The Java™ Architecture for
XML Binding (JAXB)

Final, V1.0
January 8th, 2003

Editors:

Joseph Falli,

Sekhar Vajjhda

Comments to: jaxb-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 USA

Java™ Architecture for XML Binding (JAXB) Specification (“ Specification™)
Version: 1.0

Status: FCS

Release: January 8th, 2003

Copyright 2003 Sun Microsystems, I nc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rightsreserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without the right to sublicense), under the Sun's applicable intellectual property
rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation,
which shall be understood to include devel oping applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specifi-
cation.

Sun aso grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or patent rights it may have in the Speci-
fication to create and/or distribute an Independent Implementation of the Specification that: (i) fully
implements the Spec(s) including al itsrequired interfaces and functionality; (ii) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/
authorized by the Specification or Specifications being implemented; and (iii) passes the TCK (including
satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing
license is expressly conditioned on your not acting outside its scope. No license is granted hereunder for
any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular “pass
through” requirements in any license Y ou grant concerning the use of your Independent Implementation
or products derived from it. However, except with respect to implementations of the Specification (and
products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may nei-
ther: (@) grant or otherwise pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning their implementation's
compliance with the Spec in question.

For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of the
Specification that neither derives from any of Sun's source code or binary code materials nor, except with
an appropriate and separate license from Sun, includes any of Sun's source code or binary code materials;
and “Licensor Name Space” shal mean the public class or interface declarations whose names begin with
“java’, “javax”, “com.sun” or their equivalents in any subsequent naming convention adopted by Sun
through the Java Community Process, or any recognized successors or replacements thereof .

This Agreement will terminate immediately without notice from Sun if you fail to comply with any mate-
rial provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS1S.” SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT,
THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. Thisdoc-
ument does not represent any commitment to release or implement any portion of the Specification in any
product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then-current license for the applicable version of the
Specification.

LIMITATION OF LIABILITY

TOTHE EXTENT NOT PROHIBITED BY LAW, INNO EVENT WILL SUN ORITSLICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROF-
ITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS
ING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE
OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Y ou will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
clean room implementation; and/or (iii) any claims that later versions or releases of any Specification fur-
nished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTSLEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the Soft-
ware and accompanying documentation shall be only as set forth in this license; thisis in accordance with
48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R.2.101 and 12.212 (for non-DoD acquisitions).

REPORT

Y ou may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LF1#123847/Form | D#011801)

CONTENTS

[1
1 Introduction e 1
1.1 Databinding i 2

1.2 Goals. ..o 3

1.3 NoOn-Goals. 5

1.4 ReqUIrEMENtS e e 7

1.5 USE CaSeS. . .ottt 8

1.6 CONVENLIONSt 9

1.7 ExpertGroup Members. 10

1.8 Acknowledgements. 10

2 Architecture e 13
2.1 OVeIVIEBW . o oot e 13
211 JavaRepresentation i, 14

2.1.2 Binding Framework 15

2.1.3 Binding Declarations 16

2.2 Varieties of validation 17
2.2.1 Handling Validation Failures 19

2.3 Anexample. 19

3 TheBinding Framework 23
3.1 Binding Runtime Framework Rationale. 24

3.2 JAXBCONIEXL. . .ot 24

3.3 General Validation Processing 26
3.4 Validatoro 28

3.5 Unmarshalling......... 29

3.6 Marshalling e 31
3.6.1 Marshalling Properties 32

3.7 ValidationHandling.............. 33

4 Java Representation of XML Content 35
4.1 Mapping between XML Names and Java ldentifiers. 35

4.2 JavaPackage e 36

4.3 Typesafe EnumClass. i i 37

4.4 JavaContentlInterface i 39

45 Properties e 40
451 SimpleProperty 41

452 CollectionPropernty. 43

452.1 IndexedProperty 43

4522 ListProperty............ . 45

1/8/03 JAXB Specification — Final, V1.0 v

Vi

453 Constant Propertyu i 46

454 isSet Property Modifier 46
455 Property Summary 48
4.6 JavaElementinterface.......... 49
A7 SUMIMAIY . ot ettt e e e e e e 53
Binding XML Schema to Java Representations.............. 55
Bl OVEIVIEW . . .o 55
5.2 Simple Type Definition 56
5.2.1 Type Categorization., 56
5,22 AtomicDatatype. 56
5.2.3 Type Safe Enumeration............................. 59
5.23.1 EnumerationClass......................... 60
5.2.3.2 EnumerationClass......................... 61
5.2.3.3 ConstantFields. 62
5.2.3.4 XML Enumvalue-to-Java ldentifier Mapping. 63
5.2.3.5 Methods and Constructor. 63
.24 LISt .. 64
5.25 UnionProperty....... ... 65
B.26 Union 66
5.3 Complex Type Definition. 67
5.3.1 Aggregation of Java Representation 67
5.3.1.1 Aggregation of Datatype/Interface 67
5.3.1.2 Aggregation of Property Set.................. 68
5.3.2 JavaContentlinterface................. 68
5.3.2.1 Simple ContentBinding 70
5.4 Attribute Group Definition 71
5.5 Model Group Definition. 72
5.,5.1 Bindtoasetofproperties 73
5,52 Bindtoalistproperty................ ... 73
5.5.3 BindtoaJavacontentinterface....................... 74
5.5.4 Deriving Class Names for Named Model Group Descendants .
77
5.6 Attribute Declaration 80
5.7 ElementDeclaration 80
5.7.1 BindtoJava Elementinterface 82
5.7.2 Binding of an anonymous complex type definition. 83
5,73 BindtoaProperty 85
5.8 Attributeuse 85
5.8.1 BindtoaJava Constantproperty...................... 86
5.8.1.1 Contributions to Local Structural Constraint. 87
5.8.2 Binding an IDREF component to a Java property 87
5.9 Content Model - Particle, Model Group, Wildcard. 89
5.9.1 Elementbindingstyle................ 90

5.9.2 Bind each element declaration name to a content property. . 90

JAXB Specification — Final, V1.0 1/8/03

5.9.3 Generalcontentpropertyc.uiiiiiiiii. 93

5,931 Examples 95

594 Bindmixedcontent. 96

5.9.5 Bind wildcard schema component 98

5.9.6 Bind a repeating occurrence modelgroup............... 99

5.9.7 Content Model DefaultBinding 99
5.9.7.1 Default binding of content model “derived by

extension”101

5.9.8 Model group bindingstyle 102

5.9.9 Bind Top-level Model Group to a Property Set 103

5.9.10 Bind Nested ModelGroup 103

5.9.10.1 Bind a Choice Group to a Content Interface. 104

5.9.10.2 Bind choice group to a choice content property . . 108

5.9.11 Model Group binding algorithm 109

5.10 Default Binding Rule Summary............................. 110

6 Customization e 113

6.1 BindingLanguage. i 113

6.1.1 Extending the Binding Language..................... 114

6.1.2 Inline Annotated Schema. 115

6.1.3 External Binding Declaration 115

6.1.3.1 Restrictions. 116

6.1.4 Version Attribute. 116

6.1.5 Invalid Customizations. 117

6.2 Notation. 117

6.3 Naming Conventions. it 118

6.4 Customization OVerviewttt 118

B.4. 1 SCOPE. .ttt 118

6.42 XML SchemaParsing 120

6.5 <gl obal Bi ndi ngs>Declaration 121

6.5.1 USage. e 121

6.5.2 Customized Name Mapping.o... 124

6.5.3 UnderscoreHandling.............................. 124

6.6 <schemaBi ndi ngs>Declaration 125

6.6.1 USage.t 125

6.6.1.1 package 126

6.6.1.2 nameXm Transform...................... 127

6.7 <class>Declaration i 128

B6.7.1 USA0E.t 128

6.7.2 Customization Overrides 129

6.7.3 Customizable SchemaElements. 129

6.7.3.1 Complex Type Definition 129

6.7.3.2 Model Group Definition. 130

6.7.3.3 ModelGroup........ .. 131

6.7.3.4 Global Element Declaration 131

1/8/03 JAXB Specification — Final, V1.0 vii

viii

6.8

6.9

6.10

6.11

6.12

6.7.3.5 LocalElement............ 132

<property>Declaration................. 133
6.8.1 USAge. i 134
6.8.1.1 baseType i 135
6.8.1.2 UsageConstraints 135
6.8.2 CustomizationOverrides 137
6.8.3 Customizable Schema Elements. 138
6.8.3.1 Global Attribute Declaration 138
6.8.3.2 Local Attribute. 138
6.8.3.3 Global Element Declaration 140
6.8.3.4 LocalElement.............. 140
6.835 Wildcard 143
6.8.3.6 ModelGroup......... .. 143
6.8.3.7 Model Group Reference 149
6.8.3.8 ComplexType 150
<javaType>Declaration................. 151
6.9.1 USAge. 151
6.9.1.1 name......... ... 152
6.9.1.2 xmlType...... 152
6.9.1.3 hasNsContext, 152
6.9.1.4 NamespaceContext.............c..viuiu.... 153
6.9.1.5 parseMethod, 153
6.9.1.6 printMethod 155
6.9.2 DatatypeConverter......... ..o, 155
6.9.21 Usage.iiiiiii 156
6.9.2.2 LexicalAndValueSpace 157
6.9.3 Built-in Conversions i 158
6.9.4 EVENIS e 160
6.9.5 CustomizationOverrides, 161
6.9.6 Customizable Schema Elements. 161
6.9.6.1 Simple Type Definition 161
6.96.2 dobalBindings........................ 161
6.9.6.3 <baseType>declaration................... 161
<typesaf eEnune Declaration. 162
6.10.1 USAge. .. .ttt 162
6.10.2 valueAttribute e 163
6.10.3 Inline Annotations.t 164
6.10.4 CustomizationOverrides, 164
6.10.5 Customizable Schema Elements. 165
<javadoc>Declaration i 167
6.11.1 JavadoC SecCtions.ttt 168
6.11.2 USAgE. .. .ttt 168
6.11.3 Javadoc Customization 168
Annotation Restrictions. 169

JAXB Specification — Final, V1.0 1/8/03

O @™ >» ©

Compatibility 171

References 173
Package javax.xml.bind 175
Normative Binding Schema Syntax....................... 177
Binding XML Names to Java Identifiers 189
C.l OVeIVIEBW . o ot e e e e e e 189
C.2 The Name to ldentifier Mapping Algorithm 189
C.2.1 Collisionsand conflicts. 192

C.3 Deriving a legal Java identifier from xs: string............... 193
C.4 Deriving an identifier foramodelgroup 194
C.5 GeneratingaJavapackagename 194
C.5.1 Mapping froma Namespace URI. 195

C.6 Conforming Java Identifier Algorithm 196
External Binding Declaration 199
D.1 Example 199
D.2 Transformation 201
XML Schema 203
E.1 Abstract SchemaModel 203
E.1.1 Simple Type Definition Schema Component............ 203
E.1.2 Enumeration Facet Schema Component. 204
E.1.3 Complex Type Definition Schema Component 204
E.1.4 Element Declaration Schema Component. 205
E.1.5 Attribute Declaration Schema Component. 206
E.1.6 Model Group Definition Schema Component. 206

E.1.7 Identity-constraint Definition Schema Component. 206

E.1.8 Attribute Use Schema Component. 207

E.1.9 Particle SchemaComponent........................ 207
E.1.10 Wildcard Schema Component....................... 207
E.1.11 Model Group Schema Component. 208

E.2 Not Required XML Schemaconcepts.ccovvo. ... 208
E.2.1 Concepts detected at binding compilation time 208
E.2.1.1 Binding Compilation Errors. 208

E.2.1.2 Binding compilation warnings................ 209

E.2.2 Not supported while manipulating the XML content. 210
Relationship to JAX-RPCBinding 211
F.L OVEIVIEW . . .t e e e 211
F.2 Mapping XML name to Java identifier. 211
F.3 Bind XML enum to a typesafe enumeration 212
F.3.1 RestrictionBase Typet iiiinnnn.. 212

1/8/03 JAXB Specification — Final, V1.0 iX

F.3.2 Enumeration Name Handling........................ 212

G Change Log e 213
G.1 ChangesforFinal 213
G.2 ChangesforProposedFinal.............. 213
G.3 ChangesforPublicDraft2 215
G.4 ChangesforPublicDraft.............. 216

X JAXB Specification — Final, V1.0 1/8/03

CHAPTERI1

INTRODUCTION

XML is, essentially, a platform-independent means of structuring information.
An XML document is atree of elements. An element may have a set of
attributes, in the form of key-value pairs, and may contain other el ements, text,
or a mixture thereof. An element may refer to other elements via identifier
attributes, thereby allowing arbitrary graph structures to be represented.

