule-of-thumb may be checked to perform the test. The advantage of a sanity test,
over performing a complete or rigorous test, is speed.
In arithmetic, for example, when multiplying by 9, using the divisibility rule for 9 to verify that the sum of digits of
the result is divisible by 9 is a sanity test - it will not catch every multiplication error, however it's a quick and simple
method to discover many possible errors.
In computer science, a sanity test is a very brief run-through of the functionality of a computer program, system,
calculation, or other analysis, to assure that part of the system or methodology works roughly as expected. This is
often prior to a more exhaustive round of testing.

Mathematical
A sanity test can refer to various order-of-magnitude and other simple rule-of-thumb devices applied to cross-check
mathematical calculations. For example:
• If one were to attempt to square 738 and calculated 53,874, a quick sanity check could show that this result cannot

be true. Consider that 700 < 738, yet 700² = 7²×100² = 490000 > 53874. Since squaring positive numbers
preserves their inequality, the result cannot be true, and so the calculated result is incorrect. The correct answer,
738² = 544,644, is more than 10 times higher than 53,874, and so the result had been off by an order of
magnitude.

http://en.wikipedia.org/w/index.php?title=Ad_hoc
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Error_guessing
http://www.satisfice.com/articles/et-article.pdf
http://www.context-driven-testing.com/
http://www.satisfice.com/articles/et-article.pdf
http://www.context-driven-testing.com/
http://en.wikipedia.org/w/index.php?title=Sanity
http://en.wikipedia.org/w/index.php?title=Rule-of-thumb
http://en.wikipedia.org/w/index.php?title=Divisibility_rule
http://en.wikipedia.org/w/index.php?title=Digit_sum
http://en.wikipedia.org/w/index.php?title=Computer_science
http://en.wikipedia.org/w/index.php?title=Computer_program
http://en.wikipedia.org/w/index.php?title=Magnitude_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Rule_of_thumb
http://en.wikipedia.org/w/index.php?title=Mathematics
http://en.wikipedia.org/w/index.php?title=Calculations
http://en.wikipedia.org/w/index.php?title=Square_%28algebra%29
http://en.wikipedia.org/w/index.php?title=Inequality_%28mathematics%29%23Applying_a_function_to_both_sides
http://en.wikipedia.org/w/index.php?title=Magnitude_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Magnitude_%28mathematics%29


Sanity testing 172

• In multiplication, 918 × 155 is not 142135 since 918 is divisible by three but 142135 is not (digits add up to 16,
not a multiple of three). Also, the product must end in the same digit as the product of end-digits 8×5=40, but
142135 does not end in "0" like "40", while the correct answer does: 918×155=142290. An even quicker check is
that the product of even and odd numbers is even, whereas 142135 is odd.

• When talking about quantities in physics, the power output of a car cannot be 700 kJ since that is a unit of energy,
not power (energy per unit time). See dimensional analysis.

Software development
In software development, the sanity test (a form of software testing which offers "quick, broad, and shallow
testing"[1] ) determines whether it is reasonable to proceed with further testing.
Software sanity tests are commonly conflated with smoke tests.[2] A smoke test determines whether it is possible to
continue testing, as opposed to whether it is reasonable. A software smoke test determines whether the program
launches and whether its interfaces are accessible and responsive (for example, the responsiveness of a web page or
an input button). If the smoke test fails, it is impossible to conduct a sanity test. In contrast, the ideal sanity test
exercises the smallest subset of application functions needed to determine whether the application logic is generally
functional and correct (for example, an interest rate calculation for a financial application). If the sanity test fails, it is
not reasonable to attempt more rigorous testing. Both sanity tests and smoke tests are ways to avoid wasting time and
effort by quickly determining whether an application is too flawed to merit any rigorous testing. Many companies
run sanity tests and unit tests on an automated build as part of their development process.[3]

Sanity testing may be a tool used while manually debugging software. An overall piece of software likely involves
multiple subsystems between the input and the output. When the overall system is not working as expected, a sanity
test can be used to make the decision on what to test next. If one subsystem is not giving the expected result, the
other subsystems can be eliminated from further investigation until the problem with this one is solved.
The Hello world program is often used as a sanity test for a development environment. If Hello World fails to
compile or execute, the supporting environment likely has a configuration problem. If it works, the problem being
diagnosed likely lies in the real application being diagnosed.
Another, possibly more common usage of 'sanity test' is to denote checks which are performed within program code,
usually on arguments to functions or returns therefrom, to see if the answers can be assumed to be correct. The more
complicated the routine, the more important that its response be checked. The trivial case is checking to see that a
file opened, written to, or closed, did not fail on these activities – which is a sanity check often ignored by
programmers. But more complex items can also be sanity-checked for various reasons.
Examples of this include bank account management systems which check that withdrawals are sane in not requesting
more than the account contains, and that deposits or purchases are sane in fitting in with patterns established by
historical data – large deposits may be more closely scrutinized for accuracy, large purchase transactions may be
double-checked with a card holder for validity against fraud, ATM withdrawals in foreign locations never before
visited by the card holder might be cleared up with him, etc.; these are "runtime" sanity checks, as opposed to the
"development" sanity checks mentioned above.

http://en.wikipedia.org/w/index.php?title=Three%23In_mathematics
http://en.wikipedia.org/w/index.php?title=Physics
http://en.wikipedia.org/w/index.php?title=Power_%28physics%29
http://en.wikipedia.org/w/index.php?title=Automobile
http://en.wikipedia.org/w/index.php?title=Kilojoule
http://en.wikipedia.org/w/index.php?title=Energy
http://en.wikipedia.org/w/index.php?title=Dimensional_analysis
http://en.wikipedia.org/w/index.php?title=Smoke_test
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=Build_automation
http://en.wikipedia.org/w/index.php?title=Debugging
http://en.wikipedia.org/w/index.php?title=Hello_world_program


Sanity testing 173

References
[1] M. A. Fecko and C. M. Lott, ``Lessons learned from automating tests for an operations support system, (http:/ / www. chris-lott. org/ work/

pubs/ 2002-spe. pdf) Software--Practice and Experience, v. 32, October 2002.
[2] Erik van Veenendaal (ED), Standard glossary of terms used in Software Testing (http:/ / www. istqb. org/ downloads/ glossary-1. 1. pdf),

International Software Testing Qualification Board.
[3] Hassan, A. E. and Zhang, K. 2006. Using Decision Trees to Predict the Certification Result of a Build (http:/ / portal. acm. org/ citation.

cfm?id=1169218. 1169318& coll=& dl=ACM& type=series& idx=SERIES10803& part=series& WantType=Proceedings& title=ASE#). In
Proceedings of the 21st IEEE/ACM international Conference on Automated Software Engineering (September 18 – 22, 2006). Automated
Software Engineering. IEEE Computer Society, Washington, DC, 189–198.

Integration testing
Integration testing (sometimes called Integration and Testing, abbreviated "I&T") is the phase in software testing in
which individual software modules are combined and tested as a group. It occurs after unit testing and before
validation testing. Integration testing takes as its input modules that have been unit tested, groups them in larger
aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its output the
integrated system ready for system testing.

Purpose
The purpose of integration testing is to verify functional, performance, and reliability requirements placed on major
design items. These "design items", i.e. assemblages (or groups of units), are exercised through their interfaces using
Black box testing, success and error cases being simulated via appropriate parameter and data inputs. Simulated
usage of shared data areas and inter-process communication is tested and individual subsystems are exercised
through their input interface. Test cases are constructed to test that all components within assemblages interact
correctly, for example across procedure calls or process activations, and this is done after testing individual modules,
i.e. unit testing. The overall idea is a "building block" approach, in which verified assemblages are added to a
verified base which is then used to support the integration testing of further assemblages.
Some different types of integration testing are big bang, top-down, and bottom-up.

Big Bang
In this approach, all or most of the developed modules are coupled together to form a complete software system or
major part of the system and then used for integration testing. The Big Bang method is very effective for saving time
in the integration testing process. However, if the test cases and their results are not recorded properly, the entire
integration process will be more complicated and may prevent the testing team from achieving the goal of integration
testing.
A type of Big Bang Integration testing is called Usage Model testing. Usage Model Testing can be used in both
software and hardware integration testing. The basis behind this type of integration testing is to run user-like
workloads in integrated user-like environments. In doing the testing in this manner, the environment is proofed,
while the individual components are proofed indirectly through their use. Usage Model testing takes an optimistic
approach to testing, because it expects to have few problems with the individual components. The strategy relies
heavily on the component developers to do the isolated unit testing for their product. The goal of the strategy is to
avoid redoing the testing done by the developers, and instead flesh out problems caused by the interaction of the
components in the environment. For integration testing, Usage Model testing can be more efficient and provides
better test coverage than traditional focused functional integration testing. To be more efficient and accurate, care
must be used in defining the user-like workloads for creating realistic scenarios in exercising the environment. This
gives that the integrated environment will work as expected for the target customers.

http://www.chris-lott.org/work/pubs/2002-spe.pdf
http://www.chris-lott.org/work/pubs/2002-spe.pdf
http://www.istqb.org/downloads/glossary-1.1.pdf
http://portal.acm.org/citation.cfm?id=1169218.1169318&coll=&dl=ACM&type=series&idx=SERIES10803&part=series&WantType=Proceedings&title=ASE#
http://portal.acm.org/citation.cfm?id=1169218.1169318&coll=&dl=ACM&type=series&idx=SERIES10803&part=series&WantType=Proceedings&title=ASE#
http://en.wikipedia.org/w/index.php?title=Validation_testing
http://en.wikipedia.org/w/index.php?title=Module_%28programming%29
http://en.wikipedia.org/w/index.php?title=Requirement
http://en.wikipedia.org/w/index.php?title=Black_box_testing
http://en.wikipedia.org/w/index.php?title=Inter-process_communication
http://en.wikipedia.org/w/index.php?title=Subsystem
http://en.wikipedia.org/w/index.php?title=Big_Bang_%28project_management%29
http://en.wikipedia.org/w/index.php?title=Top-down_and_bottom-up_design


Integration testing 174

Top-down and Bottom-up
Bottom Up Testing is an approach to integrated testing where the lowest level components are tested first, then used
to facilitate the testing of higher level components. The process is repeated until the component at the top of the
hierarchy is tested.
All the bottom or low-level modules, procedures or functions are integrated and then tested. After the integration
testing of lower level integrated modules, the next level of modules will be formed and can be used for integration
testing. This approach is helpful only when all or most of the modules of the same development level are ready. This
method also helps to determine the levels of software developed and makes it easier to report testing progress in the
form of a percentage.
Top Down Testing is an approach to integrated testing where the top integrated modules are tested and the branch of
the module is tested step by step until the end of the related module.
Sandwich Testing is an approach to combine top down testing with bottom up testing.
The main advantage of the Bottom-Up approach is that bugs are more easily found. With Top-Down, it is easier to
find a missing branch link.

Limitations
Any conditions not stated in specified integration tests, outside of the confirmation of the execution of design items,
will generally not be tested.

System testing
System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements. System testing falls within the scope of black box testing, and
as such, should require no knowledge of the inner design of the code or logic. [1]

As a rule, system testing takes, as its input, all of the "integrated" software components that have successfully passed
integration testing and also the software system itself integrated with any applicable hardware system(s). The
purpose of integration testing is to detect any inconsistencies between the software units that are integrated together
(called assemblages) or between any of the assemblages and the hardware. System testing is a more limited type of
testing; it seeks to detect defects both within the "inter-assemblages" and also within the system as a whole.

Testing the whole system
System testing is performed on the entire system in the context of a Functional Requirement Specification(s) (FRS)
and/or a System Requirement Specification (SRS). System testing tests not only the design, but also the behaviour
and even the believed expectations of the customer. It is also intended to test up to and beyond the bounds defined in
the software/hardware requirements specification(s).

Types of tests to include in system testing
The following examples are different types of testing that should be considered during System testing:
• Graphical user interface testing
• Usability testing
• Performance testing
• Compatibility testing
• Error handling testing

http://en.wikipedia.org/w/index.php?title=Requirements
http://en.wikipedia.org/w/index.php?title=Black_box_testing
http://en.wikipedia.org/w/index.php?title=Functional_requirements
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface_testing
http://en.wikipedia.org/w/index.php?title=Performance_testing
http://en.wikipedia.org/w/index.php?title=Error_handling_testing


System testing 175

• Load testing
• Volume testing
• Stress testing
• Security testing
• Scalability testing
• Sanity testing
• Smoke testing
• Exploratory testing
• Ad hoc testing
• Regression testing
• Reliability testing
• Installation testing
• Maintenance testing
• Recovery testing and failover testing.
• Accessibility testing, including compliance with:

• Americans with Disabilities Act of 1990
• Section 508 Amendment to the Rehabilitation Act of 1973
• Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C)

Although different testing organizations may prescribe different tests as part of System testing, this list serves as a
general framework or foundation to begin with.

References
[1] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries; IEEE; New York, NY.; 1990.

• Black, Rex; (2002). Managing the Testing Process (2nd ed.). Wiley Publishing. ISBN 0-471-22398-0

http://en.wikipedia.org/w/index.php?title=Stress_testing
http://en.wikipedia.org/w/index.php?title=Sanity_test
http://en.wikipedia.org/w/index.php?title=Smoke_test%23Smoke_testing_in_software_development
http://en.wikipedia.org/w/index.php?title=Reliability_testing
http://en.wikipedia.org/w/index.php?title=Maintenance_testing
http://en.wikipedia.org/w/index.php?title=Accessibility
http://en.wikipedia.org/w/index.php?title=Americans_with_Disabilities_Act_of_1990
http://en.wikipedia.org/w/index.php?title=Section_508_Amendment_to_the_Rehabilitation_Act_of_1973
http://en.wikipedia.org/w/index.php?title=Web_Accessibility_Initiative
http://en.wikipedia.org/w/index.php?title=World_Wide_Web_Consortium
http://en.wikipedia.org/w/index.php?title=IEEE


System integration testing 176

System integration testing

Definition
System integration testing is the process of verifying the synchronization between two or more software systems and
which can be performed after software system collaboration is completed....

Introduction
It is part of the software testing life cycle for software collaboration involving projects. Such software is where
consumers run system integration test (SIT) round before the user acceptance test (UAT) round. And software
providers usually run a pre-SIT round before Software consumers run their SIT test cases.
As an example if we are providing a solution for a software consumer as enhancement to their existing solution, then
we should integrate our application layer and our DB layer with consumer‘s existing application and existing DB
layers. After the integration process completed both software systems should be synchronized.
Which means when end users use software provider’s part of the integrated application (extended part) then software
provider’s data layer might be updated than consumer‘s system. And when end users use consumer‘s part of the
integrated application (existing part) then consumer‘s data layer might be updated than software provider’s system.
Then there should be a process to exchange data imports and exports between two parties. This data exchange
process should keep both systems up-to-date.
Purpose of the System integration testing is to make sure whether these systems are successfully integrated and been
up-to-date by exchanging data with each other.

Overview
Integration layer keeps synchronization between two parties is a simple system integration arrangement. Usually
there are software consumers and their customer parties (third party organizations) come in to action. Then software
providers should keep synchronization among software provider, software consumer party and software consumer’s
customer parties. Software providers and software consumers should run test cases to verify the synchronization
among all the systems after software system collaboration completed.
System Integration Testing (SIT), in the context of software systems and software engineering, is a testing process
that exercises a software system's coexistence with others. System integration testing takes multiple integrated
systems that have passed system testing as input and tests their required interactions. Following this process, the
deliverable systems are passed on to acceptance testing..... sadadadad

System Integration testing - Data driven method
This is a simple method which can perform with minimum usage of the software testing tools. Exchange some data
imports and data exports. And then investigate the behavior of each data field within each individual layer. There are
three main states of data flow after the software collaboration has done.
• Data state within the integration layer

Integration layer can be a middleware or web service(s) which is act as a media for data imports and data exports.
Perform some data imports and exports and check following steps.
1. Cross check the data properties within the Integration layer with technical/business specification documents.
- If web service involved with the integration layer then we can use WSDL and XSD against our web service request
for the cross check.

http://en.wikipedia.org/w/index.php?title=Software_systems
http://en.wikipedia.org/w/index.php?title=Software_testing_life_cycle
http://en.wikipedia.org/w/index.php?title=User_acceptance_test
http://en.wikipedia.org/w/index.php?title=Middleware
http://en.wikipedia.org/w/index.php?title=Web_service


System integration testing 177

- If middleware involved with the integration layer then we can use data mappings against middleware logs for the
cross check.
2. Execute some unit tests. Cross check the data mappings (data positions, declarations) and requests (character
length, data types) with technical specifications.
3. Investigate the server logs/middleware logs for troubleshooting.
(Reading knowledge of WSDL, XSD, DTD, XML, and EDI might be required for this)
• Data state within the database layer

1. First check whether all the data have committed to the database layer from the integration layer.
2. Then check the data properties with the table and column properties with relevant to technical/business
specification documents.
3. Check the data validations/constrains with business specification documents.
4. If there are any processing data within the database layer then check Stored Procedures with relevant
specifications.
5. Investigate the server logs for troubleshooting.
(Knowledge in SQL and reading knowledge in Stored Procedures might be required for this)
• Data state within the Application layer

There is not that much to do with the application layer when we perform a system integration testing.
1. Mark all the fields from business requirement documents which should be visible in the UI.
2. Create a data map from database fields to application fields and check whether necessary fields are visible in UI.
3. Check data properties by some positive and negative test cases.
There are many combinations of data imports and export which we can perform by considering the time period for
system integration testing
(We have to select best combinations to perform with the limited time). And also we have to repeat some of the
above steps in order to test those combinations.

http://en.wikipedia.org/w/index.php?title=Data_mapping
http://en.wikipedia.org/w/index.php?title=WSDL
http://en.wikipedia.org/w/index.php?title=XSD
http://en.wikipedia.org/w/index.php?title=Document_Type_Definition
http://en.wikipedia.org/w/index.php?title=Electronic_Data_Interchange
http://en.wikipedia.org/w/index.php?title=Stored_procedures
http://en.wikipedia.org/w/index.php?title=Combinations


Acceptance testing 178

Acceptance testing

Acceptance testing of an aircraft catapult

In engineering and its various
subdisciplines, acceptance testing is a test
conducted to determine if the requirements
of a specification or contract are met. It may
involve chemical tests, physical tests, or
performance tests

In systems engineering it may involve
black-box testing performed on a system
(for example: a piece of software, lots of
manufactured mechanical parts, or batches
of chemical products) prior to its delivery.[1]

It is also known as functional testing,
black-box testing, QA testing, application
testing, confidence testing, final testing,
validation testing, or factory acceptance testing.

Software developers often distinguish acceptance testing by the system provider from acceptance testing by the
customer (the user or client) prior to accepting transfer of ownership. In the case of software, acceptance testing
performed by the customer is known as user acceptance testing (UAT), end-user testing, site (acceptance) testing, or
field (acceptance) testing.

A smoke test is used as an acceptance test prior to introducing a build to the main testing process.

Overview
Acceptance testing generally involves running a suite of tests on the completed system. Each individual test, known
as a case, exercises a particular operating condition of the user's environment or feature of the system, and will result
in a pass or fail, or boolean, outcome. There is generally no degree of success or failure. The test environment is
usually designed to be identical, or as close as possible, to the anticipated user's environment, including extremes of
such. These test cases must each be accompanied by test case input data or a formal description of the operational
activities (or both) to be performed—intended to thoroughly exercise the specific case—and a formal description of
the expected results.
Acceptance Tests/Criteria (in Agile Software Development) are usually created by business customers and expressed
in a business domain language. These are high-level tests to test the completeness of a user story or stories 'played'
during any sprint/iteration. These tests are created ideally through collaboration between business customers,
business analysts, testers and developers, however the business customers (product owners) are the primary owners
of these tests. As the user stories pass their acceptance criteria, the business owners can be sure of the fact that the
developers are progressing in the right direction about how the application was envisaged to work and so it's
essential that these tests include both business logic tests as well as UI validation elements (if need be).
Acceptance test cards are ideally created during sprint planning or iteration planning meeting, before development
begins so that the developers have a clear idea of what to develop. Sometimes (due to bad planning!) acceptance
tests may span multiple stories (that are not implemented in the same sprint) and there are different ways to test them
out during actual sprints. One popular technique is to mock external interfaces or data to mimic other stories which
might not be played out during an iteration (as those stories may have been relatively lower business priority). A user
story is not considered complete until the acceptance tests have passed.

http://en.wikipedia.org/w/index.php?title=Aircraft_catapult
http://en.wikipedia.org/w/index.php?title=File%3AUS_Navy_090407-N-4669J-042_Sailors_assigned_to_the_air_department_of_the_aircraft_carrier_USS_George_H.W._Bush_%28CVN_77%29_test_the_ship%27s_catapult_systems_during_acceptance_trials.jpg
http://en.wikipedia.org/w/index.php?title=Engineering
http://en.wikipedia.org/w/index.php?title=Fields_of_engineering
http://en.wikipedia.org/w/index.php?title=Specification
http://en.wikipedia.org/w/index.php?title=Contract
http://en.wikipedia.org/w/index.php?title=Chemical_test
http://en.wikipedia.org/w/index.php?title=Physical_test
http://en.wikipedia.org/w/index.php?title=Performance_test
http://en.wikipedia.org/w/index.php?title=Systems_engineering
http://en.wikipedia.org/w/index.php?title=System
http://en.wikipedia.org/w/index.php?title=Functional_testing
http://en.wikipedia.org/w/index.php?title=Customer
http://en.wikipedia.org/w/index.php?title=Smoke_test
http://en.wikipedia.org/w/index.php?title=Boolean_logic
http://en.wikipedia.org/w/index.php?title=Agile_Software_Development
http://en.wikipedia.org/w/index.php?title=Domain_Specific_Language
http://en.wikipedia.org/w/index.php?title=User_story


Acceptance testing 179

Process
The acceptance test suite is run against the supplied input data or using an acceptance test script to direct the testers.
Then the results obtained are compared with the expected results. If there is a correct match for every case, the test
suite is said to pass. If not, the system may either be rejected or accepted on conditions previously agreed between
the sponsor and the manufacturer.
The objective is to provide confidence that the delivered system meets the business requirements of both sponsors
and users. The acceptance phase may also act as the final quality gateway, where any quality defects not previously
detected may be uncovered.
A principal purpose of acceptance testing is that, once completed successfully, and provided certain additional
(contractually agreed) acceptance criteria are met, the sponsors will then sign off on the system as satisfying the
contract (previously agreed between sponsor and manufacturer), and deliver final payment.

User acceptance testing
User Acceptance Testing (UAT) is a process to obtain confirmation that a system meets mutually agreed-upon
requirements. A Subject Matter Expert (SME), preferably the owner or client of the object under test, provides such
confirmation after trial or review. In software development, UAT is one of the final stages of a project and often
occurs before a client or customer accepts the new system.
Users of the system perform these tests, which developers derive from the client's contract or the user requirements
specification.
Test-designers draw up formal tests and devise a range of severity levels. Ideally the designer of the user acceptance
tests should not be the creator of the formal integration and system test cases for the same system. The UAT acts as a
final verification of the required business function and proper functioning of the system, emulating real-world usage
conditions on behalf of the paying client or a specific large customer. If the software works as intended and without
issues during normal use, one can reasonably extrapolate the same level of stability in production.
User tests, which are usually performed by clients or end-users, do not normally focus on identifying simple
problems such as spelling errors and cosmetic problems, nor showstopper defects, such as software crashes; testers
and developers previously identify and fix these issues during earlier unit testing, integration testing, and system
testing phases.
The results of these tests give confidence to the clients as to how the system will perform in production. There may
also be legal or contractual requirements for acceptance of the system.

Q-UAT - Quantified User Acceptance Testing
Quantified User Acceptance Testing (Q-UAT or, more simply, the "Quantified Approach") is a revised Business
Acceptance Testing process which aims to provide a smarter and faster alternative to the traditional UAT phase.
Depth-testing is carried out against business requirements only at specific planned points in the application or service
under test. A reliance on better quality code-delivery from the development/build phase is assumed and a complete
understanding of the appropriate business process is a pre-requisite. This methodology - if carried out correctly -
results in a quick turnaround against plan, a decreased number of test scenarios which are more complex and wider
in breadth than traditional UAT and ultimately the equivalent confidence-level attained via a shorter
delivery-window, allowing products/changes to come to market quicker.
The Q-UAT approach depends on a "gated" three-dimensional model. The key concepts are:
1. Linear Testing (LT, the 1st dimension)
2. Recursive Testing (RT, the 2nd dimension)
3. Adaptive Testing (AT, the 3rd dimension).

http://en.wikipedia.org/w/index.php?title=Quality_%28business%29
http://en.wikipedia.org/w/index.php?title=Contract
http://en.wikipedia.org/w/index.php?title=Subject_Matter_Expert
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Showstopper
http://en.wikipedia.org/w/index.php?title=Crash_%28computing%29
http://en.wikipedia.org/w/index.php?title=Business_Acceptance_Testing
http://en.wikipedia.org/w/index.php?title=Business_Acceptance_Testing
http://en.wikipedia.org/w/index.php?title=Business_process


Acceptance testing 180

The four "gates" which conjoin and support the 3-dimensional model act as quality safeguards and include
contemporary testing concepts such as:
• Internal Consistency Checks (ICS)
• Major Systems/Services Checks (MSC)
• Realtime/Reactive Regression (RTR).
The Quantified Approach was shaped by the former "guerilla" method of acceptance testing which was itself a
response to testing phases which proved too costly to be sustainable for many small/medium-scale projects.

Acceptance testing in Extreme Programming
Acceptance testing is a term used in agile software development methodologies, particularly Extreme Programming,
referring to the functional testing of a user story by the software development team during the implementation phase.
The customer specifies scenarios to test when a user story has been correctly implemented. A story can have one or
many acceptance tests, whatever it takes to ensure the functionality works. Acceptance tests are black box system
tests. Each acceptance test represents some expected result from the system. Customers are responsible for verifying
the correctness of the acceptance tests and reviewing test scores to decide which failed tests are of highest priority.
Acceptance tests are also used as regression tests prior to a production release. A user story is not considered
complete until it has passed its acceptance tests. This means that new acceptance tests must be created for each
iteration or the development team will report zero progress.[2]

Types of acceptance testing
Typical types of acceptance testing include the following
User acceptance testing

This may include factory acceptance testing, i.e. the testing done by factory users before the factory is moved
to its own site, after which site acceptance testing may be performed by the users at the site.

Operational Acceptance Testing (OAT)
Also known as operational readiness testing, this refers to the checking done to a system to ensure that
processes and procedures are in place to allow the system to be used and maintained. This may include checks
done to back-up facilities, procedures for disaster recovery, training for end users, maintenance procedures,
and security procedures.

Contract and regulation acceptance testing
In contract acceptance testing, a system is tested against acceptance criteria as documented in a contract,
before the system is accepted. In regulation acceptance testing, a system is tested to ensure it meets
governmental, legal and safety standards.

Alpha and beta testing
Alpha testing takes place at developers' sites, and involves testing of the operational system by internal staff,
before it is released to external customers. Beta testing takes place at customers' sites, and involves testing by a
group of customers who use the system at their own locations and provide feedback, before the system is
released to other customers. The latter is often called “field testing”.

http://en.wikipedia.org/w/index.php?title=Agile_software_development
http://en.wikipedia.org/w/index.php?title=Extreme_Programming
http://en.wikipedia.org/w/index.php?title=User_story
http://en.wikipedia.org/w/index.php?title=Operational_Acceptance_Testing_%28OAT%29


Acceptance testing 181

List of development to production (testing) environments
• DEV, Development Environment [1]
• DTE, Development Testing Environment
• QA, Quality Assurance (Testing Environment) [2]
• DIT, Development Integration Testing
• DST, Development System Testing
• SIT, System Integration Testing
• UAT, User Acceptance Testing [3]
• PROD, Production Environment [4]
[1-4] Usual development environment stages in medium-sized development projects.

List of acceptance-testing frameworks
• FitNesse, a fork of Fit
• Framework for Integrated Test (Fit)
• iMacros
• ItsNat Java Ajax web framework with built-in, server based, functional web testing capabilities.
• Ranorex
• Selenium (software)
• Test Automation FX
• Watir

References
[1] Black, Rex (August 2009). Managing the Testing Process: Practical Tools and Techniques for Managing Hardware and Software Testing.

Hoboken, NJ: Wiley. ISBN 0-470-40415-9.
[2] Acceptance Tests (http:/ / www. extremeprogramming. org/ rules/ functionaltests. html)

External links
• Acceptance Test Engineering Guide (http:/ / testingguidance. codeplex. com) by Microsoft patterns & practices

(http:/ / msdn. com/ practices)
• Article Using Customer Tests to Drive Development (http:/ / www. methodsandtools. com/ archive/ archive.

php?id=23) from Methods & Tools (http:/ / www. methodsandtools. com/ )
• Article Acceptance TDD Explained (http:/ / www. methodsandtools. com/ archive/ archive. php?id=72) from

Methods & Tools (http:/ / www. methodsandtools. com/ )

http://en.wikipedia.org/w/index.php?title=FitNesse
http://en.wikipedia.org/w/index.php?title=Framework_for_Integrated_Test
http://en.wikipedia.org/w/index.php?title=IMacros
http://en.wikipedia.org/w/index.php?title=ItsNat
http://en.wikipedia.org/w/index.php?title=Ranorex
http://en.wikipedia.org/w/index.php?title=Selenium_%28software%29
http://en.wikipedia.org/w/index.php?title=Test_Automation_FX
http://en.wikipedia.org/w/index.php?title=Watir
http://www.extremeprogramming.org/rules/functionaltests.html
http://testingguidance.codeplex.com
http://msdn.com/practices
http://www.methodsandtools.com/archive/archive.php?id=23
http://www.methodsandtools.com/archive/archive.php?id=23
http://www.methodsandtools.com/
http://www.methodsandtools.com/archive/archive.php?id=72
http://www.methodsandtools.com/


Risk-based testing 182

Risk-based testing
Risk-based testing (RBT) is a type of software testing that prioritizes the tests of features and functions based on the
risk of their failure - a function of their importance and likelihood or impact of failure.[1] [2] [3] [4] In theory, since
there is an infinite number of possible tests, any set of tests must be a subset of all possible tests. Test techniques
such as boundary value analysis and state transition testing aim to find the areas most likely to be defective.

Types of Risks
The methods assess risks along a variety of dimensions:

Business or Operational
• High use of a subsystem, function or feature
• Criticality of a subsystem, function or feature, including the cost of failure

Technical
• Geographic distribution of development team
• Complexity of a subsystem or function

External
• Sponsor or executive preference
• Regulatory requirements

E-Business Failure-Mode Related[5]

• Static content defects
• Web page integration defects
• Functional behavior-related failure
• Service (Availability and Performance) related failure
• Usability and Accessibility-related failure
• Security vulnerability
• Large Scale Integration failure

References
[1] Paul Gerrard Risk-Based E-Business Testing Part 1, Risks and Test Strategy (http:/ / gerrardconsulting. com/ papers/ articles/

EBTestingPart1. pdf) (2000)
[2] Paul Gerrard Risk-Based E-Business Testing Part 2, Test Techniques and Tools (http:/ / gerrardconsulting. com/ papers/ articles/

EBTestingPart2. pdf) (2000)
[3] Bach, J. The Challenge of Good Enough Software (http:/ / www. satisfice. com/ articles/ gooden2. pdf) (1995)
[4] Bach, J. and Kaner, C. Exploratory and Risk Based Testing (http:/ / www. testingeducation. org/ a/ nature. pdf) (2004)
[5] Gerrard, P. and Thompson, N. Risk-Based Testing E-Business (http:/ / www. riskbasedtesting. com) (2002)

http://gerrardconsulting.com/papers/articles/EBTestingPart1.pdf
http://gerrardconsulting.com/papers/articles/EBTestingPart1.pdf
http://gerrardconsulting.com/papers/articles/EBTestingPart2.pdf
http://gerrardconsulting.com/papers/articles/EBTestingPart2.pdf
http://www.satisfice.com/articles/gooden2.pdf
http://www.testingeducation.org/a/nature.pdf
http://www.riskbasedtesting.com


Risk-based testing 183

Examples
• VestaLabs Risk Based Test Strategy - http:/ / www. vesta-labs. com/ services-riskbasedtest. aspx
• Risk Based Testing Cloud based software (http:/ / www. kalistick. com/ smarter-test-strategies. html)

Software testing outsourcing
Software testing outsourcing provides for software testing carried out by the forces of an additionally engaged
company or a group of people not directly involved in the process of software development. Contemporary testing
outsourcing is an independent IT field , the so called Software Testing & Quality Assurance.
Software testing is an essential phase of software development, but is definitely not the core activity of most
companies. Outsourcing enables the company to concentrate on its core activities while external software testing
experts handle the independent validation work. This offer many tangible business benefits. These include
independent assessment leading to enhanced delivery confidence, reduced time to market, lower infrastructure
investment, predictable software quality, de-risking of deadlines and increased time to focus on designing better
solutions. Today stress, performance and security testing are the most demanded types in software testing
outsourcing.
At present 5 main options of software testing outsourcing are available depending on the detected problems with
software development:
• full outsourcing of the whole palette of software testing & quality assurance operations
• realization of complex testing with high resource consumption
• prompt resource enlargement of the company by external testing experts
• support of existing program products by new releases testing
• independent quality audit.
Availability of the effective channels of communication and information sharing is one of the core aspects that allow
to guarantee the high quality of testing, being at the same time the main obstacle for outsourcing. Due to this
channels software testing outsourcing allows to cut down the number of software defects 3 – 30 times depending on
the quality of the legacy system.

Top established global outsourcing cities
According to Tholons Global Services - Top 50 [1] , in 2009, Top Established and Emerging Global Outsourcing
Cities in Testing function were:
1. Cebu City, Philippines
2. Shanghai, China
3. Beijing, China
4. Kraków, Poland
5. Ho Chi Minh City, Vietnam

http://www.vesta-labs.com/services-riskbasedtest.aspx
http://www.kalistick.com/smarter-test-strategies.html
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Outsourcing
http://en.wikipedia.org/w/index.php?title=Information_technology
http://en.wikipedia.org/w/index.php?title=Quality_assurance
http://en.wikipedia.org/w/index.php?title=Cebu_City%2C_Philippines
http://en.wikipedia.org/w/index.php?title=Shanghai%2C_China
http://en.wikipedia.org/w/index.php?title=Beijing%2C_China
http://en.wikipedia.org/w/index.php?title=Krak%C3%B3w%2C_Poland
http://en.wikipedia.org/w/index.php?title=Ho_Chi_Minh_City%2C_Vietnam


Software testing outsourcing 184

Top Emerging Global Outsourcing Cities
1. Bucharest
2. São Paulo
3. Cairo
Cities were benchmark against six categories included: skills and scalability, savings, business environment,
operational environment, business risk and non-business environment.

Vietnam Outsourcing
Vietnam has become a major player in software outsourcing. Tholon’s Global Services annual report highlights Ho
Chi Minh City ability to competitively meet client nations’ needs in scale and capacity. Its rapid maturing business
environment has caught the eye of international investors aware of the country’s stability in political and labor
conditions, its increasing number of English speakers and its high service-level maturity [2] .
Californian based companies such as Global CyberSoft Inc. and LogiGear Corporation are optimistic with Vietnam’s
ability to execute their global offshoring industry requirements. Despite the 2008-2009 financial crisis, both
companies expect to fulfill their projected goals. LogiGear has addressed a shortage of highly qualified software
technicians for its testing and automation services but remains confident that professionals are available to increase
its staff in anticipation of the US recovery [2] .

References
[1] Tholons Global Services report 2009 (http:/ / www. itida. gov. eg/ Documents/ Tholons_study. pdf) Top Established and Emerging Global

Outsourcing
[2] (http:/ / www. logigear. com/ in-the-news/ 974-software-outsourcing-recovery-and-development. html) LogiGear, PC World Viet Nam, Jan

2011

http://en.wikipedia.org/w/index.php?title=Bucharest
http://en.wikipedia.org/w/index.php?title=S%C3%A3o_Paulo
http://en.wikipedia.org/w/index.php?title=Cairo
http://www.itida.gov.eg/Documents/Tholons_study.pdf
http://www.logigear.com/in-the-news/974-software-outsourcing-recovery-and-development.html


Tester driven development 185

Tester driven development
Tester driven development is an anti-pattern in software development. It should not be confused with test driven
development. It refers to any software development project where the software testing phase is too long. The testing
phase is so long that the requirements may change radically during software testing. New or changed requirements
often appear as bug reports. Bug tracking software usually lacks support for handling requirements. As a result of
this nobody really knows what the system requirements are.
Projects that are developed using this anti-pattern often suffer from being extremely late. Another common problem
is poor code quality.
Common causes for projects ending up being run this way are often:
• The testing phase started too early;
• Incomplete requirements;
• Inexperienced testers;
• Inexperienced developers;
• Poor project management.
Things get worse when the testers realise that they don't know what the requirements are and therefore don't know
how to test any particular code changes. The onus then falls on the developers of individual changes to write their
own test cases and they are happy to do so because their own tests normally pass and their performance
measurements improve. Project leaders are also delighted by the rapid reduction in the number of open change
requests.

Test effort
In software development, test effort refers to the expenses for (still to come) tests. There is a relation with test costs
and failure costs (direct, indirect, costs for fault correction). Some factors which influence test effort are: maturity of
the software development process, quality and testability of the testobject, test infrastructure, skills of staff members,
quality goals and test strategy.

Methods for estimation of the test effort
To analyse all factors is difficult, because most of the factors influence each other. Following approaches can be
used for the estimation: top-down estimation and bottom-up estimation. The top-down techniques are formula based
and they are relative to the expenses for development: Function Point Analysis (FPA) and Test Point Analysis (TPA)
amongst others. Bottom-up techniques are based on detailed information and involve often experts. The following
techniques belong here: Work Breakdown Structure (WBS) and Wide Band Delphi (WBD).
We can also use the following techniques for estimating the test effort -
• Conversion of software size into person hours of effort directly using a conversion factor. For example, we assign

2 person hours of testing effort per one Function Point of software size or 4 person hours of testing effort per one
use case point or 3 person hours of testing effort per one Software Size Unit

• Conversion of software size into testing project size such as Test Points or Software Test Units using a conversion
factor and then convert testing project size into effort

• Compute testing project size using Test Points of Software Test Units. Methodology for deriving the testing
project size in Test Points is not well documented. However, methodology for deriving Software Test Units is
defined in a paper by Murali Chemuturi

http://en.wikipedia.org/w/index.php?title=Anti-pattern
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Test_driven_development
http://en.wikipedia.org/w/index.php?title=Test_driven_development
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Project_management
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Software_Development_Process
http://en.wikipedia.org/w/index.php?title=Quality_%28business%29
http://en.wikipedia.org/w/index.php?title=Software_testability
http://en.wikipedia.org/w/index.php?title=Skills
http://en.wikipedia.org/w/index.php?title=Function_point_analysis
http://en.wikipedia.org/w/index.php?title=Test_Point_Analysis
http://en.wikipedia.org/w/index.php?title=Work_Breakdown_Structure
http://en.wikipedia.org/w/index.php?title=Wideband_delphi


Test effort 186

• We can also derive software testing project size and effort using Delphi Technique or Analogy Based Estimation
technique.