An XML document need not follow any rules beyond the well-formedness
criterialaid out in the XML 1.0 specification. To exchange documentsin a
meaningful way, however, requires that their structure and content be described
and constrained so that the various parties involved will interpret them correctly
and consistently. This can be accomplished through the use of a schema. A
schema contains a set of rules that constrains the structure and content of a
document’ s components, i.e., its elements, attributes, and text. A schema also
describes, at least informally and often implicitly, the intended conceptual
meaning of a document’s components. A schemais, in other words, a
specification of the syntax and semantics of a (potentially infinite) set of XML
documents. A document is said to be valid with respect to a schema if, and only
if, it satisfies the constraints specified in the schema.

In what language are schemas written? The XML specification itself describes a
sublanguage for writing document-type definitions, or DTDs. As schemas go,
however, DTDs are fairly weak. They support the definition of simple
constraints on structure and content, but provide no real facility for expressing
datatypes or complex structural relationships. They have also prompted the
creation of more sophisticated schema languages such as XDR, SOX, RELAX,
TREX, and, most significantly, the XML Schema language recently defined by
the World Wide Web Consortium.

This specification mandates support for a subset of the W3C XML Schema
language.

1/8/03 JAXB Specification — Final, V1.0 1

Data binding

1.1 Data binding

Any nontrivial application of XML will, then, be based upon one or more
schemas and will involve one or more programs that create, consume, and

mani pulate documents whose syntax and semantics are governed by those
schemas. Whileit is certainly possible to write such programs using the low-
level SAX parser API or the somewhat higher-level DOM parse-tree API, doing
so islikely to be tedious and error-prone. The resulting code is also likely to
contain many redundancies that will make it difficult to maintain as bugs are
fixed and as the schemas evolve.

It would be much easier to write XML-enabled programs if we could simply
map the components of an XML document to in-memory objects that represent,
in an obvious and useful way, the document’ s intended meaning according to its
schema. Of what classes should these objects be instances? In some cases there
will be an obvious mapping from schema components to existing classes,
especially for common typessuchas St ri ng, Dat e, Vect or, and so forth. In
general, however, classes specific to the schema being used will be required.
Rather than burden developers with having to write these classes we can
generate the classes directly from the schema, thereby creating a Java object-
level binding of the schema.

An XML data-binding facility therefore contains a binding compiler that binds
components of a source schema to schema-derived Java content classes. Each
class provides access to the content of the corresponding schema component via
a set of JavaBeans-style access (i.e., get and set) methods. Binding
declarations provides a capability to customize the binding from schema
components to Java representation. Such afacility also provides abinding
framework, aruntime API that, in conjunction with the derived classes, supports
three primary operations:

« The unmarshalling of an XML document into a tree of interrelated
instances of both existing and schema-derived classes,

« The marshalling of such content trees back into XML documents, and

« Thevalidation of content trees against the constraints expressed in the
schema.

The unmarshalling process has the capability to check incoming XML
documents for validity with respect to the schema. Similarly, a JAXB
implementation provides a means to enforce the constraints expressed in the
schema; some of these constraints may always be enforced, while others may

1/8/03 JAXB Specification — Final, V1.0 2

Goals

only be checked upon explicit request. Validation can be used to ensure that
only valid content trees are marshalled.

compile
Schemall ————» Classesl]

follows[] instanceofl]
unmarshall]
Documentt > ObjectsOd
marshall

Figure1.1 A mapping of XML to Java objects

To sum up: Schemas describe the structure and meaning of an XML document,
in much the same way that a class describes an object in a program. To work
with an XML document in a program we would like to map its components
directly to a set of objects that reflect the document’ s meaning according to its
schema. We can achieve this by compiling the schemainto a set of derived
content classes that can be marshalled, unmarshalled and validated. Data
binding thus allows XM L-enabled programs to be written at the same
conceptual level as the documents they manipulate, rather than at the more
primitive level of parser events or parse trees.

1.2 Goals

This specification aims to describe an XML data-binding facility with the
following general properties:

« Beeasyto use— Lower the barrier to entry to manipulating XML
documents within Java programs. Programmers should be able to access
and modify XML documents viaa Java binding of the data, not via SAX
or DOM. It should be possible for a developer who knows little about
XML to compile a simple schema and immediately start making use of
the classes that are produced.

« Be customizable — Provide a standard way to customize the binding of
existing schema’ scomponentsto Javarepresentation of the components.
Sophisticated applications sometimes require fine control over the
structure and content of schema-derived classes, both for their own
purposes and for that of coping with schema evolution.

1/8/03 JAXB Specification — Final, V1.0 3

Introduction

Portability — It should be possible to write a JAXB application in such a
way that the JAXB implementation can be replaced without changes to
the source code. Minimally, the schema would need to be submitted to
the replacement JA X B implementati ons binding compiler and the output
would need to be bundled with the application.

Deliver Sooner rather than Later — Given the needs of the Java
Community for a standardized XML data-binding solution to be
delivered in atimely fashion, it was aimportant goal to identify a core
set of functionality for thisinitial version of the specification that can be
built upon in future versions. This document will identify the core
requirementsfor theinitial version and list the requirements and features
for future consideration.

The derived classes produced by the binding compiler should, more specifically,

Benatural —Insofar as possible, derived classes should observe standard
Java API design guidelines and naming conventions. If new conventions
are required then they should mesh well with existing conventions. A
developer should not be astonished when trying to use a derived class.

Match the conceptual level of the source schema — It should be
straightforward to examine any content-bearing component of the source
schema and identify the corresponding Java language construct in the
derived classes.

Hide all the plumbing — All the details of unmarshalling, marshalling,
and validation should be completely encapsulated by schema-derived
implementation classes and the runtime APls upon which they depend.
A developer should not have to think about SAX or DOM or any other
XML-related API in order to perform unmarshal, marshal or validation
on the schema-derived classes.

Support validation on demand — While working with a content tree
corresponding to an XML document it is often necessary to validate the
tree against the constraintsin the source schema. It should be possibleto
do this at any time, without the user having to first marshal the tree into
XML.

Preserve equivalence (round tripping) — Transforming a Java content
treeto XML content and back to Java content again should result in an
equivalent Java content tree before and after the transformation.

JAXB Specification — Final, V1.0 1/8/03

Non-Goals

1.3

Non-Goals

« Defining a standardized binding framework runtime system.

1/8/03

The schema-derived Javaimplementation classes generated by one
JAXB implementation are not required to work with the runtime system
of another JAXB implementation. To switch to an alternative JAXB
implementations, oneis required to regenerate the schema-derived
implementation using the alternative JAX B implementation’s binding
compiler. Trying to identify a clear cut, acceptable common framework
would jeopardize our “deliver sooner than later” goal. As XML
processing technologies mature, we hope to identify a common
framework solution in a future version of this specification. See
Section 3.1, “Binding Runtime Framework Rationale,” on page 24 for
further details.

Preserving equivalence of XML document when round tripping
from XML document to Java representation and back to XML
document again.

While the JAXB specification does not require the preservation of the
XML information set, it does not forbid the preservation of it.

Formally describing support for binding an existing JavaBean class
to schema.

The feature will be considered for afuture release but it was considered
out of scope for this release.

Schema evolution support.

It is beyond the scope of the first version of the specification to address
this important but difficult problem.

Providing support for accessing/adding of elementsor attributesnot
initially declared in the schema.

The usage of <anyAtt ri but e>inaschemaallowsan XML
document to dynamically introduce data of a structure and content that
was not described in the schema submitted to the binding compiler. It is
not possible to generate type-safe accessors and classes for datatypes
introduced by an XML document.

A future version of the specification may provide accessto dynamically
introduced XML content, perhaps by returning the XML content in a
generic XML representation, such as DOM.

JAXB Specification — Final, V1.0 5

Introduction

« Provide partial binding of an XML content root to a Java
representation, skipping descendants of the XML content root that
arenot relevant to the task at hand.

If thereisonly apartial binding of all non-optional XML elements
reachable from an XML element, it would no longer be possible to
roundtrip the data back to its original XML content form. Partial
mapping results in a one-way trip from the XML to aJava
representation. There would be no marshal method from a Java
representation back to XML since in general it would not be possible to
produce avalid XML content from a partial Javarepresentation of the
XML content root and its descendants.

« Requiring a facility described by this specification to implement
every feature of the schema language it supports.

More precisely, a given schema-language feature need not be
implemented if it is not commonly used in data-oriented applications of
XML and if supporting it would unduly complicate either this
specification or its implementations. This does not imply that
supporting document-oriented applications is something to be avoided;
it merely points out that some schema-language features that are used
primarily in such applications do not always fit well into the context of
an XML data-binding facility. This specification and its
implementations will support document-oriented applications insofar as
doing so does not interfere with achieving the above goals.

« Explicit support for specifying the binding of DTD to a Java
representation.

While it was desired to explicitly support binding DTD to a Java
representation, it became impractical to describe both XML Schema
binding and DTD binding. The existence of several conversion tools
that automate the conversion of aDTD to XML Schemaallows DTD
users to be able to take advantage of JAXB technology by converting
their existing DTDsto XML Schema.

JAXB Specification — Final, V1.0 1/8/03

Requirements

1.4

1/8/03

Requirements

Standar dized schema input to binding compiler
Supported schema language:
o Subset of W3C XML Schema.

All implementations are required to support the minimal required
subset of W3C XML Schema. Non-required constructs are specified in
Section E.2, “Not Required XML Schemaconcepts,” on page 208. Itis
acceptable that an implementation support more than the minimal
required subset in an implementation-dependent manner. Future
versions of the specification will consider adding more complete
support for W3C XML Schema.

Describe default bindings from schema to Java representation

There must be a detailed, unambiguous description of the default
mapping of schema components to Java representations in order to
satisfy the portability goal. The default binding will be described from
abstraction definitions of XML Schemacomponents] XML Schema Part
1]. Each JAXB implementation must generate the same group of
schema-derived interfaces and property accessors.

o Default binding from XML Schema built-in datatypesto Javabuilt-in
classes

o Default binding of XML Schema component, as described by abstract
datamodel, to a Java representation.

Standar dized Customized Binding Schema

A binding schema language and its formats must be specified. There
must be a means to describe the binding without requiring modification
to the original schema. Additionally, the same XML Schema language
must be used for the two different mechanisms for expressing a binding
declaration.

Capability to specify an override for default binding behavior

Given the diverse styles that can be used to design a schema, it is
daunting to identify a single ideal default binding solution. For
situations where several equally good binding alternatives exist, the
specification will describe the alternatives and select one to be the
default (see 3).

JAXB Specification — Final, V1.0 7

Introduction

1.5

The binding schema must provide a means to specify an alternative
binding for the scope of an entire schema. This mechanism ensures that
if the default binding is not sufficient, it can easily be overridden in a
portable manner.

Provide ability to disable schema validation for unmarshal and
mar shal oper ations

There exist asignificant number of scenarios that do not require
validation and/or can not afford the overhead of schema validation. An
application must be allowed to disable schema validation checking
during unmarshal and marshal operations. The goa of this requirement
isto provide the same flexibility and functionality that a SAX or DOM
parser alows for. Please note that this specification can not define
deterministic behavior of unmarshalling an invalid document or
marshalling an invalid content tree when validation has been disabled.

Use Cases

Since the JAXB architecture provides a Java application the ability to
manipulate XML content via generated Java interfaces, all of these uses cases
assume the operation is occurring from within a Java application.

« Access configuration values from a properties file stored in a XML

format. Tool allowing for the creation or modification to a configuration
properties file represented in XML format.

Receive data in the format of an XML document and would like to
access/update it without having to write SAX event handlers or traverse
aDOM parse tree.

Validate user-inputted data, for example, from aform presented in aweb
browser. Form data could be mapped to an XML document. JAXB
technology provides capability to validate the accuracy of the data using
the validation constraints of a schema that describes the data collected
from the form.

Bind an XML document into a Java representation, update the content
via Javainterfaces, validate this changes against the constraints within
the schema and then write the updated Java representation back to an
XML document format.

JAXB Specification — Final, V1.0 1/8/03

Conventions

« Unmarshal an XML document that it is known to already be valid, thus
the application disables validation checking while unmarshalling the
document to improve performance.

1.6 Conventions

Within normative prose in this specification, the words should and must are
defined as follows:

« should
Conforming implementations are permitted to but need not behave as
described.

o must
Conforming implementations are required to behave as described;
otherwise they arein error.

Throughout the document, the XML namespace prefix xs: and xsd: refersto
schema components in W3C XML Schema namespace as specified in [XSD
Part 1] and [XSD Part 2]. Additionally, the XML namespace prefix j axb:
refersto the JAXB namespace, htt p: : /j ava. sun. com xm / ns/ j axb.

All examplesin the specification are for illustrative purposes to assist in
understanding concepts and are nhon-normative. If an example conflicts with the
normative prose, the normative prose always takes precedence over the
example.

1/8/03 JAXB Specification — Final, V1.0 9

Introduction

1.7 Expert Group Members

The following peopl e have contributed to this specification effort.

Arnaud Blandin, Intalio

Steve Brodsky, |IBM

Christian Campo, Software AG
Kohsuke Kawaguchi, Sun
Chris Fry, BEA

Eric Johnson, TIBCO

Anjana Manian, Oracle

Ed Merks, IBM

Greg Messner, The Breeze Factor
Masaya Naito, Fujitsu

David Stephenson, HP

Keith Visco, Intalio

Scott Ziegler, BEA

1.8 Acknowledgements

This document is a derivative work of concepts and an initial draft initially led
by Mark Reinhold of Sun Microsystems. Our thanksto all who wereinvolvedin
pioneering that initial effort. The feedback from the Java User community on
theinitial JAXB technology prototype greatly assisted in identifying
requirements and directions.

The data binding experiences of the expert group members have been
instrumental in identifying the proper blend of the countless data binding
technigues that we have considered in the course of writing this specification.
We thank them for their contributions and their review feedback.

Kohsuke Kawaguchi and Ryan Shoemaker have directly contributed content to
the specification and wrote the companion javadoc. The following JAXB
technology team members have been invaluable in keeping the specification
effort on theright track: Tom Amiro, Leonid Arbouzov, Evgueni Astigueevitch,
Jennifer Ball, Carla Carlson, Patrick Curran, Scott Fordin, Omar Fung, Peter
Kacandes, Dmitry Khukhro, Tom Kincaid, K. Ari Krupnikov, Ramesh
Mandava, Bhakti Mehta, Ed Mooney, IlyaNeverov, Oleg Oleinik, Brian Ogata,
Vivek Pandey, Cecilia Peltier, Evgueni Rouban and Leslie Schwenk. The

10 JAXB Specification — Final, V1.0 1/8/03

Acknowledgements

following people, al from Sun Microsystems, have provided valuable input to
this effort: Roberto Chinnici, Chris Ferris, Mark Hapner, Eve Maler, Farrukh
Najmi, Eduardo Pelegri-llopart, Bill Shannon and Rahul Sharma.

The JAXB TCK software team would like to acknowledge that the NIST XML
Schema test suite [NIST] has greatly assisted the conformance testing of this
specification.

1/8/03 JAXB Specification — Final, V1.0 11

Introduction

12

JAXB Specification — Final, V1.0

1/8/03

CHAPTERZ2

ARCHITECTURE

2.1 Overview

The primary components of the XML data-binding facility described in this
specification are the binding compiler, the binding framework, and the binding
language.

« The hinding compiler transforms, or binds, a source schema to a set of
content classes in the Java programming language. As used in this
specification, the term schema includes the W3C XML Schemaas
defined in the XML Schema 1.0 Recommendation[X SD Part 1][XSD
Part 2].

« The binding runtime framework provides the interfaces for the
functionality of unmarshalling, marshalling, and validation for content
classes.

« Thehinding languageis an XML -based language that describes the
binding of a source schema to a Java representation. The binding
declarations written in this language specify the details of the package,
interfaces and classes derived from a particular source schema.

1/8/03 JAXB Specification — Final, V1.0 13

Architecture

Figure 2.1 describes concepts to be presented in this chapter.

Application Code

Source SchemaDerived | Package
Schema Interfaces, javax.xml.bind
Factory Methods
Binding
Compiler
PR

Implementation Binding

I XML/Java | 4| classes, helper

| Customization L_,/(classes, ... Framework .

+ | Binding | Implementation

' | Declarations |
L I |

Application

Figure 2.1 Non-Normative JAXB Architecture diagram

Note that the binding declarations object in the above diagram is logical.
Binding declarations can either be inlined within the schema or they can appear
in an externa binding file that is associated with the source schema. Also, note
that the application accesses only the derived content interfaces, factory
methods and javax.xml.bind APIs directly. This convention is necessary to enable
switching between JAXB implementations.

2.1.1 Java Representation

A coarse-grained content-bearing schema component, such as a complex type

definition, is generally bound to a content interface. The data binding uses the
Java class hierarchy between content interfaces to preserve an XML Schema’'s
“derived by extension” type definition hierarchy.

A fine-grained schema component, such as an attribute declaration or an
element declaration with asimple type, is bound directly to a property within a
content interface. A property isrealized in a content interface by a set of
JavaBeans-style access methods. These methodsincludetheusual get and set

14 JAXB Specification — Final, V1.0 1/8/03

Overview

methods for retrieving and modifying a property’ s value; they also provide for
the deletion and, if appropriate, the re-initialization of a property’svalue.

Properties are also used for references from one content instance to another. If
an instance of a schema component X can occur within, or be referenced from,
an instance of some other component Y then the content class derived from Y
will define a property that can contain instances of X.

To add flexibility within the JAXB architecture, a content classis represented as
both a content interface and an implementation of that interface rather than just
aclass. This separation enables a sophisticated users of the JAXB architecture
to be able to specify their own implementation of the content interface to be
used within the binding framework. Typical users will rely on the binding
compiler to generate both schema-derived content interfaces and their
implementations.

2.1.2 Binding Framework

The primary operations that can be performed on the set of schema-derived
content interfaces and implementation classes are those of unmarshalling,
marshalling, and validation.

« Unmarshalling is the process of reading an XML document and
constructing atree of content objects. Each content object corresponds
directly to an instance in the input document of the corresponding
schema component, hence this content tree reflects the document’s
content.

« Marshalling isthe inverse of unmarshalling, i.e., it is the process of
traversing a content tree and writing an XML document that reflects the
tree’ s content.

« Validationisthe process of verifying that all constraints expressedinthe
source schemahold for agiven content tree. A content treeisvalidif, and
only if, marshalling the tree woul d generate adocument that isvalid with
respect to the source schema.

When the unmarshalling process incorporates validation and it successfully
completes without any validation errors, both the input document and the
resulting content tree are guaranteed to be valid. The marshalling process, on
the other hand, does not actually perform validation. If only validated content
trees are marshalled, this guarantees that generated XML documents are always
valid with respect to the source schema.

1/8/03 JAXB Specification — Final, V1.0 15

Architecture

However, always requiring validation during unmarshalling and only allowing
the marshalling of validated content trees proves to be too rigid and restrictivea
requirement. Since existing XML parsers allow schema validation to be
disabled, there exist a significant number of XML processing uses that disable
schema validation to improve processing speed and/or to be able to process
documents containing invalid or incomplete content. To enable the JAXB
architecture to be used in these processing scenarios, the binding framework
makes validation optiona. How a JAXB technology implementation handles
unmarshalling of an invalid document when validation is disabled is
implementation-specific. The same holdstrue for marshalling aninvalid content
tree. It is expected that once an implementation is aware that it cannot
unambiguously complete unmarshalling or marshalling, it will terminate
processing with an exception.

Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of
content trees by direct invocation of the appropriate factory methods. Once
created, a content tree may be re-validated, either in whole or in part, at any
time.

2.1.3 Binding Declarations

A particular binding of a given source schemais defined by a set of binding
declarations. Binding declarations are written in a binding language, whichis
itself an application of XML. A binding declaration can occur within the
annotation appi nf o of each XML Schema component. Alternatively, binding
declarations can occur in an auxiliary file.Eeach binding declaration within the
auxiliary file is associated to a schema component in the source schema. It was
necessary to support binding declarations external to the source schemain order
to allow for customization of an XML Schemas that one prefers not to modify.
The binding compiler hence actually requires two inputs, a source schemaand a
set of binding declarations.

Binding declarations enable one to override default binding rules, thereby
allowing for user customization of the schema-derived content interfaces.
Additionally, binding declarations allows for further refinements to be
introduced into the binding to Java representation that could not be derived from
the schema alone.

The binding declarations need not define every last detail of abinding. The
binding compiler assumes default binding declarations for those components of
the source schema that are not mentioned explicitly by binding declarations.

16 JAXB Specification — Final, V1.0 1/8/03

Varieties of validation

Default declarations both reduce the verbosity of the customization and make it
more robust to the evolution of the source schema. The defaulting rules are
sufficiently powerful that in many cases a usable binding can be produced with
no binding declarations at all. By defining a standardized format for the binding
declarations, it is envisioned that tools will be built to greatly aid the process of
customizing the binding from schema components to a Java representation.

2.2 Varieties of validation

The constraints expressed in a schemafall into three general categories:

« A type constraint imposes requirements upon the values that may be
provided by constraint facets in simple type definitions.

« A local structural constraint imposes requirements upon every instance
of agiven element type, e.g., that required attributes are given values and
that a complex element’ s content matches its content specification.

« A global structural constraint imposes requirements upon an entire
document, e.g., that | D values are unique and that for every | DREF
attribute value there exists an element with the corresponding | D
attribute value.

A document isvalid if, and only if, all of the constraints expressed in its schema
are satisfied. Similarly, a content treeisvalid if, and only if, marshalling the
tree would produce avalid document. It would be both inconvenient and
inefficient to have to marshal a content tree just to check its validity.

The manner in which constraints are enforced in a set of derived classes has a
significant impact upon the usability of those classes. All constraints could, in
principle, be checked only during unmarshalling and validation. This approach
would, however, yield classes that violate the fail-fast principle of APl design:
errors should, if feasible, be reported as soon as they are detected. In the context
of schema-derived implementation classes, this principle ensures that violations
of schema constraints are signalled when they occur rather than later on when
they may be more difficult to diagnose.

With this principle in mind we see that schema constraints can, in general, be
enforced in three ways:

1/8/03 JAXB Specification — Final, V1.0 17

Architecture

« Satic enforcement leverages the type system of the Java programming
language to ensure that a schema constraint is checked at application’s
compilation time. Type constraints are often good candidates for static
enforcement. If an attribute is constrained by a schemato have abool ean
value, e.g., then the access methods for that attribute’s property can
simply accept and return values of typebool ean.

« Smple dynamic enforcement performs atrivial run-time check and
throws an appropriate exception upon failure. Type constraints that do
not easily map directly to Java classes or primitive types are best
enforced in thisway. If an attribute is constrained to have an integer
value between zero and 100, e.g., then the corresponding property’s
access methods can accept and return i nt values and its mutation
method can throw a run-time exception if its argument is out of range.

« Complex dynamic enforcement performs a potentially costly run-time
check, usually involving more than one content object, and throwing an
appropriate exception upon failure. Local structural constraints are
usually enforced in this way: the structure of a complex element’s
content, e.g., can in general only be checked by examining the types of
its children and ensuring that they match the schema’s content model for
that element. Global structural constraints must be enforced in thisway:
the uniqueness of | D values, e.g., can only be checked by examining the
entire content tree.

It is straightforward to implement both static and simple dynamic checks so as
to satisfy the fail-fast principle. Constraints that require complex dynamic
checks could, in theory, also be implemented so as to fail as soon as possible.
The resulting classes would be rather clumsy to use, however, becauseit is often
convenient to violate structural constraints on atemporary basis while
constructing or manipulating a content tree.

Consider, e.g., acomplex type definition whose content specification isvery
complex. Suppose that an instance of the corresponding content interface isto
be modified, and that the only way to achieve the desired result involves a
sequence of changes during which the content specification would be violated.
If the content instance were to check continuously that its content isvalid, then
the only way to modify the content would be to copy it, modify the copy, and
then install the new copy in place of the old content. It would be much more
convenient to be able to modify the content in place.

A similar analysis applies to most other sorts of structural constraints, and
especially to global structural constraints. Schema-derived classeswill therefore

18 JAXB Specification — Final, V1.0 1/8/03

An example

be able to enable or disable amode that verifies type constraints and will be able
to check structural constraints upon demand.

2.2.1 Handling Validation Failures

While it would be possible to notify a JAXB application that avalidation error
has occurred by throwing a JAXBEXcept i on when the error is detected, this
means of communicating avalidation error resultsin only one failure at atime
being handled. Potentially, the validation operation would have to be called as
many times as there are validation errors. Both in terms of validation processing
and for the application’s benefit, it is better to detect as many errors and
warnings as possible during a single validation pass. To alow for multiple
validation errors to be processed in one pass, each validation error is mapped to
avalidation error event. A validation error event relates the validation error or
warning encountered to the location of the text or object(s) involved with the
error. The stream of potential validation error events can be communicated to
the application either through a registered validation event handler at the time
the validation error is encountered, or via a collection of validation failure
events that the application can request after the operation has completed.

Unmarshalling and on-demand validation of in-memory objects are the two
operations that can result in multiple validation failures. The same mechanismis
used to handle both failure scenarios. See Section 3.3, “ General Validation
Processing,” on page 26 for further details.

2.3 An example

Throughout this specification we will refer and build upon the familiar schema
from [XSD Part 0], which describes a purchase order, as a running example to
illustrate various binding concepts as they are defined. Note that all schema
name attributes with valuesin this font are bound by JAXB technology to either
a Javainterface or JavaBean-like property. Please note that the derived Java
code in the example only approximates the default binding of the schema-to-
Java representation.