Test efforts from literature
In literature test efforts relative to total costs are between 20% and 70%. These values are amongst others dependent
from the project specific conditions. When looking for the test effort in the single phases of the test process, these are
diversely distributed: with about 40% for test specification and test execution each.

References
• Andreas Spillner, Tilo Linz, Hans Schäfer. (2006). Software Testing Foundations - A Study Guide for the

Certified Tester Exam - Foundation Level - ISTQB compliant, 1st print. dpunkt.verlag GmbH, Heidelberg,
Germany. ISBN 3-89864-363-8.

• Erik van Veenendaal (Hrsg. und Mitautor): The Testing Practitioner. 3. Auflage. UTN Publishers, CN Den
Bosch, Niederlande 2005, ISBN 90-72194-65-9.

• Thomas Müller (chair), Rex Black, Sigrid Eldh, Dorothy Graham, Klaus Olsen, Maaret Pyhäjärvi, Geoff
Thompson and Erik van Veendendal. (2005). Certified Tester - Foundation Level Syllabus - Version 2005,
International Software Testing Qualifications Board (ISTQB), Möhrendorf, Germany. (PDF; 0,424 MB [1]).

• Andreas Spillner, Tilo Linz, Thomas Roßner, Mario Winter: Praxiswissen Softwaretest - Testmanagement: Aus-
und Weiterbildung zum Certified Tester: Advanced Level nach ISTQB-Standard. 1. Auflage. dpunkt.verlag
GmbH, Heidelberg 2006, ISBN 3-89864-275-5.

External links
• Wide Band Delphi [2]

• Test Effort Estimation [3]

References
[1] http:/ / www. istqb. org/ downloads/ syllabi/ SyllabusFoundation2005. pdf
[2] http:/ / tech. willeke. com/ Programing/ Guidelines/ GL-10. htm
[3] http:/ / www. chemuturi. com/ Test%20Effort%20Estimation. pdf

http://en.wikipedia.org/w/index.php?title=Test_process
http://en.wikipedia.org/w/index.php?title=Test_specification
http://en.wikipedia.org/w/index.php?title=Test_execution
http://www.istqb.org/downloads/syllabi/SyllabusFoundation2005.pdf
http://tech.willeke.com/Programing/Guidelines/GL-10.htm
http://www.chemuturi.com/Test%20Effort%20Estimation.pdf
http://www.istqb.org/downloads/syllabi/SyllabusFoundation2005.pdf
http://tech.willeke.com/Programing/Guidelines/GL-10.htm
http://www.chemuturi.com/Test%20Effort%20Estimation.pdf


187

Testing artefacts

IEEE 829

IEEE Software Document Definitions

SQAP – Software Quality Assurance Plan IEEE 730

SCMP – Software Configuration Management Plan IEEE 828

STD – Software Test Documentation IEEE 829

SRS – Software Requirements Specification IEEE 830

SVVP – Software Validation & Verification Plan IEEE 1012

SDD – Software Design Description IEEE 1016

SPMP – Software Project Management Plan IEEE 1058

IEEE 829-1998, also known as the 829 Standard for Software Test Documentation, is an IEEE standard that
specifies the form of a set of documents for use in eight defined stages of software testing, each stage potentially
producing its own separate type of document. The standard specifies the format of these documents but does not
stipulate whether they all must be produced, nor does it include any criteria regarding adequate content for these
documents. These are a matter of judgment outside the purview of the standard. The documents are:

• Test Plan: a management planning document that shows:
• How the testing will be done (including SUT (system under test) configurations).
• Who will do it
• What will be tested
• How long it will take (although this may vary, depending upon resource availability).
• What the test coverage will be, i.e. what quality level is required

• Test Design Specification: detailing test conditions and the expected results as well as test pass criteria.
• Test Case Specification: specifying the test data for use in running the test conditions identified in the Test

Design Specification
• Test Procedure Specification: detailing how to run each test, including any set-up preconditions and the steps

that need to be followed
• Test Item Transmittal Report: reporting on when tested software components have progressed from one

stage of testing to the next
• Test Log: recording which tests cases were run, who ran them, in what order, and whether each test passed or

failed
• Test Incident Report: detailing, for any test that failed, the actual versus expected result, and other

information intended to throw light on why a test has failed. This document is deliberately named as an
incident report, and not a fault report. The reason is that a discrepancy between expected and actual results can
occur for a number of reasons other than a fault in the system. These include the expected results being wrong,
the test being run wrongly, or inconsistency in the requirements meaning that more than one interpretation
could be made. The report consists of all details of the incident such as actual and expected results, when it
failed, and any supporting evidence that will help in its resolution. The report will also include, if possible, an
assessment of the impact of an incident upon testing.

http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Software_Quality_Assurance_Plan
http://en.wikipedia.org/w/index.php?title=IEEE_730
http://en.wikipedia.org/w/index.php?title=Software_Configuration_Management_Plan
http://en.wikipedia.org/w/index.php?title=IEEE_828
http://en.wikipedia.org/w/index.php?title=Software_Test_Documentation
http://en.wikipedia.org/w/index.php?title=Software_Requirements_Specification
http://en.wikipedia.org/w/index.php?title=IEEE_830
http://en.wikipedia.org/w/index.php?title=Software_Validation_%26_Verification_Plan
http://en.wikipedia.org/w/index.php?title=IEEE_1012
http://en.wikipedia.org/w/index.php?title=Software_Design_Description
http://en.wikipedia.org/w/index.php?title=IEEE_1016
http://en.wikipedia.org/w/index.php?title=Software_Project_Management_Plan
http://en.wikipedia.org/w/index.php?title=IEEE_1058
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Test_Plan


IEEE 829 188

• Test Summary Report: A management report providing any important information uncovered by the tests
accomplished, and including assessments of the quality of the testing effort, the quality of the software system
under test, and statistics derived from Incident Reports. The report also records what testing was done and how
long it took, in order to improve any future test planning. This final document is used to indicate whether the
software system under test is fit for purpose according to whether or not it has met acceptance criteria defined
by project stakeholders.

Relationship with other standards
Other standards that may be referred to when documenting according to IEEE 829 include:

• IEEE 1008, a standard for unit testing
• IEEE 1012, a standard for Software Verification and Validation
• IEEE 1028, a standard for software inspections
• IEEE 1044, a standard for the classification of software anomalies
• IEEE 1044-1, a guide to the classification of software anomalies
• IEEE 830, a guide for developing system requirements specifications
• IEEE 730, a standard for software quality assurance plans
• IEEE 1061, a standard for software quality metrics and methodology
• IEEE 12207, a standard for software life cycle processes and life cycle data
• BS 7925-1, a vocabulary of terms used in software testing
• BS 7925-2, a standard for software component testing

Use of IEEE 829
The standard forms part of the training syllabus of the ISEB Foundation and Practitioner Certificates in Software
Testing promoted by the British Computer Society. ISTQB, following the formation of its own syllabus based on
ISEB's and Germany's ASQF syllabi, also adopted IEEE 829 as the reference standard for software testing
documentation.

Revisions
A revision to IEEE 829-1998, known as IEEE 829-2008 [1], was published on 18th July 2008 and when approved
will supersede the 1998 version.

External links
• BS7925-2 [2], Standard for Software Component Testing
• [3] - IEEE Std 829-1998 (from IEEE)
• [4] - IEEE Std 829-2008 (from IEEE)
• [5] - IEEE Std 829-1998 (wilma.vub.ac.be)

References
[1] http:/ / ieeexplore. ieee. org/ Xplore/ login. jsp?url=/ ielD/ 4459216/ 4459217/ 04459218. pdf?arnumber=4459218
[2] http:/ / www. ruleworks. co. uk/ testguide/ BS7925-2. htm
[3] http:/ / ieeexplore. ieee. org/ stamp/ stamp. jsp?tp=& arnumber=741968& isnumber=16010
[4] http:/ / ieeexplore. ieee. org/ stamp/ stamp. jsp?tp=& arnumber=4578383& isnumber=4578382
[5] http:/ / wilma. vub. ac. be/ ~se1_0607/ svn/ bin/ cgi/ viewvc. cgi/ documents/ standards/ IEEE/ IEEE-STD-829-1998. pdf?revision=45

http://en.wikipedia.org/w/index.php?title=IEEE_1008
http://en.wikipedia.org/w/index.php?title=Unit_test
http://en.wikipedia.org/w/index.php?title=IEEE_1012
http://en.wikipedia.org/w/index.php?title=IEEE_1028
http://en.wikipedia.org/w/index.php?title=IEEE_1044
http://en.wikipedia.org/w/index.php?title=IEEE_1044-1
http://en.wikipedia.org/w/index.php?title=IEEE_830
http://en.wikipedia.org/w/index.php?title=IEEE_730
http://en.wikipedia.org/w/index.php?title=IEEE_1061
http://en.wikipedia.org/w/index.php?title=IEEE_12207
http://en.wikipedia.org/w/index.php?title=BS_7925-1
http://en.wikipedia.org/w/index.php?title=BS_7925-2
http://en.wikipedia.org/w/index.php?title=ISEB
http://en.wikipedia.org/w/index.php?title=British_Computer_Society
http://en.wikipedia.org/w/index.php?title=ISTQB
http://en.wikipedia.org/w/index.php?title=ISEB
http://en.wikipedia.org/w/index.php?title=ASQF
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/ielD/4459216/4459217/04459218.pdf?arnumber=4459218
http://www.ruleworks.co.uk/testguide/BS7925-2.htm
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&isnumber=16010
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4578383&isnumber=4578382
http://wilma.vub.ac.be/~se1_0607/svn/bin/cgi/viewvc.cgi/documents/standards/IEEE/IEEE-STD-829-1998.pdf?revision=45
http://ieeexplore.ieee.org/Xplore/login.jsp?url=/ielD/4459216/4459217/04459218.pdf?arnumber=4459218
http://www.ruleworks.co.uk/testguide/BS7925-2.htm
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&isnumber=16010
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4578383&isnumber=4578382
http://wilma.vub.ac.be/~se1_0607/svn/bin/cgi/viewvc.cgi/documents/standards/IEEE/IEEE-STD-829-1998.pdf?revision=45


Test strategy 189

Test strategy
Compare with Test plan.

A test strategy is an outline that describes the testing portion of the software development cycle. It is created to
inform project managers, testers, and developers about some key issues of the testing process. This includes the
testing objective, methods of testing new functions, total time and resources required for the project, and the testing
environment.
Test strategies describes how the product risks of the stakeholders are mitigated at the test-level, which types of test
are to be performed, and which entry and exit criteria apply. They are created based on development design
documents. System design documents are primarily used and occasionally, conceptual design documents may be
referred to. Design documents describe the functionality of the software to be enabled in the upcoming release. For
every stage of development design, a corresponding test strategy should be created to test the new feature sets.

Test Levels
The test strategy describes the test level to be performed. There are primarily three levels of testing: unit testing,
integration testing, and system testing. In most software development organizations, the developers are responsible
for unit testing. Individual testers or test teams are responsible for integration and system testing.

Roles and Responsibilities
The roles and responsibilities of test leader, individual testers, project manager are to be clearly defined at a project
level in this section. This may not have names associated: but the role has to be very clearly defined.
Testing strategies should be reviewed by the developers. They should also be reviewed by test leads for all levels of
testing to make sure the coverage is complete yet not overlapping. Both the testing manager and the development
managers should approve the test strategy before testing can begin.

Environment Requirements
Environment requirements are an important part of the test strategy. It describes what operating systems are used for
testing. It also clearly informs the necessary OS patch levels and security updates required. For example, a certain
test plan may require Windows XP Service Pack 3 to be installed as a prerequisite for testing.

Testing Tools
There are two methods used in executing test cases: manual and automated. Depending on the nature of the testing, it
is usually the case that a combination of manual and automated testing is the best testing method. Planner should
find the appropriate automation tool to reduce total testing time.



Test strategy 190

Risks and Mitigation
Any risks that will affect the testing process must be listed along with the mitigation. By documenting a risk, its
occurrence can be anticipated well ahead of time. Proactive action may be taken to prevent it from occurring, or to
mitigate its damage. Sample risks are dependency of completion of coding done by sub-contractors, or capability of
testing tools.

Test Schedule
A test plan should make an estimation of how long it will take to complete the testing phase. There are many
requirements to complete testing phases. First, testers have to execute all test cases at least once. Furthermore, if a
defect was found, the developers will need to fix the problem. The testers should then re-test the failed test case until
it is functioning correctly. Last but not the least, the tester need to conduct regression testing towards the end of the
cycle to make sure the developers did not accidentally break parts of the software while fixing another part. This can
occur on test cases that were previously functioning properly.
The test schedule should also document the number of testers available for testing. If possible, assign test cases to
each tester.
It is often difficult to make an accurate approximation of the test schedule since the testing phase involves many
uncertainties. Planners should take into account the extra time needed to accommodate contingent issues. One way to
make this approximation is to look at the time needed by the previous releases of the software. If the software is new,
multiplying the initial testing schedule approximation by two is a good way to start.

Regression Test Approach
When a particular problem is identified, the programs will be debugged and the fix will be done to the program. To
make sure that the fix works, the program will be tested again for that criteria. Regression test will make sure that
one fix does not create some other problems in that program or in any other interface. So, a set of related test cases
may have to be repeated again, to make sure that nothing else is affected by a particular fix. How this is going to be
carried out must be elaborated in this section. In some companies, whenever there is a fix in one unit, all unit test
cases for that unit will be repeated, to achieve a higher level of quality.

Test Groups
From the list of requirements, we can identify related areas, whose functionality is similar. These areas are the test
groups. For example, in a railway reservation system, anything related to ticket booking is a functional group;
anything related with report generation is a functional group. Same way, we have to identify the test groups based on
the functionality aspect.

Test Priorities
Among test cases, we need to establish priorities. While testing software projects, certain test cases will be treated as
the most important ones and if they fail, the product cannot be released. Some other test cases may be treated like
cosmetic and if they fail, we can release the product without much compromise on the functionality. This priority
levels must be clearly stated. These may be mapped to the test groups also.



Test strategy 191

Test Status Collections and Reporting
When test cases are executed, the test leader and the project manager must know, where exactly the project stands in
terms of testing activities. To know where the project stands, the inputs from the individual testers must come to the
test leader. This will include, what test cases are executed, how long it took, how many test cases passed, how many
failed, and how many are not executable. Also, how often the project collects the status is to be clearly stated. Some
projects will have a practice of collecting the status on a daily basis or weekly basis.

Test Records Maintenance
When the test cases are executed, we need to keep track of the execution details like when it is executed, who did it,
how long it took, what is the result etc. This data must be available to the test leader and the project manager, along
with all the team members, in a central location. This may be stored in a specific directory in a central server and the
document must say clearly about the locations and the directories. The naming convention for the documents and
files must also be mentioned.

Requirements traceability matrix
Ideally, the software must completely satisfy the set of requirements. From design, each requirement must be
addressed in every single document in the software process. The documents include the HLD, LLD, source codes,
unit test cases, integration test cases and the system test cases. In a requirements traceability matrix, the rows will
have the requirements. The columns represent each document. Intersecting cells are marked when a document
addresses a particular requirement with information related to the requirement ID in the document. Ideally, if every
requirement is addressed in every single document, all the individual cells have valid section ids or names filled in.
Then we know that every requirement is addressed. If any cells are empty, it represents that a requirement has not
been correctly addressed.

Test Summary
The senior management may like to have test summary on a weekly or monthly basis. If the project is very critical,
they may need it even on daily basis. This section must address what kind of test summary reports will be produced
for the senior management along with the frequency.
The test strategy must give a clear vision of what the testing team will do for the whole project for the entire
duration. This document will/may be presented to the client also, if needed. The person, who prepares this document,
must be functionally strong in the product domain, with very good experience, as this is the document that is going
to drive the entire team for the testing activities. Test strategy must be clearly explained to the testing team members
right at the beginning of the project.

References
• Ammann,Paul and Offutt, Jeff. Introduction to software testing. New York: Cambridge University Press, 2008
• Dasso, Aristides. Verification, validation and testing in software engineering. Hershey, PA: Idea Group Pub.,

2007



Test plan 192

Test plan
A test plan is a document detailing a systematic approach to testing a system such as a machine or software. The
plan typically contains a detailed understanding of what the eventual workflow will be.

Test plans
A test plan documents the strategy that will be used to verify and ensure that a product or system meets its design
specifications and other requirements. A test plan is usually prepared by or with significant input from Test
Engineers.
Depending on the product and the responsibility of the organization to which the test plan applies, a test plan may
include one or more of the following:
• Design Verification or Compliance test - to be performed during the development or approval stages of the

product, typically on a small sample of units.
• Manufacturing or Production test - to be performed during preparation or assembly of the product in an ongoing

manner for purposes of performance verification and quality control.
• Acceptance or Commissioning test - to be performed at the time of delivery or installation of the product.
• Service and Repair test - to be performed as required over the service life of the product.
• Regression test - to be performed on an existing operational product, to verify that existing functionality didn't get

broken when other aspects of the environment are changed (e.g., upgrading the platform on which an existing
application runs).

A complex system may have a high level test plan to address the overall requirements and supporting test plans to
address the design details of subsystems and components.
Test plan document formats can be as varied as the products and organizations to which they apply. There are three
major elements that should be described in the test plan: Test Coverage, Test Methods, and Test Responsibilities.
These are also used in a formal test strategy.
Test coverage in the test plan states what requirements will be verified during what stages of the product life. Test
Coverage is derived from design specifications and other requirements, such as safety standards or regulatory codes,
where each requirement or specification of the design ideally will have one or more corresponding means of
verification. Test coverage for different product life stages may overlap, but will not necessarily be exactly the same
for all stages. For example, some requirements may be verified during Design Verification test, but not repeated
during Acceptance test. Test coverage also feeds back into the design process, since the product may have to be
designed to allow test access (see Design For Test).
Test methods in the test plan state how test coverage will be implemented. Test methods may be determined by
standards, regulatory agencies, or contractual agreement, or may have to be created new. Test methods also specify
test equipment to be used in the performance of the tests and establish pass/fail criteria. Test methods used to verify
hardware design requirements can range from very simple steps, such as visual inspection, to elaborate test
procedures that are documented separately.
Test responsibilities include what organizations will perform the test methods and at each stage of the product life.
This allows test organizations to plan, acquire or develop test equipment and other resources necessary to implement
the test methods for which they are responsible. Test responsibilities also includes, what data will be collected, and
how that data will be stored and reported (often referred to as "deliverables"). One outcome of a successful test plan
should be a record or report of the verification of all design specifications and requirements as agreed upon by all
parties.

http://en.wikipedia.org/w/index.php?title=Machine
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Workflow
http://en.wikipedia.org/w/index.php?title=Test_Engineer
http://en.wikipedia.org/w/index.php?title=Test_Engineer
http://en.wikipedia.org/w/index.php?title=Design_For_Test


Test plan 193

IEEE 829 test plan structure
IEEE 829-2008, also known as the 829 Standard for Software Test Documentation, is an IEEE standard that
specifies the form of a set of documents for use in defined stages of software testing, each stage potentially
producing its own separate type of document.[1]

• Test plan identifier
• Introduction
• Test items
• Features to be tested
• Features not to be tested
• Approach
• Item pass/fail criteria
• Suspension criteria and resumption requirements
• Test deliverables
• Testing tasks
• Environmental needs
• Responsibilities
• Staffing and training needs
• Schedule
• Risks and contingencies
• Approvals
There are also other IEEE documents that suggest what should be contained in a test plan:
• 829-1983 IEEE Standard for Software Test Documentation (superseded by 829-1998)[2]

• 829-1998 IEEE Standard for Software Test Documentation (superseded by 829-2008)[3]

• 1008-1987 IEEE Standard for Software Unit Testing[4]

• 1012-2004 IEEE Standard for Software Verification & Validation Plans[5]

• 1059-1993 IEEE Guide for Software Verification & Validation Plans (withdrawn)[6]

References
[1] IEEE Standard 829-2008 (http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=4578383)
[2] IEEE Standard 829-1983 (http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=573169)
[3] IEEE Standard 829-1998 (http:/ / ieeexplore. ieee. org/ stamp/ stamp. jsp?tp=& arnumber=741968& isnumber=16010)
[4] IEEE Standard 1008-1987 (http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=27763)
[5] IEEE Standard 1012-2004 (http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=1488512)
[6] IEEE Standard 1059-1993 (http:/ / ieeexplore. ieee. org/ xpl/ freeabs_all. jsp?arnumber=838043)

External links
• Public domain RUP test plan template at Sourceforge (http:/ / jdbv. sourceforge. net/ RUP. html) (templates are

currently inaccessible but sample documents can be seen here: DBV Samples (http:/ / jdbv. sourceforge. net/
Documentation. html))

• Test plans and test cases (http:/ / www. stellman-greene. com/ testplan)

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4578383
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=573169
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&isnumber=16010
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=27763
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1488512
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=838043
http://en.wikipedia.org/w/index.php?title=RUP
http://jdbv.sourceforge.net/RUP.html
http://jdbv.sourceforge.net/Documentation.html
http://jdbv.sourceforge.net/Documentation.html
http://www.stellman-greene.com/testplan


Traceability matrix 194

Traceability matrix
A traceability matrix is a document, usually in the form of a table, that correlates any two baselined documents that
require a many to many relationship to determine the completeness of the relationship. It is often used with
high-level requirements (these often consist of marketing requirements) and detailed requirements of the software
product to the matching parts of high-level design, detailed design, test plan, and test cases.
A requirements traceability matrix may be used to check to see if the current project requirements are being met,
and to help in the creation of a Request for Proposal, various deliverable documents, and project plan tasks.[1]

Common usage is to take the identifier for each of the items of one document and place them in the left column. The
identifiers for the other document are placed across the top row. When an item in the left column is related to an item
across the top, a mark is placed in the intersecting cell. The number of relationships are added up for each row and
each column. This value indicates the mapping of the two items. Zero values indicate that no relationship exists. It
must be determined if one must be made. Large values imply that the relationship is too complex and should be
simplified.
To ease the creation of traceability matrices, it is advisable to add the relationships to the source documents for both
backward traceability and forward traceability. In other words, when an item is changed in one baselined document,
it's easy to see what needs to be changed in the other.

Sample Traceability matrix

Requirement Identifiers Reqs Tested REQ1
UC
1.1

REQ1
UC
1.2

REQ1
UC
1.3

REQ1
UC
2.1

REQ1
UC
2.2

REQ1
UC

2.3.1

REQ1
UC

2.3.2

REQ1
UC

2.3.3

REQ1
UC
2.4

REQ1
UC
3.1

REQ1
UC
3.2

REQ1
TECH

1.1

REQ1
TECH

1.2

REQ1
TECH

1.3

Test Cases 321 3 2 3 1 1 1 1 1 1 2 3 1 1 1

Tested Implicitly 77

1.1.1 1 x

1.1.2 2 x x

1.1.3 2 x x

1.1.4 1 x

1.1.5 2 x x

1.1.6 1 x

1.1.7 1 x

1.2.1 2 x x

1.2.2 2 x x

1.2.3 2 x x

1.3.1 1 x

1.3.2 1 x

1.3.3 1 x

1.3.4 1 x

1.3.5 1 x

etc…

5.6.2 1 x

http://en.wikipedia.org/w/index.php?title=Baseline_%28configuration_management%29
http://en.wikipedia.org/w/index.php?title=Requirement
http://en.wikipedia.org/w/index.php?title=High-level_design
http://en.wikipedia.org/w/index.php?title=Request_for_Proposal


Traceability matrix 195

References
[1] Carlos, Tom (2008-10-21). Requirements Traceability Matrix - RTM. PM Hut, 21 October 2008. Retrieved on 2009-10-17 from http:/ / www.

pmhut. com/ requirements-traceability-matrix-rtm.

External links
• Bidirectional Requirements Traceability (http:/ / www. compaid. com/ caiinternet/ ezine/ westfall-bidirectional.

pdf) by Linda Westfall
• Requirements Traceability (http:/ / www. projectperfect. com. au/ info_requirements_traceability. php) Neville

Turbit
• Software Development Life Cycles: Outline for Developing a Traceability Matrix (http:/ / www. regulatory. com/

forum/ article/ tracedoc. html) by Diana Baldwin
• StickyMinds article: Traceability Matrix (http:/ / www. stickyminds. com/ r. asp?F=DART_6051) by Karthikeyan

V
• Why Software Requirements Traceability Remains a Challenge (http:/ / www. crosstalkonline. org/ storage/

issue-archives/ 2009/ 200907/ 200907-Kannenberg. pdf) by Andrew Kannenberg and Dr. Hossein Saiedian

Test case
A test case in software engineering is a set of conditions or variables under which a tester will determine whether an
application or software system is working correctly or not. The mechanism for determining whether a software
program or system has passed or failed such a test is known as a test oracle. In some settings, an oracle could be a
requirement or use case, while in others it could be a heuristic. It may take many test cases to determine that a
software program or system is considered sufficiently scrutinized to be released. Test cases are often referred to as
test scripts, particularly when written. Written test cases are usually collected into test suites.

Formal test cases
In order to fully test that all the requirements of an application are met, there must be at least two test cases for each
requirement: one positive test and one negative test. If a requirement has sub-requirements, each sub-requirement
must have at least two test cases. Keeping track of the link between the requirement and the test is frequently done
using a traceability matrix. Written test cases should include a description of the functionality to be tested, and the
preparation required to ensure that the test can be conducted.
A formal written test-case is characterized by a known input and by an expected output, which is worked out before
the test is executed. The known input should test a precondition and the expected output should test a postcondition.

Informal test cases
For applications or systems without formal requirements, test cases can be written based on the accepted normal
operation of programs of a similar class. In some schools of testing, test cases are not written at all but the activities
and results are reported after the tests have been run.
In scenario testing, hypothetical stories are used to help the tester think through a complex problem or system. These
scenarios are usually not written down in any detail. They can be as simple as a diagram for a testing environment or
they could be a description written in prose. The ideal scenario test is a story that is motivating, credible, complex,
and easy to evaluate. They are usually different from test cases in that test cases are single steps while scenarios
cover a number of steps of the key.

http://www.pmhut.com/requirements-traceability-matrix-rtm.
http://www.pmhut.com/requirements-traceability-matrix-rtm.
http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf
http://www.compaid.com/caiinternet/ezine/westfall-bidirectional.pdf
http://www.projectperfect.com.au/info_requirements_traceability.php
http://www.regulatory.com/forum/article/tracedoc.html
http://www.regulatory.com/forum/article/tracedoc.html
http://www.stickyminds.com/r.asp?F=DART_6051
http://www.crosstalkonline.org/storage/issue-archives/2009/200907/200907-Kannenberg.pdf
http://www.crosstalkonline.org/storage/issue-archives/2009/200907/200907-Kannenberg.pdf
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Software_application
http://en.wikipedia.org/w/index.php?title=Software_system
http://en.wikipedia.org/w/index.php?title=Oracle_%28software_testing%29
http://en.wikipedia.org/w/index.php?title=Requirement
http://en.wikipedia.org/w/index.php?title=Use_case
http://en.wikipedia.org/w/index.php?title=Heuristic
http://en.wikipedia.org/w/index.php?title=Negative_test
http://en.wikipedia.org/w/index.php?title=Precondition
http://en.wikipedia.org/w/index.php?title=Postcondition


Test case 196

Typical written test case format
A test case is usually a single step, or occasionally a sequence of steps, to test the correct behaviour/functionalities,
features of an application. An expected result or expected outcome is usually given.
Additional information that may be included:
• test case ID
• test case description
• test step or order of execution number
• related requirement(s)
• depth
• test category
• author
• check boxes for whether the test is automatable and has been automated.
Additional fields that may be included and completed when the tests are executed:
• pass/fail
• remarks
Larger test cases may also contain prerequisite states or steps, and descriptions.
A written test case should also contain a place for the actual result.
These steps can be stored in a word processor document, spreadsheet, database or other common repository.
In a database system, you may also be able to see past test results and who generated the results and the system
configuration used to generate those results. These past results would usually be stored in a separate table.
Test suites often also contain
• Test summary
• Configuration
Besides a description of the functionality to be tested, and the preparation required to ensure that the test can be
conducted, the most time consuming part in the test case is creating the tests and modifying them when the system
changes.
Under special circumstances, there could be a need to run the test, produce results, and then a team of experts would
evaluate if the results can be considered as a pass. This happens often on new products' performance number
determination. The first test is taken as the base line for subsequent test / product release cycles.
Acceptance tests, which use a variation of a written test case, are commonly performed by a group of end-users or
clients of the system to ensure the developed system meets the requirements specified or the contract. User
acceptance tests are differentiated by the inclusion of happy path or positive test cases to the almost complete
exclusion of negative test cases.

References

External links
• Writing Software Security Test Cases - Putting security test cases into your test plan (http:/ / www. qasec. com/

cycle/ securitytestcases. shtml) by Robert Auger

http://en.wikipedia.org/w/index.php?title=Acceptance_test
http://en.wikipedia.org/w/index.php?title=End-user
http://en.wikipedia.org/w/index.php?title=Happy_path
http://www.qasec.com/cycle/securitytestcases.shtml
http://www.qasec.com/cycle/securitytestcases.shtml


Test data 197

Test data
Test Data are data which have been specifically identified for use in tests, typically of a computer program.
Some data may be used in a confirmatory way, typically to verify that a given set of input to a given function
produces some expected result. Other data may be used in order to challenge the ability of the program to respond to
unusual, extreme, exceptional, or unexpected input.
Test data may be produced in a focused or systematic way (as is typically the case in domain testing), or by using
other, less-focused approaches (as is typically the case in high-volume randomized automated tests). Test data may
be produced by the tester, or by a program or function that aids the tester. Test data may be recorded for re-use, or
used once and then forgotten.
Domain testing is a family of test techniques that focus on the test data. This might include identifying common or
critical inputs, representatives of a particular equivalence class model, values that might appear at the boundaries
between one equivalence class and another, outrageous values that should be rejected by the program, combinations
of inputs, or inputs that might drive the product towards a particular set of outputs.

References
• "The evaluation of program-based software test data adequacy criteria" [1], E. J. Weyuker, Communications of the

ACM (abstract and references)
• Free online tool platform for test data generation http:/ / www. testersdesk. com [2]

• GEDIS Studio is an advanced workbench for generating realistic test data. Community, Pro and Ents versions are
available. [3]

References
[1] http:/ / portal. acm. org/ citation. cfm?id=62963
[2] http:/ / www. testersdesk. com
[3] http:/ / www. genielog. com

http://portal.acm.org/citation.cfm?id=62963
http://www.testersdesk.com
http://www.testersdesk.com
http://www.genielog.com
http://portal.acm.org/citation.cfm?id=62963
http://www.testersdesk.com
http://www.genielog.com


Test suite 198

Test suite
In software development, a test suite, less commonly known as a validation suite, is a collection of test cases that are
intended to be used to test a software program to show that it has some specified set of behaviours. A test suite often
contains detailed instructions or goals for each collection of test cases and information on the system configuration to
be used during testing. A group of test cases may also contain prerequisite states or steps, and descriptions of the
following tests.
Collections of test cases are sometimes incorrectly termed a test plan, a test script, or even a test scenario.

Types
Occasionally, test suites are used to group similar test cases together. A system might have a smoke test suite that
consists only of smoke tests or a test suite for some specific functionality in the system. It may also contain all tests
and signify if a test should be used as a smoke test or for some specific functionality.
An executable test suite is a test suite that can be executed by a program. This usually means that a test harness,
which is integrated with the suite, exists. The test suite and the test harness together can work on a sufficiently
detailed level to correctly communicate with the system under test (SUT).
A test suite for a primality testing subroutine might consist of a list of numbers and their primality (prime or
composite), along with a testing subroutine. The testing subroutine would supply each number in the list to the
primality tester, and verify that the result of each test is correct.

External links
• The Plum Hall Validation Suite for C/C++ and the C++ Library [1], a popular executable Test Suite.

References
[1] http:/ / www. plumhall. com/ suites. html

http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Test_scenario
http://en.wikipedia.org/w/index.php?title=Smoke_test
http://en.wikipedia.org/w/index.php?title=System_under_test
http://en.wikipedia.org/w/index.php?title=Primality
http://en.wikipedia.org/w/index.php?title=Subroutine
http://www.plumhall.com/suites.html
http://www.plumhall.com/suites.html


Test script 199

Test script
A test script in software testing is a set of instructions that will be performed on the system under test to test that the
system functions as expected.
There are various means for executing test scripts.
• Manual testing. These are more commonly called test cases.
• Automated testing

• Short program written in a programming language used to test part of the functionality of a software system.
Test scripts written as a short program can either be written using a special automated functional GUI test tool
(such as HP QuickTest Professional, Borland SilkTest, and Rational Robot) or in a well-known programming
language (such as C++, C#, Tcl, Expect, Java, PHP, Perl, Powershell, Python, or Ruby).

• Extensively parameterized short programs a.k.a. Data-driven testing
• Reusable steps created in a table a.k.a. keyword-driven or table-driven testing.

These last two types are also done in manual testing.
The major advantage of automated testing is that tests may be executed continuously without the need for a human
intervention. Another advantage over manual testing in that it is faster and easily repeatable. Thus, it is worth
considering automating tests if they are to be executed several times, for example as part of regression testing.
Disadvantages of automated testing are that automated tests can — like any piece of software — be poorly written or
simply break during playback. They also can only examine what they have been programmed to examine. Since
most systems are designed with human interaction in mind, it is good practice that a human tests the system at some
point. A trained manual tester can notice that the system under test is misbehaving without being prompted or
directed however automated tests can only examine what they have been programmed to examine. Therefore, when
used in regression testing, manual testers can find new bugs while ensuring that old bugs do not reappear while an
automated test can only ensure the latter. That is why mixed testing with automated and manual testing can give very
good results, automating what needs to be tested often and can be easily checked by a machine, and using manual
testing to do test design to add them to the automated tests suite and to do exploratory testing.
One shouldn't fall into the trap of spending more time automating a test than it would take to simply execute it
manually, unless it is planned to be executed several times.

http://en.wikipedia.org/w/index.php?title=System_under_test
http://en.wikipedia.org/w/index.php?title=Automated_testing
http://en.wikipedia.org/w/index.php?title=HP_QuickTest_Professional
http://en.wikipedia.org/w/index.php?title=SilkTest
http://en.wikipedia.org/w/index.php?title=Rational_Software
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=Programming_language
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Tcl
http://en.wikipedia.org/w/index.php?title=Expect
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Perl
http://en.wikipedia.org/w/index.php?title=Windows_Powershell
http://en.wikipedia.org/w/index.php?title=Python_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ruby_programming_language
http://en.wikipedia.org/w/index.php?title=Table-driven_testing
http://en.wikipedia.org/w/index.php?title=Test_design


Test harness 200

Test harness
In software testing, a test harness or automated test framework is a collection of software and test data configured
to test a program unit by running it under varying conditions and monitoring its behavior and outputs. It has two
main parts: the Test execution engine and the Test script repository.
Test harnesses allow for the automation of tests. They can call functions with supplied parameters and print out and
compare the results to the desired value. The test harness is a hook to the developed code, which can be tested using
an automation framework.
A test harness should allow specific tests to run (this helps in optimising), orchestrate a runtime environment, and
provide a capability to analyse results.
The typical objectives of a test harness are to:
• Automate the testing process.
• Execute test suites of test cases.
• Generate associated test reports.
A test harness may provide some of the following benefits:
• Increased productivity due to automation of the testing process.
• Increased probability that regression testing will occur.
• Increased quality of software components and application.
• Ensure that subsequent test runs are exact duplicates of previous ones.
• Testing can occur at times that the office is not staffed (ie. at night)
• A test script may include conditions and/or uses that are otherwise difficult to simulate (load, for example)
An alternative definition of a test harness is software constructed to facilitate integration testing. Where test stubs are
typically components of the application under development and are replaced by working component as the
application is developed (top-down design), test harnesses are external to the application being tested and simulate
services or functionality not available in a test environment. For example, if you're building an application that needs
to interface with an application on a mainframe computer but none is available during development, a test harness
maybe built to use as a substitute. A test harness maybe part of a project deliverable. It’s kept outside of the
application source code and maybe reused on multiple projects. Because a test harness simulates application
functionality - it has no knowledge of test suites, test cases or test reports. Those things are provided by a testing
framework and associated automated testing tools.

http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Test_script_repository
http://en.wikipedia.org/w/index.php?title=Test_Automation_Framework


201

Static testing

Static testing
Static testing is a form of software testing where the software isn't actually used. This is in contrast to dynamic
testing. It is generally not detailed testing, but checks mainly for the sanity of the code, algorithm, or document. It is
primarily syntax checking of the code and/or manually reviewing the code or document to find errors. This type of
testing can be used by the developer who wrote the code, in isolation. Code reviews, inspections and walkthroughs
are also used.
From the black box testing point of view, static testing involves reviewing requirements and specifications. This is
done with an eye toward completeness or appropriateness for the task at hand. This is the verification portion of
Verification and Validation.
Even static testing can be automated. A static testing test suite consists of programs to be analyzed by an interpreter
or a compiler that asserts the programs syntactic validity.
Bugs discovered at this stage of development are less expensive to fix than later in the development cycle.
The people involved in static testing are application developers and testers.

Sources
• Kaner, Cem; Nguyen, Hung Q; Falk, Jack (1988). Testing Computer Software (Second ed.). Boston: Thomson

Computer Press. ISBN 0-47135-846-0.
• Static Testing C++ Code: A utility to check library usability [1]

References
[1] http:/ / www. ddj. com/ cpp/ 205801074

http://en.wikipedia.org/w/index.php?title=Dynamic_testing
http://en.wikipedia.org/w/index.php?title=Dynamic_testing
http://en.wikipedia.org/w/index.php?title=Walkthrough
http://en.wikipedia.org/w/index.php?title=Black_box_testing
http://en.wikipedia.org/w/index.php?title=Requirement
http://en.wikipedia.org/w/index.php?title=Specification_%28standards%29
http://en.wikipedia.org/w/index.php?title=Verification_and_Validation
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://www.ddj.com/cpp/205801074
http://www.ddj.com/cpp/205801074


Software review 202

Software review
A software review is "A process or meeting during which a software product is examined by a project personnel,
managers, users, customers, user representatives, or other interested parties for comment or approval".[1]

In this context, the term "software product" means "any technical document or partial document, produced as a
deliverable of a software development activity", and may include documents such as contracts, project plans and
budgets, requirements documents, specifications, designs, source code, user documentation, support and
maintenance documentation, test plans, test specifications, standards, and any other type of specialist work product.

Varieties of software review
Software reviews may be divided into three categories:
• Software peer reviews are conducted by the author of the work product, or by one or more colleagues of the

author, to evaluate the technical content and/or quality of the work.[2]

• Software management reviews are conducted by management representatives to evaluate the status of work done
and to make decisions regarding downstream activities.

• Software audit reviews are conducted by personnel external to the software project, to evaluate compliance with
specifications, standards, contractual agreements, or other criteria.