1/8/03 JAXB Specification — Final, V1.0 19

Architecture

20

<xsd: schema xml ns: xsd="http://ww. w3. org/ 2001/ XM_Schena" >
<xsd: el ement nanme="purchaseOrder" type="PurchaseOrderType"/>
<xsd: el ement nanme="comment" type="xsd:string"/ >
<xsd: conpl exType nane="PurchaseOrderType">

<xsd: sequence>

<xsd: el ement name="shipTo" t ype="USAddr ess"/ >
<xsd: el ement nanme="billTo" t ype="USAddr ess"/ >
<xsd: el enent ref="comment" m nOccur s="0"/ >
<xsd: el ement nane="items" type="Itenms"/>

</ xsd: sequence>

<xsd:attribute name="orderDate" type="xsd: date"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="USAddress">
<xsd: sequence>

<xsd: el ement nanme="name" type="xsd: string"/>
<xsd: el ement nane="street" type="xsd: string"/>
<xsd: el ement nane="city" type="xsd: string"/>
<xsd: el ement nanme="state" type="xsd: string"/>
<xsd: el ement nanme="zip" type="xsd: deci mal "/ >

</ xsd: sequence>

<xsd:attribute name="country" type="xsd: NMTOKEN' fi xed="US"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="Items">
<xsd: sequence>

<xsd: el ement nanme="item" m nCccurs="1" maxQOccur s="unbounded" >

<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement nanme="productName" type="xsd:string"/>

<xsd: el ement nanme="quantity">
<xsd: si npl eType>

<xsd:restriction base="xsd: positivelnteger">

<xsd: maxExcl usi ve val ue="100"/>

</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >

<xsd: el ement nanme="USPrice" type="xsd: deci mal "/ >

<xsd: el ement ref="comment" m nCccurs="0"/ >
<xsd: el ement nanme="shipDate" type="xsd: date"

</ xsd: sequence>

m nCccur s="0"/ >

<xsd:attri bute name="partNum" type="SKU' use="required"/>

</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>

<l-- Stock Keeping Unit, a code for identifying products -->
<xsd: si npl eType name="SKU">
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z] {2}"/>
</xsd: restriction>
</ xsd: si npl eType>
</ xsd: schema>

JAXB Specification — Final, V1.0

1/8/03

An example

Binding of purchase order schemato a Java representation:

inmport java.util.Calendar; inport java.util.List;
public interface PurchaseOrderType {

USAddr ess get ShipTo(); voi d set ShipTo(USAddr ess) ;
USAddr ess get BillTo(); voi d set BillTo(USAddr ess) ;
/** Optional to set Comment property. */
String get Comment() ; voi d set Comment(String);
Itens get Items() ; void setltems(ltens);
Cal endar get OrderDate() ; voi d set OrderDate(Cal endar) ;
h
public interface USAddress {
String get Name() ; voi d set Name(String);
String get Street() ; voi d set Street(String);
String get City() ; voi d set City(String);
String get State() ; voi d set State(String);
int get Zip() ; voi d set Zip(int);
static final String COUNTRY="USA";*
b

public interface Items {
public interface ltemType {

String get ProductName(); voi d set ProductName(String);
/** Type constraint on Quantity setter value 0..99.%/

int get Quantity() ; voi d set Quantity(int);

fl oat get USPrice(); voi d set USPrice(fl oat);

/** Optional to set Comment property. */

String get Comment() ; voi d set Comment(String);

Cal endar get ShipDate() ; voi d set ShipDate(Cal endar) ;
/** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}". 2%/
String get PartNum() ; voi d set PartNum(String);

I

/** Local structural constraint 1 or nore instances of ltems.ltemType. */
Li st getltem();
}
public interface PurchaseOrder extends PurchaseOrderType, javax.xml.bind.Element {};
public interface Comment extends javax.xml.bind.Element{
String getValue(); void setValue(String)};

public class ObjectFactory {

hj ect new nstance(d ass javal nterface);
Pur chaseOr der Type cr eat ePurchaseOrderType() ;

USAddr ess creat eUSAddress();

Itens createltems();

Itens. |t enType creat eltemsltemType() ;

Pur chaseOr der creat ePurchaseOrder() ;

Comment s createComment();

Comment s createComment(String val ue);

. Appropriate customization required to bind afixed attribute to a constant value.

2 Type constraint checking only performed if customization enables it and implementation sup-
ports fail-fast checking

1/8/03 JAXB Specification — Final, V1.0 21

Architecture

The purchase order schema does not describe any global structural constraints.

The coming chapters will identify how these XML Schema concepts were
bound to a Java representation. Just asin [XSD Part 0], additions will be made
to the schema example to illustrate the binding concepts being discussed.

22 JAXB Specification — Final, V1.0 1/8/03

CHAPTER3

THE BINDING FRAMEWORK

The binding framework defines APIs to access unmarshalling, validation and
marshalling operations for manipulating XML data and Java content instances.
The framework is presented here in overview; its full specification is available
in the javadoc for the package j avax. xml . bi nd.

The binding framework resides in two main packages. Thej avax. xm . bi nd
package defines abstract classes and interfaces that are used directly with
content classes. Thej avax. xm . bi nd package defines the

Unmar shal | er, Vali dator,and Mar shal | er classes, which are
auxiliary objects for providing their respective operations.

The JAXBCont ext classistheentry point for a Java application into the
JAXB framework. A JAXBCont ext instance manages the binding relati onship
between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation operations.
Thej avax. xm . bi nd. hel per package provides partial default
implementations for some of thej avax. xm . bi nd interfaces.
Implementations of JAXB technology can extend these classes and implement
the abstract methods. These APIs are not intended to be used directly by
applications using the JAXB architecture. A third package,

javax. xm . bi nd. uti |, contains utility classes that may be used directly
by client applications.

Finally, the binding framework defines arich hierarchy of validation event and
exception classes for use when marshalling/unmarshalling errors occur, when
constraints are violated, and when other types of errors are detected.

1/8/03 JAXB Specification — Final, V1.0 23

The Binding Framework

3.1 Binding Runtime Framework
Rationale

This version of the specification does not attempt to standardize the binding
runtime framework, or expose at the JAXB API layer whether the Java content
classes are capabl e of validating, marshalling and unmarshalling themselves and
whether this functionality exists external to the instance. There is not enough
experience at thistime to identify a single acceptabl e framework suitable for all.

For example, some would like to pursue reflective, dynamic solutions that
provide marshalling/unmarshalling capabilities, while others would like to
generate static, fixed code solutions. Some would like to use non-standard pull
parsing for unmarshalling, while otherswould rather leverage JAXP parsing and
its validation capabilities for unmarshalling.

It would prematurely restrict the exploration of possible alternative solutions to
attempt to identify a common runtime framework for all implementations to
conform to at thistime. It is hoped that as XML processing technologies mature
in the future, it will be possible to identify a common binding runtime
framework in a future version of the specification.

One unfortunate result of not standardizing the binding framework runtime
system is that there is atight coupling between the schema-derived
implementation classes and the JAXB implementation’s runtime framework.
Users are required to regenerate the schema-derived implementation classes
when changing JAX B implementations. However, note that all implementations
are required to support the ability to use multiple implementations of the JAXB
architecture at the same time. For example, a third party library jar that an
application uses might use one JAX B implementation and the application
wishes to choose a different JAXB implementation to use. Details on how this
can be achieved are discussed in the next section on JAXBCont ext class.

3.2 JAXBContext

The JAXBCont ext class providesthe client’ s entry point to the JAXB API. It
provides an abstraction for managing the XML/Java binding information
necessary to implement the JAXB binding framework operations; unmarshal,
marshal, and validate. Additionally, the JAXBCont ext classis designed to

24 JAXB Specification — Final, V1.0 1/8/03

JAXBContext

ensure that the correct binding framework implementation is used with Java
content implementation classes.

The following summarizes the JAXBCont ext class defined in package
javax. xm . bi nd.

public abstract class JAXBContext {
static final String JAXB_CONTEXT_FACTORY;
static JAXBContext newl nstance(String context Pat h)
static JAXBCont ext newl nstance(String contextPath,
Cl assLoader context Pat hCL)
abstract Unmarshall er createUnmarshaller();
abstract Marshaller createMarshaller();
abstract Validator createValidator();

}

A client application obtains new instances of this class viathe
newl nstance(Stri ng) factory method.

JAXBContext jc =
JAXBCont ext . newl nst ance(“com acne. f oo: com acne. bar”);

The following ordered lookup procedure for thenewl nst ance() method is
used to determine which concrete implementation of JAXBCont ext to load:

« Search the context path for the first occurrence of afile named
j axb. properti es containing the
javax. xm . bi nd. cont ext. factory property and useitsvalue.

Thecont ext Pat h parameter to thenewl nst ance method contains alist of
Java package names that contain implementation specific means for mapping
XML document instances for the specified schema vocabularies to Java content
instances. Typically, the XML/Java binding information is expected to be
generated by the binding compiler. However, note that all implementations are
required to support the ability to use multiple implementations of the JAXB
architecture at the same time. By allowing multiple Java packages to be
specified, the JAXBCont ext instance allows for the management of multiple
schemas at one time. All Java packages specified in the cont ext Pat h
parameter must contain XML /Java binding information from only one JAXB
implementation or, if there exists an ambiguity in the multiple schemas being
joined by the JAXBCont ext instance, that aJAXBEXxcept i on isthrown by
thenewl nst ance(Stri ng) method.

1/8/03 JAXB Specification — Final, V1.0 25

The Binding Framework

By enabling a JAXBCont ext to represent more than one schema at atime, an
Unmar shal | er created from it is capable of processing XML instance
documents from more than one schemain one unmar shal invocation. The use
case exists where an application receives an XML document instance from an
external source and the application does not know the precise schema
vocabulary for the document but it does know that the document is an instance
of one of several schemas. This use case is the motivation for JAXBCont ext
being able to represent multiple schemas at one time.

Seethe javadoc for JAXBCont ext for more details on this class.

3.3 General Validation Processing

Three identifiable forms of validation exist within the JAXB architecture
include:

« Unmarshal-time validation

Thisform of validation enables a client application to be notified of
validation errors and warnings detected while unmarshalling XML data
into a Java content tree and is completely orthogonal to the other types
of validation. To enable or disable it, see the javadoc for method
Unmar shal | er. set Val i dati ng(bool ean).

« On-demand validation

An application may wish to validate the correctness of the Java content
tree based on schema validation constraints. This form of validation
enables an application to initiate the validation process on a Java
content tree at a point in time that it feels it should be valid. The
application is notified about validation errors and warnings detected in
the Java content tree.

« Fail-fast validation

Thisform of validation enables a client application to receive
immediate feedback about a modification to the Java content tree that
violates atype constraint of a Java property. An unchecked exception is
thrown if the value provided to a set method is invalid based on the
constraint facets specified for the basetype of the property. This style of
validation is optional in theinitial version of this specification. Of the
JAXB implementations that do support this type of validation, it is

26 JAXB Specification — Final, V1.0 1/8/03

General Validation Processing

customization-time decision to enable or disable fail-fast validation
when setting a property.

Unmarshal-time and on-demand validation use an event-driven mechanism to
enable multiple validation errors and warnings to be processed during a single
operation invocation. If the validation or unmarshal operation terminates with
an exception upon encountering the first validation warning or error, subsequent
validation errors and warnings would not be discovered until the first reported
error is corrected. Thus, the validation event notification mechanism provides
the application a more powerful means to evaluate validation warnings and
errors as they occur and gives the application the ability to determine when a
validation warning or error should abort the current operation (such as a value
outside of the legal value space). Thus, an application could allow locally
constrained validation problems to not terminate validation processing.

If the client application does not set an event handler on aVal i dat or or
Unmar shal | er instance prior to invoking theval i dat e or unmar shal
operations, then a default event handler will receive notification of any errors or
fatal errors encountered and stop processing the XML data. In other words, the
default event handler will fail on the first error that is encountered.

There are three ways to handle validation events encountered during the
unmarshal and validate operations:

« Rely on thedefault validation event handler
The default handler will fail on thefirst error or fatal error encountered.

« Implement and register a custom validation event handler
Client applications that require sophisticated event processing can
implement the Val i dat i onEvent Handl er interface and register it
with the Validator or Unmarshaller instance respectively.

« Request an error/warning event list after the operation completes
By registering the Val i dat i onEvent Col | ect or helper, a
specialized event handler, with the set Event Handl er method, the
Val i dat i onEvent objectscreated during the unmarshal and validate
operations are collected. The client application can then request the list
after the operation completes.

Validation events are handled differently depending on how the client
application is configured to process them as described previously. However,
there are certain cases where a JAXB implementation needsto indicate that it is
no longer ableto reliably detect and report errors. In these cases, the JAXB
implementation will set the severity of the Val i dati onEvent to

1/8/03 JAXB Specification — Final, V1.0 27

The Binding Framework

FATAL ERRORto indicate that the unmar shal or val i dat e operation
should be terminated. The default event handler and

Val i dati onEvent Col | ect or helper class must terminate processing after
being notified of afatal error. Client applications that supply their own

Val i dat i onEvent Handl er should also terminate processing after being
notified of afatal error. If not, unexpected behavior may occur.