Different types of reviews
• Code review is systematic examination (often as peer review) of computer source code.
• Pair programming is a type of code review where two persons develop code together at the same workstation.
• Inspection is a very formal type of peer review where the reviewers are following a well-defined process to find

defects.
• Walkthrough is a form of peer review where the author leads members of the development team and other

interested parties through a software product and the participants ask questions and make comments about
defects.

• Technical review is a form of peer review in which a team of qualified personnel examines the suitability of the
software product for its intended use and identifies discrepancies from specifications and standards.

Formal versus informal reviews
"Formality" identifies the degree to which an activity is governed by agreed (written) rules. Software review
processes exist across a spectrum of formality, with relatively unstructured activities such as "buddy checking"
towards one end of the spectrum, and more formal approaches such as walkthroughs, technical reviews, and software
inspections, at the other. IEEE Std. 1028-1997 defines formal structures, roles, and processes for each of the last
three ("formal peer reviews"), together with software audits.[1]

Research studies tend to support the conclusion that formal reviews greatly outperform informal reviews in
cost-effectiveness. Informal reviews may often be unnecessarily expensive (because of time-wasting through lack of
focus), and frequently provide a sense of security which is quite unjustified by the relatively small number of real
defects found and repaired.

http://en.wikipedia.org/w/index.php?title=Software_management_review
http://en.wikipedia.org/w/index.php?title=Compliance_%28regulation%29
http://en.wikipedia.org/w/index.php?title=Pair_programming
http://en.wikipedia.org/w/index.php?title=Walkthrough
http://en.wikipedia.org/w/index.php?title=Software_audit


Software review 203

IEEE 1028 generic process for formal reviews
IEEE Std 1028 defines a common set of activities for "formal" reviews (with some variations, especially for software
audit). The sequence of activities is largely based on the software inspection process originally developed at IBM by
Michael Fagan.[3] Differing types of review may apply this structure with varying degrees of rigour, but all activities
are mandatory for inspection:
• 0. [Entry evaluation]: The Review Leader uses a standard checklist of entry criteria to ensure that optimum

conditions exist for a successful review.
• 1. Management preparation: Responsible management ensure that the review will be appropriately resourced

with staff, time, materials, and tools, and will be conducted according to policies, standards, or other relevant
criteria.

• 2. Planning the review: The Review Leader identifies or confirms the objectives of the review, organises a team
of Reviewers, and ensures that the team is equipped with all necessary resources for conducting the review.

• 3. Overview of review procedures: The Review Leader, or some other qualified person, ensures (at a meeting if
necessary) that all Reviewers understand the review goals, the review procedures, the materials available to them,
and the procedures for conducting the review.

• 4. [Individual] Preparation: The Reviewers individually prepare for group examination of the work under
review, by examining it carefully for anomalies (potential defects), the nature of which will vary with the type of
review and its goals.

• 5. [Group] Examination: The Reviewers meet at a planned time to pool the results of their preparation activity
and arrive at a consensus regarding the status of the document (or activity) being reviewed.

• 6. Rework/follow-up: The Author of the work product (or other assigned person) undertakes whatever actions
are necessary to repair defects or otherwise satisfy the requirements agreed to at the Examination meeting. The
Review Leader verifies that all action items are closed.

• 7. [Exit evaluation]: The Review Leader verifies that all activities necessary for successful review have been
accomplished, and that all outputs appropriate to the type of review have been finalised.

Value of reviews
The most obvious value of software reviews (especially formal reviews) is that they can identify issues earlier and
more cheaply than they would be identified by testing or by field use (the defect detection process). The cost to find
and fix a defect by a well-conducted review may be one or two orders of magnitude less than when the same defect
is found by test execution or in the field.
A second, but ultimately more important, value of software reviews is that they can be used to train technical authors
in the development of extremely low-defect documents, and also to identify and remove process inadequacies that
encourage defects (the defect prevention process).
This is particularly the case for peer reviews if they are conducted early and often, on samples of work, rather than
waiting until the work has been completed. Early and frequent reviews of small work samples can identify
systematic errors in the Author's work processes, which can be corrected before further faulty work is done. This
improvement in Author skills can dramatically reduce the time it takes to develop a high-quality technical document,
and dramatically decrease the error-rate in using the document in downstream processes.
As a general principle, the earlier a technical document is produced, the greater will be the impact of its defects on
any downstream activities and their work products. Accordingly, greatest value will accrue from early reviews of
documents such as marketing plans, contracts, project plans and schedules, and requirements specifications.
Researchers and practitioners have shown the effectiveness of reviewing process in finding bugs and security
issues,[4] .



Software review 204

References
[1] IEEE Std. 1028-1997, "IEEE Standard for Software Reviews", clause 3.5
[2] Wiegers, Karl E. (2001). Peer Reviews in Software: A Practical Guide (http:/ / books. google. com/ books?id=d7BQAAAAMAAJ& pgis=1).

Addison-Wesley. p. 14. ISBN 0201734850. .
[3] Fagan, Michael E: "Design and Code Inspections to Reduce Errors in Program Development", IBM Systems Journal, Vol. 15, No. 3, 1976;

"Inspecting Software Designs and Code", Datamation, October 1977; "Advances In Software Inspections", IEEE Transactions in Software
Engineering, Vol. 12, No. 7, July 1986

[4] Charles P.Pfleeger, Shari Lawrence Pfleeger. Security in Computing. Fourth edition. ISBN 0-13-239077-9

Software peer review
In software development, peer review is a type of software review in which a work product (document, code, or
other) is examined by its author and one or more colleagues, in order to evaluate its technical content and quality.

Purpose
The purpose of a peer review is to provide "a disciplined engineering practice for detecting and correcting defects in
software artifacts, and preventing their leakage into field operations" according to the Capability Maturity Model.
When performed as part of each Software development process activity, peer reviews identify problems that can be
fixed early in the lifecycle.[1] That is to say, a peer review that identifies a requirements problem during the
Requirements analysis activity is cheaper and easier to fix than during the Software architecture or Software testing
activities.
The National Software Quality Experiment,[2] evaluating the effectiveness of peer reviews, finds, "a favorable return
on investment for software inspections; savings exceeds costs by 4 to 1". To state it another way, it is four times
more costly, on average, to identify and fix a software problem later.

Distinction from other types of software review
Peer reviews are distinct from management reviews, which are conducted by management representatives rather than
by colleagues, and for management and control purposes rather than for technical evaluation. They are also distinct
from software audit reviews, which are conducted by personnel external to the project, to evaluate compliance with
specifications, standards, contractual agreements, or other criteria.

Review processes
Peer review processes exist across a spectrum of formality, with relatively unstructured activities such as "buddy
checking" towards one end of the spectrum, and more formal approaches such as walkthroughs, technical peer
reviews, and software inspections, at the other. The IEEE defines formal structures, roles, and processes for each of
the last three.[3]

Management representatives are typically not involved in the conduct of a peer review except when included because
of specific technical expertise or when the work product under review is a management-level document. This is
especially true of line managers of other participants in the review.
Processes for formal peer reviews, such as software inspections, define specific roles for each participant, quantify
stages with entry/exit criteria, capture software metrics on the peer review process.

http://en.wikipedia.org/w/index.php?title=IEEE
http://books.google.com/books?id=d7BQAAAAMAAJ&pgis=1
http://en.wikipedia.org/w/index.php?title=Peer_review
http://en.wikipedia.org/w/index.php?title=Capability_Maturity_Model
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Requirements_analysis
http://en.wikipedia.org/w/index.php?title=Software_architecture
http://en.wikipedia.org/w/index.php?title=Walkthrough
http://en.wikipedia.org/w/index.php?title=Technical_peer_review
http://en.wikipedia.org/w/index.php?title=Technical_peer_review
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Software_metrics


Software peer review 205

"Open source" reviews
In the free / open source community, something like peer review has taken place in the engineering and evaluation of
computer software. In this context, the rationale for peer review has its equivalent in Linus's law, often phrased:
"Given enough eyeballs, all bugs are shallow", meaning "If there are enough reviewers, all problems are easy to
solve." Eric S. Raymond has written influentially about peer review in software development.[4]

References
[1] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 261. ISBN 0470042125. .
[2] National Software Quality Experiment Resources and Results (http:/ / members. aol. com/ ONeillDon/ nsqe-results. html)
[3] IEEE Std. 1028-2008, "IEEE Standard for Software Reviews and Audits" (http:/ / ieeexplore. ieee. org/ servlet/ opac?punumber=4601582)
[4] Eric S. Raymond. The Cathedral and the Bazaar.

Software audit review
A software audit review, or software audit, is a type of software review in which one or more auditors who are not
members of the software development organization conduct "An independent examination of a software product,
software process, or set of software processes to assess compliance with specifications, standards, contractual
agreements, or other criteria" [1] .
"Software product" mostly, but not exclusively, refers to some kind of technical document. IEEE Std. 1028 offers a
list of 32 "examples of software products subject to audit", including documentary products such as various sorts of
plan, contracts, specifications, designs, procedures, standards, and reports, but also non-documentary products such
as data, test data, and deliverable media.
Software audits are distinct from software peer reviews and software management reviews in that they are conducted
by personnel external to, and independent of, the software development organization, and are concerned with
compliance of products or processes, rather than with their technical content, technical quality, or managerial
implications.
The term "software audit review" is adopted here to designate the form of software audit described in IEEE Std.
1028.

Objectives and participants
"The purpose of a software audit is to provide an independent evaluation of conformance of software products and
processes to applicable regulations, standards, guidelines, plans, and procedures" [2] . The following roles are
recommended:
• The Initiator (who might be a manager in the audited organization, a customer or user representative of the

audited organization, or a third party), decides upon the need for an audit, establishes its purpose and scope,
specifies the evaluation criteria, identifies the audit personnel, decides what follow-up actions will be required,
and distributes the audit report.

• The Lead Auditor (who must be someone "free from bias and influence that could reduce his ability to make
independent, objective evaluations") is responsible for administrative tasks such as preparing the audit plan and
assembling and managing the audit team, and for ensuring that the audit meets its objectives.

• The Recorder documents anomalies, action items, decisions, and recommendations made by the audit team.
• The Auditors (who must be, like the Lead Auditor, free from bias) examine products defined in the audit plan,

document their observations, and recommend corrective actions. (There may be only a single auditor.)

http://en.wikipedia.org/w/index.php?title=Free_software_community
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Linus%27s_law
http://en.wikipedia.org/w/index.php?title=Eric_S._Raymond
http://en.wikipedia.org/w/index.php?title=Software_development
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://members.aol.com/ONeillDon/nsqe-results.html
http://ieeexplore.ieee.org/servlet/opac?punumber=4601582
http://en.wikipedia.org/w/index.php?title=Eric_S._Raymond
http://en.wikipedia.org/w/index.php?title=The_Cathedral_and_the_Bazaar
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Software_management_review
http://en.wikipedia.org/w/index.php?title=Compliance_%28regulation%29
http://en.wikipedia.org/w/index.php?title=Software_audit


Software audit review 206

• The Audited Organization provides a liaison to the auditors, and provides all information requested by the
auditors. When the audit is completed, the audited organization should implement corrective actions and
recommendations.

Tools
Parts of Software audit could be done using static analysis tools that analyze application code and score its
conformance with standards, guidelines, best practices. From the List of tools for static code analysis some are
covering a very large spectrum from code to architecture review, and could be use for benchmarking.

References
[1] IEEE Std. 1028-1997, IEEE Standard for Software Reviews, clause 3.2
[2] IEEE Std. 10281997, clause 8.1

Software technical review
A software technical review is a form of peer review in which "a team of qualified personnel ... examines the
suitability of the software product for its intended use and identifies discrepancies from specifications and standards.
Technical reviews may also provide recommendations of alternatives and examination of various alternatives" (IEEE
Std. 1028-1997, IEEE Standard for Software Reviews, clause 3.7).
"Software product" normally refers to some kind of technical document. This might be a software design document
or program source code, but use cases, business process definitions, test case specifications, and a variety of other
technical documentation, may also be subject to technical review.
Technical review differs from software walkthroughs in its specific focus on the technical quality of the product
reviewed. It differs from software inspection in its ability to suggest direct alterations to the product reviewed, and
its lack of a direct focus on training and process improvement.
The term formal technical review is sometimes used to mean a software inspection.

Objectives and participants
The purpose of a technical review is to arrive at a technically superior version of the work product reviewed, whether
by correction of defects or by recommendation or introduction of alternative approaches. While the latter aspect may
offer facilities that software inspection lacks, there may be a penalty in time lost to technical discussions or disputes
which may be beyond the capacity of some participants.
IEEE 1028 recommends the inclusion of participants to fill the following roles:
The Decision Maker (the person for whom the technical review is conducted) determines if the review objectives
have been met.
The Review Leader is responsible for performing administrative tasks relative to the review, ensuring orderly
conduct, and ensuring that the review meets its objectives.
The Recorder documents anomalies, action items, decisions, and recommendations made by the review team.
Technical staff are active participants in the review and evaluation of the software product.
Management staff may participate for the purpose of identifying issues that require management resolution.
Customer or user representatives may fill roles determined by the Review Leader prior to the review.
A single participant may fill more than one role, as appropriate.

http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Peer_review
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Software_design_document
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Use_case
http://en.wikipedia.org/w/index.php?title=Business_process


Software technical review 207

Process
A formal technical review will follow a series of activities similar to that specified in clause 5 of IEEE 1028,
essentially summarised in the article on software review.

Management review
A management review is a management study into a project's status and allocation of resources. It is different from
both a software engineering peer review, which evaluates the technical quality of software products, and a software
audit, which is an externally conducted audit into a project's compliance to specifications, contractual agreements,
and other criteria.

Process
A management review can be an informal process, but generally requires a formal structure and rules of conduct,
such as those advocated in the IEEE standard, which are:[1]

1. Evaluate entry?
2. Management preparation?
3. Plan the structure of the review
4. Overview of review procedures?
5. [Individual] Preparation?
6. [Group] Examination?
7. Rework/follow-up?
8. [Exit evaluation]?

Definition
In software engineering, a management review is defined by the IEEE as:

A systematic evaluation of a software acquisition, supply, development, operation, or maintenance
process performed by or on behalf of management ... [and conducted] to monitor progress, determine the
status of plans and schedules, confirm requirements and their system allocation, or evaluate the
effectiveness of management approaches used to achieve fitness for purpose. Management reviews
support decisions about corrective actions, changes in the allocation of resources, or changes to the
scope of the project.
Management reviews are carried out by, or on behalf of, the management personnel having direct
responsibility for the system. Management reviews identify consistency with and deviations from plans,
or adequacies and inadequacies of management procedures. This examination may require more than
one meeting. The examination need not address all aspects of the product."[2]

References
[1] IEEE Std. 1028-1997, IEEE Standard for Software Reviews, clauses "Entry criteria"; 4.5, "Procedures"; 4.6, "Exit criteria"
[2] IEEE Std. 1028-1997, IEEE Standard for Software Reviews, clauses 3.4, 4.1

http://en.wikipedia.org/w/index.php?title=Specifications
http://en.wikipedia.org/w/index.php?title=Contractual_agreement
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=IEEE


Software inspection 208

Software inspection
Inspection in software engineering, refers to peer review of any work product by trained individuals who look for
defects using a well defined process. An inspection might also be referred to as a Fagan inspection after Michael
Fagan, the creator of a very popular software inspection process.

Introduction
An inspection is one of the most common sorts of review practices found in software projects. The goal of the
inspection is for all of the inspectors to reach consensus on a work product and approve it for use in the project.
Commonly inspected work products include software requirements specifications and test plans. In an inspection, a
work product is selected for review and a team is gathered for an inspection meeting to review the work product. A
moderator is chosen to moderate the meeting. Each inspector prepares for the meeting by reading the work product
and noting each defect. The goal of the inspection is to identify defects. In an inspection, a defect is any part of the
work product that will keep an inspector from approving it. For example, if the team is inspecting a software
requirements specification, each defect will be text in the document which an inspector disagrees with.

The process
The inspection process was developed by Michael Fagan in the mid-1970s and it has later been extended and
modified.
The process should have entry criteria that determine if the inspection process is ready to begin. This prevents
unfinished work products from entering the inspection process. The entry criteria might be a checklist including
items such as "The document has been spell-checked".
The stages in the inspections process are: Planning, Overview meeting, Preparation, Inspection meeting, Rework and
Follow-up. The Preparation, Inspection meeting and Rework stages might be iterated.
• Planning: The inspection is planned by the moderator.
• Overview meeting: The author describes the background of the work product.
• Preparation: Each inspector examines the work product to identify possible defects.
• Inspection meeting: During this meeting the reader reads through the work product, part by part and the

inspectors point out the defects for every part.
• Rework: The author makes changes to the work product according to the action plans from the inspection

meeting.
• Follow-up: The changes by the author are checked to make sure everything is correct.
The process is ended by the moderator when it satisfies some predefined exit criteria.

http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Peer_review
http://en.wikipedia.org/w/index.php?title=Requirements_analysis


Software inspection 209

Inspection roles
During an inspection the following roles are used.
• Author: The person who created the work product being inspected.
• Moderator: This is the leader of the inspection. The moderator plans the inspection and coordinates it.
• Reader: The person reading through the documents, one item at a time. The other inspectors then point out

defects.
• Recorder/Scribe: The person that documents the defects that are found during the inspection.
• Inspector: The person that examines the work product to identify possible defects.

Related inspection types

Code review
A code review can be done as a special kind of inspection in which the team examines a sample of code and fixes
any defects in it. In a code review, a defect is a block of code which does not properly implement its requirements,
which does not function as the programmer intended, or which is not incorrect but could be improved (for example,
it could be made more readable or its performance could be improved). In addition to helping teams find and fix
bugs, code reviews are useful for both cross-training programmers on the code being reviewed and for helping junior
developers learn new programming techniques.

Peer Reviews
Peer reviews are considered an industry best-practice for detecting software defects early and learning about
software artifacts. Peer Reviews are composed of software walkthroughs and software inspections and are integral to
software product engineering activities. A collection of coordinated knowledge, skills, and behaviors facilitates the
best possible practice of Peer Reviews. The elements of Peer Reviews include the structured review process,
standard of excellence product checklists, defined roles of participants, and the forms and reports.
Software inspections are the most rigorous form of Peer Reviews and fully utilize these elements in detecting
defects. Software walkthroughs draw selectively upon the elements in assisting the producer to obtain the deepest
understanding of an artifact and reaching a consensus among participants. Measured results reveal that Peer Reviews
produce an attractive return on investment obtained through accelerated learning and early defect detection. For best
results, Peer Reviews are rolled out within an organization through a defined program of preparing a policy and
procedure, training practitioners and managers, defining measurements and populating a database structure, and
sustaining the roll out infrastructure.

External links
• Review and inspection practices [1]

• Article Software Inspections [2] by Ron Radice
• Comparison of different inspection and review techniques [3]

• Inspection Software [4] Information Portal

References
[1] http:/ / www. stellman-greene. com/ reviews
[2] http:/ / www. methodsandtools. com/ archive/ archive. php?id=29
[3] http:/ / www. the-software-experts. de/ e_dta-sw-test-inspection. htm
[4] http:/ / www. inspectionsoftware. info

http://www.stellman-greene.com/reviews
http://www.methodsandtools.com/archive/archive.php?id=29
http://www.the-software-experts.de/e_dta-sw-test-inspection.htm
http://www.inspectionsoftware.info
http://www.stellman-greene.com/reviews
http://www.methodsandtools.com/archive/archive.php?id=29
http://www.the-software-experts.de/e_dta-sw-test-inspection.htm
http://www.inspectionsoftware.info


Fagan inspection 210

Fagan inspection
Fagan inspection refers to a structured process of trying to find defects in development documents such as
programming code, specifications, designs and others during various phases of the software development process. It
is named after Michael Fagan who is credited with being the inventor of formal software inspections.

Definition
Fagan Inspection is a group review method used to evaluate output of a given process.
Fagan Inspection defines a process as a certain activity with a pre-specified entry and exit criteria. In every activity
or operation for which entry and exit criteria are specified Fagan Inspections can be used to validate if the output of
the process complies with the exit criteria specified for the process.
Examples of activities for which Fagan Inspection can be used are:
• Requirement specification
• Software/Information System architecture (for example DYA)
• Programming (for example for iterations in XP or DSDM)
• Software testing (for example when creating test scripts)

Usage
The software development process is a typical application of Fagan Inspection; software development process is a
series of operations which will deliver a certain end product and consists of operations like requirements definition,
design, coding up to testing and maintenance. As the costs to remedy a defect are up to 10-100 times less in the early
operations compared to fixing a defect in the maintenance phase it is essential to find defects as close to the point of
insertion as possible. This is done by inspecting the output of each operation and comparing that to the output
requirements, or exit-criteria of that operation.

Criteria
Entry criteria are the criteria or requirements which must be met to enter a specific process[1] . For example for
Fagan inspections the high- and low-level documents must comply with specific entry-criteria before they can be
used for a formal inspection process.
Exit criteria are the criteria or requirements which must be met to complete a specific process. For example for
Fagan inspections the low-level document must comply with specific exit-criteria (as specified in the high-level
document) before the development process can be taken to the next phase.
The exit-criteria are specified in a high-level document, which is then used as the standard to compare the operation
result (low-level document) to during the inspections. Deviations of the low-level document from the requirements
specified in the high-level document are called defects and can be categorized in Major Defects and Minor Defects.

Defects
According to M.E. Fagan, “A defect is an instance in which a requirement is not satisfied.”[1]

In the process of software inspection the defects which are found are categorized in two categories: major and minor
defects (often many more categories are used). The defects which are incorrect or even missing functionality or
specifications can be classified as major defects: the software will not function correctly when these defects are not
being solved.
In contrast to major defects, minor defects do not threaten the correct functioning of the software, but are mostly
small errors like spelling mistakes in documents or optical issues like incorrect positioning of controls in a program

http://en.wiktionary.org/wiki/defect
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Exit-criteria
http://en.wikipedia.org/w/index.php?title=Extreme_Programming
http://en.wikipedia.org/w/index.php?title=Dynamic_Systems_Development_Method
http://en.wikipedia.org/w/index.php?title=Software_development_process
http://en.wikipedia.org/w/index.php?title=Exit-criteria
http://en.wikipedia.org/w/index.php?title=High-level_document
http://en.wikipedia.org/w/index.php?title=Low-level_document


Fagan inspection 211

interface.

Typical operations
In a typical Fagan inspection the inspection process consists of the following operations[1] :
• Planning

• Preparation of materials
• Arranging of participants
• Arranging of meeting place

• Overview
• Group education of participants on the materials under review
• Assignment of roles

• Preparation
• The participants review the item to be inspected and supporting material to prepare for the meeting noting any

questions or possible defects
• The participants prepare their roles

• Inspection meeting
• Actual finding of defect

• Rework
• Rework is the step in software inspection in which the defects found during the inspection meeting are

resolved by the author, designer or programmer. On the basis of the list of defects the low-level document is
corrected until the requirements in the high-level document are met.

• Follow-up
• In the follow-up phase of software inspections all defects found in the inspection meeting should be corrected

(as they have been fixed in the rework phase). The moderator is responsible for verifying that this is indeed the
case. He should verify if all defects are fixed and no new defects are inserted while trying to fix the initial
defects. It is crucial that all defects are corrected as the costs of fixing them in a later phase of the project will
be 10 to 100 times higher compared to the current costs.

Figure 1: Fagan inspection basic model

Follow-up
In the follow-up phase of a Fagan Inspection, defects fixed in the rework phase should be verified. The moderator is
usually responsible for verifying rework. Sometimes fixed work can be accepted without being verified, such as
when the defect was trivial. In non-trivial cases, a full re-inspection is performed by the inspection team (not only the
moderator).
If verification fails, go back to the rework process.

http://en.wikipedia.org/w/index.php?title=File%3AFagan_Inspection_Simple_flow.gif


Fagan inspection 212

Roles
The participants of the inspection process are normally just members of the team that is performing the project. The
participants fulfill different roles within the inspection process[2] [3] :
• Author/Designer/Coder: the person who wrote the low-level document
• Reader: paraphrases the document
• Reviewers: reviews the document from a testing standpoint
• Moderator: responsible for the inspection session, functions as a coach

Benefits and results
By using inspections the number of errors in the final product can significantly decrease, creating a higher quality
product. In the future the team will even be able to avoid errors as the inspection sessions give them insight in the
most frequently made errors in both design and coding providing avoidance of error at the root of their occurrence.
By continuously improving the inspection process these insights can even further be used [Fagan, 1986].
Together with the qualitative benefits mentioned above major "cost improvements" can be reached as the avoidance
and earlier detection of errors will reduce the amount of resources needed for debugging in later phases of the
project.
In practice very positive results have been reported by large corporations like IBM indicating that 80-90% of defects
can be found and savings in resources up to 25% can be reached [Fagan, 1986]...

Improvements
Although the Fagan Inspection method has proved to be very effective, improvements have been suggested by
multiple researchers. Genuchten for example has been researching the usage of an Electronic Meeting System (EMS)
to improve the productivity of the meetings with positive results [Genuchten, 1997].
Other researchers propose the usage of software that keeps a database of detected errors and automatically scans
program code for these common errors [Doolan,1992]. This again should result in improved productivity.

Example
In the diagram a very simple example is given of an inspection process in which a two-line piece of code is inspected
on the basis on a high-level document with a single requirement.
As can be seen in the high-level document for this project is specified that in all software code produced variables
should be declared ‘strong typed’. On the basis of this requirement the low-level document is checked for defects.
Unfortunately a defect is found on line 1, as a variable is not declared ‘strong typed’. The defect found is then
reported in the list of defects found and categorized according to the categorizations specified in the high-level
document.

http://en.wikipedia.org/w/index.php?title=Electronic_meeting_system


Fagan inspection 213

References
[1] Fagan, M.E., Advances in Software Inspections, July 1986, IEEE Transactions on Software Engineering, Vol. SE-12, No. 7, Page 744-751

(http:/ / www. mfagan. com/ pdfs/ aisi1986. pdf)
[2] M.E., Fagan (1976). "Design and Code inspections to reduce errors in program development". IBM Systems Journal 15 (3): pp. 182–211.

(http:/ / www. mfagan. com/ pdfs/ ibmfagan. pdf)
[3] Eickelmann, Nancy S, Ruffolo, Francesca, Baik, Jongmoon, Anant, A, 2003 An Empirical Study of Modifying the Fagan Inspection Process

and the Resulting Main Effects and Interaction Effects Among Defects Found, Effort Required, Rate of Preparation and Inspection, Number of
Team Members and Product 1st Pass Quality, Proceedings of the 27th Annual NASA Goddard/IEEE Software Engineering Workshop

1. [Laitenberger, 1999] Laitenberger,O, DeBaud, J.M, 1999 An encompassing life cycle centric survey of software
inspection, Journal of Systems and Software 50 (2000), Page 5-31

2. [So, 1995] So, S, Lim, Y, Cha, S.D., Kwon, Y,J, 1995 An Empirical Study on Software Error Detection: Voting,
Instrumentation, and Fagan Inspection *, Proceedings of the 1995 Asia Pacific Software Engineering Conference
(APSEC '95), Page 345-351

3. [Doolan,1992] Doolan, E.P.. 1992 Experience with Fagan’s Inspection Method, SOFTWARE—PRACTICE
AND EXPERIENCE, (FEBRUARY 1992) Vol. 22(2), Page 173–182

4. [Genuchten, 1997] Genuchten, M, Cornelissen, W, Van Dijk, C, 1997 Supporting Inspections with an Electronic
Meeting System, Journal of Management Information Systems, Winter 1997-98/Volume 14, No. 3, Page 165-179

Software walkthrough
In software engineering, a walkthrough or walk-through is a form of software peer review "in which a designer or
programmer leads members of the development team and other interested parties through a software product, and the
participants ask questions and make comments about possible errors, violation of development standards, and other
problems"[1] .
"Software product" normally refers to some kind of technical document. As indicated by the IEEE definition, this
might be a software design document or program source code, but use cases, business process definitions, test case
specifications, and a variety of other technical documentation may also be walked through.
A walkthrough differs from software technical reviews in its openness of structure and its objective of
familiarization. It differs from software inspection in its ability to suggest direct alterations to the product reviewed,
its lack of a direct focus on training and process improvement, and its omission of process and product measurement.

Process
A walkthrough may be quite informal, or may follow the process detailed in IEEE 1028 and outlined in the article on
software reviews.

Objectives and participants
In general, a walkthrough has one or two broad objectives: to gain feedback about the technical quality or content of
the document; and/or to familiarize the audience with the content.
A walkthrough is normally organized and directed by the author of the technical document. Any combination of
interested or technically qualified personnel (from within or outside the project) may be included as seems
appropriate.
IEEE 1028[1] recommends three specialist roles in a walkthrough:
• The Author, who presents the software product in step-by-step manner at the walk-through meeting, and is

probably responsible for completing most action items;

http://www.mfagan.com/pdfs/aisi1986.pdf
http://www.mfagan.com/pdfs/ibmfagan.pdf
http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Software_design_document
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Use_cases
http://en.wikipedia.org/w/index.php?title=Business_process


Software walkthrough 214

• The Walkthrough Leader, who conducts the walkthrough, handles administrative tasks, and ensures orderly
conduct (and who is often the Author); and

• The Recorder, who notes all anomalies (potential defects), decisions, and action items identified during the
walkthrough meetings.

References
[1] IEEE Std. 1028-1997, IEEE Standard for Software Reviews, clause 3.8

Code review
Code review is systematic examination (often as peer review) of computer source code. It is intended to find and fix
mistakes overlooked in the initial development phase, improving both the overall quality of software and the
developers' skills. Reviews are done in various forms such as pair programming, informal walkthroughs, and formal
inspections.[1]

Introduction
Code reviews can often find and remove common vulnerabilities such as format string exploits, race conditions,
memory leaks and buffer overflows, thereby improving software security. Online software repositories based on
Subversion (with Redmine or Trac), Mercurial, Git or others allow groups of individuals to collaboratively review
code. Additionally, specific tools for collaborative code review can facilitate the code review process.
Automated code reviewing software lessens the task of reviewing large chunks of code on the developer by
systematically checking source code for known vulnerabilities.
Capers Jones' ongoing analysis of over 12,000 software development projects showed that the latent defect discovery
rate of formal inspection is in the 60-65% range. For informal inspection, the figure is less than 50%. The latent
defect discovery rate for most forms of testing is about 30%. [2]

Typical code review rates are about 150 lines of code per hour. Inspecting and reviewing more than a few hundred
lines of code per hour for critical software (such as safety critical embedded software) may be too fast to find errors.
[3] Industry data indicate that code review can accomplish at most an 85% defect removal rate with an average rate of
about 65%. [4]

Types
Code review practices fall into three main categories: pair programming, formal code review and lightweight code
review.[1]

Formal code review, such as a Fagan inspection, involves a careful and detailed process with multiple participants
and multiple phases. Formal code reviews are the traditional method of review, in which software developers attend
a series of meetings and review code line by line, usually using printed copies of the material. Formal inspections are
extremely thorough and have been proven effective at finding defects in the code under review.
Lightweight code review typically requires less overhead than formal code inspections, though it can be equally
effective when done properly. Lightweight reviews are often conducted as part of the normal development process:
• Over-the-shoulder – One developer looks over the author's shoulder as the latter walks through the code.
• Email pass-around – Source code management system emails code to reviewers automatically after checkin is

made.
• Pair Programming – Two authors develop code together at the same workstation, such is common in Extreme

Programming.

http://en.wikipedia.org/w/index.php?title=Software_anomaly
http://en.wikipedia.org/w/index.php?title=IEEE
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Software_bug
http://en.wikipedia.org/w/index.php?title=Software_development
http://en.wikipedia.org/w/index.php?title=Software_quality
http://en.wikipedia.org/w/index.php?title=Pair_programming
http://en.wikipedia.org/w/index.php?title=Vulnerability_%28computing%29
http://en.wikipedia.org/w/index.php?title=Format_string_attacks
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Memory_leak
http://en.wikipedia.org/w/index.php?title=Buffer_overflow
http://en.wikipedia.org/w/index.php?title=Subversion_%28software%29
http://en.wikipedia.org/w/index.php?title=Redmine
http://en.wikipedia.org/w/index.php?title=Trac
http://en.wikipedia.org/w/index.php?title=Mercurial_%28software%29
http://en.wikipedia.org/w/index.php?title=Git_%28software%29
http://en.wikipedia.org/w/index.php?title=Software_developer
http://en.wikipedia.org/w/index.php?title=Embedded_software
http://en.wikipedia.org/w/index.php?title=Software_developers
http://en.wikipedia.org/w/index.php?title=Pair_Programming
http://en.wikipedia.org/w/index.php?title=Extreme_Programming
http://en.wikipedia.org/w/index.php?title=Extreme_Programming


Code review 215

• Tool-assisted code review – Authors and reviewers use specialized tools designed for peer code review.
Some of these may also be labeled a "Walkthrough" (informal) or "Critique" (fast and informal).
Many teams that eschew traditional, formal code review use one of the above forms of lightweight review as part of
their normal development process. A code review case study published in the book Best Kept Secrets of Peer Code
Review found that lightweight reviews uncovered as many bugs as formal reviews, but were faster and more
cost-effective.

Criticism
Historically, formal code reviews have required a considerable investment in preparation for the review event and
execution time.
Some believe that skillful, disciplined use of a number of other development practices can result in similarly high
latent defect discovery/avoidance rates. Further, XP (extreme programming) proponents might argue, layering
additional XP practices, such as refactoring and test-driven development will result in latent defect levels rivaling
those achievable with more traditional approaches, without the investment.
Use of code analysis tools can support this activity. Especially tools that work in the IDE as they provide direct
feedback to developers of coding standard compliance.

References
[1] Kolawa, Adam; Huizinga, Dorota (2007). Automated Defect Prevention: Best Practices in Software Management (http:/ / www. wiley. com/

WileyCDA/ WileyTitle/ productCd-0470042125. html). Wiley-IEEE Computer Society Press. p. 260. ISBN 0470042125. .
[2] Jones, Capers; Christof, Ebert (April 2009). "Embedded Software: Facts, Figures, and Future" (http:/ / doi. ieeecomputersociety. org/ 10.

1109/ MC. 2009. 118). IEEE Computer Society. . Retrieved 2010-10-05.
[3] Ganssle, Jack (February 2010). "A Guide to Code Inspections" (http:/ / www. ganssle. com/ inspections. pdf). The Ganssle Group. . Retrieved

2010-10-05.
[4] Jones, Capers (June 2008). "Measuring Defect Potentials and Defect Removal Efficiency" (http:/ / www. stsc. hill. af. mil/ crosstalk/ 2008/

06/ 0806jones. html). Crosstalk, The Journal of Defense Software Engineering. . Retrieved 2010-10-05.

• Jason Cohen (2006). Best Kept Secrets of Peer Code Review (Modern Approach. Practical Advice.).
Smartbearsoftware.com. ISBN 1599160676.

External links
• Security Code Review FAQs (http:/ / www. ouncelabs. com/ resources/ code-review-faq. asp)
• Security code review guidelines (http:/ / www. homeport. org/ ~adam/ review. html)
• Lightweight Tool Support for Effective Code Reviews (http:/ / www. atlassian. com/ software/ crucible/ learn/

codereviewwhitepaper. pdf) white paper
• Code Review Best Practices (http:/ / www. parasoft. com/ jsp/ printables/ When_Why_How_Code_Review.

pdf?path=/ jsp/ products/ article. jsp) white paper by Adam Kolawa
• Best Practices for Peer Code Review (http:/ / smartbear. com/ docs/ BestPracticesForPeerCodeReview. pdf) white

paper
• Code review case study (http:/ / smartbear. com/ resources/ cc/ CaseStudy-Cisco. pdf)
• "A Guide to Code Inspections" (Jack G. Ganssle) (http:/ / www. ganssle. com/ inspections. pdf)
• Article Four Ways to a Practical Code Review (http:/ / www. methodsandtools. com/ archive/ archive. php?id=66)
• http:/ / www. reviewboard. org/
• http:/ / www. agilereview. org

http://en.wikipedia.org/w/index.php?title=Refactoring
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470042125.html
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118
http://doi.ieeecomputersociety.org/10.1109/MC.2009.118
http://www.ganssle.com/inspections.pdf
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://www.stsc.hill.af.mil/crosstalk/2008/06/0806jones.html
http://www.ouncelabs.com/resources/code-review-faq.asp
http://www.homeport.org/~adam/review.html
http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf
http://www.atlassian.com/software/crucible/learn/codereviewwhitepaper.pdf
http://www.parasoft.com/jsp/printables/When_Why_How_Code_Review.pdf?path=/jsp/products/article.jsp
http://www.parasoft.com/jsp/printables/When_Why_How_Code_Review.pdf?path=/jsp/products/article.jsp
http://en.wikipedia.org/w/index.php?title=Adam_Kolawa
http://smartbear.com/docs/BestPracticesForPeerCodeReview.pdf
http://smartbear.com/resources/cc/CaseStudy-Cisco.pdf
http://www.ganssle.com/inspections.pdf
http://www.methodsandtools.com/archive/archive.php?id=66
http://www.reviewboard.org/
http://www.agilereview.org


Automated code review 216

Automated code review
Automated code review software checks source code for compliance with a predefined set of rules or best practices.
The use of analytical methods to inspect and review source code to detect bugs has been a standard development
practice. This process can be accomplished both manually and in an automated fashion[1] . With automation,
software tools provide assistance with the code review and inspection process. The review program or tool typically
displays a list of warnings (violations of programming standards). A review program can also provide an automated
or a programmer-assisted way to correct the issues found.
Some static code analysis tools can be used to assist with automated code review. They compare favorably to manual
reviews, but they can be done faster and more efficiently. These tools also encapsulate deep knowledge of
underlying rules and semantics required to perform this type analysis such that it does not require the human code
reviewer to have the same level of expertise as an expert human auditor[1] . Many Integrated Development
Environments also provide basic automated code review functionality. For example the Eclipse[2] and Microsoft
Visual Studio[3] IDEs support a variety of plugins that facilitate code review.
Next to static code analysis tools, there are also tools that analyze and visualize software structures and help humans
to better understand these. Such systems are geared more to analysis because they typically do not contain a
predefined set of rules to check software against. Some of these tools (e.g. SonarJ, Sotoarc, Structure101) allow to
define target architectures and enforce that target architecture constraints are not violated by the actual software
implementation.

References
[1] Gomes, Ivo; Morgado, Pedro; Gomes, Tiago; Moreira, Rodrigo (2009). "An overview of the Static Code Analysis approach in Software

Development" (http:/ / paginas. fe. up. pt/ ~ei05021/ TQSO - An overview on the Static Code Analysis approach in Software Development.
pdf). Universadide do Porto. . Retrieved 2010-10-03.

[2] "Collaborative Code Review Tool Development" (http:/ / marketplace. eclipse. org/ content/ collaborative-code-review-tool).
www.eclipse.org. . Retrieved 2010-10-13.