3.4 Validator

TheVal i dat or classisresponsible for controlling the validation of a content
tree of in-memory objects. The following summarizes the available operations
on the class.

public interface Validator ({
Val i dati onEvent Handl er get Event Handl er ()
voi d set Event Handl er (Val i dati onEvent Handl er)

bool ean val i date(java.l ang. Obj ect subroot Obj ect)
bool ean val i dat eRoot (j ava. | ang. Obj ect r oot Obj ect)

java.l ang. Obj ect getProperty(java.lang. String nane)
voi d setProperty(java.lang. String nanme, java.lang. Object val ue)

}

The JAXBCont ext class provides afactory to create aVal i dat or
instance. After an application has made a series of modifications to a Java
content tree, the application validates the content tree on-demand. As far as the
application is concerned, this validation takes place against the Java content
instances and validation constraint warnings and errors are reported to the
application relative to the Java content tree. Validation isinitiated by invoking
theval i dat eRoot (Obj ect) method on the root of the Java content tree or
by invokingval i dat e(Obj ect) method to validate any arbitrary subtree of
the Java content tree. The only difference between these two methods is global
constraint checking (i.e. verifying ID/IDREF constraints.) The

val i dat eRoot (Obj ect) method includes global constraint checking as
part of its operation, whereasthe val i dat e(Obj ect) method does not.

The validator governs the process of validating the content tree, serves as a
registry for identifier references, and ensures that all local (and when

28 JAXB Specification — Final, V1.0 1/8/03

Unmarshalling

appropriate, global) structural constraints are checked before the validation
process is compl ete.

If aviolation of alocal or global structural constraint is detected, then the
application is notified of the event with a callback passing an instance of a
Val i dati onEvent asaparameter.

Design Note — The specification purposely does not state how validation is to be
implemented since there exist several different approaches which have their own
pros and cons. For example, the validation could be completely generated Java
code. It is believed that this approach would yield the fastest validation and easiest
time relating the validation errors and warnings to the Java content instances.
However, this approach will take a large effort to implement for XML Schema,
could result in large generated code size and would take a while to become as
mature as alternative implementation approaches. An alternative implementation
approach is to stream the content tree into SAX 2 events validate using one of the
existing, proven XML Schema validators.

3.5 Unmarshalling

The Unmar shal | er class governsthe process of deserializing XML datainto
a Java content tree, capable of validating the XML data asit is unmarshalled. It
provides the basic unmarshalling methods:

public interface Unmarshaller {
Val i dati onEvent Handl er get Event Handl er ()
voi d set Event Handl er (Val i dati onEvent Handl er)

java.l ang. Obj ect getProperty(java.lang. String nane)
voi d setProperty(java.lang. String nanme, java.lang. Object val ue)

bool ean isValidating()
voi d setValidating(bool ean vali dati ng)

Unmar shal | er Handl er get Unmar shal | er Handl er ()

java.l ang. Qbj ect unmarshal (java.io. File)
java.l ang. Qbj ect unmarshal (j ava. net. URL)

1/8/03 JAXB Specification — Final, V1.0 29

The Binding Framework

java.l ang. Gbj ect unmarshal (j ava.io. | nput Strean
java.l ang. vj ect unmarshal (org. xm . sax. | nput Sour ce)
java.l ang. vj ect unmarshal (org. wdc. dom Node)

java.l ang. vj ect unmarshal (j avax. xm . transf orm Sour ce)

}

The JAXBCont ext class contains afactory to create an Unrmar shal | er
instance. The JAXBCont ext instance manages the XML/Javabinding data
that is used by unmarshalling. If the JAXBCont ext object that was used to
create an Unmar shal | er does not know how to unmarshal the XML content
from a specified input source, then the unmar shal operation will abort
immediately by throwing an Unmar shal Except i on. There are six
convenience methods for unmarshalling from various input sources.

An application can enable or disable unmarshal-time validation using the

set Val i dati ng() method. The application has the option to customize
validation error handling by overriding the default event handler using the

set Event Handl er (Val i dati onEvent Handl er). Thedefault event
handler aborts the unmarshalling process when the first validation error event is
encountered. Validation processing options are presented in more detail in
Section 3.3, “General Validation Processing.”

When the unmarshalling process detects a structural inconsistency that it is
unable to recover from, it should abort the unmarshal process by throwing
Unmar shal Excepti on.

An application has the ability to specify a SAX 2.0 parser to be used by the
unmar shal operation using the

unmar shal (j avax. xml . transf or m Sour ce) method. Even though
the JAX B provider's default parser is not required to be SAX2.0 compliant, all
providers are required to allow an application to specify their own SAX2.0
parser. Some providers may require the application to specify the SAX2.0
parser at binding compile time. See the method javadoc

unmar shal (Sour ce) for more detail on how an application can specify its
own SAX 2.0 parser.

Theget Property/set Property methodsintroduce a mechanism to
associ ate implementation specific property/value pairs to the unmarshalling
process. At this time there are no standard JAXB properties specified for the
unmarshalling process.

30 JAXB Specification — Final, V1.0 1/8/03

Marshalling

3.6 Marshalling

The Mar shal | er classisresponsible for governing the process of serializing
a Java content tree into XML data. It provides the basic marshalling methods:

interface Marshal ler {
static final string JAXB_ENCODI NG
static final string JAXB_FORMATTED_ OUTPUT,;
static final string JAXB_SCHEVA LCCATI ON;
static final string JAXB_NO_NAMESPACE SCHEMA LOCATI ON;
<PROTENTI ALLY MORE PROPERTIES. . . >

java.l ang. bj ect getProperty(java.lang. String nane)
voi d setProperty(java.lang. String nanme, java.lang. Object val ue)

voi d set Event Handl er (Val i dati onEvent Handl er handl er)
Val i dati onEvent Handl er get Event Handl er ()

voi d marshal (j ava.l ang. Cbj ect obj, java.io.Witer witer)

voi d marshal (j ava. |l ang. Obj ect obj, java.io.QutputStream os)
voi d marshal (j ava. |l ang. Obj ect obj, org.xm . sax. Cont ent Handl er)
voi d marshal (j ava. |l ang. Obj ect obj, javax.xm .transform Result)
voi d marshal (j ava. |l ang. Obj ect obj, org.w3c. dom Node)

org.w3c.dom Node get Node(j ava. | ang. Obj ect content Tr ee)
}

The JAXBCont ext class contains afactory to create aMar shal | er
instance. Convenience method overloadings of the mar shal () method allow
for marshalling a content tree to common Java output targets and to common
XML output targets of astream of SAX2 events or a DOM parse tree.

Although each of the marshal methods acceptsaj ava. | ang. Obj ect asits
first parameter, JAXB implementations are not required to be able to marshal
any arbitrary j ava. | ang. Obj ect . If the JAXBCont ext object that was
used to create this Mar shal | er does not know how to marshal the object
parameter (or any objects reachable from it), then the marshal operation will
throw a Mar shal Except i on. Even though JAXB implementations are not
required to be able to marshal arbitrary j ava. | ang. Obj ect objects, an
implementation is allowed to support this type of marshalling.

1/8/03 JAXB Specification — Final, V1.0 31

The Binding Framework

The marshalling process does not validate the content tree being marshalled, but
if the marshalling process detects a structural inconsistency during its process
that it is unable to recover from, it should abort the marshal process by throwing
Mar shal Excepti on.

Client applications are not required to validate the Java content tree prior to
calling one of the marshal APIs. Furthermore, there is no requirement that the
Java content tree be valid with respect to its original schemain order to marshal
it back into XML data. Different JAXB providers will support marshalling
invalid Java content trees at varying levels; however, all JAXB Providers must
be able to marshal avalid content tree back to XML data. A JAXB Provider
must throw a Mar shal Except i on when it isunable to complete the marshal
operation due to invalid content. Some JAXB providers could fully alow
marshalling invalid content, others can fail on the first validation error.

3.6.1 Marshalling Properties

The following subsection highlights properties that can be used to control the
marshalling process. These properties must be set prior to the start of a
marshalling operation: the behavior is undefined if these attributes are atered in
the middle of a marshalling operation. The following standard properties have
been identified:

« j axb. encodi ng: output character encoding

o jaxb. formatted. out put:
t r ue - human readable indented xml data
f al se - unformatted xml data

« jaxb.schemalLocation
This property allows the client application to specify an
Xsi : schemalLocat i on attribute in the generated XML data.

« j axb. noNamespaceSchenmalLocati on
This property allows the client application to specify an
Xsi : noNanmespaceSchenaLocat i on attribute in the generated
XML data.

32 JAXB Specification — Final, V1.0 1/8/03

Validation Handling

3.7

Validation Handling

Methods defined in the binding framework can cause validation eventsto be
delivered to the client application’s Val i dat i onEvent Handl er . Set t er
methods generated in schema-derived implementation classes are capable of
throwing TypeConst r ai nt Except i ons, al of which are defined in the
binding framework.

The following list describes the primary event and constraint-exception classes:

« Aninstanceof aTypeConst rai nt Except i on subclassisthrown

1/8/03

when aviolation of a dynamically-checked type constraint is detected.
Such exceptions will be thrown by property-set methods, for which it
would be inconvenient to have to handle checked exceptions; type-
constraint exceptions are therefore unchecked, i.e, this class extends
java. | ang. Runt i meExcept i on. The constraint check is always
performed prior to the property-set method updating the value of the
property, thus if the exception is thrown, the property is guaranteed to
retain the value it had prior to the invocation of the property-set method
with aninvalid value. This functionality is optional to implement in this
version of the specification. Additionally, acustomization mechanismis
provided to control enabling and disabling this feature.

Aninstanceof aVal i dat i onEvent isdelivered whenever aviolation
is detected during on-demand validation or unmarshal-time validation.
Additionally, Val i dati onEvent s can be discovered during
marshalling such as ID/IDREF violations and print conversion failures.
These violations may indicate local and global structural constraint
violations, type conversion violations, type constraint violations, etc.

Since the unmarshal operation involves reading an input document,
lexical well-formedness errors may be detected or an I/O error may
occur. In these cases, an Unmar shal Except i on will be thrown to
indicate that the JAXB provider is unable to continue the unmarshal
operation.

During the marshal operation, the JAXB provider may encounter errors
in the Java content tree that prevent it from being able to complete. In
these cases, aMar shal Except i on will be thrown to indicate that the
marshal operation can not be completed.

JAXB Specification — Final, V1.0 33

The Binding Framework

34

JAXB Specification — Final, V1.0

1/8/03

CHAPTERA4

JAVA REPRESENTATION OF
XML CONTENT

This section defines the basic binding representation of package, content and
element interfaces, properties and typesafe enum class within the Java
programming language. Each section briefly statesthe XML Schema
componentsthat could be bound to the Javarepresentation. A more rigorous and
thorough description of possible bindings and default bindings occursin
Chapter 5, “Binding XML Schemato Java Representations’ and in Chapter 6,
“Customization.”

4.1 Mapping between XML Names and
Java ldentifiers

XML schema languages use XML names, i.e., strings that match the Name
production defined in XML 1.0 (Second Edition) to label schema components.
This set of stringsis much larger than the set of valid Java class, method, and
constant identifiers. Appendix C, “Binding XML Names to Java |dentifiers,”
specifies an algorithm for mapping XML names to Javaidentifiersin away that
adheres to standard Java API design guidelines, generates identifiers that retain
obvious connections to the corresponding schema, and resultsin as few
collisions as possible. It is necessary to rigorously define a standard way to
perform this mapping so all implementations of this specification perform the
mapping in the same compatible manner.

1/8/03 JAXB Specification — Final, V1.0 35

Java Representation of XML Content

4.2

Java Package

Just as the target XML namespace provides a naming context for the named
type definitions, named model groups, global element declarations and global
attribute declarations for a schema vocabul ary, the Java package provides a
naming context for Java interfaces and classes. Therefore, it is natural to map
the target namespace of a schema to be the package that contains the Java
content interfaces representing the structural content model of the document.

A package consists of:

36

A name, which is either derived directly from the XML namespace URI
as specified in Section C.5, “ Generating a Java package name” or
specified by a binding customization of the XML namespace URI as
described in Section 6.6.1.1, “package.”

A set of Java content interfaces representing the content models declared
within the schema.

A set of Java element interfaces representing element declarations
occurring within the schema. Section 5.7.1, “Bind to Java Element
Interface” discusses the binding of an element declaration in more detail.

The class Obj ect Fact or y containing:

O

O

A public no-arguments constructor.

Aninstance factory method for each Javacontent and element interface
within the package.

Given Java content interface named Foo, hereis the derived factory
method:

public Foo createFoo() throws JAXBException;

Dynamic instance factory allocator:

public Cbject new nstance(Cl ass javaContentl|nterface)
t hrows JAXBExcepti on;
Property setter/getter
Provide the ability to associate implementation specific property/value

pairs with the instance creation process.
java.l ang. Qbj ect getProperty(String nane)
voi d setProperty(String name, Object val ue)

JAXB Specification — Final, V1.0 1/8/03

Typesafe Enum Class

o A set of typesafe enum classes.
« Package javadoc.