[3] "Code Review Plug-in for Visual Studio 2008, ReviewPal" (http:/ / www. codeproject. com/ KB/ work/ ReviewPal. aspx).
www.codeproject.com. . Retrieved 2010-10-13.

http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environments
http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environments
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=Software_visualization
http://en.wikipedia.org/w/index.php?title=SonarJ
http://en.wikipedia.org/w/index.php?title=Sotoarc
http://en.wikipedia.org/w/index.php?title=Structure101
http://paginas.fe.up.pt/~ei05021/TQSO%20-%20An%20overview%20on%20the%20Static%20Code%20Analysis%20approach%20in%20Software%20Development.pdf
http://paginas.fe.up.pt/~ei05021/TQSO%20-%20An%20overview%20on%20the%20Static%20Code%20Analysis%20approach%20in%20Software%20Development.pdf
http://marketplace.eclipse.org/content/collaborative-code-review-tool
http://www.codeproject.com/KB/work/ReviewPal.aspx


Code reviewing software 217

Code reviewing software
Automated code review software checks source code for compliance with a predefined set of rules or best practices.
The use of analytical methods to inspect and review source code to detect bugs has been a standard development
practice. This process can be accomplished both manually and in an automated fashion[1] . With automation,
software tools provide assistance with the code review and inspection process. The review program or tool typically
displays a list of warnings (violations of programming standards). A review program can also provide an automated
or a programmer-assisted way to correct the issues found.
Some static code analysis tools can be used to assist with automated code review. They compare favorably to manual
reviews, but they can be done faster and more efficiently. These tools also encapsulate deep knowledge of
underlying rules and semantics required to perform this type analysis such that it does not require the human code
reviewer to have the same level of expertise as an expert human auditor[1] . Many Integrated Development
Environments also provide basic automated code review functionality. For example the Eclipse[2] and Microsoft
Visual Studio[3] IDEs support a variety of plugins that facilitate code review.
Next to static code analysis tools, there are also tools that analyze and visualize software structures and help humans
to better understand these. Such systems are geared more to analysis because they typically do not contain a
predefined set of rules to check software against. Some of these tools (e.g. SonarJ, Sotoarc, Structure101) allow to
define target architectures and enforce that target architecture constraints are not violated by the actual software
implementation.

References
[1] Gomes, Ivo; Morgado, Pedro; Gomes, Tiago; Moreira, Rodrigo (2009). "An overview of the Static Code Analysis approach in Software

Development" (http:/ / paginas. fe. up. pt/ ~ei05021/ TQSO - An overview on the Static Code Analysis approach in Software Development.
pdf). Universadide do Porto. . Retrieved 2010-10-03.

[2] "Collaborative Code Review Tool Development" (http:/ / marketplace. eclipse. org/ content/ collaborative-code-review-tool).
www.eclipse.org. . Retrieved 2010-10-13.

[3] "Code Review Plug-in for Visual Studio 2008, ReviewPal" (http:/ / www. codeproject. com/ KB/ work/ ReviewPal. aspx).
www.codeproject.com. . Retrieved 2010-10-13.

http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environments
http://en.wikipedia.org/w/index.php?title=Integrated_Development_Environments
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=Software_visualization
http://en.wikipedia.org/w/index.php?title=SonarJ
http://en.wikipedia.org/w/index.php?title=Sotoarc
http://en.wikipedia.org/w/index.php?title=Structure101
http://paginas.fe.up.pt/~ei05021/TQSO%20-%20An%20overview%20on%20the%20Static%20Code%20Analysis%20approach%20in%20Software%20Development.pdf
http://paginas.fe.up.pt/~ei05021/TQSO%20-%20An%20overview%20on%20the%20Static%20Code%20Analysis%20approach%20in%20Software%20Development.pdf
http://marketplace.eclipse.org/content/collaborative-code-review-tool
http://www.codeproject.com/KB/work/ReviewPal.aspx


Static code analysis 218

Static code analysis
Static program analysis is the analysis of computer software that is performed without actually executing programs
built from that software (analysis performed on executing programs is known as dynamic analysis)[1] In most cases
the analysis is performed on some version of the source code and in the other cases some form of the object code.
The term is usually applied to the analysis performed by an automated tool, with human analysis being called
program understanding, program comprehension or code review.
The sophistication of the analysis performed by tools varies from those that only consider the behavior of individual
statements and declarations, to those that include the complete source code of a program in their analysis. Uses of the
information obtained from the analysis vary from highlighting possible coding errors (e.g., the lint tool) to formal
methods that mathematically prove properties about a given program (e.g., its behavior matches that of its
specification).
It can be argued that software metrics and reverse engineering are forms of static analysis. In fact deriving software
metrics and static analysis are increasingly deployed together, especially in creation of embedded systems, by
defining so called software quality objectives[2] .
A growing commercial use of static analysis is in the verification of properties of software used in safety-critical
computer systems and locating potentially vulnerable code[3] . For example the following industries have identified
the use of static code analysis as a means of improving the quality of increasingly sophisticated and complex
software:
1. Medical software: In the U.S. Food and Drug Administration (FDA) has identified the use of static analysis for

medical devices.[4]

2. Nuclear software: In the UK the Health and Safety Executive recommends the use of Static Analysis on Reactor
Protection Systems.[5]

Formal methods
Formal methods is the term applied to the analysis of software (and hardware) whose results are obtained purely
through the use of rigorous mathematical methods. The mathematical techniques used include denotational
semantics, axiomatic semantics, operational semantics, and abstract interpretation.
By a straightforward reduction to the halting problem it is possible to prove that (for any Turing complete language)
finding all possible run-time errors in an arbitrary program (or more generally any kind of violation of a specification
on the final result of a program) is undecidable: there is no mechanical method that can always answer truthfully
whether a given program may or may not exhibit runtime errors. This result dates from the works of Church, Gödel
and Turing in the 1930s (see the halting problem and Rice's theorem). As with most undecidable questions, one can
still attempt to give useful approximate solutions.
Some of the implementation techniques of formal static analysis include:
• Model checking considers systems that have finite state or may be reduced to finite state by abstraction;
• Data-flow analysis is a lattice-based technique for gathering information about the possible set of values;
• Abstract interpretation models the effect that every statement has on the state of an abstract machine (i.e., it

'executes' the software based on the mathematical properties of each statement and declaration). This abstract
machine over-approximates the behaviours of the system: the abstract system is thus made simpler to analyze, at
the expense of incompleteness (not every property true of the original system is true of the abstract system). If
properly done, though, abstract interpretation is sound (every property true of the abstract system can be mapped
to a true property of the original system).[6] The Frama-c framework and Polyspace heavily rely on abstract
interpretation.

http://en.wikipedia.org/w/index.php?title=Program_analysis_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Dynamic_program_analysis
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Object_code
http://en.wikipedia.org/w/index.php?title=Program_comprehension
http://en.wikipedia.org/w/index.php?title=Lint_programming_tool
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Software_metric
http://en.wikipedia.org/w/index.php?title=Reverse_engineering
http://en.wikipedia.org/w/index.php?title=Software_metrics
http://en.wikipedia.org/w/index.php?title=Software_metrics
http://en.wikipedia.org/w/index.php?title=Safety-critical
http://en.wikipedia.org/w/index.php?title=Vulnerability_%28computing%29
http://en.wikipedia.org/w/index.php?title=Medical_software
http://en.wikipedia.org/w/index.php?title=Food_and_Drug_Administration
http://en.wikipedia.org/w/index.php?title=Health_and_Safety_Executive
http://en.wikipedia.org/w/index.php?title=Reactor_Protective_System
http://en.wikipedia.org/w/index.php?title=Reactor_Protective_System
http://en.wikipedia.org/w/index.php?title=Software
http://en.wikipedia.org/w/index.php?title=Hardware
http://en.wikipedia.org/w/index.php?title=Denotational_semantics
http://en.wikipedia.org/w/index.php?title=Denotational_semantics
http://en.wikipedia.org/w/index.php?title=Axiomatic_semantics
http://en.wikipedia.org/w/index.php?title=Operational_semantics
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Decision_problem
http://en.wikipedia.org/w/index.php?title=Alonzo_Church
http://en.wikipedia.org/w/index.php?title=Kurt_G%C3%B6del
http://en.wikipedia.org/w/index.php?title=Alan_Turing
http://en.wikipedia.org/w/index.php?title=Halting_problem
http://en.wikipedia.org/w/index.php?title=Rice%27s_theorem
http://en.wikipedia.org/w/index.php?title=Model_checking
http://en.wikipedia.org/w/index.php?title=Finite-state_machine
http://en.wikipedia.org/w/index.php?title=Abstraction_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Data_flow_analysis
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Frama-c
http://en.wikipedia.org/w/index.php?title=Polyspace


Static code analysis 219

• Use of assertions in program code as first suggested by Hoare logic. There is tool support for some programming
languages (e.g., the SPARK programming language (a subset of Ada) and the Java Modeling Language — JML
— using ESC/Java and ESC/Java2, ANSI/ISO C Specification Language for the C language).

References
[1] Industrial Perspective on Static Analysis. Software Engineering Journal Mar. 1995: 69-75Wichmann, B. A., A. A. Canning, D. L.

Clutterbuck, L. A. Winsbarrow, N. J. Ward, and D. W. R. Marsh. http:/ / www. ida. liu. se/ ~TDDC90/ papers/ industrial95. pdf
[2] Software Quality Objectives for Source Code. Proceedings Embedded Real Time Software and Systems 2010 Conference, ERTS2, Toulouse,

France: Patrick Briand, Martin Brochet, Thierry Cambois, Emmanuel Coutenceau, Olivier Guetta, Daniel Mainberte, Frederic Mondot, Patrick
Munier, Loic Noury, Philippe Spozio, Frederic Retailleau http:/ / www. erts2010. org/ Site/ 0ANDGY78/ Fichier/
PAPIERS%20ERTS%202010/ ERTS2010_0035_final. pdf

[3] Improving Software Security with Precise Static and Runtime Analysis, Benjamin Livshits, section 7.3 “Static Techniques for Security,”
Stanford doctoral thesis, 2006. http:/ / research. microsoft. com/ en-us/ um/ people/ livshits/ papers/ pdf/ thesis. pdf

[4] FDA (2010-09-08). "Infusion Pump Software Safety Research at FDA" (http:/ / www. fda. gov/ MedicalDevices/
ProductsandMedicalProcedures/ GeneralHospitalDevicesandSupplies/ InfusionPumps/ ucm202511. htm). Food and Drug Administration. .
Retrieved 2010-09-09.

[5] Computer based safety systems - technical guidance for assessing software aspects of digital computer based protection systems, http:/ /
www. hse. gov. uk/ foi/ internalops/ nsd/ tech_asst_guides/ tast046app1. htm

[6] Jones, Paul (2010-02-09). "A Formal Methods-based verification approach to medical device software analysis" (http:/ / embeddeddsp.
embedded. com/ design/ opensource/ 222700533). Embedded Systems Design. . Retrieved 2010-09-09.

Bibliography
• Syllabus and readings (http:/ / www. stanford. edu/ class/ cs295/ ) for Alex Aiken (http:/ / theory. stanford. edu/

~aiken/ )’s Stanford CS295 course.
• Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, William Pugh, “ Using Static Analysis

to Find Bugs (http:/ / www2. computer. org/ portal/ web/ csdl/ doi/ 10. 1109/ MS. 2008. 130),” IEEE Software,
vol. 25, no. 5, pp. 22-29, Sep./Oct. 2008, doi:10.1109/MS.2008.130

• Brian Chess, Jacob West (Fortify Software) (2007). Secure Programming with Static Analysis. Addison-Wesley.
ISBN 978-0321424778.

• Flemming Nielson, Hanne R. Nielson, Chris Hankin (1999, corrected 2004). Principles of Program Analysis.
Springer. ISBN 978-3540654100.

• “Abstract interpretation and static analysis,” (http:/ / santos. cis. ksu. edu/ schmidt/ Escuela03/ home. html)
International Winter School on Semantics and Applications 2003, by David A. Schmidt (http:/ / people. cis. ksu.
edu/ ~schmidt/ )

External links
• The SAMATE Project (http:/ / samate. nist. gov), a resource for Automated Static Analysis tools
• Integrate static analysis into a software development process (http:/ / www. embedded. com/ shared/

printableArticle. jhtml?articleID=193500830)
• Code Quality Improvement - Coding standards conformance checking (DDJ) (http:/ / www. ddj. com/ dept/

debug/ 189401916)
• Episode 59: Static Code Analysis (http:/ / www. se-radio. net/ index. php?post_id=220531) Interview (Podcast) at

Software Engineering Radio
• Implementing Automated Governance for Coding Standards (http:/ / www. infoq. com/ articles/

governance-coding-standards) Explains why and how to integrate static code analysis into the build process
• What is Static Code Analysis? explanation in Hebrew (http:/ / eswlab. com/ info. asp?cid=637) (Hebrew: ?מהו

(ניתוח קוד סטטי

http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=Hoare_logic
http://en.wikipedia.org/w/index.php?title=SPARK_programming_language
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Java_Modeling_Language
http://en.wikipedia.org/w/index.php?title=ESC/Java
http://en.wikipedia.org/w/index.php?title=ESC/Java2
http://en.wikipedia.org/w/index.php?title=ANSI/ISO_C_Specification_Language
http://www.ida.liu.se/~TDDC90/papers/industrial95.pdf
http://www.erts2010.org/Site/0ANDGY78/Fichier/PAPIERS%20ERTS%202010/ERTS2010_0035_final.pdf
http://www.erts2010.org/Site/0ANDGY78/Fichier/PAPIERS%20ERTS%202010/ERTS2010_0035_final.pdf
http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/thesis.pdf
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202511.htm
http://www.hse.gov.uk/foi/internalops/nsd/tech_asst_guides/tast046app1.htm
http://www.hse.gov.uk/foi/internalops/nsd/tech_asst_guides/tast046app1.htm
http://embeddeddsp.embedded.com/design/opensource/222700533
http://embeddeddsp.embedded.com/design/opensource/222700533
http://www.stanford.edu/class/cs295/
http://theory.stanford.edu/~aiken/
http://theory.stanford.edu/~aiken/
http://en.wikipedia.org/w/index.php?title=Stanford_University
http://www2.computer.org/portal/web/csdl/doi/10.1109/MS.2008.130
http://santos.cis.ksu.edu/schmidt/Escuela03/home.html
http://people.cis.ksu.edu/~schmidt/
http://people.cis.ksu.edu/~schmidt/
http://samate.nist.gov
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.ddj.com/dept/debug/189401916
http://www.ddj.com/dept/debug/189401916
http://www.se-radio.net/index.php?post_id=220531
http://en.wikipedia.org/w/index.php?title=Podcast
http://www.infoq.com/articles/governance-coding-standards
http://www.infoq.com/articles/governance-coding-standards
http://eswlab.com/info.asp?cid=637
http://en.wikipedia.org/w/index.php?title=Hebrew_language


List of tools for static code analysis 220

List of tools for static code analysis
This is a list of tools for static code analysis.

Historical products
• Lint — The original static code analyzer of C code.
• NuMega Code Review – now part of Micro Focus DevPartner suite.

Open-source or Non-commercial products

Multi-language
• Moose — Moose started as a software analysis platform with many tools to manipulate, assess or visualize

software. It can evolve to a more generic data analysis platform. Supported programming languages are Java,
Smalltalk, C/C++, .Net. Other languages may be added.

• Copy/Paste Detector (CPD) — PMDs duplicate code detection for (e.g.) Java, JSP, C, C++ and PHP code.
• Sonar — A continuous inspection engine to manage the technical debt (unit tests, complexity, duplication, design,

comments, coding standards and potential problems). Supported languages are Java, Flex, PHP, PL/SQL, Cobol
and Visual Basic 6.

• Yasca — Yet Another Source Code Analyzer, a plugin-based framework for scanning arbitrary file types, with
plugins for scanning C/C++, Java, JavaScript, ASP, PHP, HTML/CSS, ColdFusion, COBOL, and other file types.
It integrates with other scanners, including FindBugs, JLint, PMD, and Pixy.

.NET (C#, VB.NET and all .NET compatible languages)
• FxCop — Free static analysis for Microsoft .NET programs that compile to CIL. Standalone and integrated in

some Microsoft Visual Studio editions. From Microsoft.
• Gendarme — Open-source (MIT License) equivalent to FxCop created by the Mono project. Extensible

rule-based tool to find problems in .NET applications and libraries, particularly those that contain code in ECMA
CIL format.

• StyleCop — Analyzes C# source code to enforce a set of style and consistency rules. It can be run from inside of
Microsoft Visual Studio or integrated into an MSBuild project. Free download from Microsoft.

ActionScript
• Apparat — A language manipulation and optimization framework consisting of intermediate representations for

ActionScript.

C
• Antic — C and CPP analyzer, can detect errors such as division by 0 and array index bounds. A part of JLint, but

can be used as standalone.
• BLAST — (Berkeley Lazy Abstraction Software verification Tool) — A software model checker for C programs

based on lazy abstraction.
• Clang — A compiler that includes a static analyzer.
• Coccinelle — Source code pattern matching and transformation
• Frama-C — A static analysis framework for C.
• Lint — The original static code analyzer for C.
• Sparse — A tool designed to find faults in the Linux kernel.

http://en.wikipedia.org/w/index.php?title=Lint_%28software%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Micro_Focus
http://en.wikipedia.org/w/index.php?title=DevPartner
http://en.wikipedia.org/w/index.php?title=Moose_%28analysis%29
http://en.wikipedia.org/w/index.php?title=PMD_%28software%29%23Copy/Paste_Detector_%28CPD%29
http://en.wikipedia.org/w/index.php?title=PMD_%28software%29
http://en.wikipedia.org/w/index.php?title=Duplicate_code
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JavaServer_Pages
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Sonar_%28software_quality%29
http://en.wikipedia.org/w/index.php?title=Yasca
http://en.wikipedia.org/w/index.php?title=COBOL
http://en.wikipedia.org/w/index.php?title=FindBugs
http://en.wikipedia.org/w/index.php?title=JLint
http://en.wikipedia.org/w/index.php?title=PMD_%28software%29
http://en.wikipedia.org/w/index.php?title=Pixy_%28Software%29
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=C_Sharp_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=VB.NET
http://en.wikipedia.org/w/index.php?title=FxCop
http://en.wikipedia.org/w/index.php?title=Common_Intermediate_Language
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=Mono_%28software%29
http://en.wikipedia.org/w/index.php?title=MIT_License
http://en.wikipedia.org/w/index.php?title=Mono_%28software%29
http://en.wikipedia.org/w/index.php?title=StyleCop
http://en.wikipedia.org/w/index.php?title=Microsoft_Visual_Studio
http://en.wikipedia.org/w/index.php?title=MSBuild
http://en.wikipedia.org/w/index.php?title=ActionScript
http://en.wikipedia.org/w/index.php?title=Apparat_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=JLint
http://en.wikipedia.org/w/index.php?title=BLAST_model_checker
http://en.wikipedia.org/w/index.php?title=Clang
http://en.wikipedia.org/w/index.php?title=Coccinelle_%28software%29
http://en.wikipedia.org/w/index.php?title=Frama-C
http://en.wikipedia.org/w/index.php?title=Lint_%28software%29
http://en.wikipedia.org/w/index.php?title=Sparse
http://en.wikipedia.org/w/index.php?title=Linux


List of tools for static code analysis 221

• Splint — An open source evolved version of Lint (for C).

C++
• Clang — A compiler that includes a static analyzer.
• cppcheck — Open-source tool that checks for several types of errors, including the use of STL.
• cpplint [1] Open source, automated checker to make sure a C++ file follows Google's C++ style.
• Eclipse (software) — An IDE that includes a static code analyzer (CODAN).

Java
• Checkstyle — Besides some static code analysis, it can be used to show violations of a configured coding

standard.
• FindBugs — An open-source static bytecode analyzer for Java (based on Jakarta BCEL) from the University of

Maryland.
• Hammurapi — (Free for non-commercial use only) versatile code review solution.
• PMD — A static ruleset based Java source code analyzer that identifies potential problems.
• Soot — A language manipulation and optimization framework consisting of intermediate languages for Java.
• Squale — A platform to manage software quality (also available for other languages, using commercial analysis

tools though).

JavaScript
• Closure Compiler — JavaScript optimizer that rewrites JavaScript code to make it faster and more compact. It

also checks your usage of native javascript functions.
• JSLint — JavaScript syntax checker and validator.
• JSHint [2] — JavaScript syntax checker and validator. A fork of JSLint. Compatible with more javascript

environments.

Objective-C
• Clang — The free Clang project includes a static analyzer. As of version 3.2, this analyzer is included in

Xcode.[3]

CSS
• CSS Lint A tool to help point out problems with CSS code. [4]

Commercial products

Multi-language
• Axivion Bauhaus Suite — A tool for C, C++, C#, Java and Ada code that comprises various analyses such as

architecture checking, interface analyses, and clone detection.
• Black Duck Suite — Analyze the composition of software source code and binary files, search for reusable code,

manage open source and third-party code approval, honor the legal obligations associated with mixed-origin code,
and monitor related security vulnerabilities.

• BugScout — Detects security flaws in Java, PHP, ASP and C# web applications.
• CAST Application Intelligence Platform — Detailed, audience-specific dashboards to measure quality and

productivity. 30+ languages, SAP, Oracle, PeopleSoft, Siebel, .NET, Java, C/C++, Struts, Spring, Hibernate and
all major databases.

http://en.wikipedia.org/w/index.php?title=Splint_%28programming_tool%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B
http://en.wikipedia.org/w/index.php?title=Clang
http://en.wikipedia.org/w/index.php?title=Cppcheck
http://en.wikipedia.org/w/index.php?title=Standard_Template_Library
http://code.google.com/p/google-styleguide/
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Checkstyle
http://en.wikipedia.org/w/index.php?title=FindBugs
http://en.wikipedia.org/w/index.php?title=Jakarta_Project
http://en.wikipedia.org/w/index.php?title=Byte_Code_Engineering_Library
http://en.wikipedia.org/w/index.php?title=Hammurapi_code_review_tool
http://en.wikipedia.org/w/index.php?title=PMD_%28software%29
http://en.wikipedia.org/w/index.php?title=Soot_%28software%29
http://en.wikipedia.org/w/index.php?title=Squale_%28Software_Quality%29
http://en.wikipedia.org/w/index.php?title=JavaScript
http://en.wikipedia.org/w/index.php?title=Google_Closure_Tools%23Closure_Compiler
http://en.wikipedia.org/w/index.php?title=JSLint
http://en.wikipedia.org/w/index.php?title=Syntax_checker
http://jshint.com/
http://en.wikipedia.org/w/index.php?title=Syntax_checker
http://en.wikipedia.org/w/index.php?title=Objective-C
http://en.wikipedia.org/w/index.php?title=Clang
http://en.wikipedia.org/w/index.php?title=Xcode
http://en.wikipedia.org/w/index.php?title=CSS
http://en.wikipedia.org/w/index.php?title=CSS_Lint
http://en.wikipedia.org/w/index.php?title=Axivion_Bauhaus_Suite
http://en.wikipedia.org/w/index.php?title=Black_Duck_Software
http://en.wikipedia.org/w/index.php?title=Open_source
http://en.wikipedia.org/w/index.php?title=Buguroo_Offensive_Security%23bugScout
http://en.wikipedia.org/w/index.php?title=CAST_Application_Intelligence_Platform


List of tools for static code analysis 222

• Checkmarx — Finds security vulnerabilities in source code, by analyzing source files and storing their meta data
in a queryable database. Supports .NET family (C#, VB.Net), Java, C\C++, VB6, Apex+VF, PHP, ASP.

• Coverity Static Analysis (formerly Coverity Prevent) — Identifies security vulnerabilities and code defects in C,
C++, C# and Java code. Complements Coverity Dynamic Code Analysis and Architecture Analysis.

• DevPartner Code Review. Offered by Micro Focus. Static metrics and bug pattern detection for C#, VB.NET, and
ASP.NET languages. Plugin to Visual Studio. Customized parsers provide extension through regular expressions
and tailored rulesets.

• DMS Software Reengineering Toolkit — Supports custom analysis of C, C++, C#, Java, COBOL, PHP,
VisualBasic and many other languages. Also COTS tools for clone analysis, dead code analysis, and style
checking.

• Compuware DevEnterprise — Analysis of COBOL, PL/I, JCL, CICS, DB2, IMS and others.
• GrammaTech CodeSonar — Analyzes C,C++.
• HP Fortify Source Code Analyzer — Helps developers identify software security vulnerabilities in C/C++, .NET,

Java, JSP, ASP.NET, ColdFusion, "Classic" ASP, PHP, VB6, VBScript, JavaScript, PL/SQL, T-SQL, python and
COBOL as well as configuration files.

• Imagix 4D — Identifies problems in variable usage, task interaction and concurrency, particularly in embedded
applications, as part of an overall solution for understanding, improving and documenting C, C++ and Java
software.

• Intel - Intel Parallel Studio XE: Contains Static Security Analysis (SSA) feature supports C/C++ and Fortran
• JustCode — Code analysis and refactoring productivity tool for JavaScript, C#, Visual Basic.NET, and ASP.NET
• Klocwork Insight — Provides security vulnerability and defect detection as well as architectural and

build-over-build trend analysis for C, C++, C# and Java.
• Lattix, Inc. LDM — Architecture and dependency analysis tool for Ada, C/C++, Java, .NET software systems.
• LDRA Testbed — A software analysis and testing tool suite for C, C++, Ada83, Ada95 and Assembler (Intel,

Freescale, Texas Instruments).
• Logiscope[5] — Logiscope is a software quality assurance tool that automates code reviews and the identification

and detection of error-prone modules for software testing.
• MALPAS; A software static analysis toolset for a variety of languages including Ada, C, Pascal and Assembler

(Intel, PowerPC and Motorola). Used primarily for safety critical applications in Nuclear and Aerospace
industries.

• Micro Focus (formerly Relativity Technologies) Modernization Workbench — Parsers included for COBOL
(multiple variants including IBM, Unisys, MF, ICL, Tandem), PL/I, Natural (inc. ADABAS), Java, Visual Basic,
RPG, C & C++ and other legacy languages; Extensible SDK to support 3rd party parsers. Supports automated
Metrics (including Function Points), Business Rule Mining, Componentisation and SOA Analysis. Rich ad hoc
diagramming, AST search & reporting)

• Ounce Labs (from 2010 IBM Rational Appscan Source) — Automated source code analysis that enables
organizations to identify and eliminate software security vulnerabilities in languages including Java, JSP, C/C++,
C#, ASP.NET and VB.Net.

• Parasoft — Analyzes Java (Jtest), JSP, C, C++ (C++test), .NET (C#, ASP.NET, VB.NET, etc.) using .TEST,
WSDL, XML, HTML, CSS, JavaScript, VBScript/ASP, and configuration files for security,[6] compliance,[7] and
defect prevention.

• Polyspace — Uses abstract interpretation to detect and prove the absence of certain run-time errors in source code
for C, C++, and Ada

• ProjectCodeMeter[8] — Warns on code quality issues such as insufficient commenting or complex code structure.
Counts code metrics, gives cost & time estimations. Analyzes C, C++, C#, J#, Java, PHP, Objective C,
JavaScript, UnrealEngine script, ActionScript, DigitalMars D.

• Rational Software Analyzer — Supports Java, C/C++ (and others available through extensions)

http://en.wikipedia.org/w/index.php?title=Checkmarx
http://en.wikipedia.org/w/index.php?title=Coverity
http://en.wikipedia.org/w/index.php?title=DevPartner
http://en.wikipedia.org/w/index.php?title=Micro_Focus
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=DMS_Software_Reengineering_Toolkit
http://en.wikipedia.org/w/index.php?title=Compuware
http://en.wikipedia.org/w/index.php?title=GrammaTech
http://en.wikipedia.org/w/index.php?title=Fortify_Software
http://en.wikipedia.org/w/index.php?title=Imagix_4D
http://en.wikipedia.org/w/index.php?title=Intel
http://en.wikipedia.org/w/index.php?title=JustCode
http://en.wikipedia.org/w/index.php?title=Klocwork
http://en.wikipedia.org/w/index.php?title=Lattix%2C_Inc.
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://en.wikipedia.org/w/index.php?title=Logiscope
http://en.wikipedia.org/w/index.php?title=MALPAS_Software_Static_Analysis_Toolset
http://en.wikipedia.org/w/index.php?title=Micro_Focus
http://en.wikipedia.org/w/index.php?title=Ounce_Labs
http://en.wikipedia.org/w/index.php?title=Parasoft
http://en.wikipedia.org/w/index.php?title=Polyspace
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Run_time_error
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=Rational_Software


List of tools for static code analysis 223

• ResourceMiner — Architecture down to details multipurpose analysis and metrics, develop own rules for
masschange and generator development. Supports 30+ legacy and modern languages and all major databases.

• SofCheck Inspector — Provides static detection of logic errors, race conditions, and redundant code for Java and
Ada. Provides automated extraction of pre/postconditions from code itself.

• Software Diagnostics [9] — Analyzes and integrates metrics from code (C, C++, C#, Java, ABAP, COBOL, …),
executed applications (performance, test coverage, …), and repositories (SCM, Bug/Issue-Tracking, …). Results
are presented to managers and team leaders as "software maps" [9] that reveal costly and risky parts of the code.

• Sotoarc/Sotograph — Architecture and quality in-depth analysis and monitoring for Java, C#, C and C++
• Syhunt Sandcat — Detects security flaws in PHP, Classic ASP and ASP.NET web applications.
• Understand — Analyzes C,C++, Java, Ada, Fortran, Jovial, Delphi, VHDL, HTML, CSS, PHP, and JavaScript —

reverse engineering of source, code navigation, and metrics tool.
• Veracode — Finds security flaws in application binaries and bytecode without requiring source. Supported

languages include C, C++, .NET (C#, C++/CLI, VB.NET, ASP.NET), Java, JSP, ColdFusion, and PHP, including
mobile applications on the Windows Mobile, BlackBerry, and Android platforms.

• Visual Studio Team System — Analyzes C++,C# source codes. only available in team suite and development
edition.

.NET
Products covering multiple .NET languages.
• CodeIt.Right — Combines Static Code Analysis and automatic Refactoring to best practices which allows

automatically correct code errors and violations. Supports both C# and VB.NET.
• CodeRush — A plugin for Visual Studio, it addresses a multitude of shortcomings with the popular IDE.

Including alerting users to violations of best practices by using static code analysis.
• Parasoft dotTEST — A static analysis, unit testing, and code review plugin for Visual Studio; works with

programming languages that target the Microsoft .NET Framework and .NET Compact Framework, including C#,
VB.NET, ASP.NET and Managed C++.

• JustCode — Add-on for Visual Studio 2005/2008/2010 for real-time, solution-wide code analysis for C#,
VB.NET, ASP.NET, XAML, JavaScript, HTML and multi-language solutions.

• NDepend — Simplifies managing a complex .NET code base by analyzing and visualizing code dependencies, by
defining design rules, by doing impact analysis, and by comparing different versions of the code. Integrates into
Visual Studio.

• ReSharper — Add-on for Visual Studio 2003/2005/2008/2010 from the creators of IntelliJ IDEA, which also
provides static code analysis for C#.

• Kalistick — Mixing from the Cloud: static code analysis with best practice tips and collaborative tools for Agile
teams

Ada
• Ada-ASSURED — A tool that offers coding style checks, standards enforcement and pretty printing features.
• AdaCore CodePeer — Automated code review and bug finder for Ada programs that uses control-flow,

data-flow, and other advanced static analysis techniques.
• LDRA Testbed — A software analysis and testing tool suite for Ada83/95.
• Polyspace — Uses abstract interpretation to detect and prove the absence of certain run-time errors in source code
• SofCheck Inspector — Provides static detection of logic errors, race conditions, and redundant code for Ada.

Provides automated extraction of pre/postconditions from code itself.

http://en.wikipedia.org/w/index.php?title=ResourceMiner
http://en.wikipedia.org/w/index.php?title=SofCheck_Inspector
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Precondition
http://en.wikipedia.org/w/index.php?title=Postcondition
http://www.softwarediagnostics.com
http://www.softwarediagnostics.com
http://en.wikipedia.org/w/index.php?title=Sotoarc
http://en.wikipedia.org/w/index.php?title=Syhunt
http://en.wikipedia.org/w/index.php?title=Understand_%28software%29
http://en.wikipedia.org/w/index.php?title=Veracode
http://en.wikipedia.org/w/index.php?title=C%2B%2B/CLI
http://en.wikipedia.org/w/index.php?title=ColdFusion
http://en.wikipedia.org/w/index.php?title=PHP
http://en.wikipedia.org/w/index.php?title=Windows_Mobile
http://en.wikipedia.org/w/index.php?title=BlackBerry
http://en.wikipedia.org/w/index.php?title=Android_%28operating_system%29
http://en.wikipedia.org/w/index.php?title=Visual_Studio_Team_System
http://en.wikipedia.org/w/index.php?title=.NET_Framework
http://en.wikipedia.org/w/index.php?title=CodeIt.Right
http://en.wikipedia.org/w/index.php?title=CodeRush
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Parasoft
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=JustCode
http://en.wikipedia.org/w/index.php?title=NDepend
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=ReSharper
http://en.wikipedia.org/w/index.php?title=IntelliJ_IDEA
http://en.wikipedia.org/w/index.php?title=Kalistick
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=AdaCore
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://en.wikipedia.org/w/index.php?title=Polyspace
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Run_time_error
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=SofCheck_Inspector
http://en.wikipedia.org/w/index.php?title=Race_condition
http://en.wikipedia.org/w/index.php?title=Precondition
http://en.wikipedia.org/w/index.php?title=Postcondition


List of tools for static code analysis 224

C / C++
• Astrée; exhaustive search for runtime errors and assertion violations by abstract interpretation; tailored towards

critical code (avionics)
• FlexeLint — A multiplatform version of PC-Lint.
• Green Hills Software DoubleCheck — A software analysis tool for C/C++.
• Intel - Intel Parallel Studio XE: Contains Static Security Analysis (SSA) feature
• LDRA Testbed — A software analysis and testing tool suite for C/C++.
• Monoidics INFER — A sound tool for C/C++ based on Separation Logic.
• Parasoft C/C++test— A C and C++ tool that provides static analysis, unit testing, code review, and runtime error

detection; plugins are available for Visual Studio and Eclipse-based IDEs.
• PC-Lint — A software analysis tool for C/C++.
• Polyspace — Uses abstract interpretation to detect and prove the absence of certain run-time errors in source code
• PVS-Studio — A software analysis tool for C/C++/C++0x.
• QA-C (and QA-C++) — Deep static analysis of C/C++ for quality assurance and guideline enforcement.
• Red Lizard's Goanna — Static analysis for C/C++ in Eclipse and Visual Studio.
• CppDepend — Simplifies managing a complex C\C++ code base by analyzing and visualizing code

dependencies, by defining design rules, by doing impact analysis, and by comparing different versions of the
code. Integrates into Visual Studio.

Java
• Jtest — Testing and static code analysis product by Parasoft.
• LDRA Testbed — A software analysis and testing tool suite for Java.
• SemmleCode — Object oriented code queries for static program analysis.
• SonarJ — Monitors conformance of code to intended architecture, also computes a wide range of software

metrics.
• Kalistick — A Cloud-based platform to manage and optimize code quality for Agile teams with DevOps spirit

Formal methods tools
Tools that use a formal methods approach to static analysis (e.g., using static program assertions):
• ESC/Java and ESC/Java2 — Based on Java Modeling Language, an enriched version of Java.
• MALPAS; A formal methods tool that uses directed graphs and regular algebra to prove that software under

analysis correctly meets its mathematical specification.
• Polyspace — Uses abstract interpretation (a formal methods based technique[10] ) to detect and prove the absence

of certain run-time errors in source code for C, C++, and Ada
• SofCheck Inspector — Statically determines and documents pre- and postconditions for Java methods; statically

checks preconditions at all call sites; also supports Ada.
• SPARK Toolset including the SPARK Examiner — Based on the SPARK programming language, a subset of

Ada.

http://en.wikipedia.org/w/index.php?title=C_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=C%2B%2B_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Astr%C3%A9e_%28static_analysis%29
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=PC-Lint
http://en.wikipedia.org/w/index.php?title=Green_Hills_Software
http://en.wikipedia.org/w/index.php?title=Intel
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://en.wikipedia.org/w/index.php?title=Monoidics
http://en.wikipedia.org/w/index.php?title=Parasoft
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=PC-Lint
http://en.wikipedia.org/w/index.php?title=Polyspace
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Run_time_error
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=PVS-Studio
http://en.wikipedia.org/w/index.php?title=QA-C
http://en.wikipedia.org/w/index.php?title=Red_Lizard_Software
http://en.wikipedia.org/w/index.php?title=Eclipse_%28software%29
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Visual_Studio
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Jtest
http://en.wikipedia.org/w/index.php?title=Parasoft
http://en.wikipedia.org/w/index.php?title=LDRA_Testbed
http://en.wikipedia.org/w/index.php?title=SemmleCode
http://en.wikipedia.org/w/index.php?title=SonarJ
http://en.wikipedia.org/w/index.php?title=Kalistick
http://en.wikipedia.org/w/index.php?title=Formal_methods
http://en.wikipedia.org/w/index.php?title=Assertion_%28computing%29
http://en.wikipedia.org/w/index.php?title=ESC/Java
http://en.wikipedia.org/w/index.php?title=ESC/Java2
http://en.wikipedia.org/w/index.php?title=Java_Modeling_Language
http://en.wikipedia.org/w/index.php?title=MALPAS_Software_Static_Analysis_Toolset
http://en.wikipedia.org/w/index.php?title=Graph_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Regular_algebra
http://en.wikipedia.org/w/index.php?title=Polyspace
http://en.wikipedia.org/w/index.php?title=Abstract_interpretation
http://en.wikipedia.org/w/index.php?title=Run_time_error
http://en.wikipedia.org/w/index.php?title=Source_code
http://en.wikipedia.org/w/index.php?title=SofCheck_Inspector
http://en.wikipedia.org/w/index.php?title=Precondition
http://en.wikipedia.org/w/index.php?title=Postcondition
http://en.wikipedia.org/w/index.php?title=Java_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=Precondition
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29
http://en.wikipedia.org/w/index.php?title=SPARK_Toolset
http://en.wikipedia.org/w/index.php?title=SPARK_Examiner
http://en.wikipedia.org/w/index.php?title=SPARK_programming_language
http://en.wikipedia.org/w/index.php?title=Ada_%28programming_language%29


List of tools for static code analysis 225

References
[1] http:/ / code. google. com/ p/ google-styleguide/
[2] http:/ / jshint. com/
[3] "Static Analysis in Xcode" (http:/ / developer. apple. com/ mac/ library/ featuredarticles/ StaticAnalysis/ index. html). Apple. . Retrieved

2009-09-03.
[4] "Static A" (http:/ / csslint. net/ about. html). .
[5] http:/ / www-01. ibm. com/ software/ awdtools/ logiscope/
[6] Parasoft Application Security Solution (http:/ / www. parasoft. com/ jsp/ solutions/ application_security_solution. jsp?itemId=322)
[7] Parasoft Compliance Solution (http:/ / www. parasoft. com/ jsp/ solutions/ compliance. jsp?itemId=339)
[8] Project Code Meter site (http:/ / www. projectcodemeter. com)
[9] http:/ / www. softwarediagnostics. com
[10] Cousot, Patrick (2007). "The Role of Abstract Interpretation in Formal Methods" (http:/ / ieeexplore. ieee. org/ Xplore/ login. jsp?url=http:/ /

ieeexplore. ieee. org/ iel5/ 4343908/ 4343909/ 04343930. pdf?arnumber=4343930& authDecision=-203). IEEE International Conference on
Software Engineering and Formal Methods. . Retrieved 2010-11-08.

External links
• Java Static Checkers (http:/ / www. dmoz. org/ / Computers/ Programming/ Languages/ Java/

Development_Tools/ Performance_and_Testing/ Static_Checkers/ ) at the Open Directory Project
• List of Java static code analysis plugins for Eclipse (http:/ / www. eclipseplugincentral. com/

Web_Links-index-req-viewcatlink-cid-14-orderby-rating. html)
• List of static source code analysis tools for C (http:/ / www. spinroot. com/ static/ )
• List of Static Source Code Analysis Tools (https:/ / www. cert. org/ secure-coding/ tools. html) at CERT
• SAMATE-Source Code Security Analyzers (http:/ / samate. nist. gov/ index. php/

Source_Code_Security_Analyzers. html)
• SATE - Static Analysis Tool Exposition (http:/ / samate. nist. gov/ SATE. html)
• “A Comparison of Bug Finding Tools for Java” (http:/ / www. cs. umd. edu/ ~jfoster/ papers/ issre04. pdf), by

Nick Rutar, Christian Almazan, and Jeff Foster, University of Maryland. Compares Bandera, ESC/Java 2,
FindBugs, JLint, and PMD.

• “Mini-review of Java Bug Finders” (http:/ / www. oreillynet. com/ digitalmedia/ blog/ 2004/ 03/
minireview_of_java_bug_finders. html), by Rick Jelliffe, O'Reilly Media.

• Parallel Lint (http:/ / www. ddj. com/ 218000153), by Andrey Karpov
• Integrate static analysis into a software development process (http:/ / www. embedded. com/ shared/

printableArticle. jhtml?articleID=193500830) Explains how one goes about integrating static analysis into a
software development process

http://code.google.com/p/google-styleguide/
http://jshint.com/
http://developer.apple.com/mac/library/featuredarticles/StaticAnalysis/index.html
http://csslint.net/about.html
http://www-01.ibm.com/software/awdtools/logiscope/
http://www.parasoft.com/jsp/solutions/application_security_solution.jsp?itemId=322
http://www.parasoft.com/jsp/solutions/compliance.jsp?itemId=339
http://www.projectcodemeter.com
http://www.softwarediagnostics.com
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F4343908%2F4343909%2F04343930.pdf%3Farnumber%3D4343930&authDecision=-203
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Static_Checkers/
http://www.dmoz.org//Computers/Programming/Languages/Java/Development_Tools/Performance_and_Testing/Static_Checkers/
http://en.wikipedia.org/w/index.php?title=Open_Directory_Project
http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-14-orderby-rating.html
http://www.eclipseplugincentral.com/Web_Links-index-req-viewcatlink-cid-14-orderby-rating.html
http://www.spinroot.com/static/
https://www.cert.org/secure-coding/tools.html
http://en.wikipedia.org/w/index.php?title=CERT_Coordination_Center
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
http://samate.nist.gov/SATE.html
http://www.cs.umd.edu/~jfoster/papers/issre04.pdf
http://en.wikipedia.org/w/index.php?title=University_of_Maryland%2C_College_Park
http://en.wikipedia.org/w/index.php?title=ESC/Java
http://en.wikipedia.org/w/index.php?title=FindBugs
http://en.wikipedia.org/w/index.php?title=JLint
http://www.oreillynet.com/digitalmedia/blog/2004/03/minireview_of_java_bug_finders.html
http://www.oreillynet.com/digitalmedia/blog/2004/03/minireview_of_java_bug_finders.html
http://en.wikipedia.org/w/index.php?title=O%27Reilly_Media
http://www.ddj.com/218000153
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830
http://www.embedded.com/shared/printableArticle.jhtml?articleID=193500830


226

GUI testing and review

GUI software testing
In software engineering, graphical user interface testing is the process of testing a product's graphical user
interface to ensure it meets its written specifications. This is normally done through the use of a variety of test cases.

Test Case Generation
To generate a ‘good’ set of test cases, the test designers must be certain that their suite covers all the functionality of
the system and also has to be sure that the suite fully exercises the GUI itself. The difficulty in accomplishing this
task is twofold: one has to deal with domain size and then one has to deal with sequences. In addition, the tester
faces more difficulty when they have to do regression testing.
The size problem can be easily illustrated. Unlike a CLI (command line interface) system, a GUI has many
operations that need to be tested. A relatively small program such as Microsoft WordPad has 325 possible GUI
operations.[1] In a large program, the number of operations can easily be an order of magnitude larger.
The second problem is the sequencing problem. Some functionality of the system may only be accomplished by
following some complex sequence of GUI events. For example, to open a file a user may have to click on the File
Menu and then select the Open operation, and then use a dialog box to specify the file name, and then focus the
application on the newly opened window. Obviously, increasing the number of possible operations increases the
sequencing problem exponentially. This can become a serious issue when the tester is creating test cases manually.
Regression testing becomes a problem with GUIs as well. This is because the GUI may change significantly across
versions of the application, even though the underlying application may not. A test designed to follow a certain path
through the GUI may not be able to follow that path since a button, menu item, or dialog may have changed location
or appearance.
These issues have driven the GUI testing problem domain towards automation. Many different techniques have been
proposed to automatically generate test suites that are complete and that simulate user behavior.
Most of the techniques used to test GUIs attempt to build on techniques previously used to test CLI (Command Line
Interface) programs. However, most of these have scaling problems when they are applied to GUI’s. For example,
Finite State Machine-based modeling[2] [3] — where a system is modeled as a finite state machine and a program is
used to generate test cases that exercise all states — can work well on a system that has a limited number of states
but may become overly complex and unwieldy for a GUI (see also model-based testing).

Planning and artificial intelligence
A novel approach to test suite generation, adapted from a CLI technique[4] involves using a planning system.[5]

Planning is a well-studied technique from the artificial intelligence (AI) domain that attempts to solve problems that
involve four parameters:
• an initial state,
• a goal state,
• a set of operators, and
• a set of objects to operate on.
Planning systems determine a path from the initial state to the goal state by using the operators. An extremely simple 
planning problem would be one where you had two words and one operation called ‘change a letter’ that allowed you

http://en.wikipedia.org/w/index.php?title=Software_engineering
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Graphical_user_interface
http://en.wikipedia.org/w/index.php?title=Test_design
http://en.wikipedia.org/w/index.php?title=GUI
http://en.wikipedia.org/w/index.php?title=Command_line_interface
http://en.wikipedia.org/w/index.php?title=Microsoft
http://en.wikipedia.org/w/index.php?title=WordPad
http://en.wikipedia.org/w/index.php?title=Order_of_magnitude
http://en.wikipedia.org/w/index.php?title=Finite_State_Machine
http://en.wikipedia.org/w/index.php?title=Artificial_intelligence


GUI software testing 227

to change one letter in a word to another letter – the goal of the problem would be to change one word into another.
For GUI testing, the problem is a bit more complex. In [1] the authors used a planner called IPP[6] to demonstrate this
technique. The method used is very simple to understand. First, the systems UI is analyzed to determine what
operations are possible. These operations become the operators used in the planning problem. Next an initial system
state is determined. Next a goal state is determined that the tester feels would allow exercising of the system. Lastly
the planning system is used to determine a path from the initial state to the goal state. This path becomes the test
plan.
Using a planner to generate the test cases has some specific advantages over manual generation. A planning system,
by its very nature, generates solutions to planning problems in a way that is very beneficial to the tester:
1. The plans are always valid. What this means is that the output of the system can be one of two things, a valid and

correct plan that uses the operators to attain the goal state or no plan at all. This is beneficial because much time
can be wasted when manually creating a test suite due to invalid test cases that the tester thought would work but
didn’t.

2. A planning system pays attention to order. Often to test a certain function, the test case must be complex and
follow a path through the GUI where the operations are performed in a specific order. When done manually, this
can lead to errors and also can be quite difficult and time consuming to do.

3. Finally, and most importantly, a planning system is goal oriented. What this means and what makes this fact so
important is that the tester is focusing test suite generation on what is most important, testing the functionality of
the system.

When manually creating a test suite, the tester is more focused on how to test a function (i. e. the specific path
through the GUI). By using a planning system, the path is taken care of and the tester can focus on what function to
test. An additional benefit of this is that a planning system is not restricted in any way when generating the path and
may often find a path that was never anticipated by the tester. This problem is a very important one to combat.[7]

Another interesting method of generating GUI test cases uses the theory that good GUI test coverage can be attained
by simulating a novice user. One can speculate that an expert user of a system will follow a very direct and
predictable path through a GUI and a novice user would follow a more random path. The theory therefore is that if
we used an expert to test the GUI, many possible system states would never be achieved. A novice user, however,
would follow a much more varied, meandering and unexpected path to achieve the same goal so it’s therefore more
desirable to create test suites that simulate novice usage because they will test more.
The difficulty lies in generating test suites that simulate ‘novice’ system usage. Using Genetic algorithms is one
proposed way to solve this problem.[7] Novice paths through the system are not random paths. First, a novice user
will learn over time and generally won’t make the same mistakes repeatedly, and, secondly, a novice user is not
analogous to a group of monkeys trying to type Hamlet, but someone who is following a plan and probably has some
domain or system knowledge.
Genetic algorithms work as follows: a set of ‘genes’ are created randomly and then are subjected to some task. The
genes that complete the task best are kept and the ones that don’t are discarded. The process is again repeated with
the surviving genes being replicated and the rest of the set filled in with more random genes. Eventually one gene (or
a small set of genes if there is some threshold set) will be the only gene in the set and is naturally the best fit for the
given problem.
For the purposes of the GUI testing, the method works as follows. Each gene is essentially a list of random integer
values of some fixed length. Each of these genes represents a path through the GUI. For example, for a given tree of
widgets, the first value in the gene (each value is called an allele) would select the widget to operate on, the
following alleles would then fill in input to the widget depending on the number of possible inputs to the widget (for
example a pull down list box would have one input…the selected list value). The success of the genes are scored by
a criterion that rewards the best ‘novice’ behavior.

http://en.wikipedia.org/w/index.php?title=Genetic_algorithms


GUI software testing 228

The system to do this testing described in[7] can be extended to any windowing system but is described on the X
window system. The X Window system provides functionality (via XServer and the editors' protocol) to dynamically
send GUI input to and get GUI output from the program without directly using the GUI. For example, one can call
XSendEvent() to simulate a click on a pull-down menu, and so forth. This system allows researchers to automate the
gene creation and testing so for any given application under test, a set of novice user test cases can be created.

Running the test cases
At first the strategies were migrated and adapted from the CLI testing strategies. A popular method used in the CLI
environment is capture/playback. Capture playback is a system where the system screen is “captured” as a bitmapped
graphic at various times during system testing. This capturing allowed the tester to “play back” the testing process
and compare the screens at the output phase of the test with expected screens. This validation could be automated
since the screens would be identical if the case passed and different if the case failed.
Using capture/playback worked quite well in the CLI world but there are significant problems when one tries to
implement it on a GUI-based system.[8] The most obvious problem one finds is that the screen in a GUI system may
look different while the state of the underlying system is the same, making automated validation extremely difficult.
This is because a GUI allows graphical objects to vary in appearance and placement on the screen. Fonts may be
different, window colors or sizes may vary but the system output is basically the same. This would be obvious to a
user, but not obvious to an automated validation system.
To combat this and other problems, testers have gone ‘under the hood’ and collected GUI interaction data from the
underlying windowing system.[9] By capturing the window ‘events’ into logs the interactions with the system are
now in a format that is decoupled from the appearance of the GUI. Now, only the event streams are captured. There
is some filtering of the event streams necessary since the streams of events are usually very detailed and most events
aren’t directly relevant to the problem. This approach can be made easier by using an MVC architecture for example
and making the view (i. e. the GUI here) as simple as possible while the model and the controller hold all the logic.
Another approach is to use the software's built-in assistive technology, to use an HTML interface or a three-tier
architecture that makes it also possible to better separate the user interface from the rest of the application.
Another way to run tests on a GUI is to build a driver into the GUI so that commands or events can be sent to the
software from another program.[7] This method of directly sending events to and receiving events from a system is
highly desirable when testing, since the input and output testing can be fully automated and user error is eliminated.

References
[1] Atif M. Memon, M.E. Pollack and M.L. Soffa. Using a Goal-driven Approach to Generate Test Cases for GUIs.
[2] J.M. Clarke. Automated test generation from a Behavioral Model. In Proceedings of Pacific Northwest Software Quality Conference. IEEE

Press, May 1998.
[3] S. Esmelioglu and L. Apfelbaum. Automated Test generation, execution and reporting. In Proceedings of Pacific Northwest Software Quality

Conference. IEEE Press, October 1997.
[4] A. Howe, A. von Mayrhauser and R.T. Mraz. Test case generation as an AI planning problem. Automated Software Engineering, 4:77-106,

1997.
[5] “Hierarchical GUI Test Case Generation Using Automated Planning” by Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. IEEE

Trans. Softw. Eng., vol. 27, no. 2, 2001, pp. 144-155, IEEE Press.
[6] J. Koehler, B. Nebel, J. Hoffman and Y. Dimopoulos. Extending planning graphs to an ADL subset. Lecture Notes in Computer Science,

1348:273, 1997.
[7] D.J. Kasik and H.G. George. Toward automatic generation of novice user test scripts. In M.J. Tauber, V. Bellotti, R. Jeffries, J.D. Mackinlay,

and J. Nielsen, editors, Proceedings of the Conference on Human Factors in Computing Systems : Common Ground, pages 244-251, New
York, 13–18 April 1996, ACM Press. (http:/ / www. sigchi. org/ chi96/ proceedings/ papers/ Kasik/ djk_txt. htm)

[8] L.R. Kepple. The black art of GUI testing. Dr. Dobb’s Journal of Software Tools, 19(2):40, Feb. 1994.
[9] M.L. Hammontree, J.J. Hendrickson and B.W. Hensley. Integrated data capture and analysis tools for research and testing on graphical user

interfaces. In P. Bauersfeld, J. Bennett and G. Lynch, editors, Proceedings of the Conference on Human Factors in Computing System, pages
431-432, New York, NY, USA, May 1992. ACM Press.

http://en.wikipedia.org/w/index.php?title=X_Window
http://en.wikipedia.org/w/index.php?title=Category:X_servers
http://en.wikipedia.org/w/index.php?title=Model-view-controller
http://en.wikipedia.org/w/index.php?title=Built-in
http://en.wikipedia.org/w/index.php?title=Assistive_technology
http://en.wikipedia.org/w/index.php?title=Web_application
http://en.wikipedia.org/w/index.php?title=Three-tier_%28computing%29
http://en.wikipedia.org/w/index.php?title=Three-tier_%28computing%29
http://www.sigchi.org/chi96/proceedings/papers/Kasik/djk_txt.htm


GUI software testing 229

External links
• Article GUI Testing Checklist (http:/ / www. methodsandtools. com/ archive/ archive. php?id=37)
• GUITAR GUI Testing Software (http:/ / guitar. sourceforge. net/ )
• Event-Driven Software Lab (http:/ / www. cs. umd. edu/ ~atif/ edsl)
• NUnitForms (http:/ / nunitforms. sourceforge. net/ ) an add-on to the popular testing framework NUnit for

automatic GUI testing of WinForms applications
• GUI Test Drivers (http:/ / www. testingfaqs. org/ t-gui. html) Lists and describes tools rsp. frameworks in

different programming languages
• http:/ / www. youtube. com/ watch?v=6LdsIVvxISU (http:/ / www. youtube. com/ watch?v=6LdsIVvxISU) A

talk at the Google Test Automation Conference by Prof. Atif M Memon (http:/ / www. cs. umd. edu/ ~atif) on
Model-Based GUI Testing.

• Testing GUI Applications (http:/ / www. gerrardconsulting. com/ ?q=node/ 514) A talk at EuroSTAR 97,
Edinburgh UK by Paul Gerrard.

• Xnee, a program that can be used to record and replay test.

Usability testing
Usability testing is a technique used to evaluate a product by testing it on users. This can be seen as an irreplaceable
usability practice, since it gives direct input on how real users use the system.[1] This is in contrast with usability
inspection methods where experts use different methods to evaluate a user interface without involving users.
Usability testing focuses on measuring a human-made product's capacity to meet its intended purpose. Examples of
products that commonly benefit from usability testing are foods, consumer products, web sites or web applications,
computer interfaces, documents, and devices. Usability testing measures the usability, or ease of use, of a specific
object or set of objects, whereas general human-computer interaction studies attempt to formulate universal
principles.

History of usability testing
Henry Dreyfuss in the late 1940s contracted to design the state rooms for the twin ocean liners "Independence" and
"Constitution." He built eight prototype staterooms and installed them in a warehouse. He then brought in a series of
travelers to "live" in the rooms for a short time, bringing with them all items they would normally take when
cruising. His people were able to discover over time, for example, if there was space for large steamer trunks, if light
switches needed to be added beside the beds to prevent injury, etc., before hundreds of state rooms had been built
into the ship.[2]

A Xerox Palo Alto Research Center (PARC) employee wrote that PARC used extensive usability testing in creating
the Xerox Star, introduced in 1981.[3] Only about 25,000 were sold, leading many to consider the Xerox Star a
commercial failure.
The Inside Intuit book, says (page 22, 1984), "... in the first instance of the Usability Testing that later became
standard industry practice, LeFevre recruited people off the streets... and timed their Kwik-Chek (Quicken) usage
with a stopwatch. After every test... programmers worked to improve the program."[4]) Scott Cook, Intuit
co-founder, said, "... we did usability testing in 1984, five years before anyone else... there's a very big difference
between doing it and having marketing people doing it as part of their... design... a very big difference between doing
it and having it be the core of what engineers focus on.[5]

http://www.methodsandtools.com/archive/archive.php?id=37
http://guitar.sourceforge.net/
http://www.cs.umd.edu/~atif/edsl
http://nunitforms.sourceforge.net/
http://www.testingfaqs.org/t-gui.html
http://www.youtube.com/watch?v=6LdsIVvxISU
http://www.youtube.com/watch?v=6LdsIVvxISU
http://www.cs.umd.edu/~atif
http://www.gerrardconsulting.com/?q=node/514
http://en.wikipedia.org/w/index.php?title=Xnee
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Food
http://en.wikipedia.org/w/index.php?title=Web_design
http://en.wikipedia.org/w/index.php?title=User_interface
http://en.wikipedia.org/w/index.php?title=Human-computer_interaction
http://en.wikipedia.org/w/index.php?title=Henry_Dreyfuss
http://en.wikipedia.org/w/index.php?title=Xerox
http://en.wikipedia.org/w/index.php?title=PARC
http://en.wikipedia.org/w/index.php?title=Xerox_Star
http://en.wikipedia.org/w/index.php?title=Quicken
http://books.google.com/books?id=lRs_4U43UcEC&printsec=frontcover&sig=ACfU3U1xvA7-f80TP9Zqt9wkB9adVAqZ4g#PPA22,M1
http://en.wikipedia.org/w/index.php?title=Scott_Cook
http://en.wikipedia.org/w/index.php?title=Intuit


Usability testing 230

Goals of usability testing
Usability testing is a black-box testing technique. The aim is to observe people using the product to discover errors
and areas of improvement. Usability testing generally involves measuring how well test subjects respond in four
areas: efficiency, accuracy, recall, and emotional response. The results of the first test can be treated as a baseline or
control measurement; all subsequent tests can then be compared to the baseline to indicate improvement.
• Performance -- How much time, and how many steps, are required for people to complete basic tasks? (For

example, find something to buy, create a new account, and order the item.)
• Accuracy -- How many mistakes did people make? (And were they fatal or recoverable with the right

information?)
• Recall -- How much does the person remember afterwards or after periods of non-use?
• Emotional response -- How does the person feel about the tasks completed? Is the person confident, stressed?

Would the user recommend this system to a friend?

What usability testing is not
Simply gathering opinions on an object or document is market research or qualitative research rather than usability
testing. Usability testing usually involves systematic observation under controlled conditions to determine how well
people can use the product.[6] . However, often both qualitative and usability testing are used in combination, to
better understand users' motivations/perceptions, in addition to their actions.
Rather than showing users a rough draft and asking, "Do you understand this?", usability testing involves watching
people trying to use something for its intended purpose. For example, when testing instructions for assembling a toy,
the test subjects should be given the instructions and a box of parts and, rather than being asked to comment on the
parts and materials, they are asked to put the toy together. Instruction phrasing, illustration quality, and the toy's
design all affect the assembly process.

Methods
Setting up a usability test involves carefully creating a scenario, or realistic situation, wherein the person performs a
list of tasks using the product being tested while observers watch and take notes. Several other test instruments such
as scripted instructions, paper prototypes, and pre- and post-test questionnaires are also used to gather feedback on
the product being tested. For example, to test the attachment function of an e-mail program, a scenario would
describe a situation where a person needs to send an e-mail attachment, and ask him or her to undertake this task.
The aim is to observe how people function in a realistic manner, so that developers can see problem areas, and what
people like. Techniques popularly used to gather data during a usability test include think aloud protocol,
Co-discovery Learning and eye tracking.

Hallway testing
Hallway testing (or Hall Intercept Testing) is a general methodology of usability testing. Rather than using an
in-house, trained group of testers, just five to six random people, indicative of a cross-section of end users, are
brought in to test the product, or service. The name of the technique refers to the fact that the testers should be
random people who pass by in the hallway.[7]

Hallway testing is particularly effective in the early stages of a new design when the designers are looking for "brick
walls," problems so serious that users simply cannot advance. Anyone of normal intelligence other than designers
and engineers can be used at this point. (Both designers and engineers immediately turn from being test subjects into
being "expert reviewers." They are often too close to the project, so they already know how to accomplish the task,
thereby missing ambiguities and false paths.)

http://en.wikipedia.org/w/index.php?title=Market_research
http://en.wikipedia.org/w/index.php?title=Qualitative_research
http://en.wikipedia.org/w/index.php?title=Scenario
http://en.wikipedia.org/w/index.php?title=Paper_prototypes
http://en.wikipedia.org/w/index.php?title=E-mail
http://en.wikipedia.org/w/index.php?title=Co-discovery_Learning
http://en.wikipedia.org/w/index.php?title=Eye_tracking
http://en.wikipedia.org/w/index.php?title=Methodology
http://en.wikipedia.org/w/index.php?title=Random
http://en.wikipedia.org/w/index.php?title=Cross-sectional_data
http://en.wikipedia.org/w/index.php?title=End_user


Usability testing 231

Remote Usability Testing
In a scenario where usability evaluators, developers and prospective users are located in different countries and time
zones, conducting a traditional lab usability evaluation creates challenges both from the cost and logistical
perspectives. These concerns led to research on remote usability evaluation, with the user and the evaluators
separated over space and time. Remote testing, which facilitates evaluations being done in the context of the user’s
other tasks and technology can be either synchronous or asynchronous. Synchronous usability testing methodologies
involve video conferencing or employ remote application sharing tools such as WebEx. The former involves real
time one-on-one communication between the evaluator and the user, while the latter involves the evaluator and user
working separately.[8]

Asynchronous methodologies include automatic collection of user’s click streams, user logs of critical incidents that
occur while interacting with the application and subjective feedback on the interface by users.[9] Similar to an in-lab
study, an asynchronous remote usability test is task-based and the platforms allow you to capture clicks and task
times. Hence, for many large companies this allows you to understand the WHY behind the visitors' intents when
visiting a website or mobile site. Additionally, this style of user testing also provides an opportunity to segment
feedback by demographic, attitudinal and behavioural type. The tests are carried out in the user’s own environment
(rather than labs) helping further simulate real-life scenario testing. This approach also provides a vehicle to easily
solicit feedback from users in remote areas.
Numerous tools are available to address the needs of both these approaches. WebEx and Go-to-meeting are the most
commonly used technologies to conduct a synchronous remote usability test.[10] However, synchronous remote
testing may lack the immediacy and sense of “presence” desired to support a collaborative testing process. Moreover,
managing inter-personal dynamics across cultural and linguistic barriers may require approaches sensitive to the
cultures involved. Other disadvantages include having reduced control over the testing environment and the
distractions and interruptions experienced by the participants’ in their native environment.[11] One of the newer
methods developed for conducting a synchronous remote usability test is by using virtual worlds.[12]

Expert review
Expert review is another general method of usability testing. As the name suggests, this method relies on bringing
in experts with experience in the field (possibly from companies that specialize in usability testing) to evaluate the
usability of a product.

Automated expert review
Similar to expert reviews, automated expert reviews provide usability testing but through the use of programs
given rules for good design and heuristics. Though an automated review might not provide as much detail and
insight as reviews from people, they can be finished more quickly and consistently. The idea of creating surrogate
users for usability testing is an ambitious direction for the Artificial Intelligence community.

How many users to test?
In the early 1990s, Jakob Nielsen, at that time a researcher at Sun Microsystems, popularized the concept of using
numerous small usability tests—typically with only five test subjects each—at various stages of the development
process. His argument is that, once it is found that two or three people are totally confused by the home page, little is
gained by watching more people suffer through the same flawed design. "Elaborate usability tests are a waste of
resources. The best results come from testing no more than five users and running as many small tests as you can
afford.".[7] Nielsen subsequently published his research and coined the term heuristic evaluation.
The claim of "Five users is enough" was later described by a mathematical model[13] which states for the proportion
of uncovered problems U

http://en.wikipedia.org/w/index.php?title=Jakob_Nielsen_%28usability_consultant%29
http://en.wikipedia.org/w/index.php?title=Sun_Microsystems


Usability testing 232

where p is the probability of one subject identifying a specific problem and n the number of subjects (or test
sessions). This model shows up as an asymptotic graph towards the number of real existing problems (see figure
below).

In later research Nielsen's claim has eagerly been questioned with both empirical evidence[14] and more advanced
mathematical models.[15] Two key challenges to this assertion are:
1. since usability is related to the specific set of users, such a small sample size is unlikely to be representative of

the total population so the data from such a small sample is more likely to reflect the sample group than the
population they may represent

2. Not every usability problem is equally easy-to-detect. Intractable problems happen to decelerate the overall
process. Under these circumstances the progress of the process is much shallower than predicted by the
Nielsen/Landauer formula.[16]

It is worth noting that Nielsen does not advocate stopping after a single test with five users; his point is that testing
with five users, fixing the problems they uncover, and then testing the revised site with five different users is a better
use of limited resources than running a single usability test with 10 users. In practice, the tests are run once or twice
per week during the entire development cycle, using three to five test subjects per round, and with the results
delivered within 24 hours to the designers. The number of users actually tested over the course of the project can
thus easily reach 50 to 100 people.
In the early stage, when users are most likely to immediately encounter problems that stop them in their tracks,
almost anyone of normal intelligence can be used as a test subject. In stage two, testers will recruit test subjects
across a broad spectrum of abilities. For example, in one study, experienced users showed no problem using any
design, from the first to the last, while naive user and self-identified power users both failed repeatedly.[17] Later on,
as the design smooths out, users should be recruited from the target population.
When the method is applied to a sufficient number of people over the course of a project, the objections raised above
become addressed: The sample size ceases to be small and usability problems that arise with only occasional users

http://en.wikipedia.org/w/index.php?title=File:Virzis_Formula.PNG
http://en.wikipedia.org/w/index.php?title=Empirical
http://en.wikipedia.org/w/index.php?title=Mathematical_model


Usability testing 233

are found. The value of the method lies in the fact that specific design problems, once encountered, are never seen
again because they are immediately eliminated, while the parts that appear successful are tested over and over. While
it's true that the initial problems in the design may be tested by only five users, when the method is properly applied,
the parts of the design that worked in that initial test will go on to be tested by 50 to 100 people.

References
[1] Nielsen, J. (1994). Usability Engineering, Academic Press Inc, p 165
[2] NN/G Usability Week 2011 Conference "Interaction Design" Manual, Bruce Tognazzini, Nielsen Norman Group, 2011
[3] http:/ / interactions. acm. org/ content/ XV/ baecker. pdf
[4] http:/ / books. google. com/ books?id=lRs_4U43UcEC& printsec=frontcover&

sig=ACfU3U1xvA7-f80TP9Zqt9wkB9adVAqZ4g#PPA22,M1
[5] http:/ / news. zdnet. co. uk/ itmanagement/ 0,1000000308,2065537,00. htm
[6] http:/ / jerz. setonhill. edu/ design/ usability/ intro. htm
[7] http:/ / www. useit. com/ alertbox/ 20000319. html
[8] http:/ / portal. acm. org/ citation. cfm?id=1240838& dl=
[9] http:/ / portal. acm. org/ citation. cfm?id=971264
[10] http:/ / www. boxesandarrows. com/ view/ remote_online_usability_testing_why_how_and_when_to_use_it
[11] Dray, Susan; Siegel, David (March 2004). "Remote possibilities?: international usability testing at a distance". Interactions 11 (2): 10–17.

doi:10.1145/971258.971264.
[12] Chalil Madathil, Kapil; Joel S. Greenstein (May 2011). "Synchronous remote usability testing: a new approach facilitated by virtual worlds".

Proceedings of the 2011 annual conference on Human factors in computing systems. CHI '11: 2225–2234. doi:http:/ / portal. acm. org/
citation. cfm?doid=1978942. 1979267.

[13] Virzi, R.A., Refining the Test Phase of Usability Evaluation: How Many Subjects is Enough? Human Factors, 1992. 34(4): p. 457-468.
[14] http:/ / citeseer. ist. psu. edu/ spool01testing. html
[15] Caulton, D.A., Relaxing the homogeneity assumption in usability testing. Behaviour & Information Technology, 2001. 20(1): p. 1-7
[16] Schmettow, Heterogeneity in the Usability Evaluation Process. In: M. England, D. & Beale, R. (ed.), Proceedings of the HCI 2008, British

Computing Society, 2008, 1, 89-98
[17] Bruce Tognazzini. "Maximizing Windows" (http:/ / www. asktog. com/ columns/ 000maxscrns. html). .

External links
• Usability.gov (http:/ / www. usability. gov/ )
• A Brief History of the Magic Number 5 in Usability Testing (http:/ / www. measuringusability. com/ blog/

five-history. php)

http://interactions.acm.org/content/XV/baecker.pdf
http://books.google.com/books?id=lRs_4U43UcEC&printsec=frontcover&sig=ACfU3U1xvA7-f80TP9Zqt9wkB9adVAqZ4g#PPA22,M1
http://books.google.com/books?id=lRs_4U43UcEC&printsec=frontcover&sig=ACfU3U1xvA7-f80TP9Zqt9wkB9adVAqZ4g#PPA22,M1
http://news.zdnet.co.uk/itmanagement/0,1000000308,2065537,00.htm
http://jerz.setonhill.edu/design/usability/intro.htm
http://www.useit.com/alertbox/20000319.html
http://portal.acm.org/citation.cfm?id=1240838&dl=
http://portal.acm.org/citation.cfm?id=971264
http://www.boxesandarrows.com/view/remote_online_usability_testing_why_how_and_when_to_use_it
http://portal.acm.org/citation.cfm?doid=1978942.1979267.
http://portal.acm.org/citation.cfm?doid=1978942.1979267.
http://citeseer.ist.psu.edu/spool01testing.html
http://www.asktog.com/columns/000maxscrns.html
http://www.usability.gov/
http://www.measuringusability.com/blog/five-history.php
http://www.measuringusability.com/blog/five-history.php


Think aloud protocol 234

Think aloud protocol
Think-aloud protocol (or think-aloud protocols, or TAP) is a method used to gather data in usability testing in
product design and development, in psychology and a range of social sciences (e.g., reading, writing and translation
process research). The think-aloud method was introduced in the usability field by Clayton Lewis [1] while he was at
IBM, and is explained in Task-Centered User Interface Design: A Practical Introduction by C. Lewis and J.
Rieman.[2] The method was developed based on the techniques of protocol analysis by Ericsson and Simon.[3] [4] [5]

Think aloud protocols involve participants thinking aloud as they are performing a set of specified tasks. Users are
asked to say whatever they are looking at, thinking, doing, and feeling, as they go about their task. This enables
observers to see first-hand the process of task completion (rather than only its final product). Observers at such a test
are asked to objectively take notes of everything that users say, without attempting to interpret their actions and
words. Test sessions are often audio and video taped so that developers can go back and refer to what participants
did, and how they reacted. The purpose of this method is to make explicit what is implicitly present in subjects who
are able to perform a specific task.
A related but slightly different data-gathering method is the talk-aloud protocol. This involves participants only
describing their action but not giving explanations. This method is thought to be more objective in that participants
merely report how they go about completing a task rather than interpreting or justifying their actions (see the
standard works by Ericsson & Simon).
As Hannu and Pallab [6] state the thinking aloud protocol can be divide in two different experimental procedures: the
first one, is the concurrent thinking aloud protocol, collected during the decision task; the second procedure is the
retrospective thinking aloud protocol gathered after the decision task.

References
[1] Lewis, C. H. (1982). Using the "Thinking Aloud" Method In Cognitive Interface Design. Technical Report IBM RC-9265.
[2] http:/ / grouplab. cpsc. ucalgary. ca/ saul/ hci_topics/ tcsd-book/ chap-1_v-1. html Task-Centered User Interface Design: A Practical

Introduction, by Clayton Lewis and John Rieman.
[3] Ericsson, K., & Simon, H. (May 1980). "Verbal reports as data". Psychological Review 87 (3): 215–251. doi:10.1037/0033-295X.87.3.215.
[4] Ericsson, K., & Simon, H. (1987). "Verbal reports on thinking". In C. Faerch & G. Kasper (eds.). Introspection in Second Language

Research. Clevedon, Avon: Multilingual Matters. pp. 24–54.
[5] Ericsson, K., & Simon, H. (1993). Protocol Analysis: Verbal Reports as Data (2nd ed.). Boston: MIT Press. ISBN 0262050293.
[6] Hannu, K., & Pallab, P. (2000). "A comparison of concurrent and retrospective verbal protocol analysis". American Journal of Psychology

(University of Illinois Press) 113 (3): 387–404. doi:10.2307/1423365. JSTOR 1423365. PMID 10997234.

http://en.wikipedia.org/w/index.php?title=Psychology
http://en.wikipedia.org/w/index.php?title=IBM
http://en.wikipedia.org/w/index.php?title=Protocol_analysis
http://grouplab.cpsc.ucalgary.ca/saul/hci_topics/tcsd-book/chap-1_v-1.html


Usability inspection 235

Usability inspection
Usability inspection is the name for a set of methods where an evaluator inspects a user interface. This is in contrast
to usability testing where the usability of the interface is evaluated by testing it on real users. Usability inspections
can generally be used early in the development process by evaluating prototypes or specifications for the system that
can't be tested on users. Usability inspection methods are generally considered to be cheaper to implement than
testing on users.[1]

Usability inspection methods include:
• Cognitive walkthrough (task-specific)
• Heuristic evaluation (holistic)
• Pluralistic walkthrough

References
[1] Nielsen, Jakob. Usability Inspection Methods. New York, NY: John Wiley and Sons, 1994

External links
• Summary of Usability Inspection Methods (http:/ / www. useit. com/ papers/ heuristic/ inspection_summary.

html)

Cognitive walkthrough
The cognitive walkthrough method is a usability inspection method used to identify usability issues in a piece of
software or web site, focusing on how easy it is for new users to accomplish tasks with the system. Whereas
cognitive walkthrough is task-specific, heuristic evaluation takes a holistic view to catch problems not caught by
this and other usability inspection methods. The method is rooted in the notion that users typically prefer to learn a
system by using it to accomplish tasks, rather than, for example, studying a manual. The method is prized for its
ability to generate results quickly with low cost, especially when compared to usability testing, as well as the ability
to apply the method early in the design phases, before coding has even begun.

Introduction
A cognitive walkthrough starts with a task analysis that specifies the sequence of steps or actions required by a user
to accomplish a task, and the system responses to those actions. The designers and developers of the software then
walk through the steps as a group, asking themselves a set of questions at each step. Data is gathered during the
walkthrough, and afterwards a report of potential issues is compiled. Finally the software is redesigned to address the
issues identified.
The effectiveness of methods such as cognitive walkthroughs is hard to measure in applied settings, as there is very
limited opportunity for controlled experiments while developing software. Typically measurements involve
comparing the number of usability problems found by applying different methods. However, Gray and Salzman
called into question the validity of those studies in their dramatic 1998 paper "Damaged Merchandise",
demonstrating how very difficult it is to measure the effectiveness of usability inspection methods. However, the
consensus in the usability community is that the cognitive walkthrough method works well in a variety of settings
and applications.

http://www.useit.com/papers/heuristic/inspection_summary.html
http://www.useit.com/papers/heuristic/inspection_summary.html
http://en.wikipedia.org/w/index.php?title=Usability_inspection_method
http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=Usability_inspection_method
http://en.wikipedia.org/w/index.php?title=Task_analysis
http://en.wikipedia.org/w/index.php?title=Usability_inspection_method


Cognitive walkthrough 236

Walking through the tasks
After the task analysis has been made the participants perform the walkthrough by asking themselves a set of
questions for each subtask. Typically four questions are asked[1] :
• Will the user try to achieve the effect that the subtask has? Does the user understand that this subtask is

needed to reach the user's goal?
• Will the user notice that the correct action is available? E.g. is the button visible?
• Will the user understand that the wanted subtask can be achieved by the action? E.g. the right button is

visible but the user does not understand the text and will therefore not click on it.
• Does the user get feedback? Will the user know that they have done the right thing after performing the action?
By answering the questions for each subtask usability problems will be noticed.

Common Mistakes
In teaching people to use the walkthrough method, Lewis & Rieman have found that there are two common
misunderstandings [2] :
1. The evaluator doesn't know how to perform the task themself, so they stumble through the interface trying to

discover the correct sequence of actions -- and then they evaluate the stumbling process. (The user should identify
and perform the optimal action sequence.)

2. The walkthrough does not test real users on the system. The walkthrough will often identify many more problems
than you would find with a single, unique user in a single test session.

History
The method was developed in the early nineties by Wharton, et al., and reached a large usability audience when it
was published as a chapter in Jakob Nielsen's seminal book on usability, "Usability Inspection Methods." The
Wharton, et al. method required asking four questions at each step, along with extensive documentation of the
analysis. In 2000 there was a resurgence in interest in the method in response to a CHI paper by Spencer who
described modifications to the method to make it effective in a real software development setting. Spencer's
streamlined method required asking only two questions at each step, and involved creating less documentation.
Spencer's paper followed the example set by Rowley, et al. who described the modifications to the method that they
made based on their experience applying the methods in their 1992 CHI paper "The Cognitive Jogthrough".

References
[1] C. Wharton et al. "The cognitive walkthrough method: a practitioner's guide" in J. Nielsen & R. Mack "Usability Inspection Methods" pp.