Example:
Purchase Order Schemafragment witht ar get Namespace:

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns: po="http://ww. exanpl e. com POL"
t ar get Nanmespace="htt p: // ww. exanpl e. com POL" >
<xs: el enent name="purchaseOrder" type="po: PurchaseOrder Type"/>
<xs: el enent name="coment" type="xs:string"/>
<xs: conpl exType name="PurchaseOr der Type"/ >

</ xs: schemn>
Default derived Java code:

i mport javax.xm . bind. El enent;

package com exanpl e. POL;

interface PurchaseOrderType { };

i nterface PurchaseOrder extends PurchaseOrder Type, Elenent;
interface Comment { String getValue(); void setValue(String); }

cl ass ObjectFactory {
Pur chaseOr der Type creat ePur chaseOr der Type() ;
Pur chaseOr der creat ePur chaseOrder () ;
Comment createComment (String val ue);

4.3 Typesafe Enum Class

A simple type definition whose value space is constrained by an enumeration is
worth consideration for binding to a Javatypesafe enum class. The typesafe
enum design pattern is described in detail in [BLOCH]. To summarize the
concept, if an application wishes to refer to the values of a class by descriptive
constants and manipulate those constants in a type safe manner, it should
consider binding the XML component to a typesafe enum class.

1/8/03 JAXB Specification — Final, V1.0 37

Java Representation of XML Content

A typesafe enum class consists of:

« A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component.

« A package name, which is either computed from the target namespace of
the schema component or specified within abinding declaration as a
customization of the target namespace or a specified package name for
components that are scoped to no target namespace.

o Outer Class Namesis“. " separated list of outer class hames.

By default, if the XML component containing atypesafe enum class to
be generated is scoped within a complex type as opposed to a global
scope, the typesafe enum class should occur as a nested class within the
Java content interface representing the complex type scope.

Absol ute class name is PackageName.[OuterClassNames.]Name.

Note: Outer Class Name is null if interface is atop-level interface.

« A set of enum constants.
« A set of enumvalue constants.

« Classjavadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified by customization.

An enum constant consists of:

« A name, which is either computed from the value or specified by
customization.

« A datatype for the constant.
« A value for the constant.

« Javadoc for the constant field is a combination of a documentation
annotation for an enumeration value facet and/or javadoc specified by
customization.

An enumvalue constant consists of:

« A name, which is either computed from the value or specified by
customization.

« A datatype for the constant.

« A value for the constant.

38 JAXB Specification — Final, V1.0 1/8/03

Java Content Interface

4.4

Java Content Interface

Complex type definitions are bound to a Java content interface. The attributes
and children element content of these schema building blocks are represented as
properties of the content interface that are introduced in Section 4.5,
“Properties,” on page 40.

A Java content interface is defined by:

« A name, which is either computed directly from an XML name or

specified by a binding customization for the schema component.

A package name, which iseither computed from the target namespace of
the schema component or specified by a binding customization of the
target namespace or a specified package name for components that are
scoped to no target namespace.

The outer class hame context, a dot-separated list of Java class names.

By default, if the XML schema component for which a Java context
interface isto be generated is scoped within a complex type as opposed
to globally, the complex class should occur as a nested class within the
Java content interface representing the complex type scope.

The absolute class name is PackageName.[OuterClassNames.]Name.
Note: The OuterClassNamesis null if the interfaceis atop-level
interface.

« A base interface that this interface extends. See Section 5.3, “Complex

Type Definition,” on page 67 for further details.

« A set of Java properties providing access and modification to the

attributes and content model represented by the interface.

« A local structural constraint predicate representing all the structural

constraints for the content of the class. The constraints include attribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

« Class-level javadoc isacombination of adocumentation annotation from

the schema component and/or javadoc specified within customization.

« A factory method in the package's tbj ect Fact ory class (introduced in

1/8/03

Section 4.2, “ Java Package’). Thefactory method returns the type of the
Java content interface. The name of the factory method is generated by
concatenating the following components:

JAXB Specification — Final, V1.0 39

Java Representation of XML Content

4.5

The string constant cr eat e.
If the Java content interface is nested within another interface, then the
concatenation of all outer Java class names.

o The name of the Java content interface.

For example, a Java content interface named Foo that is nested within
Java content interface Bar would have the following factory method
signature generated in the containing Java package's Obj ect Fact ory
class:

Bar. Foo creat eBar Foo()

Properties

The binding compiler binds local schema components to properties within a
Java content interface.

A property is defined by:

« A name, whichis either computed from the XML name or specified by a

binding customization for the schema component.

A base type, which may be a Java primitive type (e.g., i nt) ora
reference type.

Anoptional predicate, whichisamechanism that tests values of the base
typefor validity and throwsaTypeConst r ai nt Except i onif atype

constraint expressed in the source schemais violated. *

An optional collection type, which is used for properties whose values
may be composed of more than one value.

A default value. Schemacomponent has aschema specified default value
which is used when property’s value is not set and not nil.

Isnillable. A property is nillable when it represents a nillable element
declaration.

. Notethat it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.

40

JAXB Specification — Final, V1.0 1/8/03

Properties

A property isrealized by a set of access methods. Several property models are
identified in the following subsections; each adds additional functionally to the
basic set of access methods.

A property’ s access methods are named in the standard JavaBeans style: the
name-mapping algorithm is applied to the property name and then each method
name is constructed by prefixing the appropriate verb (get , set, etc.).

A property is said to have aset value if that value was assigned to it during
unmarshalling? or by invoking its mutation method. The value of a property is
its set value, if defined; otherwise, it isthe property’s schema specified default
value, if any; otherwise, it isthe default initial value for the property’s base type
asit would be assigned for an uninitialized field within aJavaclass®. illustrates
the states of a JAXB property and the invocations that result in state changes.

45.1 Simple Property

A non-collection property pr op with abase type Type isrealized by the two
methods

public Type getld ();
public void setld (Type val ue);

where | d is ametavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm” to prop. Thereis one exception to this general
rule in order to support the boolean property described in [BEANS]. When Type
is boolean, the get | d method specified aboveis replaced by the method
signature, booleanii si d().

« Theget or i s method returnsthe property’ svalue as specified in the
previous subsection. If null is returned, the property is considered to be
absent from the XML content that it represents.

N

- An unmarshalling implementation should distinguish between avalue from an XML instance
document and a schema specified defaulted value when possible. A property should only be
considered to have a set value when there exists a corresponding value in the XML content
being unmarshalled. Unfortunately, unmarshalling implementation paths do exist that can not
identify schema specified default values, this situation is considered a one-time transformation
for the property and the defaulted value will be treated as a set value.

3 Namely, abool ean field type defaultsto f al se, i nt eger field type defaultsto 0, object
referencefield type defaultsto nul | , floating point field type defaultsto +0. Of .

1/8/03 JAXB Specification — Final, V1.0 41

Java Representation of XML Content

« Theset method defines the property’s set value to be the argument
val ue. If the argument valueisnul | , the property’s set value is
discarded. Prior to setting the property’s value when TypeConstraint
validation is enabled*, anon-nul | valueis validated by applying the
property’s predicate. If TypeConst rai nt Excepti on isthrown,
the property retains the value it had prior to the set method invocation.

When the base type for aproperty is a primitive non-reference type, the
corresponding Java wrapper class can be used as the base type to enable
discarding the property’s set value by invoking the set method with a null
parameter. See Section 4.5.4, “isSet Property Modifier,” on page 46 for an
alternative to using a wrapper class for this purpose.

Example

In the purchase order schema, the par t Numattribute of thei t emelement
definition is declared:

<xs:attribute nane="partNun' type="SKU' use="required"/>

This element declaration is bound to a simple property with the base type
java.l ang. String:

public String getPartNun();
public void setPart Num(String x);

The set Par t Nummethod could apply a predicate to its argument to ensure
that the new valueislegal, i.e., that it is astring value that complies with the
constraints for the simple type definition, SKU, and that derives by restriction
from xs: st ri ng and restricts the string value to match the regular expression
pattern"\ d{ 3}-[A-Z] {2} ".

Itislegal to passnul | totheset Part Nummethod even though the

par t Numattribute declaration’ s attribute us e is specified as required. The
determination if par t Numcontent actually has avalue isalocal structural
constraint rather than atype constraint, so it is checked during validation rather
than during mutation.

“* Note that it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.

42 JAXB Specification — Final, V1.0 1/8/03

Properties

4.5.2 Collection Property

A collection property may take the form of an indexed property or alist
property. The base type of an indexed property may be either a primitive type or
areference type, while that of alist property must be a reference type.

45.2.1 Indexed Property

This property follows the indexed property design pattern for a multi-valued
property from the JavaBean specification. An indexed property prop with base
type Typeis realized by the five methods

public Type [] getld();

public void setld (Type [] value);
public void setl d(int index, Type value);
public Type getld(int index);

public int getldLength();

regardless of whether Type is aprimitive type or areferencetype. | d is
computed from pr op asit was defined in simple property.

e getld()
Thearray gett er method returns an array containing the property’s

value. If the property’s value has not set, then nul | isreturned.

e setl d(Type []1)
Thearray setter method definesthe property’s set value. If the
argument itself isnul | thenthe property’ sset value, if any, isdiscarded.
If theargument isnot nul | and TypeConstr ai nt validation is
enabled ° then the sequence of valuesin the array are first validated by
applying the property’s predicate, which may throw a
TypeConstrai nt Excepti on. If the
TypeConst rai nt Except i on isthrown, the property retains the
valueit had prior to the set method invocation. The property’ svalueis
only modified after the TypeConst r ai nt validation step.

e setl d(int, Type)
Theindexed set ter method allows one to set a value within the array.
Theruntime exceptionj ava. | ang. Arrayl ndexQut Of BoundsExcept i on

> Notethat it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.

1/8/03 JAXB Specification — Final, V1.0 43

Java Representation of XML Content

may be thrown if the index is used outside the current array bounds. If
the value argument is non-null and TypeConstraint validation is
enabled®, the value is validated against the property’ s predicate, which
may throw an unchecked TypeConst r ai nt Excepti on. If
TypeConstrai nt Except i on isthrown, the array index remains set
to the same value it had before the invocation of theindexed set t er
method.

e getld(int)
Theindexed get ter method returns asingle element from the array. The
runtimeexceptionj ava. | ang. Arr ayl ndexQut Of BoundsExcept i on may
be thrown if the index is used outside the current array bounds. In order
to change the size of the array, you must use the array set method to set
anew (or updated) array.

e getldLength()
The indexed length method returns the length of the array. This method
enablesyoutoiterate over all theitemswithintheindexed property using
theindexed mutators exclusively. Exclusive use of indexed mutators and
this method enable you to avoid the allocation overhead associated with
array get t er andset t er methods.

The arrays returned and taken by these methods are not part of the content
object’s state. When an array get t er method isinvoked, it createsanew array
to hold the returned values. Similarly, when the corresponding array set t er
method isinvoked, it copies the values from the argument array.

To test whether an indexed property has a set value, invokeitsar r ay

get t er method and check that the result isnot nul | . To discard an indexed
property’s set value, invokeits array set t er method with an argument of
nul | .

See the customization attribute col | ecti onType in Section 6.5,
“<globalBindings> Declaration” and Section 6.8, “<property> Declaration” on
how to enable the generation of indexed property methods for a collection

property.
Example

In the purchase order schema, we have the following repeating element
occurrence of element item within conpl exType Items.

<xs: conpl exType name="ltems">
<Xs:sequence>

44 JAXB Specification — Final, V1.0 1/8/03

Properties

<xs: el enent nane="item" m nCccurs="1"maxCccur s="unbounded" >
<xs: conpl exType>. .. </ xs: conpl exType>
</ xs: el enent >
</ xs: conpl exType>

The content specification of this element type could be bound to an array
property realized by these four methods:

public Itens.|tenmlype[] getltem();

public void setltem(ltens.|teniType[] val ue);

public void setltem(int index, ltens.|tenType val ue);
public Itens.|tenmlype getlten(int index);

45.2.2 List Property

A list property prop with base type Typeisrealized by the method whereLi st
public List getld();

istheinterfacej ava. util . Li st,| d isdefined as above.

« Theget method returns an object that implementsthe Li st interface,
is mutable, and contains the values of type Type that constitute the
property’s value. If the property does not have a set value or a schema
default value, azero length j ava. uti | . Li st instance is returned.

ThelLi st returned by the get method is a component of the content object’s
state. Modifications made to this list will, in effect, be modifications to the
content object. If TypeConst r ai nt validation is enabled, the list’s mutation
methods apply the property’s predicate to any non-nul | value before adding
that valueto the list or replacing an existing element’ s value with that value; the
predicate may throw a TypeConst r ai nt Excepti on.

Theunset method introduced in Section 4.5.4, “isSet Property Modifier,” on
page 46 enables one to discard the set value for a List property.

Design Note — A future version of the Java programming language may support
generic types, in which case this specification may be revised so that list-retrieval
methods have the type Li st <Type>.