105-140.
[2] http:/ / hcibib. org/ tcuid/ chap-4. html#4-1

Further reading
• Blackmon, M. H. Polson, P.G. Muneo, K & Lewis, C. (2002) Cognitive Walkthrough for the Web CHI 2002

vol.4 No.1 pp463–470
• Blackmon, M. H. Polson, Kitajima, M. (2003) Repairing Usability Problems Identified by the Cognitive

Walkthrough for the Web CHI 2003 pp497–504.
• Dix, A., Finlay, J., Abowd, G., D., & Beale, R. (2004). Human-computer interaction (3rd ed.). Harlow, England:

Pearson Education Limited. p321.
• Gabrielli, S. Mirabella, V. Kimani, S. Catarci, T. (2005) Supporting Cognitive Walkthrough with Video Data: A

Mobile Learning Evaluation Study MobileHCI ’05 pp77–82.

http://en.wikipedia.org/w/index.php?title=Jakob_Nielsen_%28usability_consultant%29
http://hcibib.org/tcuid/chap-4.html#4-1
http://en.wikipedia.org/w/index.php?title=MobileHCI


Cognitive walkthrough 237

• Goillau, P., Woodward, V., Kelly, C. & Banks, G. (1998) Evaluation of virtual prototypes for air traffic control -
the MACAW technique. In, M. Hanson (Ed.) Contemporary Ergonomics 1998.

• Good, N. S. & Krekelberg, A. (2003) Usability and Privacy: a study of KaZaA P2P file-sharing CHI 2003 Vol.5
no.1 pp137–144.

• Gray, W. & Salzman, M. (1998). Damaged merchandise? A review of experiments that compare usability
evaluation methods, Human-Computer Interaction vol.13 no.3, 203-61.

• Gray, W.D. & Salzman, M.C. (1998) Repairing Damaged Merchandise: A rejoinder. Human-Computer
Interaction vol.13 no.3 pp325–335.

• Hornbaek, K. & Frokjaer, E. (2005) Comparing Usability Problems and Redesign Proposal as Input to Practical
Systems Development CHI 2005 391-400.

• Jeffries, R. Miller, J. R. Wharton, C. Uyeda, K. M. (1991) User Interface Evaluation in the Real World: A
comparison of Four Techniques Conference on Human Factors in Computing Systems pp 119 – 124

• Lewis, C. Polson, P, Wharton, C. & Rieman, J. (1990) Testing a Walkthrough Methodology for Theory-Based
Design of Walk-Up-and-Use Interfaces Chi ’90 Proceedings pp235–242.

• Mahatody, Thomas / Sagar, Mouldi / Kolski, Christophe (2010). State of the Art on the Cognitive Walkthrough
Method, Its Variants and Evolutions, International Journal of Human-Computer Interaction, 2, 8 741-785.

• Rowley, David E., and Rhoades, David G (1992). The Cognitive Jogthrough: A Fast-Paced User Interface
Evaluation Procedure. Proceedings of CHI '92, 389-395.

• Sears, A. (1998) The Effect of Task Description Detail on Evaluator Performance with Cognitive Walkthroughs
CHI 1998 pp259–260.

• Spencer, R. (2000) The Streamlined Cognitive Walkthrough Method, Working Around Social Constraints
Encountered in a Software Development Company CHI 2000 vol.2 issue 1 pp353–359.

• Wharton, C. Bradford, J. Jeffries, J. Franzke, M. Applying Cognitive Walkthroughs to more Complex User
Interfaces: Experiences, Issues and Recommendations CHI ’92 pp381–388.

External links
• Cognitive Walkthrough (http:/ / www. pages. drexel. edu/ ~zwz22/ CognWalk. htm)

http://en.wikipedia.org/w/index.php?title=Andrew_Sears
http://www.pages.drexel.edu/~zwz22/CognWalk.htm


Heuristic evaluation 238

Heuristic evaluation
A heuristic evaluation is a discount usability inspection method for computer software that helps to identify
usability problems in the user interface (UI) design. It specifically involves evaluators examining the interface and
judging its compliance with recognized usability principles (the "heuristics"). These evaluation methods are now
widely taught and practiced in the New Media sector, where UIs are often designed in a short space of time on a
budget that may restrict the amount of money available to provide for other types of interface testing.

Introduction
The main goal of heuristic evaluations is to identify any problems associated with the design of user interfaces.
Usability consultant Jakob Nielsen developed this method on the basis of several years of experience in teaching and
consulting about usability engineering.
Heuristic evaluations are one of the most informal methods[1] of usability inspection in the field of human-computer
interaction. There are many sets of usability design heuristics; they are not mutually exclusive and cover many of the
same aspects of user interface design.
Quite often, usability problems that are discovered are categorized—often on a numeric scale—according to their
estimated impact on user performance or acceptance. Often the heuristic evaluation is conducted in the context of
use cases (typical user tasks), to provide feedback to the developers on the extent to which the interface is likely to
be compatible with the intended users’ needs and preferences.
The simplicity of heuristic evaluation is beneficial at the early stages of design. This usability inspection method
does not require user testing which can be burdensome due to the need for users, a place to test them and a payment
for their time. Heuristic evaluation requires only one expert, reducing the complexity and expended time for
evaluation. Most heuristic evaluations can be accomplished in a matter of days. The time required varies with the
size of the artifact, its complexity, the purpose of the review, the nature of the usability issues that arise in the
review, and the competence of the reviewers. Using heuristic evaluation prior to user testing will reduce the number
and severity of design errors discovered by users. Although heuristic evaluation can uncover many major usability
issues in a short period of time, a criticism that is often leveled is that results are highly influenced by the knowledge
of the expert reviewer(s). This “one-sided” review repeatedly has different results than performance testing, each type
of testing uncovering a different set of problems.

Nielsen's heuristics
Jakob Nielsen's heuristics are probably the most-used usability heuristics for user interface design. Nielsen
developed the heuristics based on work together with Rolf Molich in 1990.[1] [2] The final set of heuristics that are
still used today were released by Nielsen in 1994.[3] The heuristics as published in Nielsen's book Usability
Engineering are as follows[4]

Visibility of system status:
The system should always keep users informed about what is going on, through appropriate feedback within
reasonable time.
Match between system and the real world:
The system should speak the user's language, with words, phrases and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions, making information appear in a natural and logical order.
User control and freedom:
Users often choose system functions by mistake and will need a clearly marked "emergency exit" to leave the
unwanted state without having to go through an extended dialogue. Support undo and redo.

http://en.wikipedia.org/w/index.php?title=Usability
http://en.wikipedia.org/w/index.php?title=User_Interface_Design
http://en.wikipedia.org/w/index.php?title=New_Media
http://en.wikipedia.org/w/index.php?title=Jakob_Nielsen_%28usability_consultant%29
http://en.wikipedia.org/w/index.php?title=Usability_engineering
http://en.wikipedia.org/w/index.php?title=Heuristic
http://en.wikipedia.org/w/index.php?title=Human-computer_interaction
http://en.wikipedia.org/w/index.php?title=Human-computer_interaction
http://en.wikipedia.org/w/index.php?title=Use_cases
http://en.wikipedia.org/w/index.php?title=Feedback
http://en.wikipedia.org/w/index.php?title=Performance_testing
http://en.wikipedia.org/w/index.php?title=Rolf_Molich


Heuristic evaluation 239

Consistency and standards:
Users should not have to wonder whether different words, situations, or actions mean the same thing. Follow
platform conventions.
Error prevention:
Even better than good error messages is a careful design which prevents a problem from occurring in the first place.
Either eliminate error-prone conditions or check for them and present users with a confirmation option before they
commit to the action.
Recognition rather than recall:
Minimize the user's memory load by making objects, actions, and options visible. The user should not have to
remember information from one part of the dialogue to another. Instructions for use of the system should be visible
or easily retrievable whenever appropriate.
Flexibility and efficiency of use:
Accelerators—unseen by the novice user—may often speed up the interaction for the expert user such that the
system can cater to both inexperienced and experienced users. Allow users to tailor frequent actions.
Aesthetic and minimalist design:
Dialogues should not contain information which is irrelevant or rarely needed. Every extra unit of information in a
dialogue competes with the relevant units of information and diminishes their relative visibility.
Help users recognize, diagnose, and recover from errors:
Error messages should be expressed in plain language (no codes), precisely indicate the problem, and constructively
suggest a solution.
Help and documentation:
Even though it is better if the system can be used without documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search, focused on the user's task, list concrete steps to be
carried out, and not be too large.

Gerhardt-Powals’ cognitive engineering principles
Although Nielsen is considered the expert and field leader in heuristics, Jill Gerhardt-Powals [5] also developed a set
of cognitive principles for enhancing computer performance.[6] These heuristics, or principles, are similar to
Nielsen’s heuristics but take a more holistic approach to evaluation. Gerhardt Powals’ principles[7] are listed below.
• Automate unwanted workload:

• free cognitive resources for high-level tasks.
• eliminate mental calculations, estimations, comparisons, and unnecessary thinking.

• Reduce uncertainty:
• display data in a manner that is clear and obvious.

• Fuse data:
• reduce cognitive load by bringing together lower level data into a higher-level summation.

• Present new information with meaningful aids to interpretation:
• use a familiar framework, making it easier to absorb.
• use everyday terms, metaphors, etc.

• Use names that are conceptually related to function:
• Context-dependent.
• Attempt to improve recall and recognition.
• Group data in consistently meaningful ways to decrease search time.

http://en.wikipedia.org/w/index.php?title=Progressive_disclosure
http://loki.stockton.edu/~gerhardj/
http://en.wikipedia.org/w/index.php?title=Cognitive
http://en.wikipedia.org/w/index.php?title=Cognitive_load


Heuristic evaluation 240

• Limit data-driven tasks:
• Reduce the time spent assimilating raw data.
• Make appropriate use of color and graphics.

• Include in the displays only that information needed by the user at a given time.
• Provide multiple coding of data when appropriate.
• Practice judicious redundancy.

References
[1] Nielsen, J., and Molich, R. (1990). Heuristic evaluation of user interfaces, Proc. ACM CHI'90 Conf. (Seattle, WA, 1–5 April), 249-256
[2] Molich, R., and Nielsen, J. (1990). Improving a human-computer dialogue, Communications of the ACM 33, 3 (March), 338-348
[3] Nielsen, J. (1994). Heuristic evaluation. In Nielsen, J., and Mack, R.L. (Eds.), Usability Inspection Methods, John Wiley & Sons, New York,

NY
[4] Nielsen, Jakob (1994). Usability Engineering. San Diego: Academic Press. pp. 115–148. ISBN 0-12-518406-9.
[5] http:/ / loki. stockton. edu/ ~gerhardj/
[6] [ |Gerhardt-Powals, Jill (http:/ / loki. stockton. edu/ ~gerhardj/ )] (1996). "Cognitive engineering principles for enhancing human - computer

performance". International Journal of Human-Computer Interaction 8 (2): 189–211.
[7] Heuristic Evaluation - Usability Methods – What is a heuristic evaluation? (http:/ / usability. gov/ methods/ test_refine/ heuristic.

html#WhatisaHeuristicEvaluation) Usability.gov

External links
• Jakob Nielsen's introduction to Heuristic Evaluation (http:/ / www. useit. com/ papers/ heuristic/ ) - Including

fundamental points, methodologies and benefits.
• Alternate First Principles (Tognazzini) (http:/ / www. asktog. com/ basics/ firstPrinciples. html) - Including Jakob

Nielsen's ten rules of thumb
• Heuristic Evaluation at Usability.gov (http:/ / www. usability. gov/ methods/ heuristiceval. html)
• Heuristic Evaluation in the RKBExplorer (http:/ / www. rkbexplorer. com/ explorer/ #display=mechanism-{http:/

/ resex. rkbexplorer. com/ id/ resilience-mechanism-4331d919})

Further reading
• Dix, A., Finlay, J., Abowd, G., D., & Beale, R. (2004). Human-computer interaction (3rd ed.). Harlow, England:

Pearson Education Limited. p324
• Gerhardt-Powals, Jill (1996). Cognitive Engineering Principles for Enhancing Human-Computer Performance.

“International Journal of Human-Computer Interaction”, 8(2), 189-21
• Hvannberg, E., Law, E., & Lárusdóttir, M. (2007) “Heuristic Evaluation: Comparing Ways of Finding and

Reporting Usability Problems”, Interacting with Computers, 19 (2), 225-240
• Nielsen, J. and Mack, R.L. (Eds) (1994). Usability Inspection Methods, John Wiley & Sons Inc

http://en.wikipedia.org/w/index.php?title=Jakob_Nielsen_%2528usability_consultant%2529
http://loki.stockton.edu/~gerhardj/
http://loki.stockton.edu/~gerhardj/
http://usability.gov/methods/test_refine/heuristic.html#WhatisaHeuristicEvaluation
http://usability.gov/methods/test_refine/heuristic.html#WhatisaHeuristicEvaluation
http://www.useit.com/papers/heuristic/
http://www.asktog.com/basics/firstPrinciples.html
http://www.usability.gov/methods/heuristiceval.html
http://www.rkbexplorer.com/explorer/#display=mechanism-{http://resex.rkbexplorer.com/id/resilience-mechanism-4331d919}
http://www.rkbexplorer.com/explorer/#display=mechanism-{http://resex.rkbexplorer.com/id/resilience-mechanism-4331d919}


Pluralistic walkthrough 241

Pluralistic walkthrough
The Pluralistic Walkthrough (also called a Participatory Design Review, User-Centered Walkthrough,
Storyboarding, Table-Topping, or Group Walkthrough) is a usability inspection method used to identify usability
issues in a piece of software or website in an effort to create a maximally usable human-computer interface. The
method centers around using a group of users, developers and usability professionals to step through a task scenario,
discussing usability issues associated with dialog elements involved in the scenario steps. The group of experts used
is asked to assume the role of typical users in the testing. The method is prized for its ability to be utilized at the
earliest design stages, enabling the resolution of usability issues quickly and early in the design process. The method
also allows for the detection of a greater number of usability problems to be found at one time due to the interaction
of multiple types of participants (users, developers and usability professionals). This type of usability inspection
method has the additional objective of increasing developers’ sensitivity to users’ concerns about the product design.

Procedure

Walkthrough Team
A walkthrough team must be assembled prior to the pluralistic walkthrough. Three types of participants are included
in the walkthrough: representative users, product developers and human factors (usability) engineers/professionals.
Users should be representative of the target audience, and are considered the primary participants in the usability
evaluation. Product developers answer questions about design and suggest solutions to interface problems users have
encountered. Human factors professionals usually serve as the facilitators and are also there to provide feedback on
the design as well as recommend design improvements. The role of the facilitator is to guide users through tasks and
facilitate collaboration between users and developers. It is best to avoid having a product developer assume the role
of facilitator, as they can get defensive to criticism of their product.

Materials
The following materials are needed to conduct a pluralistic walkthrough:
• Room large enough to accommodate approximately 6-10 users, 6-10 developers and 2-3 usability engineers
• Printed screen-shots (paper prototypes) put together in packets in the same order that the screens would be

displayed when users were carrying out the specific tasks. This includes hard copy panels of screens, dialog
boxes, menus, etc presented in order.

• Hard copy of the task scenario for each participant. There are several scenarios defined in this document complete
with the data to be manipulated for the task. Each participant receives a package that enables him or her to write a
response (i.e. the action to take on that panel) directly onto the page. The task descriptions for the participant are
short direct statements.

• Writing utensils for marking up screen shots and filling out documentation and questionnaires.
Participants are given written instructions and rules at the beginning of the walkthrough session. The rules indicate to
all participants (users, designers, usability engineers) to:
• Assume the role of the user
• To write on the panels the actions they would take in pursuing the task at hand
• To write any additional comments about the task
• Not flip ahead to other panels until they are told to
• To hold discussion on each panel until the facilitator decides to move on

http://en.wikipedia.org/w/index.php?title=Storyboarding
http://en.wikipedia.org/w/index.php?title=Human-computer_interaction
http://en.wikipedia.org/w/index.php?title=Human_factors


Pluralistic walkthrough 242

Tasks
Pluralistic walkthroughs are group activities that require the following steps be followed:
1. Participants are presented with the instructions and the ground rules mentioned above. The task description and

scenario package are also distributed.
2. Next, a product expert (usually a product developer) gives a brief overview of key product concepts and interface

features. This overview serves the purpose of stimulating the participants to envision the ultimate final product
(software or website), so that the participants would gain the same knowledge and expectations of the ultimate
product that product end users are assumed to have.

3. The usability testing then begins. The scenarios are presented to the panel of participants and they are asked to
write down the sequence of actions they would take in attempting to complete the specified task (i.e. moving from
one screen to another). They do this individually without conferring amongst each other.

4. Once everyone has written down their actions independently, the participants discuss the actions that they
suggested for that task. They also discuss potential usability problems. The order of communication is usually
such that the representative users go first so that they are not influenced by the other panel members and are not
deterred from speaking.

5. After the users have finished, the usability experts present their findings to the group. The developers often
explain their rationale behind their design. It is imperative that the developers assume an attitude of welcoming
comments that are intended to improve the usability of their product.

6. The walkthrough facilitator presents the correct answer if the discussion is off course and clarifies any unclear
situations.

7. After each task, the participants are given a brief questionnaire regarding the usability of the interface they have
just evaluated.

8. Then the panel moves on to the next task and round of screens. This process continues until all the scenarios have
been evaluated.

Throughout this process, usability problems are identified and classified for future action. The presence of the
various types of participants in the group allows for a potential synergy to develop that often leads to creative and
collaborative solutions. This allows for a focus on user-centered perspective while also considering the engineering
constraints of practical system design.

Characteristics of Pluralistic Walkthrough
Other types of usability inspection methods include: Cognitive Walkthroughs, Interviews, Focus Groups, Remote
Testing and Think Aloud Protocol. Pluralistic Walkthroughs share some of the same characteristics with these other
traditional walkthroughs, especially with cognitive walkthroughs, but there are some defining characteristics
(Nielsen, 1994):
• The main modification, with respect to usability walkthroughs, was to include three types of participants:

representative users, product developers, and human factors (usability) professionals.
• Hard-copy screens (panels) are presented in the same order in which they would appear online. A task scenario is

defined, and participants confront the screens in a linear path, through a series of user interface panels, just as they
would during the successful conduct of the specified task online, as the site/software is currently designed.

• Participants are all asked to assume the role of the user for whatever user population is being tested. Thus, the
developers and the usability professionals are supposed to try to put themselves in the place of the users when
making written responses.

• The participants write down the action they would take in pursuing the designated task online, before any further
discussion is made. Participants are asked to write their responses in as much detail as possible down to the
keystroke or other input action level. These written responses allow for some production of quantitative data on
user actions that can be of value.

http://en.wikipedia.org/w/index.php?title=Cognitive_Walkthrough
http://en.wikipedia.org/w/index.php?title=Interview
http://en.wikipedia.org/w/index.php?title=Focus_Groups
http://en.wikipedia.org/w/index.php?title=Remote_Testing
http://en.wikipedia.org/w/index.php?title=Remote_Testing


Pluralistic walkthrough 243

• It is only after all participants have written the actions they would take that discussion would begin. The
representative users offer their discussion first and discuss each scenario step. Only after the users have exhausted
their suggestions do the usability experts and product developers offer their opinions.

Benefits and Limitations

Benefits
There are several benefits that make the pluralistic usability walkthrough a valuable tool.
• Early systematic look at a new product, gaining early performance and satisfaction data from users about a

product. Can provide early performance and satisfaction data before costly design strategies have been
implemented.

• Strong focus on user centered design in task analysis, leading to more problems identified at an earlier point in
development. This reduces the iterative test-redesign cycle by utilizing immediate feedback and discussion of
design problems and possible solutions while users are present.

• Synergistic redesign because of the group process involving users, developers and usability engineers. The
discussion of the identified problems in a multidisciplinary team will spawn creative, usable and quick solutions.

• Valuable quantitative and qualitative data is generated through users’ actions documented by written responses.
• Product developers at the session gain appreciation for common user problems, frustrations or concerns regarding

the product design. Developers become more sensitive to users’ concerns.

Limitations
There are several limitations to the pluralistic usability walkthrough that affect its usage.
• The walkthrough can only progress as quickly as the slowest person on each panel. The walkthrough is a group

exercise and, therefore, in order to discuss a task/screen as a group, we must wait for all participants to have
written down their responses to the scenario. The session can feel laborious if too slow.

• A fairly large group of users, developers and usability experts has to be assembled at the same time. Scheduling
could be a problem.

• All the possible actions can’t be simulated on hard copy. Only one viable path of interest is selected per scenario.
This precludes participants from browsing and exploring, behaviors that often lead to additional learning about
the user interface.

• Product developers might not feel comfortable hearing criticism about their designs.
• Only a limited number of scenarios (i.e. paths through the interface) can be explored due to time constraints.
• Only a limited amount of recommendations can be discussed due to time constraints.

Further reading
• Dix, A., Finlay, J., Abowd, G., D., and Beale, R. Human-computer interaction (3rd ed.). Harlow, England:

Pearson Education Limited, 2004.
• Nielsen, Jakob. Usability Inspection Methods. New York, NY: John Wiley and Sons, 1994.
• Preece, J., Rogers, Y., and Sharp, H. Interaction Design. New York, NY: John Wiley and Sons, 2002.
• Bias, Randolph G., "The Pluralistic Usability Walkthrough: Coordinated Emphathies," in Nielsen, Jakob, and

Mack, R. eds, Usability Inspection Methods. New York, NY: John Wiley and Sons. 1994.



Pluralistic walkthrough 244

External links
• List of Usability Evaluation Methods and Techniques [1]

• Pluralistic Usability Walkthrough [2]

References
[1] http:/ / www. usabilityhome. com/ FramedLi. htm?PlurWalk. htm
[2] http:/ / www. usabilitybok. org/ methods/ p2049

Comparison of usability evaluation methods

 Evaluation
Method 

 Evaluation
Method Type

 Applicable
Stages 

 Description  Advantages  Disadvantages 

Think aloud
protocol

Testing Design, coding,
testing and
release of
application

Participants in testing express
their thoughts on the application
while executing set tasks

• Less expensive
• Results are close to

what is experienced by
users

• The Environment is not
natural to the user

Remote
testing

Testing Design, coding,
testing and
release of
application

The experimenter does not
directly observe the users while
they use the application

• Efficiency,
effectiveness and
satisfaction, the three
usability issues, are
covered

• Additional Software is
necessary to observe the
participants from a
distance

Focus groups Inquiry Testing and
release of
application

A moderator guides a discussion
with a group of users of the
application

• If done before
prototypes are
developed, can save
money

• Produces a lot of useful
ideas from the users
themselves

• Can improve customer
relations

• The environment is not
natural to the user and
may provide inaccurate
results.

• The data collected tends
to have low validity due
to the unstructured nature
of the discussion

Interviews Inquiry Design, coding,
testing and
release of
application

The users are interviewed to find
out about their experience and
expectations

• Good at obtaining
detailed information

• Few participants are
needed

• Can improve customer
relations

• Can not be conducted
remotely

• Does not address the
usability issue of
efficiency

Cognitive
walkthrough

Inspection Design, coding,
testing and
release of
application

A team of evaluators walk
through the application
discussing usability issues
through the use of a paper
prototype or a working prototype

• Good at refining
requirements

• does not require a fully
functional prototype

• Does not address user
satisfaction or efficiency

• The designer may not
behave as the average
user when using the
application

Pluralistic
walkthrough

Inspection Design A team of users, usability
engineers and product developers
review the usability of the paper
prototype of the application

• Usability issues are
resolved faster

• Greater number of
usability problems can
be found at one time

• Does not address the
usability issue of
efficiency

http://www.usabilityhome.com/FramedLi.htm?PlurWalk.htm
http://www.usabilitybok.org/methods/p2049
http://www.usabilityhome.com/FramedLi.htm?PlurWalk.htm
http://www.usabilitybok.org/methods/p2049
http://en.wikipedia.org/w/index.php?title=Remote_testing
http://en.wikipedia.org/w/index.php?title=Remote_testing
http://en.wikipedia.org/w/index.php?title=Focus_group
http://en.wikipedia.org/w/index.php?title=Interview


Comparison of usability evaluation methods 245

Source: Genise, Pauline. “Usability Evaluation: Methods and Techniques: Version 2.0” August 28, 2002. University
of Texas.



Article Sources and Contributors 246

Article Sources and Contributors
Software testing  Source: http://en.wikipedia.org/w/index.php?oldid=446402745  Contributors: 0612, 144.132.75.xxx, 152.98.195.xxx, 166.46.99.xxx, 192.193.196.xxx, 212.153.190.xxx,
28bytes, 2D, 2mcm, 62.163.16.xxx, A Man In Black, A R King, A.R., A5b, Abdull, AbsolutDan, Academic Challenger, Acather96, Ad88110, Adam Hauner, Addihockey10, Ag2402, Agopinath,
Ahoerstemeier, Ahy1, Aitias, Akamad, Akhiladi007, AlMac, Alappuzhakaran, Albanaco, Alhenry2006, AliaksandrAA, AliveFreeHappy, Allan McInnes, Allstarecho, Alvestrand, Amire80,
Amty4all, Andonic, Andre Engels, Andreas Kaufmann, Andres, Andrewcmcardle, Andygreeny, Ankurj, Anna Frodesiak, Anna88banana, Annepetersen, Anonymous Dissident, Anonymous
anonymous, Anonymous editor, Anorthup, Anthonares, Anwar saadat, Aphstein, Apparition11, Aravindan Shanmugasundaram, ArmadilloFromHell, Ash, Ashdurbat, Avoided, Barunbiswas,
Bavinothkumar, Baxtersmalls, Bazzargh, Beland, Bentogoa, Betterusername, Bex84, Bigtwilkins, Bigwyrm, Bilbo1507, Bindu Laxminarayan, Bkil, Blair Bonnett, Blake8086, Bluerasberry,
Bobdanny, Bobisthebest, Bobo192, Bonadea, Bornhj, Bovineone, Boxplot, Bpluss, Breno, Brequinda, Brion VIBBER, BruceRuxton, Brunodeschenes.qc, Bryan Derksen, Bsdlogical, Burakseren,
Buxbaum666, Calton, CanisRufus, Canterbury Tail, Canterj, CardinalDan, CattleGirl, CemKaner, Certellus, Certes, Cgvak, Chairboy, Chaiths, Chaser, ChiLlBeserker, Chowbok, Chris Pickett,
ChrisB, ChrisSteinbach, ChristianEdwardGruber, Chrzastek, Cjhawk22, Claygate, Closedmouth, Cometstyles, Conan, Contributor124, Conversion script, CopperMurdoch, Corruptcopper, Cpl
Syx, Cptchipjew, Craigwb, Cvcby, Cybercobra, CyborgTosser, DARTH SIDIOUS 2, DMacks, DRogers, Dacoutts, DaisyMLL, Dakart, Dalric, Danhash, Danimal, Davewild, David.alex.lamb,
Dazzla, Dbelhumeur02, Dcarrion, Declan Kavanagh, DeltaQuad, Denisarona, Der Falke, DerHexer, Derek farn, Dev1240, Dicklyon, Diego.pamio, Digitalfunda, Discospinster, Dnddnd80,
Downsize43, Dravecky, Drewster1829, Drxim, DryCleanOnly, Dvansant, Dvyost, E2eamon, ELinguist, ESkog, Ea8f93wala, Ebde, Ed Poor, Edward Z. Yang, Electiontechnology, ElfriedeDustin,
Ellenaz, Enumera, Enviroboy, Epim, Epolk, Eptin, Ericholmstrom, Erkan Yilmaz, ErkinBatu, Esoltas, Excirial, Falcon8765, FalconL, Faught, Felix Wiemann, Flavioxavier, Forlornturtle,
FrankCostanza, Fredrik, FreplySpang, Furrykef, G0gogcsc300, GABaker, Gail, Gar3t, Gary King, Gary Kirk, Gdavidp, Gdo01, GeoTe, Georgie Canadian, Geosak, Giggy, Gil mo, Gogo Dodo,
Goldom, Gonchibolso12, Gorson78, GraemeL, GregorB, Gsmgm, Guehene, Gurchzilla, GururajOaksys, Guybrush1979, Hadal, Halovivek, Halsteadk, HamburgerRadio, Harald Hansen, Havlatm,
Haza-w, Hdt83, Headbomb, Helix84, Hemnath18, Henri662, Honey88foru, Hooperbloob, Hsingh77, Hu12, Hubschrauber729, Huge Bananas, Hutch1989r15, I dream of horses, IJA,
IceManBrazil, Ignasiokambale, ImALion, Imroy, Incnis Mrsi, Indon, Infrogmation, Intray, Inwind, J.delanoy, JASpencer, JPFitzmaurice, Ja 62, JacobBramley, Jake Wartenberg, Jeff G.,
Jehochman, Jenny MacKinnon, JesseHogan, JimD, Jjamison, Jluedem, Jm266, Jmax-, Jmckey, JoeSmack, John S Eden, Johndci, Johnny.cache, Johnuniq, JonJosephA, Joneskoo, JosephDonahue,
Josheisenberg, Joshymit, Joyous!, Jsled, Jstastny, Jtowler, Juliancolton, JuneGloom07, Jwoodger, Kalkundri, KamikazeArchon, Kanenas, Kdakin, Kevin, Kgf0, Khalid hassani, Kingpin13,
Kingpomba, Kitdaddio, Kku, KnowledgeOfSelf, Kompere, Konstable, Krashlandon, Kuru, LeaveSleaves, Lee Daniel Crocker, Leszek Jańczuk, Leujohn, Little Mountain 5, Lomn, Losaltosboy,
Lotje, Lowellian, Lradrama, Lumpish Scholar, M Johnson, MER-C, MPerel, Mabdul, Madhero88, Madvin, Mailtoramkumar, Manekari, ManojPhilipMathen, Mark Renier, Materialscientist,
MattGiuca, Matthew Stannard, MaxHund, MaxSem, Mazi, Mblumber, Mburdis, Mdd, Mentifisto, Menzogna, Metagraph, Mfactor, Mhaitham.shammaa, Michael B. Trausch, Michael Bernstein,
MichaelBolton, Michig, Mike Doughney, MikeDogma, Miker@sundialservices.com, Mikethegreen, Misza13, Mitch Ames, Miterdale, Mmgreiner, Moa3333, Mpilaeten, Mpradeep, Mr Minchin,
MrJones, MrOllie, Mrh30, Msm, Mtoxcv, Munaz, Mxn, N8mills, NAHID, Nambika.marian, Nanobug, Neokamek, Newbie59, Nibblus, Nick Hickman, Nigholith, Nimowy, Nksp07, Noah
Salzman, Notinasnaid, Novice7, Nuno Tavares, Oashi, Ocee, Oddity-, Ohnoitsjamie, Oicumayberight, Oliver1234, Omicronpersei8, Orange Suede Sofa, Orphan Wiki, Ospalh, Otis80hobson,
Oysterguitarist, PL290, Paranomia, Pascal.Tesson, Pashute, Paudelp, Paul August, Paul.h, Pcb21, Peashy, Pepsi12, PhilHibbs, Philip Trueman, PhilipO, PhilippeAntras, Phoe6, Piano non troppo,
Pieleric, Pinecar, Plainplow, Pmberry, Pointillist, Pomoxis, Poulpy, Pplolpp, Prari, Praveen.karri, Priya4212, Promoa1, Psychade, Puraniksameer, Pysuresh, QTCaptain, Qaiassist, Qatutor,
Qazwsxedcrfvtgbyhn, Qwyrxian, RHaworth, Radagast83, Rahuljaitley82, Rajesh mathur, RameshaLB, Randhirreddy, Ravialluru, Raynald, RedWolf, RekishiEJ, Remi0o, ReneS, Retired
username, Rex black, Rgoodermote, Rhobite, Riagu, Rich Farmbrough, Richard Harvey, RitigalaJayasena, Rje, Rjwilmsi, Rlsheehan, Rmattson, Rmstein, Robbie098, Robert Merkel, Robinson
weijman, Rockynook, Ronhjones, Ronz, Roscelese, Rowlye, Rp, Rror, Ruptan, Rwwww, S.K., SJP, SP-KP, SURIV, Sachipra, Sachxn, Sam Hocevar, Samansouri, Sankshah, Sapphic,
Sardanaphalus, Sasquatch525, SatishKumarB, ScaledLizard, ScottSteiner, Scottri, Sega381, Selket, Senatum, Serge Toper, Sergeyl1984, Shadowcheets, Shanes, Shepmaster, Shimeru, Shimgray,
Shishirhegde, Shoejar, Shubo mu, Shze, Silverbullet234, Sitush, Skalra7, Skyqa, Slowbro, Smack, Smurrayinchester, Snowolf, Softtest123, Softwaretest1, Softwaretesting1001,
Softwaretesting101, Solde, Somdeb Chakraborty, Someguy1221, Sooner Dave, SpaceFlight89, Spadoink, SpigotMap, Spitfire, Srikant.sharma, Staceyeschneider, Stansult, StaticGull, Stephen
Gilbert, Stephenb, Steveozone, Stickee, Storm Rider, Strmore, SunSw0rd, Superbeecat, SwirlBoy39, Sxm20, Sylvainmarquis, T4tarzan, TCL India, Tagro82, Tdjones74021, Techsmith, Tedickey,
Tejas81, Terrillja, Testingexpert, Testinggeek, Testmaster2010, ThaddeusB, The Anome, The Thing That Should Not Be, The prophet wizard of the crayon cake, Thehelpfulone, ThomasO1989,
ThomasOwens, Thread-union, Thv, Tipeli, Tippers, Tmaufer, Tobias Bergemann, Toddst1, Tommy2010, Tonym88, Tprosser, Ttam, Tulkolahten, Tusharpandya, TutterMouse, Uktim63, Uncle G,
Unforgettableid, Useight, Utcursch, Uzma Gamal, VMS Mosaic, Valenciano, Vaniac, Venkatreddyc, Venu6132000, Verloren, VernoWhitney, Versageek, Vijay.ram.pm, Vijaythormothe,
Vishwas008, Vsoid, W2qasource, Walter Görlitz, Wifione, Wiki alf, WikiWilliamP, Wikieditor06, Will Beback Auto, Willsmith, Winchelsea, Wlievens, Wombat77, Wwmbes, Yamamoto Ichiro,
Yesyoubee, Yngupta, Yosri, Yuckfoo, ZenerV, Zephyrjs, ZhonghuaDragon2, ZooFari, Zurishaddai, 1992 anonymous edits

Black-box testing  Source: http://en.wikipedia.org/w/index.php?oldid=442898546  Contributors: A bit iffy, AKGhetto, Aervanath, Ag2402, AndreniW, Andrewpmk, Ash, Asparagus, Benito78,
Betterusername, Blake-, CWY2190, Caesura, Canterbury Tail, Chris Pickett, Chrys, ClementSeveillac, Colinky, Courcelles, DRogers, DanDoughty, Daveydweeb, Discospinster,
DividedByNegativeZero, Docboat, DylanW, Ebde, Electiontechnology, Epim, Erkan Yilmaz, ErkinBatu, Fluzwup, Frap, Gayathri nambiar, Geeoharee, Haymaker, Hooperbloob, Hu12,
Hugh.glaser, Ian Pitchford, Ileshko, Isnow, Jmabel, Jondel, Karl Naylor, Kgf0, Khym Chanur, Kuru, LOL, Lahiru k, Lambchop, Liao, Mark.murphy, Mathieu, Michael Hardy, Michig, Mpilaeten,
Mr Minchin, MrOllie, NEUrOO, NawlinWiki, Nitinqai, Notinasnaid, OlEnglish, Otheus, PAS, PerformanceTester, Picaroon, Pinecar, Poor Yorick, Pradameinhoff, Radiojon, Retiono Virginian,
Rich Farmbrough, Rstens, Rsutherland, Rwwww, S.K., Sergei, Shadowjams, Shijaz, Solde, Subversive.sound, SuperMidget, Tedickey, Tobias Bergemann, Toddst1, UnitedStatesian, WJBscribe,
Walter Görlitz, Xaosflux, Zephyrjs, 207 anonymous edits

Exploratory testing  Source: http://en.wikipedia.org/w/index.php?oldid=440062272  Contributors: Alai, BUPHAGUS55, Bender235, Chris Pickett, DRogers, Decltype, Doab, Dougher, Elopio,
Epim, Erkan Yilmaz, Fiftyquid, GoingBatty, IQDave, Imageforward, Jeff.fry, JnRouvignac, Kgf0, Lakeworks, Morrillonline, Mpilaeten, Oashi, Pinecar, Quercus basaseachicensis, Shadowjams,
SiriusDG, Softtest123, SudoGhost, TheParanoidOne, Toddst1, Vegaswikian, VilleAine, Walter Görlitz, Whylom, 49 anonymous edits

San Francisco depot  Source: http://en.wikipedia.org/w/index.php?oldid=362281144  Contributors: Andreas Kaufmann, Auntof6, Centrx, DRogers, EagleFan, Fabrictramp, PigFlu Oink, Pinecar

Session-based testing  Source: http://en.wikipedia.org/w/index.php?oldid=446122617  Contributors: Alai, Bjosman, Chris Pickett, DRogers, DavidMJam, Jeff.fry, JenKilmer, JulesH, Pinecar,
Walter Görlitz, WikHead, 14 anonymous edits

Scenario testing  Source: http://en.wikipedia.org/w/index.php?oldid=415899231  Contributors: Abdull, Alai, Bobo192, Brandon, Chris Pickett, Epim, Hu12, Karbinski, Kingpin13, Kuru,
Pinecar, Ronz, Shepard, Walter Görlitz, 20 anonymous edits

Equivalence partitioning  Source: http://en.wikipedia.org/w/index.php?oldid=438916426  Contributors: Attilios, AvicAWB, Blaisorblade, DRogers, Dougher, Ebde, Erechtheus, Frank1101,
HossMo, Ianr44, Ingenhut, JennyRad, Jerry4100, Jj137, Jtowler, Kjtobo, Martinkeesen, Mbrann747, Michig, Mirokado, Pinecar, Rakesh82, Retired username, Robinson weijman, SCEhardt,
Stephan Leeds, Sunithasiri, Tedickey, Throw it in the Fire, Vasinov, Walter Görlitz, Wisgary, Zoz, 34 anonymous edits

Boundary-value analysis  Source: http://en.wikipedia.org/w/index.php?oldid=440330386  Contributors: Ahoerstemeier, Andreas Kaufmann, AndreniW, Attilios, Benito78, Ccady, DRogers,
Duggpm, Ebde, Eumolpo, Freek Verkerk, Ianr44, IceManBrazil, Jtowler, Krishjugal, Linuxbabu, Michaeldunn123, Mirokado, Pinecar, Psiphiorg, Radiojon, Retired username, Robinson weijman,
Ruchir1102, Sesh, Stemburn, Stemonitis, Sunithasiri, Velella, Walter Görlitz, Wisgary, Zoz, 59 anonymous edits

All-pairs testing  Source: http://en.wikipedia.org/w/index.php?oldid=442903292  Contributors: Ash, Ashwin palaparthi, Bookworm271, Brandon, Capricorn42, Chris Pickett, Cmdrjameson,
Erkan Yilmaz, Kjtobo, LuisCavalheiro, MER-C, Melcombe, MrOllie, Pinecar, Qwfp, Raghu1234, Rajushalem, Regancy42, Rexrange, Rstens, RussBlau, SteveLoughran, Tassedethe, 48
anonymous edits

Fuzz testing  Source: http://en.wikipedia.org/w/index.php?oldid=445315430  Contributors: Andypdavis, Aphstein, Ari.takanen, Autarch, Blashyrk, Bovlb, David Gerard, Dcoetzee, Derek farn,
Dirkbb, Doradus, Edward, Emurphy42, Enric Naval, ErrantX, Fluffernutter, FlyingToaster, Furrykef, GregAsche, Guy Harris, Gwern, Haakon, HaeB, Hooperbloob, Hu12, Informationh0b0,
Irishguy, Jim.henderson, JonHarder, Jruderman, Kgfleischmann, Kku, Leonard G., Malvineous, Manuel.oriol, Marqueed, Martinmeyer, Marudubshinki, McGeddon, Mezzaluna, MikeEddington,
Monty845, Mpeisenbr, MrOllie, Nandhp, Neale Monks, Neelix, Niri.M, Pinecar, Posix memalign, Povman, Rcsprinter123, Ronz, Sadeq, Softtest123, Starofale, Stephanakib, Stevehughes,
SwissPokey, T0pgear09, The Anome, The Cunctator, Tmaufer, Tremilux, User At Work, Victor Stinner, Walter Görlitz, Yurymik, Zarkthehackeralliance, Zippy, Zirconscot, 138 anonymous edits

Cause-effect graph  Source: http://en.wikipedia.org/w/index.php?oldid=423165981  Contributors: Andreas Kaufmann, Bilbo1507, DRogers, Nbarth, OllieFury, Pgr94, Rjwilmsi, The Anome,
Wleizero, 2 anonymous edits

Model-based testing  Source: http://en.wikipedia.org/w/index.php?oldid=431719225  Contributors: Adivalea, Alvin Seville, Anthony.faucogney, Antti.huima, Bluemoose, Bobo192, Click23,
Drilnoth, Ehheh, Eldad.palachi, FlashSheridan, Gaius Cornelius, Garganti, Hooperbloob, Jluedem, Jtowler, Jzander, Kku, MDE, Mark Renier, MarkUtting, Mattisse, Mdd, Michael Hardy,
Micskeiz, Mirko.conrad, Mjchonoles, MrOllie, Pinecar, Richard R White, S.K., Sdorrance, Smartesting, Suka, Tatzelworm, Tedickey, Test-tools, That Guy, From That Show!, TheParanoidOne,
Thv, Vonkje, Williamglasby, Yan Kuligin, Yxl01, 98 anonymous edits

Web testing  Source: http://en.wikipedia.org/w/index.php?oldid=436663625  Contributors: Andreas Kaufmann, Cbuckley, Danielcornell, Darth Panda, Dhiraj1984, DthomasJL, JASpencer, 
JamesBWatson, Jetfreeman, Jwoodger, KarlDubost, MER-C, Macrofiend, Narayanraman, P199, Pinecar, Rchandra, Runnerweb, SEWilco, Softtest123, Testgeek, Thadius856, TubularWorld,



Article Sources and Contributors 247

Walter Görlitz, 32 anonymous edits

Installation testing  Source: http://en.wikipedia.org/w/index.php?oldid=427188679  Contributors: April kathleen, Aranel, Catrope, CultureDrone, Hooperbloob, Matthew Stannard,
MichaelDeady, Mr.sqa, Paulbulman, Pinecar, Telestylo, TheParanoidOne, WhatamIdoing, 14 anonymous edits

White-box testing  Source: http://en.wikipedia.org/w/index.php?oldid=446223542  Contributors: Ag2402, Aillema, AnOddName, Andreas Kaufmann, Arthena, Bobogoobo, CSZero, Caesura,
Chris Pickett, Chrys, Closedmouth, Culix, DRogers, DanDoughty, DeadEyeArrow, Denisarona, Dupz, Ebde, Erkan Yilmaz, Err0neous, Faught, Furrykef, Hooperbloob, Hu12, Hyad, Hyenaste,
Isnow, Ixfd64, JStewart, JYolkowski, Jacksprat, Johntex, Jpalm 98, Juanmamb, Kanigan, Kasukurthi.vrc, Kuru, Mark.murphy, Mathieu, MaxDel, Menthaxpiperita, Mentifisto, Mezod,
Michaeldunn123, Michig, Moeron, Mpilaeten, Mr Minchin, MrOllie, Noisy, Noot al-ghoubain, Nvrijn, Old Moonraker, PankajPeriwal, Philip Trueman, Pinecar, Pradameinhoff, Qxz, Radiojon,
Ravialluru, Rsutherland, S.K., Solde, Suffusion of Yellow, Sushiflinger, Sven Manguard, Tedickey, The Rambling Man, Toddst1, Velella, Walter Görlitz, Yadyn, Yilloslime, 114 anonymous
edits

Code coverage  Source: http://en.wikipedia.org/w/index.php?oldid=446190361  Contributors: 194.237.150.xxx, Abdull, Abednigo, Ad88110, Agasta, Aislingdonnelly, Aitias, Aivosto,
AliveFreeHappy, Alksub, Allen Moore, Altenmann, Andreas Kaufmann, Andresmlinar, Anorthup, Attilios, Auteurs, Beetstra, BenFrantzDale, Bingbangbong, BlackMamba, Blacklily, Blaxthos,
Chester Markel, Conversion script, Coveragemeter, DagErlingSmørgrav, Damian Yerrick, Derek farn, Digantorama, Dr ecksk, Ebelular, Erkan Yilmaz, Faulknerck2, FredCassidy, Gaudol,
Ghettoblaster, Gibber blot, Greensburger, HaeB, Henri662, Hertzsprung, Hob Gadling, Hooperbloob, Hqb, Infofred, JASpencer, JJMax, Jamelan, JavaTenor, Jdpipe, Jerryobject, Jkeen, Johannes
Simon, JorisvS, Jtheires, Julias.shaw, Kdakin, Kku, Kurykh, LDRA, LouScheffer, M4gnum0n, MER-C, Materialscientist, Mati22081979, Matt Crypto, Millerlyte87, Miracleworker5263, Mj1000,
MrOllie, MywikiaccountSA, Nat hillary, NawlinWiki, Nigelj, Nin1975, Nixeagle, Ntalamai, Parasoft-pl, Penumbra2000, Phatom87, Pinecar, Ptrb, Quamrana, Quinntaylor, Quux, RedWolf,
Roadbiker53, Robert Merkel, Rpapo, RuggeroB, Rwwww, Scubamunki, Sebastian.Dietrich, SimonKagstrom, Smharr4, Snoyes, Suruena, Taibah U, Technoparkcorp, Test-tools, Testcocoon,
Tiagofassoni, TutterMouse, U2perkunas, Veralift, Walter Görlitz, WimdeValk, Witten rules, Wlievens, Wmwmurray, X746e, 217 anonymous edits

Modified Condition/Decision Coverage  Source: http://en.wikipedia.org/w/index.php?oldid=445660744  Contributors: Andreas Kaufmann, Crazypete101, Freek Verkerk, Jabraham mw,
Markiewp, Pindakaas, Vardhanw, 18 anonymous edits

Fault injection  Source: http://en.wikipedia.org/w/index.php?oldid=446109779  Contributors: Andreas Kaufmann, Ari.takanen, Auntof6, CapitalR, Chowbok, CyborgTosser, DaGizza,
DatabACE, Firealwaysworks, Foobiker, Jeff G., Joriki, Paff1, Paul.Dan.Marinescu, Piano non troppo, RHaworth, SteveLoughran, Suruena, Tmaufer, Tony1, WillDo, 26 anonymous edits

Bebugging  Source: http://en.wikipedia.org/w/index.php?oldid=409176429  Contributors: Andreas Kaufmann, Dawynn, Erkan Yilmaz, Foobiker, Jchaw, Kaihsu, O keyes, 6 anonymous edits

Mutation testing  Source: http://en.wikipedia.org/w/index.php?oldid=442722218  Contributors: Andreas Kaufmann, Antonielly, Ari.takanen, Brilesbp, Derek farn, Dogaroon, El Pantera,
Felixwikihudson, Fuhghettaboutit, GiuseppeDiGuglielmo, Htmlapps, Jarfil, Jeffoffutt, JonHarder, Martpol, Mycroft.Holmes, Pieleric, Pinecar, Quuxplusone, Rohansahgal, Sae1962, Usrnme h8er,
Walter Görlitz, Wikid77, Yuejia, 47 anonymous edits

Non-functional testing  Source: http://en.wikipedia.org/w/index.php?oldid=408593175  Contributors: Addere, Burakseren, Dima1, JaGa, Kumar74, Mikethegreen, Ontist, Open2universe,
P.srikanta, Pinecar, Walter Görlitz, 5 anonymous edits

Software performance testing  Source: http://en.wikipedia.org/w/index.php?oldid=444211955  Contributors: AMbroodEY, AbsolutDan, Alex Vinokur, Andreas Kaufmann, Apodelko,
Argyriou, Armadillo-eleven, Bbryson, Bourgeoisspy, Brian.a.wilson, Burakseren, Cit helper, Ckoenigsberg, Coroberti, D6, David Johnson, Davidschmelzer, Deicool, Dhiraj1984, Dwvisser,
Edepriest, Freek Verkerk, Ghewgill, Gnowor, Grotendeels Onschadelijk, Gururajs, Hooperbloob, Hu12, Ianmolynz, Iulus Ascanius, JaGa, Jdlow1, Jeremy Visser, Jewbacca, Jncraton, KAtremer,
Kbustin00, Ken g6, KnowledgeOfSelf, M4gnum0n, MER-C, Maimai009, Matt Crypto, Matthew Stannard, Michig, MrOllie, Mrmatiko, Msadler, Muhandes, Mywikicontribs, Nono64,
Notinasnaid, Oliver Lineham, Optakeover, Pinecar, Pratheepraj, Ravialluru, Raysecurity, Rjwilmsi, Robert Merkel, Ronz, Rsbarber, Rstens, Sebastian.Dietrich, ShelfSkewed, Shimser, Shirtwaist,
Shoeofdeath, SimonP, Softlogica, SunSw0rd, Swtechwr, Timgurto, Veinor, Versageek, Wahab80, Walter Görlitz, Weregerbil, Wilsonmar, Wizzard, Wktsugue, Woohookitty, Wselph, 235
anonymous edits

Stress testing  Source: http://en.wikipedia.org/w/index.php?oldid=434725382  Contributors: Brian R Hunter, Con-struct, CyborgTosser, Hu12, Pinecar, Tobias Bergemann, Trevj, 11 anonymous
edits

Load testing  Source: http://en.wikipedia.org/w/index.php?oldid=443731698  Contributors: AbsolutDan, ArrowmanCoder, BD2412, Bbryson, Belmond, Bernard2, CanadianLinuxUser,
Crossdader, Czei, Derby-ridgeback, Dhiraj1984, El Tonerino, Ettrig, Faught, Ff1959, Gail, Gaius Cornelius, Gene Nygaard, Gordon McKeown, Gururajs, Hooperbloob, Hu12, Icairns,
Informationh0b0, JHunterJ, JaGa, Jo.witte, Joe knepley, Jpg, Jpo, Jruuska, Ken g6, LinguistAtLarge, M4gnum0n, MER-C, Manzee, Merrill77, Michig, NameIsRon, Nimowy, Nurg,
PerformanceTester, Philip2001, Photodeus, Pinecar, Pushtotest, Radagast83, Ravialluru, Rklawton, Rlonn, Rlsheehan, Robert.maclean, Rstens, S.K., Scoops, ScottMasonPrice, Shadowjams,
Shadriner, Shashi1212, Shilpagpt, Shinhan, SireenOMari, SpigotMap, Swtechwr, Testgeek, Tusharpandya, Veinor, VernoWhitney, Wahab80, Walter Görlitz, Whitejay251, Wilsonmar, Wrp103,
157 anonymous edits

Volume testing  Source: http://en.wikipedia.org/w/index.php?oldid=364552806  Contributors: Closedmouth, EagleFan, Faught, Kumar74, Octahedron80, Pinecar, Terry1944, Thingg, Thru the
night, Walter Görlitz, 7 anonymous edits

Scalability testing  Source: http://en.wikipedia.org/w/index.php?oldid=411550068  Contributors: GregorB, JaGa, Kumar74, Malcolma, Methylgrace, Pinecar, 6 anonymous edits

Compatibility testing  Source: http://en.wikipedia.org/w/index.php?oldid=370597747  Contributors: Alison9, Arkitus, Iain99, Jimj wpg, Kumar74, Neelov, Pinecar, RekishiEJ, Rwwww, 4
anonymous edits

Portability testing  Source: http://en.wikipedia.org/w/index.php?oldid=415815752  Contributors: Andreas Kaufmann, Biscuittin, Cmdrjameson, Nibblus, OSborn, Pharos, Tapir Terrific, The
Public Voice, 2 anonymous edits

Security testing  Source: http://en.wikipedia.org/w/index.php?oldid=445168305  Contributors: Aaravind, Andreas Kaufmann, Bigtimepeace, Bwpach, ConCompS, DanielPharos, David Stubley,
Dxwell, Epbr123, Gardener60, Gavenko a, Glane23, ImperatorExercitus, JonHarder, Joneskoo, Kinu, Lotje, MichaelBillington, Pinecar, Ravi.alluru@applabs.com, Shadowjams, Softwaretest1,
Someguy1221, Spitfire, Stenaught, ThisIsAce, Uncle Milty, WereSpielChequers, 98 anonymous edits

Attack patterns  Source: http://en.wikipedia.org/w/index.php?oldid=404146897  Contributors: Bachrach44, Bobbyquine, DouglasHeld, Dudecon, Enauspeaker, Falcon Kirtaran, FrankTobia,
Friedfish, Hooperbloob, Jkelly, Manionc, Natalie Erin, Nono64, Od Mishehu, R00m c, Retired username, Rich257, RockyH, Smokizzy, 3 anonymous edits

Localization testing  Source: http://en.wikipedia.org/w/index.php?oldid=337792334  Contributors: Andreas Kaufmann, Chaitalid, Dawn Bard, Hbent, Luke Warmwater101, Phatom87, Pinecar,
RHaworth, Rror, Vishwas008, Vmahi9, 4 anonymous edits

Pseudolocalization  Source: http://en.wikipedia.org/w/index.php?oldid=442625796  Contributors: A:-)Brunuś, Andy Dingley, Arithmandar, ArthurDenture, Autoterm, Bdjcomic, CyborgTosser,
Dawn Bard, Gavrant, Günter Lissner, Josh Parris, Khazar, Kznf, Mboverload, Miker@sundialservices.com, Nlhenk, Pinecar, Pnm, Thumperward, Traveler78, Vipinhari, 10 anonymous edits

Recovery testing  Source: http://en.wikipedia.org/w/index.php?oldid=410383530  Contributors: .digamma, DH85868993, Elipongo, Habam, LAAFan, Leandromartinez, Nikolay Shtabel,
Pinecar, Rich257, Rjwilmsi, Vikramsharma13, 15 anonymous edits

Soak testing  Source: http://en.wikipedia.org/w/index.php?oldid=445483615  Contributors: A1r, DanielPharos, JPFitzmaurice, JnRouvignac, Mdd4696, Midlandstoday, P mohanavan, Pinecar, 11
anonymous edits

Characterization test  Source: http://en.wikipedia.org/w/index.php?oldid=445835207  Contributors: Alberto Savoia, Andreas Kaufmann, BrianOfRugby, Colonies Chris, David Edgar,
Dbenbenn, GabrielSjoberg, JLaTondre, Jjamison, Jkl, Mathiastck, PhilippeAntras, Pinecar, Robofish, Swtechwr, Ulner, 12 anonymous edits

Unit testing  Source: http://en.wikipedia.org/w/index.php?oldid=444598188  Contributors: .digamma, Ahc, Ahoerstemeier, AliveFreeHappy, Allan McInnes, Allen Moore, Anderbubble, Andreas 
Kaufmann, Andy Dingley, Angadn, Anorthup, Ardonik, Asavoia, Attilios, Autarch, Bakersg13, Bdijkstra, BenFrantzDale, Brian Geppert, CanisRufus, Canterbury Tail, Chris Pickett, 
ChristianEdwardGruber, ChuckEsterbrook, Clausen, Colonies Chris, Corvi, Craigwb, DRogers, DanMS, Derbeth, Dillard421, Discospinster, Dmulter, Earlypsychosis, Edaelon, Edward Z. Yang, 
Eewild, El T, Elilo, Evil saltine, Excirial, FlashSheridan, FrankTobia, Fredrik, Furrykef, GTBacchus, Gggggdxn, Goswamivijay, Guille.hoardings, Haakon, Hanacy, Hari Surendran, Hayne, 
Hfastedge, Hooperbloob, Hsingh77, Hypersonic12, Ibbn, Influent1, J.delanoy, JamesBWatson, Jjamison, Joeggi, Jogloran, Jonhanson, Jpalm 98, Kamots, KaragouniS, Karl Dickman, Kku, 
Konman72, Kuru, Longhorn72, Looxix, Martin Majlis, Martinig, MaxHund, MaxSem, Mcsee, Mheusser, Mhhanley, Michig, MickeyWiki, Miker@sundialservices.com, Mild Bill Hiccup, 
Mortense, Mr. Disguise, MrOllie, Mtomczak, Nat hillary, Nate Silva, Nbryant, Neilc, Nick Lewis CNH, Notinasnaid, Ohnoitsjamie, OmriSegal, Ottawa4ever, PGWG, Pablasso, Paling Alchemist, 
Pantosys, Paul August, Paulocheque, Pcb21, Pinecar, Pmerson, Radagast3, RainbowOfLight, Ravialluru, Ravindrat, RenniePet, Rich Farmbrough, Richardkmiller, Rjwilmsi, Rogerborg, Rookkey,



Article Sources and Contributors 248

RoyOsherove, Ryans.ryu, S.K., S3000, SAE1962, Saalam123, Shyam 48, SimonTrew, Sketch051, Sligocki, Smalljim, So God created Manchester, Solde, Sozin, Ssd, Sspiro, Stephenb,
SteveLoughran, Stumps, Sujith.srao, Svick, Swtechwr, Sybersnake, TFriesen, Themillofkeytone, Thv, Timo Honkasalo, Tlroche, Tobias Bergemann, Toddst1, Tony Morris, Tyler Oderkirk,
Unittester123, User77764, VMS Mosaic, Veghead, Vishnava, Walter Görlitz, Willem-Paul, Winhunter, Wmahan, Zed toocool, 450 anonymous edits

Self-testing code  Source: http://en.wikipedia.org/w/index.php?oldid=326302253  Contributors: Andreas Kaufmann, Ed Poor, GregorB, Malcolma, Rich Farmbrough, Spoon!, 2 anonymous edits

Test fixture  Source: http://en.wikipedia.org/w/index.php?oldid=438605439  Contributors: Andreas Kaufmann, Brambleclawx, Heathd, Humanoc, Ingeniero-aleman, Jeodesic, Martarius, Pkgx,
RCHenningsgard, Ripounet, Rlsheehan, Silencer1981, Tabletop, WHonekamp, Walter Görlitz, Wernight, ZacParkplatz, 16 anonymous edits

Method stub  Source: http://en.wikipedia.org/w/index.php?oldid=423993207  Contributors: Andreas Kaufmann, Antonielly, Bhadani, Bratch, Can't sleep, clown will eat me, Cander0000,
Ceyockey, Dasoman, Deep Alexander, Dicklyon, Drbreznjev, Ermey, Extvia, Ggoddard, Hollih, IguanaScales, Itai, Joaopaulo1511, Kku, MBisanz, Mange01, Mark Renier, Michig, Mityaha,
Pinecar, Radagast83, Rich Farmbrough, RitigalaJayasena, Rrburke, S.K., Segv11, Sj, Thisarticleisastub, Vary, Walter Görlitz, 31 anonymous edits

Mock object  Source: http://en.wikipedia.org/w/index.php?oldid=446411485  Contributors: 16x9, A. B., ABF, AN(Ger), Acather96, Allanlewis, Allen Moore, Andreas Kaufmann, Andy Dingley,
Antonielly, Ataru, Autarch, Babomb, BenWilliamson, Blueboy96, Charles Matthews, Ciphers, ClinkingDog, CodeCaster, Colcas, Cst17, Cybercobra, DHGarrette, Dcamp314, Derbeth, Dhoerl,
Edward Z. Yang, Elilo, Ellissound, Eric Le Bigot, Ghettoblaster, Hooperbloob, IceManBrazil, JamesShore, Kc8tpz, Khalid hassani, Kku, Le-sens-commun, Lmajano, Lotje, Mange01, Marchaos,
Martarius, Martinig, MaxSem, Mkarlesky, NickHodges, Nigelj, Nrabinowitz, Paul Foxworthy, Pecaperopeli, Philip Trueman, Pinecar, R'n'B, Redeagle688, Rodrigez, RoyOsherove, Rstandefer,
Scerj, Simonwacker, SkyWalker, SlubGlub, Spurrymoses, Stephan Leeds, SteveLoughran, TEB728, Thumperward, Tobias Bergemann, Tomrbj, Whitehawk julie, WikiPuppies, 145 anonymous
edits

Lazy systematic unit testing  Source: http://en.wikipedia.org/w/index.php?oldid=198751809  Contributors: AJHSimons, Andreas Kaufmann, RHaworth

Test Anything Protocol  Source: http://en.wikipedia.org/w/index.php?oldid=445662213  Contributors: Andreas Kaufmann, AndyArmstrong, BrotherE, Brunodepaulak, Frap, Gaurav,
Justatheory, Mindmatrix, Pinecar, RJHerrick, Schwern, Shlomif, Tarchannen, Thr4wn, Wrelwser43, Ysth, 30 anonymous edits

xUnit  Source: http://en.wikipedia.org/w/index.php?oldid=440723788  Contributors: Ahoerstemeier, Andreas Kaufmann, BurntSky, Caesura, Chris Pickett, Damian Yerrick, Dvib, FlashSheridan,
Furrykef, Green caterpillar, Jpalm 98, Kenyon, Khatru2, Kku, Kleb, Lasombra, LilHelpa, MBisanz, Mat i, MaxSem, MindSpringer, MrOllie, Nate Silva, Ori Peleg, Pagrashtak, Patrikj, Pengo,
PhilippeAntras, Pinecar, Qef, RedWolf, Rhphillips, RudaMoura, Schwern, SebastianBergmann, Simonwacker, Slakr, Srittau, Tlroche, Uzume, Woohookitty, 69 anonymous edits

List of unit testing frameworks  Source: http://en.wikipedia.org/w/index.php?oldid=445904040  Contributors: A-Evgeniy, AJHSimons, Akadruid, Alan0098, AliveFreeHappy, Andreas
Kaufmann, AndreasBWagner, Andrey86, Andy Dingley, Anorthup, Antonylees, Arjayay, Arjenmarkus, Artem M. Pelenitsyn, Asashour, Asimjalis, Ates Goral, Autarch, Avantika789, Avi.kaye,
BP, Basvodde, Bdicroce, Bdijkstra, Beetstra, Berny68, Bigwhite.cn, Billyoneal, Boemmels, Brandf, BrotherE, Burschik, C1vineoflife, Calréfa Wéná, Chompx, Chris Pickett, ChronoKinetic,
Ckrahe, Codefly, CompSciStud4U, Cpunit root, Cruftcraft, Cybjit, Dalepres, Damieng, DaoKaioshin, DataWraith, David smallfield, Decatur-en, Diego Moya, Dlindqui, Donald Hosek, DrMiller,
EagleFan, Ebar7207, Edward, Eeera, Ellissound, Eoinwoods, Erkan Yilmaz, Figureouturself, Fltoledo, FredericTorres, Furrykef, Fuzlyssa, GabiS, Gaurav, Generalov.sergey, Ggeldenhuys,
Gpremer, GregoryCrosswhite, Grincho, Grshiplett, Gurdiga, Harrigan, Harryboyles, Hboutemy, Hlopetz, Holger.krekel, Ian-blumel, IceManBrazil, Icseaturtles, Ilya78, JLaTondre, James Hugard,
JavaCS, Jdpipe, Jens Lüdemann, Jeremy.collins, Jevon, Jim Kring, Joelittlejohn, Johnuniq, Jokes Free4Me, Jrosdahl, Justatheory, Jvoegele, KAtremer, Kenguest, Kiranthorat, Kku, Kleb,
Kristofer Karlsson, Kwiki, LDRA, Legalize, Loopology, MMSequeira, Maine3002, Mandarax, Marclevel3, Mark Renier, Markvp, Martin Moene, Mdkorhon, MebSter, MeekMark, Mengmeng,
Metalim, MiguelMunoz, Mindmatrix, Mitmacher313, Mj1000, Mkarlesky, Morder, NagyLoutre, Nereocystis, Nick Number, Nimowy, Nlu, Norrby, Northgrove, ObjexxWiki, Oestape, Ospalh,
Paddy3118, Pagrashtak, Papeschr, PensiveCoder, Pentapus, Pesto, Pgr94, Pinecar, Praseodymium, Prekageo, Ptrb, R'n'B, RalfHandl, RandalSchwartz, Ravidgemole, Rawoke, Rcunit, Rhphillips,
Rjollos, Rmkeeble, Robkam, Ropata, Rsiman, Ryadav, SHIMODA Hiroshi, Saalam123, Sarvilive, Schwern, Senfo, Sgould, Shabbychef, Shadriner, Siffert, Simeonfs, Simoneau, Simonscarfe,
SirGeek CSP, Skiwi, Slhynju, Squares, Stassats, Stenyak, SteveLoughran, SummerWithMorons, Sutirthadatta, Swtechwr, Sydevelopments, Tabletop, Tadpole9, Tarvaina, Tassedethe,
TempestSA, Ten0s, ThomasAagaardJensen, Thv, TobyFernsler, Tognopop, Torsknod, Traviscj, Uniwalk, Updatehelper, User77764, Uzume, Vassilvk, Vcmpk, Vibhuti.amit, Virtualblackfox,
Wdevauld, Weitzman, Wernight, Wickorama, Winterst, Wodka, X!, Yince, Yipdw, Yukoba, Yurik, Zanhsieh, Zootm, Александр Чуранов, 538 anonymous edits

SUnit  Source: http://en.wikipedia.org/w/index.php?oldid=417107221  Contributors: Andreas Kaufmann, Chris Pickett, D6, Diegof79, Djmckee1, Frank Shearar, HenryHayes, Hooperbloob,
Jerryobject, Mcsee, Nigosh, Olekva, TheParanoidOne, 7 anonymous edits

JUnit  Source: http://en.wikipedia.org/w/index.php?oldid=444269557  Contributors: 194.237.150.xxx, Abelson, AliveFreeHappy, Andmatt, Andreas Kaufmann, Andy Dingley, Anomen,
Antonielly, Artaxiad, Ashwinikvp, Ausir, BeauMartinez, Biyer, Bluerasberry, Byj2000, Cat Parade, Cmdrjameson, Conversion script, DONOVAN, DaoKaioshin, Darc, Darth Panda, Doug Bell,
Dsaff, Duplicity, East718, Epbr123, Esminis, Eye of slink, Faisal.akeel, Frap, Frecklefoot, Free Software Knight, Ftiercel, Furrykef, Ghostkadost, Gracenotes, Green caterpillar, Grendelkhan,
Harrisony, Hervegirod, Hooperbloob, Ilya, Iosif, J0506, JLaTondre, Jerryobject, Jpalm 98, KellyCoinGuy, Kenguest, Kenji Toyama, Kent Beck, Kleb, KuwarOnline, M4gnum0n, MER-C,
Mahmutuludag, Manish85dave, Mark Renier, Matt Crypto, Mdediana, MrOllie, Nate Silva, Nigelj, Ntalamai, POajdbhf, PaulHurleyuk, Paulsharpe, Pbb, Pcap, Plasmafire, Poulpy, Pseudomonas,
Quinntaylor, Randomalious, Raztus, RedWolf, Resurgent insurgent, Rich Farmbrough, RossPatterson, SF007, Salvan, Sandipk singh, Science4sail, Silvestre Zabala, SirGeek CSP, Softtest123,
Softwaresavant, Stypex, TakuyaMurata, TerraFrost, Thumperward, Tikiwont, Tlroche, Torc2, Tumbarumba, Tweisbach, UkPaolo, VOGELLA, Vina, Vlad, WiseWoman, Yamla, 117 anonymous
edits

CppUnit  Source: http://en.wikipedia.org/w/index.php?oldid=433062569  Contributors: Amenel, Andreas Kaufmann, Anthony Appleyard, Conrad Braam, DSParillo, DrMiller, Frap, Ike-bana,
Lews Therin, Martin Rizzo, Mecanismo, Mgfz, Rjwilmsi, Sysuphos, TheParanoidOne, Tobias Bergemann, WereSpielChequers, Yanxiaowen, 14 anonymous edits

Test::More  Source: http://en.wikipedia.org/w/index.php?oldid=411565404  Contributors: Dawynn, Mindmatrix, Pjf, Schwern, Tassedethe, Unforgiven24

NUnit  Source: http://en.wikipedia.org/w/index.php?oldid=436487083  Contributors: Abelson, Andreas Kaufmann, B0sh, Brianpeiris, CodeWonk, Cwbrandsma, Djmckee1, Gfinzer, Gypwage,
Hadal, Hooperbloob, Hosamaly, Ike-bana, Jacosi, Jerryobject, Kellyselden, Largoplazo, Magioladitis, MaxSem, MicahElliott, NiccciN, Nigosh, NinjaCross, PaddyMcDonald, Pinecar, Pnewhook,
RHaworth, Raztus, RedWolf, Reidhoch, Rodasmith, S.K., SamuelTheGhost, Sj, StefanPapp, Superm401, Sydevelopments, Thv, Tobias Bergemann, Toomuchsalt, Ulrich.b, Valodzka, Whpq,
Zsinj, 53 anonymous edits

NUnitAsp  Source: http://en.wikipedia.org/w/index.php?oldid=367902681  Contributors: Andreas Kaufmann, Djmckee1, Edward, GatoRaider, Hooperbloob, Root4(one), SummerWithMorons

csUnit  Source: http://en.wikipedia.org/w/index.php?oldid=443653598  Contributors: Andreas Kaufmann, Djmckee1, Free Software Knight, Jerryobject, MaxSem, Mengmeng, Stuartyeates, 2
anonymous edits

HtmlUnit  Source: http://en.wikipedia.org/w/index.php?oldid=440171119  Contributors: Agentq314, Andreas Kaufmann, Asashour, DARTH SIDIOUS 2, Edward, Jj137, KAtremer, Lkesteloot,
Mabdul, Mguillem, Nigelj, Tobias Bergemann, Zwilson14, 36 anonymous edits

Test automation  Source: http://en.wikipedia.org/w/index.php?oldid=445305303  Contributors: 5nizza, 83nj1, ADobey, Abdull, Akr7577, Alaattinoz, AliveFreeHappy, Ameya barve, Ancheta
Wis, Andy Dingley, Ankurj, Anupam naik, Apparition11, Asashour, Ash, Auntof6, Bbryson, Benjamin Geiger, Bhagat.Abhijeet, Bigtwilkins, Caltas, Carioca, Checkshirt, Chrisbepost, Christina
thi, CodeWonk, DARTH SIDIOUS 2, DRogers, Dbelhumeur02, DivineAlpha, Dreftymac, Eaowens, EdwardMiller, Egivoni, ElfriedeDustin, Elipongo, Enoch the red, Excirial, Faris747,
Ferpectionist, FlashSheridan, Flopsy Mopsy and Cottonmouth, Florian Huber, Fumitol, G0gogcsc300, Gaggarwal2000, Gherget, Gibs2001, Gmacgregor, Goutham, Grafen, Harobed, Hatch68,
Helix84, Hesa, Heydaysoft, Hooperbloob, Hswiki, Hu12, Ixfd64, JASpencer, JamesBWatson, Jkoprax, Johnuniq, Jpg, Kumarsameer, Kuru, Ldimaggi, M4gnum0n, MC10, MER-C, Marasmusine,
Mark Kilby, Marudubshinki, Matthewedwards, Mdanrel, MendipBlue, Michael Bernstein, Morrillonline, MrOllie, Nima.shahhosini, Nimowy, Notinasnaid, Octoferret, Ohnoitsjamie,
OracleDBGuru, PeterBizz, Pfhjvb0, ProfessionalTST, Qatutor, Qlabs impetus, Qtpautomation, Qwyrxian, R'n'B, RHaworth, Radagast83, Radiant!, Radiostationary, Raghublr,
Raymondlafourchette, Rich Farmbrough, RichardHoultz, Rickjpelleg, Rjwilmsi, Robertvan1, Robinson Weijman, Ryadav, Ryepie, SSmithNY, Sbono, ScottSteiner, Seaphoto,
Shankar.sathiamurthi, Shijuraj, Shlomif, SoCalSuperEagle, Softwaretest1, Srideep TestPlant, Ssingaraju, SteveLoughran, Sundaramkumar, Swtechwr, Testautomator, Thv, Ttrevers, Tumaka,
Tushar291081, Vadimka, Veledan, Versageek, Vogelt, Waikh, Walter Görlitz, Webbbbbbber, Winmacro, Wrp103, Yan Kuligin, ZachGT, Zorgon7, सरोज कुमार ढकाल, 305 anonymous edits

Test bench  Source: http://en.wikipedia.org/w/index.php?oldid=437094164  Contributors: Abdull, Ali65, Amitgusain, Arch dude, Dolovis, E2eamon, FreplySpang, J. Sparrow, Joe Decker,
Pinecar, Remotelysensed, Rich Farmbrough, Singamayya, Testbench, Tgruwell, 12 anonymous edits

Test execution engine  Source: http://en.wikipedia.org/w/index.php?oldid=393388726  Contributors: Abdull, Ali65, Andreas Kaufmann, Cander0000, ChildofMidnight, Fabrictramp, Grafen,
Rontaih, Walter Görlitz, 1 anonymous edits

Test stubs  Source: http://en.wikipedia.org/w/index.php?oldid=357487595  Contributors: Andreas Kaufmann, Chiefhuggybear, Christianvinter, Meridith K, Thisarticleisastub, Tomrbj, 1
anonymous edits



Article Sources and Contributors 249

Testware  Source: http://en.wikipedia.org/w/index.php?oldid=372600851  Contributors: Andreas Kaufmann, Assadmalik, Avalon, Gzkn, Robofish, SteveLoughran, Wireless friend,
ZhonghuaDragon, 7 anonymous edits

Test automation framework  Source: http://en.wikipedia.org/w/index.php?oldid=426570771  Contributors: Abdull, Aby74, Akr7577, Al95521, AliveFreeHappy, Andy Dingley, Anshooarora,
Apparition11, Chrisbepost, Closedmouth, Drpaule, Excirial, Flopsy Mopsy and Cottonmouth, Gibs2001, Heydaysoft, Homfri, Iridescent, JamesBWatson, Jonathan Webley, LedgendGamer,
Mitch Ames, Mountk2, Nalinnew, Oziransky, Paul dexxus, Peneh, PeterBizz, Pinecar, Qlabs impetus, RHaworth, Regancy42, Rsciaccio, Sachxn, Sbasan, SerejkaVS, SteveLoughran,
Vishwas008, Walter Görlitz, West.andrew.g, 55 anonymous edits

Data-driven testing  Source: http://en.wikipedia.org/w/index.php?oldid=407028148  Contributors: 2Alen, Amorymeltzer, Andreas Kaufmann, Cornellrockey, EdGl, Fabrictramp, MrOllie,
Mrinmayee.p, Phanisrikar, Pinecar, Rajwiki, Rjwilmsi, Rwwww, SAE1962, Sbono, Sean.co.za, Zaphodikus, 32 anonymous edits

Modularity-driven testing  Source: http://en.wikipedia.org/w/index.php?oldid=318953592  Contributors: Avalon, Minnaert, Phanisrikar, Pinecar, 2 anonymous edits

Keyword-driven testing  Source: http://en.wikipedia.org/w/index.php?oldid=444247690  Contributors: 5nizza, Culudamar, Erkan Yilmaz, Heydaysoft, Hooperbloob, Jeff seattle, Jessewgibbs,
Jonathan Webley, Jonathon Wright, Jtowler, Ken g6, Lowmagnet, Maguschen, MrOllie, Phanisrikar, Pinecar, Rjwilmsi, Rwwww, SAE1962, Scraimer, Sean.co.za, Sparrowman980, Swtesterinca,
Ukkuru, Ultimus, Yun-Yuuzhan (lost password), Zoobeerhall, 57 anonymous edits

Hybrid testing  Source: http://en.wikipedia.org/w/index.php?oldid=366545628  Contributors: Bunnyhop11, Horologium, MrOllie, Vishwas008, 5 anonymous edits

Lightweight software test automation  Source: http://en.wikipedia.org/w/index.php?oldid=414865787  Contributors: Colonies Chris, Greenrd, JamesDmccaffrey, John Vandenberg,
OracleDBGuru, Pnm, Torc2, Tutterz, Verbal, 9 anonymous edits

Software testing controversies  Source: http://en.wikipedia.org/w/index.php?oldid=431773787  Contributors: Andreas Kaufmann, Derelictfrog, JASpencer, PigFlu Oink, Pinecar, Softtest123, 4
anonymous edits

Test-driven development  Source: http://en.wikipedia.org/w/index.php?oldid=445516746  Contributors: 1sraghavan, Achorny, AliveFreeHappy, Alksentrs, Anorthup, AnthonySteele,
Antonielly, Asgeirn, Astaines, Attilios, Autarch, AutumnSnow, Bcwhite, Beland, CFMWiki1, Calréfa Wéná, Canterbury Tail, Chris Pickett, Closedmouth, Craig Stuntz, CraigTreptow,
DHGarrette, Dally Horton, David-Sarah Hopwood, Deuxpi, Dhdblues, Dougluce, Download, Downsize43, Dtmilano, Długosz, Ed Poor, Edaelon, Ehheh, Emurphy42, Enochlau, Eurleif, Excirial,
Faught, Fbeppler, Fre0n, Furrykef, Gakrivas, Gary King, Geometry.steve, Gigi fire, Gishu Pillai, Gmcrews, Gogo Dodo, Hadal, Hagai Cibulski, Hariharan wiki, Heirpixel, Hzhbcl, JDBravo,
JLaTondre, JacobProffitt, Jglynn43, Jleedev, Jonb ee, Jonkpa, Jpalm 98, Jrvz, Kbdank71, Kellen`, KellyCoinGuy, Kevin Rector, Khalid hassani, Kristjan Wager, Krzyk2, Kvdveer, LeaveSleaves,
Lenin1991, Lumberjake, Madduck, Mark Renier, Martial75, Martinig, MaxSem, Mberteig, Mboverload, Mckoss, Mdd, MeUser42, Mhhanley, Michael miceli, Michig, Middayexpress,
Mkarlesky, Mkksingha, Mnorbury, Mortense, Mosquitopsu, Mossd, Mr2001, MrOllie, Nigelj, Nohat, Notnoisy, Nuggetboy, Ojcit, Oligomous, On5deu, Parklandspanaway, Patrickdepinguin,
Pengo, PhilipR, Phlip2005, Pinecar, PradeepArya1109, R. S. Shaw, Radak, Raghunathan.george, RickBeton, RoyOsherove, Rulesdoc, SAE1962, Sam Hocevar, Samwashburn3, San chako,
Sanchom, SethTisue, Shadowjams, SharShar, Shenme, Shyam 48, SimonP, St.General, Stemcd, SteveLoughran, Sullivan.t, Supreme Deliciousness, Sverdrup, Svick, Swasden, Szwejkc,
TakuyaMurata, Tedickey, Themacboy, Thumperward, Tobias Bergemann, Topping, Trum123, Underpants, V6Zi34, Virgiltrasca, WLU, Walter Görlitz, Waratah, Wikid77, Xagronaut,
Олександр Кравчук, 408 anonymous edits