1/8/03 JAXB Specification — Final, V1.0 45

Java Representation of XML Content

Example

The content specification of thei t emelement type could alternatively be
bound to alist property realized by one method:

public List getltem();

Thellist returned by the get | t emmethod would be guaranteed only to contain
instances of the | t emclass. Asbefore, itslength would be checked only during
validation, since the requirement that there be at least one i t emin an element
instance of complex type definition | t ens isastructural constraint rather than
atype constraint.

453 Constant Property

An attribute use named prop with a schema specified fixed value can be bound
to a Java constant value. Id is computed from pr op asit was defined in simple

static final public Type ID = <fixedVal ue>;

property. The value of the fixed attribute of the attribute use provides the
<f i xedVal ue> constant value.

The binding customization attribute fi xedAt t ri but eToConst ant Property
enables this binding style. Section 6.5, “<globalBindings> Declaration” and
Section 6.8, “<property> Declaration” describe how to use this attribute.

45.4 isSet Property Modifier

This optional modifier augments a modifiable property to enable the
manipulation of the property’s value as a set value or a defaulted value. Since
this functionality is above and beyond the typical JavaBean pattern for a
property, the method(s) associated with this modifier are not generated by
default. Chapter 6, “Customization” describes how to enable this customization
using the gener at el sSet Met hod attribute.

The method signatures for thei sSet property modifier are the following:

publ i ¢ boolean i sSet | d();

where | d isdefined as it was for simple and collection property.

46 JAXB Specification — Final, V1.0 1/8/03

Properties

« Thei sSet method returnst r ue if the property has been set during
unmarshalling or by invocation of the mutation method set | d with a
non-nul | vaue. ®

To aid the understanding of what i sSet method implies, note that the
unmarshalling process only unmarshals set valuesinto XML content.

A list property and a simple property with a non-reference base type require an
additional method to enable you to discard the set value for a property:

public void unset | d();

« Theunset method marks the property as having no set value. A
subsequent call to get | d method returns the schema-specified default
if it existed; otherwise, it returns the Java default initial value for Type.

All other property kinds rely on the invocation of their set method with a value
of null to discard the set value of its property. Since thisis not possible for
primitive types or a List property, the additional method is generated for these
cases. illustrates the method invocations that result in transitions between the
possible states of a JAXB property value.

& A Java application does not need to distinguish between the absence of a element from the
infoset and when the element occurred with nil content. Thus, in the interest of simplifying the
generated API, methods were not provided to distinguish between the two. The marshalling pro-
cess should always output an element with nil content for a property that is not set and it repre-
sents arequired nillable element declaration.

1/8/03 JAXB Specification — Final, V1.0 47

Java Representation of XML Content

new . Unset
instance . contains0..N (default or null)
_____________ properties
unmarshal
or set(v) unset() or
or List.add(v) set(null)
L egend:
new instance - create JAXB object Set Value
default - schema specfied default
null - uninitialized VM field default

Figure 4.1 States of a Property Value

Example

In the purchase order schema, the par t Num attribute of the element i t em's
anonymous complex type is declared:

<xs:attribute nane="partNuni' type = "SKU' use="required"/>

This attribute could be bound to ai sSet simple property realized by these four
methods:

public int getPartNum);

public void setPartNum(String skuVal ue);
public bool ean isSetPartNum();

public void unsetPartNun();

Itislegal toinvoke the unset Par t Nummethod even though the attribute's
useis“required” inthe XML Schema. That the attribute actually has a
valueisalocal structural constraint rather than atype constraint, so it is checked
during validation rather than during mutation.

455 Property Summary

The following core properties have been defined:

48 JAXB Specification — Final, V1.0 1/8/03

Java Element Interface

« Simple property - JavaBean design pattern for single value property

« Indexed property - JavaBean design pattern for multi-valued property
o List property - Leverages java.util.Collection

« Constant property

The methods generated for these four core property kinds are sufficient for most
applications. Configuration-level binding schema declarations enable an
application to request finer control than provided by the core properties. For
example, thei sSet property modifier enables an application to determine if a
property’s value is set or not.

4.6 Java Element Interface

Based on criteriato beidentified in Section 5.7.1, “Bind to Java Element
Interface,” on page 82, the hinding compiler binds an element declaration to a
Java element interface. An element interface is defined as:

« Aninterface name is generated from the element declaration’s name
using the XML Name to Javaidentifier name mapping algorithm
specified in Section C.2, “The Name to Identifier Mapping Algorithm,”
on page 189.

« |If the element declaration’ s type definition is a:
o Complex Type definition

The element interface extends the Java content interface representing
the complex type definition of the element declaration

o Simple type definition
The generated element interface has a Java property named “val ue”.

The factory method within the package’s Cbj ect Fact or y method
to create an instance of the element takes avalue parameter of the Java
class binding of the simple type definition.

« Scope of element class
o Global element declarations are declared in package scope.

o Local element declarations occur in the scope of the first ancestor
complex type definition that contains the declaration.

1/8/03 JAXB Specification — Final, V1.0 49

Java Representation of XML Content

« Each generated Element interface must extend the Java marker interface
j avax. xml . bi nd. El ement . This enables JAXB implementations
to differentiate between instances representing an XML element directly
and instances representing the type of the XML element.

« A factory method is generated inthe package sObj ect Fact or y class
introduced in Section 4.2, “Java Package.” The factory method returns
thetype of the Javaelement interface. The name of the factory method is
generated by concatenating the following components:;

The string constant cr eat e.
If the Java element interfaceis nested within another interface, then the
concatenation of all outer Java class names.

o The name of the Java content interface.

For example, a Java element interface named Foo that is nested within
Java content interface Bar would have the following factory method
generated in the containing Java package's Obj ect Fact or y class:

Bar. Foo creat eBar Foo()

« Theoptional methodsset Ni | () andi sNi | () enable Element
instancesto be set to the XML concept of ni | and to check whether an
Element instanceis ni | . See Section 5.7.1, “Bind to Java Element
Interface,” on page 82 for details on when these methods are generated.

Example 1:

Given global XML Schema element declaration with a complex type definition:

<xs: conpl exType nanme="AConpl exType" >
<Xs:sequence>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent name="AnEl ement" type="AConpl exType"/>

50 JAXB Specification — Final, V1.0 1/8/03

Java Element Interface

Its Java binding looks like this:

public interface AConpl exType {
void setA(int value);
int getA();
void setB(String val ue);
String getB();
b
public interface AnEl ement extends
AConpl exType, javax.xnl . bind. El ement {};
public class ObjectFactory {
AnEl ement creat eAnEl enent () ;
AConpl exType creat eAConpl exType();
ot her factory methods ...

}

Example 2:

Given local XML Schema element declaration with a simple type definition:;

<xs: conpl exType name="AConpl exType" nixed="true”>’
<Xs:sequence>
<xs: el enent name="ASi npl eEl ement" type="xs:int"/>
</ xs: sequence>
</ xs: conpl exType>

Its Java representation:

public interface AConpl exType {
public interface ASi npl eEl enent extends javax.xm . bind. El ement {
voi d setVal ue(int value);
int getVal ue();

- Assume that this schema fragment meets one of the criteria specified in Section 5.7.1, “Bind to
Java Element Interface,” on page 82 that requires that <ASi npl eEl emrent > element be bound
to a Java element interface.

1/8/03 JAXB Specification — Final, V1.0 51

Java Representation of XML Content

52

|
cl ass ObjectFactory {
AConpl exType creat eAConpl exType();
AConpl exType. ASi npl eEl enent
cr eat eAConpl exTypeASi npl eEl ement (i nt val ue) ;
AConpl exType. ASi npl eEl enent
cr eat eAConpl exTypeASi npl eEl enent () ;

JAXB Specification — Final, V1.0 1/8/03

Summary

4.7

Summary

The composition and relationships between the Java components introduced in
this section are reflected in the following diagram.

JAXBComponent

g

JAXBNamedGomponent

gharme : String
@lavadoc ; String

A

+haselnterface

+contentinterfaces

01 +ENUmS
- 0. JAXBPackage JAXEEnurm
-—
JAXBContentinterface 0.7 | edatatype : String
abstract © boolean +package -
. e package
gsimpleType : String
+package
.- * * +enum
Hrtefaces 0 * | +elementinterfaces
+enumConstants | 0.7
. JAXBElementInterface JAXBEnumConstant
+containinginterface - -
ghillable : boolean gnalue : Object
n.=
+properties
JAXBProperty <<ghumeration=»

gstyle | JAXBEPropertyStyle JAXBPropertyStyle
ghaseType : String &simple
gcollectionType : String gindexed
gdefaultvalue : Object Slist
gunsettable : boolean Goonstant

+predicatei0_1

SAXBLonstraintPredicate

1

Figure 4.2

1/8/03

+predicate

UML Diagram of Java representation

JAXB Specification — Final, V1.0

53

Java Representation of XML Content

54

JAXB Specification — Final, V1.0

1/8/03

CHAPTERDS

BINDING XML SCHEMA TO
JAVA REPRESENTATIONS

This chapter describes the default behavior for binding a subset of XML schema
components to Java. Unsupported XML Schema components are described in
Appendix E.2. The next chapter specifies how to customize the default
behavior.

5.1 Overview

The abstract model described in [XSD Part 1] is used to discuss the default
binding of each schema component type. Each schema component is described
as alist of properties and their semantics. References to properties of a schema
component as defined in [XSD Part 1] are denoted using the notation {schema
property} throughout this section. References to properties of information items
as defined in [XML-Infoset] are denoted the notation [property].

All JAXB implementations are required to implement the default bindings
specified in this chapter. However, users and JAXB implementors can use the
global configuration capabilities of the custom binding mechanism to override
the defaults in a portable manner.

All examples are non-normative.

1/8/03 JAXB Specification — Final, V1.0 55

Binding XML Schema to Java Representations

5.2 Simple Type Definition

A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the
following Java property attributes (common to the schema components) are
specified here and include:

o basetype
« collection typeif any
« predicate

Therest of the Java property attributes are specified in the schema component
using the simple type definition.

5.2.1 Type Categorization

The simple type definitions can be categorized as:

« schema built-in datatypes [XSD PART?2]
« User-derived datatypes

Conceptually, there is no difference between the two. A schema built-in
datatype can be a primitive datatype. But it can also, like a user-derived
datatype, be derived from a schema built-in datatype. Hence no distinction is
made between the schema built-in and user-derived datatypes.

The specification of simple type definitions is based on the abstract model
described in Section 4.1, “ Simple Type Definition” [XSD PART2]. The abstract
model defines three varieties of simple type definitions: atomic, list, union. The
Java property attributes for each of these are described next.

5.2.2 Atomic Datatype

If an atomic datatype has been derived by restriction using an “enumeration”
facet, the Java property attributes are defined by Section 5.2.3, “Type Safe
Enumeration.” Otherwise they are defined as described here.

The base type is derived upon the XML built-in type hierarchy [XSD PART?2,
Section 3] reproduced below.

56 JAXB Specification — Final, V1.0 1/8/03

Simple Type Definition

anysi mp1 eType —\

. Java ut'l'l Ca1 endar '.]ava ut1'| calendar '. Java ut'l'l calendar '

' boolean r 1 byte[] i 1 byte[] |l \1f'|oat l ! doub'le = Javax xm'l namespace QName 1 I

normalizedString

token I nonPositiveInteger l I Tong {-\ nonNegativeInteger l

I language l I Name l I NMTOKEN l negativeInteger Ent]-\ I unsignedLong l I positiveInteger l

. ‘-|
I_'lnt-l

NCNaE] I short + 3

[
i short ' : Tong

unsignedInt +\

java.lang.object : NOT_SUPPORTED

I byte +\ I unsignedshort +\
-
: byte : : int ILI

unsignedByte

I
1 short '-

. ur types O built-in primitive types

I:] built-in derived types : : Java classes I:l unsupported types

-

Figure5.1 XML Built-In Type Hierarchy

The above diagram is the same as the one in [XSD PART2] except for the
following:

« Only schema built-in atomic datatypes derived by restriction have been
shown.

« Theschemabuilt-in atomic datatypes have been annotated with Javadata

types from the “ Java Mapping for XML Schema Built-in Types” table
below.

1/8/03 JAXB Specification — Final, V1.0 57

Binding XML Schema to Java Representations

The following is a mapping for subset of the XML schema built-in datatypesto
Java data types. Thistable is used to specify the base type later.

Table 5-1 Java Mapping for XML Schema Built-in Types

XML Schema Data type

Java Data Type

xsd:string java.lang.String
xsd:integer java.math.Bigl nteger
xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal
xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName
xsd:dateTime java.util.Calendar
xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedint long
xsd:unsignedShort int

xsd:unsignedByte short

xsd:time java.util.Calendar
xsd:date java.util.Calendar
xsd:anySimpleType javalang.String

The mapping shown in the table above is aligned with the default mapping of
XML schema built-in atomic datatypes in [JAX-RPC]. These areindicated in
bold in the above table. In addition, it a so defines mappings for datatypes not
specified in [JAX-RPC].