Agile testing  Source: http://en.wikipedia.org/w/index.php?oldid=442661086  Contributors: Agiletesting, Alanbly, Athought, Chowbok, Eewild, Ehendrickson, Ericholmstrom, GoingBatty,
Gurch, Hemnath18, Henri662, Janetgregoryca, Johnuniq, LilHelpa, Luiscolorado, M2Ys4U, Manistar, MathMaven, Mdd, ParaTom, Patrickegan, Pinecar, Pnm, Podge82, Random name,
Sardanaphalus, ScottWAmbler, Vaibhav.nimbalkar, Walter Görlitz, Webrew, Weimont, Zonafan39, 60 anonymous edits

Bug bash  Source: http://en.wikipedia.org/w/index.php?oldid=434408515  Contributors: Andreas Kaufmann, Archippus, BD2412, Cander0000, DragonflySixtyseven, Freek Verkerk,
MisterHand, Pinecar, Retired username, Thumperward, 1 anonymous edits

Pair Testing  Source: http://en.wikipedia.org/w/index.php?oldid=425679879  Contributors: Andreas Kaufmann, Bjosman, LilHelpa, MrOllie, Neonleif, Prasantam, Tabletop, Universal Cereal
Bus, Woohookitty, 9 anonymous edits

Manual testing  Source: http://en.wikipedia.org/w/index.php?oldid=437530057  Contributors: ArielGold, Ashish.aggrawal17, DARTH SIDIOUS 2, Donperk, Eewild, Hairhorn, Iridescent,
Kgarima, L Kensington, Meetusingh, Morrillonline, OlEnglish, Pinecar, Pinethicket, Predatoraction, Rwxrwxrwx, Saurabha5, Somdeb Chakraborty, SwisterTwister, Tumaka, 53 anonymous edits

Regression testing  Source: http://en.wikipedia.org/w/index.php?oldid=442842839  Contributors: 7, Abdull, Abhinavvaid, Ahsan.nabi.khan, Alan ffm, AliveFreeHappy, Amire80, Andrew
Eisenberg, Anorthup, Antonielly, Baccyak4H, Benefactor123, Boongoman, Brenda Kenyon, Cabalamat, Cdunn2001, Chris Pickett, DRogers, Dacian.epure, Dee Jay Randall, Designatevoid,
Doug.hoffman, Eewild, Elsendero, Emj, Enti342, Estyler, Forlornturtle, G0gogcsc300, Gregbard, Hadal, Henri662, HongPong, Hooperbloob, Iiiren, Jacob grace, Jwoodger, Kamarou, Kesla,
Kmincey, L Kensington, Labalius, LandruBek, Luckydrink1, MER-C, Marijn, Mariotto2009, Matthew Stannard, Maxwellb, Menzogna, Michaelas10, Michig, MickeyWiki, Mike Rosoft,
MikeLynch, Msillil, NameIsRon, Neilc, Neurolysis, Philipchiappini, Pinecar, Qatutor, Qfissler, Ravialluru, Robert Merkel, Rsavenkov, Ryans.ryu, S3000, Scoops, Snarius, Spock of Vulcan,
SqueakBox, Srittau, Strait, Svick, Swtechwr, Throwaway85, Thv, Tobias Bergemann, Tobias Hoevekamp, Toon05, Walter Görlitz, Will Beback Auto, Wlievens, Zhenqinli, Zvn, 171 anonymous
edits

Ad hoc testing  Source: http://en.wikipedia.org/w/index.php?oldid=443007678  Contributors: DRogers, Epim, Erkan Yilmaz, Faught, IQDave, Josh Parris, Ottawa4ever, Pankajkittu, Pinecar,
Pmod, Robinson weijman, Solde, Walter Görlitz, 12 anonymous edits

Sanity testing  Source: http://en.wikipedia.org/w/index.php?oldid=438755122  Contributors: Andycjp, Arjayay, Chillum, Chris Pickett, Closedmouth, D4g0thur, Dysprosia, Fittysix, Fullstop,
Gorank4, Haus, Histrion, Itai, JForget, Kaimiddleton, Karada, Kingpin13, LeaW, Lechatjaune, Lee Daniel Crocker, Martinwguy, Matma Rex, Melchoir, Mikewalk, Mild Bill Hiccup, NeilFraser,
Nunh-huh, Oboler, PierreAbbat, Pinecar, Pinethicket, Polluks, R'n'B, Ricardol, Rrburke, Saberwyn, Sietse Snel, SimonTrew, Strait, Stratadrake, UlrichAAB, Verloren, Viriditas, Walter Görlitz,
Webinfoonline, Wikid77, 98 anonymous edits

Integration testing  Source: http://en.wikipedia.org/w/index.php?oldid=444050552  Contributors: 2002:82ec:b30a:badf:203:baff:fe81:7565, Abdull, Addshore, Amire80, Arunka, Arzach,
Cbenedetto, Cellovergara, ChristianEdwardGruber, DRogers, DataSurfer, Discospinster, Ehabmehedi, Faradayplank, Furrykef, Gggh, Gilliam, GreatWhiteNortherner, Hooperbloob, J.delanoy,
Jewbacca, Jiang, Jtowler, Kmerenkov, Krashlandon, Lordfaust, Mheusser, Michael Rawdon, Michael miceli, Michig, Myhister, Notinasnaid, Onebyone, Paul August, Pegship, Pinecar, Qaddosh,
Ravedave, Ravindrat, SRCHFD, SkyWalker, Solde, Spokeninsanskrit, Steven Zhang, Svick, TheRanger, Thv, Walter Görlitz, Wyldtwyst, Zhenqinli, 136 anonymous edits

System testing  Source: http://en.wikipedia.org/w/index.php?oldid=433091657  Contributors: A bit iffy, Abdull, AliveFreeHappy, Anant vyas2002, AndreChou, Argon233, Ash, Bex84, Bftsg,
BiT, Bobo192, Ccompton, ChristianEdwardGruber, Closedmouth, DRogers, Downsize43, Freek Verkerk, GeorgeStepanek, Gilliam, Harveysburger, Hooperbloob, Ian Dalziel, Jewbacca,
Kingpin13, Kubigula, Lauwerens, Manway, Michig, Mpilaeten, Myhister, NickBush24, Philip Trueman, Pinecar, RCHenningsgard, RainbowOfLight, Ravialluru, Ronz, Solde, Ssweeting,
Suffusion of Yellow, SusanLarson, Thv, Tmopkisn, Vishwas008, Vmahi9, Walter Görlitz, Wchkwok, Zhenqinli, 128 anonymous edits

System integration testing  Source: http://en.wikipedia.org/w/index.php?oldid=444023688  Contributors: Aliasgarshakir, Andreas Kaufmann, Andrewmillen, Anna Lincoln, AvicAWB, Barbzie,
Bearcat, Charithk, DRogers, Fat pig73, Flup, Gaius Cornelius, JeromeJerome, Jpbowen, Kku, Mawcs, Mikethegreen, Panchitaville, Pinecar, Radagast83, Rich Farmbrough, Rwwww, Walter
Görlitz, 31 anonymous edits

Acceptance testing  Source: http://en.wikipedia.org/w/index.php?oldid=438053365  Contributors: Alphajuliet, Amire80, Amitg47, Apparition11, Ascánder, Bournejc, Caesura, Caltas, CapitalR,
Carse, Chris Pickett, Claudio figueiredo, CloudNine, Conversion script, DRogers, DVD R W, Dahcalan, Daniel.r.bell, Davidbatet, Dhollm, Divyadeepsharma, Djmckee1, Dlevy-telerik,
Eloquence, Emilybache, Enochlau, GTBacchus, GraemeL, Granburguesa, Gwernol, Halovivek, Hooperbloob, Hu12, Hutcher, Hyad, Infrablue, Jamestochter, Jemtreadwell, Jgladding,
JimJavascript, Jmarranz, Jpp, Kaitanen, Ksnow, Liftoph, MartinDK, MeijdenB, Meise, Michael Hardy, Midnightcomm, Mifter, Mike Rosoft, Mjemmeson, Mortense, Mpilaeten, Muhandes,
Myhister, Newbie59, Normxxx, Old Moonraker, Olson.sr, Panzi, Pearle, PeterBrooks, Phamti, Pill, Pinecar, Qem, RHaworth, RJFerret, Riki, Rlsheehan, Rodasmith, Samuel Tan, Shirulashem,
Timmy12, Timo Honkasalo, Toddst1, Viridae, Walter Görlitz, Whaa?, Wikipe-tan, William Avery, Winterst, 150 anonymous edits

Risk-based testing  Source: http://en.wikipedia.org/w/index.php?oldid=442829802  Contributors: Andreas Kaufmann, DRogers, Deb, Gilliam, Henri662, IQDave, Lorezsky, Paulgerrard,
Ronhjones, Tdjones74021, VestaLabs, 14 anonymous edits

Software testing outsourcing  Source: http://en.wikipedia.org/w/index.php?oldid=408750432  Contributors: Algebraist, Dawn Bard, Discospinster, Elagatis, Hu12, Kirk Hilliard, Lolawrites,
NewbieIT, Piano non troppo, Pinecar, Pratheepraj, Promoa1, Robofish, TastyPoutine, Tedickey, Tesstty, Woohookitty, 15 anonymous edits

Tester driven development  Source: http://en.wikipedia.org/w/index.php?oldid=340119755  Contributors: Arneeiri, BirgitteSB, Chris Pickett, Fram, Gdavidp, Int19h, Josh Parris, Mdd, Pinecar,
Sardanaphalus, Smjg, 11 anonymous edits



Article Sources and Contributors 250

Test effort  Source: http://en.wikipedia.org/w/index.php?oldid=422710539  Contributors: Chemuturi, Chris the speller, Contributor124, DCDuring, Downsize43, Erkan Yilmaz, Furrykef,
Helodia, Lakeworks, Mr pand, Notinasnaid, Pinecar, Ronz, 10 anonymous edits

IEEE 829  Source: http://en.wikipedia.org/w/index.php?oldid=430442333  Contributors: A.R., Antariksawan, CesarB, Das.steinchen, Donmillion, Firefox13, Fredrik, GABaker, Grendelkhan,
Haakon, Inukjuak, J.delanoy, Korath, Matthew Stannard, Methylgrace, Nasa-verve, Pinecar, Pmberry, Robertvan1, Shizhao, Utuado, Walter Görlitz, 37 anonymous edits

Test strategy  Source: http://en.wikipedia.org/w/index.php?oldid=441870269  Contributors: AlexWolfx, Autoerrant, Avalon, BartJandeLeuw, Christopher Lamothe, D6, Downsize43,
Fabrictramp, Freek Verkerk, HarlandQPitt, Henri662, Jayaramg, John of Reading, Liheng300, LogoX, M4gnum0n, Malcolma, Mandarhambir, Mboverload, Michael Devore, Pinecar, RHaworth,
Rpyle731, Shepard, Walter Görlitz, 69 anonymous edits

Test plan  Source: http://en.wikipedia.org/w/index.php?oldid=440831109  Contributors: -Ril-, Aaronbrick, Aecis, Alynna Kasmira, AndrewStellman, AuburnPilot, Bashnya25, Charles
Matthews, Craigwb, Dave6, Downsize43, Drable, E Wing, Foobaz, Freek Verkerk, Grantmidnight, Hennessey, Patrick, Hongooi, Icbkr, Ismarc, Jaganathcfs, Jason Quinn, Jeff3000, Jgorse,
Jlao04, Ken tabor, Kindx, Kitdaddio, LogoX, M4gnum0n, MarkSweep, Matthew Stannard, Mellissa.mcconnell, Michig, Mk*, Moonbeachx, NHSavage, NSR, Niceguyedc, OllieFury,
Omicronpersei8, OndraK, Oriwall, Padma vgp, Pedro, Pinecar, RJFJR, RL0919, Rlsheehan, Roshanoinam, Rror, SWAdair, Schmiteye, Scope creep, Shadowjams, SimonP, Stephenb, Tgeairn,
The Thing That Should Not Be, Thunderwing, Thv, Uncle Dick, Wacko, Waggers, Walter Görlitz, Yparedes, 321 anonymous edits

Traceability matrix  Source: http://en.wikipedia.org/w/index.php?oldid=446439560  Contributors: Ahoerstemeier, Andreas Kaufmann, Charles Matthews, DRogers, Discospinster, Donmillion,
Fry-kun, Furrykef, Graham87, Gurch, IPSOS, Kuru, Mdd, MrOllie, Pamar, Pinecar, Pravinparmarce, Rettetast, Ronz, Sardanaphalus, Shambhaviroy, Thebluemanager, Timneu22,
Voyagerfan5761, Walter Görlitz, WikiTome, 80 anonymous edits

Test case  Source: http://en.wikipedia.org/w/index.php?oldid=443526257  Contributors: AliveFreeHappy, Allstarecho, Chris Pickett, ColBatGuano, Cst17, DarkBlueSeid, DarkFalls, Darth
Panda, Eastlaw, Flavioxavier, Freek Verkerk, Furrykef, Gothmog.es, Hooperbloob, Iggy402, Iondiode, Jtowler, Jwh335, Jwoodger, Kevinmon, LeaveSleaves, Lenoxus, Magioladitis, Maniacs29,
MaxHund, Mdd, Merutak, Mr Adequate, MrOllie, Nibblus, Niri.M, Nmthompson, Pavel Zubkov, Peter7723, Pilaf, Pinecar, PrimeObjects, RJFJR, RainbowOfLight, RayAYang, Renu gautam,
Sardanaphalus, Sciurinæ, Sean D Martin, Shervinafshar, Srikaaa123, Suruena, System21, Thejesh.cg, Thorncrag, Thv, Tomaxer, Travelbird, Velella, Vikasbucha, Walter Görlitz, Wernight,
Yennth, Zack wadghiri, 175 anonymous edits

Test data  Source: http://en.wikipedia.org/w/index.php?oldid=444652160  Contributors: AlexandrDmitri, Alvestrand, Craigwb, Fg2, JASpencer, Nnesbit, Onorem, Pinecar, Stephenb, Uncle G,
10 anonymous edits

Test suite  Source: http://en.wikipedia.org/w/index.php?oldid=440123583  Contributors: A-hiro, Abdull, Alai, Andreas Kaufmann, CapitalR, Denispir, Derek farn, FreplySpang, JzG, KGasso,
Kenneth Burgener, Lakeworks, Liao, Martpol, Newman.x, Pinecar, Tomjenkins52, Unixtastic, VasilievVV, Walter Görlitz, 25 anonymous edits

Test script  Source: http://en.wikipedia.org/w/index.php?oldid=396053008  Contributors: Alai, Eewild, Falterion, Freek Verkerk, Hooperbloob, JLaTondre, JnRouvignac, Jruuska, Jwoodger,
Michig, PaulMEdwards, Pfhjvb0, Pinecar, RJFJR, Rchandra, Redrocket, Sean.co.za, Sujaikareik, Teiresias, Thv, Ub, Walter Görlitz, 28 anonymous edits

Test harness  Source: http://en.wikipedia.org/w/index.php?oldid=430657567  Contributors: Abdull, Ali65, Allen Moore, Avalon, Brainwavz, Caesura, Caknuck, Calréfa Wéná, DenisYurkin,
Downtown dan seattle, Dugrocker, Furrykef, Greenrd, Kgaughan, Pinecar, SQAT, Tony Sidaway, Wlievens, 43 anonymous edits

Static testing  Source: http://en.wikipedia.org/w/index.php?oldid=433637055  Contributors: Aldur42, Amberved, Andreas Kaufmann, Avenue X at Cicero, Carlo.milanesi, Chris Pickett, Epim,
Erkan Yilmaz, Iflapp, Iq9, Kauczuk, Nla128, Pinecar, Railwayfan2005, Rnsanchez, Robert Skyhawk, Ruud Koot, Sripradha, Walter Görlitz, Yaris678, 26 anonymous edits

Software review  Source: http://en.wikipedia.org/w/index.php?oldid=433776641  Contributors: A Nobody, AliveFreeHappy, Andreas Kaufmann, Audriusa, Bovineone, Colonel Warden, Dima1,
Donmillion, Gail, Irfibwp, Karada, Madjidi, Matchups, Rolf acker, Tassedethe, William M. Connolley, Woohookitty, XLerate, 33 anonymous edits

Software peer review  Source: http://en.wikipedia.org/w/index.php?oldid=385388081  Contributors: AliveFreeHappy, Andreas Kaufmann, Anonymous101, Bovineone, Donmillion, Ed Brey, Ed
Poor, Gronky, Karada, Kezz90, Kjenks, Lauri.pirttiaho, MarkKozel, Michael Hardy, Sdornan, Zakahori, 10 anonymous edits

Software audit review  Source: http://en.wikipedia.org/w/index.php?oldid=416400975  Contributors: Andreas Kaufmann, Donmillion, JaGa, Katharineamy, Kralizec!, Romain Jouvet,
Tregoweth, Woohookitty, Zro, 6 anonymous edits

Software technical review  Source: http://en.wikipedia.org/w/index.php?oldid=405873452  Contributors: Andreas Kaufmann, Donmillion, Edward, Gnewf, 4 anonymous edits

Management review  Source: http://en.wikipedia.org/w/index.php?oldid=398341890  Contributors: Andreas Kaufmann, Anticipation of a New Lover's Arrival, The, Ardric47,
BagpipingScotsman, Bovineone, Deckiller, Donmillion, Galena11, JustinHagstrom, Karada, Outlook, Rintrah, 4 anonymous edits

Software inspection  Source: http://en.wikipedia.org/w/index.php?oldid=442930498  Contributors: A.R., Andreas Kaufmann, AndrewStellman, Arminius, AutumnSnow, BigMikeW,
Bigbluefish, Bovlb, Ebde, Ft1, Fuzheado, Ivan Pozdeev, Kku, Michaelbusch, Mtilli, Nmcou, Occono, PeterNuernberg, Rmallins, Secdio, Stephenb, SteveLoughran, Vivio Testarossa, Wik, 56
anonymous edits

Fagan inspection  Source: http://en.wikipedia.org/w/index.php?oldid=433776670  Contributors: Altenmann, Arthena, Ash, Attilios, Bigbluefish, Can't sleep, clown will eat me, ChrisG,
Courcelles, Drbreznjev, Epeefleche, Gaff, Gaius Cornelius, Gimmetrow, Hockeyc, Icarusgeek, Iwearavolcomhat, JIP, Kezz90, MacGyverMagic, Mjevans, Mkjadhav, Nick Number, Okok,
Pedro.haruo, Slightsmile, Tagishsimon, Talkaboutquality, Tassedethe, The Font, The Letter J, Zundark, 43 anonymous edits

Software walkthrough  Source: http://en.wikipedia.org/w/index.php?oldid=402654664  Contributors: Andreas Kaufmann, DanielPharos, Donmillion, Gnewf, Jherm, Jocoder, Karafias, Ken g6,
OriolBonjochGassol, Reyk, 12 anonymous edits

Code review  Source: http://en.wikipedia.org/w/index.php?oldid=436620210  Contributors: Adange, Aivosto, AliveFreeHappy, Alla tedesca, Andreas Kaufmann, Bevo, Brucevdk, Cander0000,
CanisRufus, ChipX86, Craigwb, DanielVale, Derek farn, Digsav, Dwheeler, Ed Poor, Enigmasoldier, Flamurai, Fnegroni, Furrykef, Gbolton, Hooperbloob, Intgr, J.delanoy, Jabraham mw,
Jamelan, Jesselong, Khalid hassani, Kirian, Kispa, Madjidi, Martinig, Matchups, MattOConnor, MattiasAndersson, MrOllie, Mratzloff, Msabramo, Mutilin, NateEag, Nevware, Oneiros, Pcb21,
Project2501a, Pvlasov, Rajeshd, Ronz, Rrobason, Ryguasu, Salix alba, Scottb1978, Smartbear, Srice13, StefanVanDerWalt, Steleki, Stephenb, Stevietheman, Sverdrup, Swtechwr,
Talkaboutquality, Themfromspace, ThurnerRupert, Tlaresch, Tom-, Ynhockey, ZamorakO o, 106 anonymous edits

Automated code review  Source: http://en.wikipedia.org/w/index.php?oldid=440742305  Contributors: Aivosto, AliveFreeHappy, Amoore, Andreas Kaufmann, Closedmouth, Download, Elliot
Shank, Fehnker, Gaudol, HelloAnnyong, IO Device, JLaTondre, Jabraham mw, John Vandenberg, Leolaursen, Lmerwin, Mellery, NathanoNL, OtherMichael, Pgr94, Ptrb, Pvlasov, RedWolf,
Rwwww, Swtechwr, ThaddeusB, Tracerbee, Wknight94, 27 anonymous edits

Code reviewing software  Source: http://en.wikipedia.org/w/index.php?oldid=394379382  Contributors: Aivosto, AliveFreeHappy, Amoore, Andreas Kaufmann, Closedmouth, Download, Elliot
Shank, Fehnker, Gaudol, HelloAnnyong, IO Device, JLaTondre, Jabraham mw, John Vandenberg, Leolaursen, Lmerwin, Mellery, NathanoNL, OtherMichael, Pgr94, Ptrb, Pvlasov, RedWolf,
Rwwww, Swtechwr, ThaddeusB, Tracerbee, Wknight94, 27 anonymous edits

Static code analysis  Source: http://en.wikipedia.org/w/index.php?oldid=410764388  Contributors: 212.153.190.xxx, A5b, Ahoerstemeier, Alex, AliveFreeHappy, Andareed, Andreas Kaufmann,
Antonielly, Anujgoyal, Berrinam, CaliforniaAliBaba, Conversion script, Creando, Crowfeather, Cryptic, DatabACE, David.Monniaux, Dbelhumeur02, Dekisugi, Derek farn, Diego Moya, Ebde,
Ed Brey, Erkan Yilmaz, Fderepas, Ferengi, FlashSheridan, Gadfium, Goffrie, GraemeL, Graham87, Ground Zero, Ixfd64, JForget, Jabraham mw, JacobTrue, Jan1nad, Jisunjang, JoelSherrill,
JohnGDrever, Jpbowen, Jschlosser, Kazvorpal, Ks0stm, Kskyj, Leibniz, Marudubshinki, Mike Van Emmerik, Mutilin, Peter M Gerdes, Pinecar, Ptrb, Qwertyus, Renox, Rpm, Ruud Koot,
Rwwww, Sashakir, Schwallex, StaticCast, Sttaft, Suruena, Swtechwr, TUF-KAT, Ted Longstaffe, Thv, Tinus74, Tjarrett, Tregoweth, Villeez, Vina, Vkuncak, Vp, Wlievens, Yonkie, 111
anonymous edits

List of tools for static code analysis  Source: http://en.wikipedia.org/w/index.php?oldid=446462849  Contributors: 70x7plus1, A.zitzewitz, Achituv, Adarw, Aetheling, Aivosto, Albert688, 
Alex, Alexcenthousiast, Alexius08, Alextelea, AliveFreeHappy, Amette, Amire80, Amoore, Andreas Kaufmann, AndrewHowse, Angusmclellan, Apcman, Ariefwn, Armadillo-eleven, Athaenara, 
Atif.hussain, Avraham, Azrael Nightwalker, BB-Froggy, Bakotat, Bantoo12, Bchess, Bdoserror, Bellingard, Benneman, Benrick, Bensonwu, Bgi, Bjcosta, Bknittel, Bkuhn, Bnmike, Borishollas, 
Breakpoint, Camwik75, Capi x, Catamorphism, Cate, Cgisquet, Checkshirt, Chick Bowen, Collinpark, Cpparchitect, Cryptic, CxQL, Dash, DatabACE, David Gerard, David.Monniaux, 
Dbelhumeur02, Dekisugi, Demarant, Derek farn, Devpitcher, Diego Moya, Dinis.Cruz, Diomidis Spinellis, Disavian, Dmkean, Dmooney, Dmulter, Dnozay, DomQ, Donaldsbell@yahoo.com, 
Douglaska, Dpnew, Drdeee, Drpaule, Dtgriscom, Dvice null, Ed Brey, Ehajiyev, Elliot Shank, Epierrel, Esdev, Ettl.martin, Exatex, Excirial, Faganp, Falcon9x5, Felmon, FergusBolger, Fewaffles, 
Fishoak, Flamingcyanide, FlashSheridan, Fowlay, Frap, Freddy.mallet, FutureDomain, Fwaldman, G b hall, Gahs, Gaius Cornelius, Gaudol, Gbickford, Gesslein, Giggy, Gogege, Grauenwolf, 
Guillem.Bernat, Gwandoya, Haakon, Hello484, HelloAnnyong, Hooperbloob, Hyd danmar, Iceberg1414, Imeshev, InaToncheva, InaTonchevaToncheva, Irishguy, Issam lahlali, Istoyanov,



Article Sources and Contributors 251

JLaTondre, Jabraham mw, Jamieayre, Jayabra17, Jayjg, Jcuk 2007, Jdabney, Jeodesic, Jersyko, Jisunjang, JnRouvignac, Joebeone, John of Reading, JohnGDrever, Jopa fan, Jpbowen, Jschlosser,
Jsub, Kengell, Kenguest, Kent SofCheck, Kfhiejf6, Klausjansen, Kravietz, Krischik, Krlooney, Kskyj, LDRA, Lalb, Libouban, LilHelpa, Linehanjt, Llib xoc, Lmerwin, Malcolma, Mandrikov,
Martarius, MartinMarcher, Matsgd, Mcculley, Mdjohns5, Mike Van Emmerik, Mikeblas, Minhyuk.kwon, Mj1000, Mmernex, Monathan, Moonwolf14, Mrlongleg, Mrwojo, N5iln, Nandorjozsef,
Nandotamu, Nbougalis, Neerajsangal, NewSkool, Newtang, Nick Number, Nickj, Nico.anquetil, Nixeagle, Northgrove, Notopia, O2user, Oorang, Optimyth, Orangemike, PSeibert, PSmacchia,
Parasoft-pl, Parikshit Narkhede, PaulEremeeff, Pauljansen42, Pausch, Pavel Vozenilek, Perrella, Petdance, Pfunk1410, Phatom87, Piano non troppo, Pinecar, Pitkelevo, Pkortve, Pkuczynski,
Pmjtoca, Pmollins, Pokeypokes, Prasanna vps, PraveenNet, Pth81, Ptrb, Pvlasov, Qu3a, RHaworth, Rainco, Rajah9, Ralthor, Rdbuckley, Rhuuck, Rich Farmbrough, Richsz, RickScott, Rodolfo
Borges, Romgerale, Rosen, Rpapo, Rpelisse, Rrtuckwell, Rssh, Runtime, Ruud Koot, Sachrist, Sadovnikov, Sander123, Sashakir, Schwallex, Scovetta, Serge Baranovsky, Sffubs, ShelfSkewed,
Shiva.rock, Siva77, Skilner, Skrik69, Sourceanalysis, Sreich, Staniuk, StaticCast, Stephen.gorton, Sttaft, Stubb, Swtechwr, Taed, Tasc, Tddcodemaster, Tedickey, Test-tools, The.gaboo,
Timekeeper77, Tjarrett, Tkvavle, Tlownie, Tomtheeditor, Tonygrout, Toutoune25, Traal, Tracerbee, Tradsud, Tregoweth, Uncopy, Vaucouleur, Velizar.vesselinov, Venkatreddyc, Verdatum,
Verilog, Vfeditor, Vor4, Vp, Wakusei, Wdfarmer, Wegra, Weregerbil, Wesnerm, Wiki jmeno, Wikieditoroftoday, Wikimaf, Woohookitty, Wws, Xodlop, Xoloz, Yansky, Yoderj, Ysangkok,
Zfalconz, 725 anonymous edits

GUI software testing  Source: http://en.wikipedia.org/w/index.php?oldid=413588113  Contributors: 10metreh, Alexius08, AliveFreeHappy, Andreas Kaufmann, Chaser, Cmbay, Craigwb,
Dreftymac, Dru of Id, Equatin, Gururajs, Hardburn, Hesa, Hu12, Imroy, Jeff G., JnRouvignac, Josephtate, Jruuska, Jwoodger, Ken g6, Liberatus, MER-C, Mcristinel, Mdjohns5, Mild Bill Hiccup,
Paul6feet1, Pinecar, Pnm, Rdancer, Rich Farmbrough, Rjwilmsi, Rockfang, Ronz, SAE1962, SiriusDG, Staceyeschneider, SteveLoughran, Steven Zhang, Unforgettableid, Wahab80, Wakusei, 54
anonymous edits

Usability testing  Source: http://en.wikipedia.org/w/index.php?oldid=446191195  Contributors: 137.28.191.xxx, Aapo Laitinen, Al Tereego, Alan Pascoe, Alvin-cs, Antariksawan, Arthena,
Azrael81, Bihco, Bkillam, Brandon, Breakthru10technologies, Bretclement, ChrisJMoor, Christopher Agnew, Cjohansen, Ckatz, Conversion script, Crònica, DXBari, Dennis G. Jerz, Dickohead,
Diego Moya, Dobrien, DrJohnBrooke, Dvandersluis, EagleFan, Farreaching, Fredcondo, Geoffsauer, Gmarinp, Gokusandwich, GraemeL, Gubbernet, Gumoz, Hede2000, Hooperbloob, Hstetter,
JDBravo, JaGa, Jean-Frédéric, Jetuusp, Jhouckwh, Jmike80, Karl smith, Kolyma, Kuru, Lakeworks, Leonard^Bloom, LizardWizard, Mandalaz, Manika, MaxHund, Mchalil, Miamichic, Michael
Hardy, MichaelMcGuffin, MikeBlockQuickBooksCPA, Millahnna, Mindmatrix, Omegatron, Pavel Vozenilek, Philipumd, Pigsonthewing, Pindakaas, Pinecar, QualMod, Ravialluru,
Researcher1999, Rich Farmbrough, Rlsheehan, Ronz, Rossami, Schmettow, Shadowjams, Siddhi, Spalding, Tamarkot, Technopat, Tobias Bergemann, Toghome, Tomhab, Toomuchwork,
Vmahi9, Wikinstone, Wikitonic, Willem-Paul, Wwheeler, Yettie0711, ZeroOne, 129 anonymous edits

Think aloud protocol  Source: http://en.wikipedia.org/w/index.php?oldid=423009315  Contributors: Akamad, Angela, Aranel, Calebjc, Crònica, DXBari, Delldot, Diego Moya, Dragice, Hetar,
Icairns, Jammycaketin, Khalid hassani, Manika, Ms2ger, Nuggetboy, Ofol, Ohnoitsjamie, PeregrineAY, Pinecar, Robin S, Robksw, Ronz, Shanes, Shevek57, Simone.borsci, Suruena, TIY,
Technopat, Tillwe, Wik, Zojiji, Zunk, 23 anonymous edits

Usability inspection  Source: http://en.wikipedia.org/w/index.php?oldid=382541633  Contributors: Andreas Kaufmann, Diego Moya, Lakeworks, 2 anonymous edits

Cognitive walkthrough  Source: http://en.wikipedia.org/w/index.php?oldid=440231930  Contributors: American Eagle, Andreas Kaufmann, Avillia, Beta m, DXBari, David Eppstein, Diego
Moya, Elusive Pete, Firsfron, FrancoisJordaan, Gene Nygaard, Karada, Kevin B12, Lakeworks, Macdorman, Masran Silvaris, Moephan, Naerii, Quale, Rdrozd, Rich Farmbrough, SimonB1212,
Spalding, Srbauer, SupperTina, Tassedethe, Vacarme, Xionbox, 33 anonymous edits

Heuristic evaluation  Source: http://en.wikipedia.org/w/index.php?oldid=422883455  Contributors: 0403554d, Andreas Kaufmann, Angela, Art LaPella, Bigpinkthing, Catgut, Clayoquot,
DXBari, DamienT, Delldot, Diego Moya, Edward, Fredcondo, Fyhuang, Hugh.glaser, JamesBWatson, Jonmmorgan, JulesH, Karada, KatieUM, Kjtobo, Lakeworks, Luiscarlosrubino,
PhilippWeissenbacher, RichardF, Rjwilmsi, Ronz, SMasters, Subversive, Turadg, Verne Equinox, Wikip rhyre, Zeppomedio, 48 anonymous edits

Pluralistic walkthrough  Source: http://en.wikipedia.org/w/index.php?oldid=440233676  Contributors: Andreas Kaufmann, Diego Moya, Lakeworks, Minnaert, RHaworth, Team Estonia, 4
anonymous edits

Comparison of usability evaluation methods  Source: http://en.wikipedia.org/w/index.php?oldid=406062283  Contributors: Andreala, Diego Moya, Eastlaw, Lakeworks, RHaworth, Ronz,
Simone.borsci, 3 anonymous edits



Image Sources, Licenses and Contributors 252

Image Sources, Licenses and Contributors
File:Blackbox.svg  Source: http://en.wikipedia.org/w/index.php?title=File:Blackbox.svg  License: Public Domain  Contributors: Original uploader was Frap at en.wikipedia
Image:mbt-overview.png  Source: http://en.wikipedia.org/w/index.php?title=File:Mbt-overview.png  License: Public Domain  Contributors: Antti.huima, Monkeybait
Image:mbt-process-example.png  Source: http://en.wikipedia.org/w/index.php?title=File:Mbt-process-example.png  License: Public Domain  Contributors: Antti.huima, Monkeybait
File:Three point flexural test.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:Three_point_flexural_test.jpg  License: Creative Commons Attribution-Sharealike 3.0,2.5,2.0,1.0
 Contributors: Cjp24
File:US Navy 070409-N-3038W-002 Aviation Structural Mechanic 3rd Class Rene Tovar adjusts a connection point on a fixture hydraulic supply servo cylinder test station in the
hydraulics shop aboard the Nimitz-class aircraft carrier U.jpg  Source:
http://en.wikipedia.org/w/index.php?title=File:US_Navy_070409-N-3038W-002_Aviation_Structural_Mechanic_3rd_Class_Rene_Tovar_adjusts_a_connection_point_on_a_fixture_hydraulic_supply_servo_cylinder_test_station_in_the_hydraulics_shop_aboard_the_Nimitz-class_aircraft_carrier_U.jpg
 License: Public Domain  Contributors:
File:2009-0709-earthquake.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:2009-0709-earthquake.jpg  License: Public Domain  Contributors: Photo Credit: Colorado State
University
File:US Navy 070804-N-1745W-122 A Sailor assigned to Aircraft Intermediate Maintenance Department (AIMD) tests an aircraft jet engine for defects while performing Jet Engine
Test Instrumentation, (JETI) Certification-Engine Runs.jpg  Source:
http://en.wikipedia.org/w/index.php?title=File:US_Navy_070804-N-1745W-122_A_Sailor_assigned_to_Aircraft_Intermediate_Maintenance_Department_(AIMD)_tests_an_aircraft_jet_engine_for_defects_while_performing_Jet_Engine_Test_Instrumentation,_(JETI)_Certification-Engine_Runs.jpg
 License: Public Domain  Contributors:
File:TH11-50kN-pincer-grip.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:TH11-50kN-pincer-grip.jpg  License: Creative Commons Attribution 3.0  Contributors:
Ingeniero-aleman
File:THS527-50.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:THS527-50.jpg  License: Creative Commons Attribution 3.0  Contributors: Ingeniero-aleman
File:TH-screw-grips.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:TH-screw-grips.jpg  License: GNU Free Documentation License  Contributors: Ingeniero-aleman
File:THS766-5.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:THS766-5.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
File:THS314-2.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:THS314-2.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
File:THS13k-02-200N.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:THS13k-02-200N.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
File:Temperaturkammer-spannzeug THS321-250-5.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:Temperaturkammer-spannzeug_THS321-250-5.jpg  License: Creative
Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
File:TH149 .jpg  Source: http://en.wikipedia.org/w/index.php?title=File:TH149_.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
File:THS137-4-fr.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:THS137-4-fr.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Ingeniero-aleman
http://www.grip.de
File:Biegevorrichtung TH165.jpg  Source: http://en.wikipedia.org/w/index.php?title=File:Biegevorrichtung_TH165.jpg  License: Creative Commons Attribution-Sharealike 3.0  Contributors:
Ingeniero-aleman
File:Abzugsvorrichtung TH50+SW .jpg  Source: http://en.wikipedia.org/w/index.php?title=File:Abzugsvorrichtung_TH50+SW_.jpg  License: Creative Commons Attribution-Sharealike 3.0
 Contributors: Ingeniero-aleman
Image:NUnit GUI.png  Source: http://en.wikipedia.org/w/index.php?title=File:NUnit_GUI.png  License: unknown  Contributors: MaxSem
Image:CsUnit2.5Gui.png  Source: http://en.wikipedia.org/w/index.php?title=File:CsUnit2.5Gui.png  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Manfred Lange
Image:htmlunit logo.png  Source: http://en.wikipedia.org/w/index.php?title=File:Htmlunit_logo.png  License: Fair Use  Contributors: Agentq314
Image:Test-driven development.PNG  Source: http://en.wikipedia.org/w/index.php?title=File:Test-driven_development.PNG  License: Creative Commons Attribution-Sharealike 3.0
 Contributors: Excirial (Contact me, Contribs)
File:US Navy 090407-N-4669J-042 Sailors assigned to the air department of the aircraft carrier USS George H.W. Bush (CVN 77) test the ship's catapult systems during acceptance
trials.jpg  Source:
http://en.wikipedia.org/w/index.php?title=File:US_Navy_090407-N-4669J-042_Sailors_assigned_to_the_air_department_of_the_aircraft_carrier_USS_George_H.W._Bush_(CVN_77)_test_the_ship's_catapult_systems_during_acceptance_trials.jpg
 License: Public Domain  Contributors:
Image:Fagan Inspection Simple flow.gif  Source: http://en.wikipedia.org/w/index.php?title=File:Fagan_Inspection_Simple_flow.gif  License: Public Domain  Contributors: Monkeybait, Okok,
1 anonymous edits
Image:Virzis Formula.PNG  Source: http://en.wikipedia.org/w/index.php?title=File:Virzis_Formula.PNG  License: Public Domain  Contributors: Original uploader was Schmettow at
en.wikipedia. Later version(s) were uploaded by NickVeys at en.wikipedia.



License 253

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