The base type is determined as follows:

1. If amapping is defined for the simple type in Table 5.1, the base type de-
faultsto its defined Java datatype.

2. Otherwise, the base type must be the result obtained by repeating the step
1 using the {base type definition}. For schema datatypes derived by

58 JAXB Specification — Final, V1.0 1/8/03

Simple Type Definition

restriction, the {base type definition} represents the simple type definition
from which it is derived. Therefore, repeating step 1 with {base type
definition} essentially walks up the XML Schema built-in type hierarchy
until asimple type definition which is mapped to a Java datatype is found.

The simple type definition xsd: any Si npl eType isaways mapped
toj ava. |l ang. Stri ng. Sinceall XML simple types are derived
from xsd: anySi mpl eType, amapping for a simple type definition
toj ava. | ang. St ri ng is adways guaranteed.

The Java property predicate must be as specified in “Simple Type Definition
Validation Rules,” Section 4.1.4[XSD PARTZ].

Example:

The following schema fragment (taken from Section 4.3.1, “Length” [XSD
PARTZ2]):

<xs:si npl eType nane="product Code" >
<xs:restriction base="xs:string">
<xs:length val ue="8" fixed="true"/>
</ xs:restriction>
</ xs: si npl eType>

The facet “length” constrains the length of a product code (represented by
pr oduct Code) to 8 characters (see section 4.3.1 [XSD PART?Z2] for details).

The Java property attributes corresponding to the above schema fragment are:

« Thereisno Java datatype mapping for pr oduct Code. So the Java
datatype is determined by walking up the built-in type hierarchy.

« The{base type definition} of product Code is
Xs:string. xs:stringismappedtoj ava.l ang. Stri ng (as
indicated in the table, and assuming no customization). Therefore,
pr oduct Code ismapped to the Javadatatypej ava. | ang. Stri ng.

« The predicate enforces the constraints on the length.

5.2.3 Type Safe Enumeration
A named atomic type that is derived by restriction with enumeration facet(s) and

whose restriction base type (represented by {base type definition}) is
“xsd: NCNane” or derived from it must be mapped to a typesafe enum class.

1/8/03 JAXB Specification — Final, V1.0 59

Binding XML Schema to Java Representations

The[t ypesaf eEnunBase] attribute customization described in Section 6.5,
“<globalBindings> Declaration," enables global configuration so named atomic
types derived from other restriction base types are bound by default to typesafe
enumeration class. An anonymous simple type definition is never bound to a
typesafe enum class by default, but it can be customized as described in
Section 6.10, “ <typesafeEnum> Declaration” to bind to a typesafe enum class.

The default binding described here is technically aligned with JAX-RPC
specified typesafe enumeration binding but there are a few differences that are
discussed in Section F.3, “Bind XML enum to atypesafe enumeration.”

5.23.1 Enumeration Class

A type safe enum class must be defined as specified here. An exampleis
provided first followed by a more formal specification.

XML Schema fragment:

<xs:si npl eType nane="USSt at e" >
<xs:restriction base="xs: NCNane" >
<xs:enuneration val ue="AK"/ >
<xs:enuneration val ue="AL"/>
</ xs:restriction>
</ xs: si npl eType>

60 JAXB Specification — Final, V1.0 1/8/03

Simple Type Definition

The corresponding typesafe enum classis:

public class USState {
/1 Constructor
protected USSate(String value) { ... }
/1 one enuneration constant for each enuneration val ue
public static final String _AK="AK";
public static final USState AK= new USSt at e(_AK);
public static final String _AL="AL";
public static final USState AL= new USState(_AL);
/1 Gets the value for an enunerated val ue
public String getValue();
/1l Gets enuneration with a specific val ue
/1 Required to throw java.lang. ||l egal Argunent Exception if
/1 any invalid value is specified
public static USState fronvalue(String value) {...}

/1 Gets enuneration froma String

/1 Required to throw java.lang. ||| egal Argunent Exception if
/1 any invalid value is specified

public static USState fronBtring(String value){ ... }

/1l Returns String representation of the enunerated val ue
public String toString() { ... }

public bool ean equal s(Object obj) { ... }

public int hashCode() { ... }

5.2.3.2 Enumeration Class
The enumeration class is defined as follows:

« name: The default name of the enumeration class, enumClassName, is
computed by applying the XML Name to Javaidentifier mapping
algorithm to the {name} of the simple type definition. Thereisno
mechanism to derive a name for an anonymous simple type definition,
the customization must provide the name.

« package name: The package name is determined from the {targetname
space} of the schemathat directly contains the simple type definition.

« outer class name:

o Thereisno outer classnamefor aglobal simpletype definition.
o Theouter class namefor an anonymous simpletype definition is com-
puted by traversing up the anonymous simpletype definition’ sancestor

1/8/03 JAXB Specification — Final, V1.0 61

Binding XML Schema to Java Representations

tree until the first ancestor isfound that is:

- an XML component that is mapped to a Java content interface, the
outer class nameis composed of the concatenation of this content in-
terface’ souter class name, ".", and its name.

- aglobal declaration or definition isreached. Thereis no outer class

name for this case.

Example:

public class USState { ... } // Enuneration class

5.2.3.3 Constant Fields

For each enumeration val ue (represented by schema property {value}, there are
two public, static and final constant fields in the enumeration class: enumvalue
constant and enum constant.

An enumvalue constant set contains a enum constant for each enumeration
value. Each member of the set is defined as follows:

« name: A name is computed as specified in Section 5.2.3.4, “XML
Enumvalue-to-Java ldentifier Mapping” and prefixing it with an
underscore (‘).

« type: The Javatype binding of the XML datatype,
{base_type definition}.
« value: Thevalueis{value}.

An enum constant set contains an enum constant for each enumeration value.
Each member of the set is defined as follows:

« nNname: aname that is computed as specified in Section 5.2.3.4, “XML
Enumval ue-to-Java ldentifier Mapping.”

« type: ThetypeisenumClassName.

« value: valueis an instance of enumClassName constructed with a
{value}. Theinstance is unique except in the following case.
XSD PART 2 permitsidentical enumeration valuesto be specified in an
XML enumeration. In that case, the enum constant name cannot be
uniquely by default. Instead, an error must be reported.

Example:

public static final String _AK="AK";// enunval ue constant
public static final USState AK= new USState(_AK); // enuneration constant

62 JAXB Specification — Final, V1.0 1/8/03

Simple Type Definition

5.2.3.4 XML Enumvalue-to-Java ldentifier Mapping

Default names for enumval ue constant and enum constant are based on mapping
of the XML enumeration value to a Java identifier described here.

An attempt is made to map the XML enumeration value{ val ue} to aJava
Identifier using the XML Name to Java ldentifier algorithm. If one or more
enumerated values in an XML enumeration cannot map to valid Java identifier
(examples are “3.14", “int”) or there is acollision among the generated constant
fields name, then the result is determined as follows:;

« |If the customization optiont ypesaf eEnumvernber Nanme is
specified and set to “gener at eEr r or ,” an error must be reported.
Thisisasothedefault behavior if t ypesaf eEnunivenber Nanme has
not been specified.

« |If the customization option, element <j axb: gl obal Bi ndi ngs>
[t ypesaf eEnumvenber Nane] is set to the value
“gener at eNane, " the constant fields nameis"VALUE <N>"
where <N> is 1 for the first enumeration value and increments by 1 to
represent each value within the XML enumeration.

5.2.3.5 Methods and Constructor

Type isdefined in enumval ue constant set in Section 5.2.3.3, “ Constant
Fields.” enuntCl assNane isdefined in Section 5.2.3.2, “Enumeration Class.”

There are three accessor methods: getValue, fromValue and fromString.

public Type get Val ue()
public enunC assNane fronVal ue(Type val ue)
public enunC assNane fronString(String val ue)

The fromValue and fromString method must throw a
java.l ang. Il 1 egal Argunent Excepti on if val ue isnotone of the
enumeration values specified in the XML enumeration datatype.

The constructor must be declared protected as shown below:

protected enunCl assNanme(Type value) { ... }

An enumeration class must contain the following methods which override the
object methods:

1/8/03 JAXB Specification — Final, V1.0 63

Binding XML Schema to Java Representations

public String toString() { ... }
public final bool ean equal s(Object obj) { ... }
public final int hashCode() { ... }

Theequal s() and hashCode() must be final and must invoke the Ohj ect
methods. This ensures that no subclass of typesafe enumeration class
accidentally overrides theses methods. Thisin turn guarantees that two equal
objects of the enumeration class are also identical. [BLOCH]

5.24 List

A list simple type definition can only contain list items of atomic or union
datatypes. The item type within the list is represented by the schema property
{item type definition}.

The Java property attributes for alist simple type definition are:

« Thebasetypeisderived from the {itemtype definition} asfollows. If the
Java datatype for {item type definition} is a Java primitive type, then the
base typeis the wrapper class for the Java primitive type. Otherwise, the
Java datatype is derived from the XML datatype as specified in
Section 5.2.2, “ Atomic Datatype” and Section 5.2.3, “Type Safe
Enumeration.”

« Thecollectiontype defaultsto an implementation of java.util.List. Notethat
this specification does not specify the default implementation for the
interface javautil Ligt, it isimplementation dependent.

« The predicateis derived from the “ Simple Type Definition Validation
Rules,” in section 4.1.4,[XSD PART?Z2].

Example:

For the following schema fragment:

<xs:si npl eType nane="xs: USSt atelList">
<xs:list itenmType="xs:string"/>
</ xs: si npl eType>

The corresponding Java property attributes are;

« Thebase type is derived from {item type definition} whichis XML
datatype, “ xs:string” , thus the Java datatype isjava.util.String as specified
in Section Table 5-1, “Java Mapping for XML Schema Built-in Types.”

64 JAXB Specification — Final, V1.0 1/8/03

Simple Type Definition

« The collection type defaults to an implementation of java.util List.

« The predicate only alows instances of base type to be inserted into the
list. When failfast check isbeing performed, thelist’ s mutation methods
apply the property’ s predicate to any non-nul | value before adding that
valueto thelist or replacing an existing element’ s value with that value;
the predicate may throw a TypeConst r ai nt Excepti on.

5.2.5 Union Property

A union property prop is used to bind a union simple type definition schema
component. A union simple type definition schema component consists of union
members which are schema datatypes. A union property, is therefore, realized

by:

public Type getld();
public void setld(Type val ue);

where | d is ametavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm,” on page 189 to prop.

The base type is the first common supertype of all the Java representations to
which union member types are bound with j ava. | ang. Obj ect aways
being a common root for all Java objects. For member types that are derived by
list, the {itemtype} of the list is used for determining the base type. For the
purposes of determining the supertype, if a union member that is bound to a
Java primitive type, the corresponding Java wrapper classis used instead. If
none of the union member types are derived by list, then Type is base type. If
one of the member typesis derived by list, then the Union property is
represented as the appropriate collection property as specified by the
customization <j axb: gl obal Bi ndi ngs> @collectionType value,
specified in Section 6.5.1, “Usage.”

« Theget | d method returnsthe set value. If the property hasno set value
thenthevaluenul | isreturned. The valuereturned is an instance of one
of the union member types.

! Section 6.5.1, “Usage” describesthe enabl eFai | Fast Check customization and
Section 2.2, “Varieties of validation” definesfail-fast checking.

1/8/03 JAXB Specification — Final, V1.0 65

Binding XML Schema to Java Representations

« Theset | d method setsthe set value. Theval ue ismapped to the
appropriate union member type by a JAXB technology implementation.
A union schema component does not have atag to distinguish between
union member types. However, [XSD PARTZ2] does specify the order of
evaluation for a given value. Thus, for the following example,

<Xs:union nmenber Types="xs:integer xs:string"/>

t he order of evaluation specified by [XSD PARTZ2] isfirst “i nt eger”
and then“stri ng”.

The order of evaluation specified by [XSD PARTZ2] must be followed
by a JAXB implementation to map aval ue to the appropriate union
member type.

If valueisnul | , the property’s set value is discarded. Prior to setting
the property’ s value when TypeConstraint validation is enabled, a non-
nul | valueisvalidated by applying the property’s predicate, which
may throw a TypeConst r ai nt Excepti on.

Example: Default Binding: Union

The following schema fragment:

<xs: conpl exType name="CTType">
<xs:attribute nane="state" type="Z pO Nane"/>
</ xs: conpl exType>
<xs: si npl eTypenanme="Zi pOr Nane"
nenber Types="xs: i nteger xs:string"/>

is bound to the following Java representation.

public interface CTType {
Obj ect getState();
voi d set State(Object val ue);

5.2.6 Union

A simple type definition derived by a union is bound using the union property
with the following Java property attributes;

« the base type as specified in Section 5.2.5, “Union Property.”

66 JAXB Specification — Final, V1.0 1/8/03

Complex Type Definition

« if one of the member typesisderived by <xs: | i st >, thentheunionis
bound as a Collection property.

« The predicate is the schema constraints specified in “ Simple Type
Definition Validation Rules,” Section 4.1.4 [XSD PART2].

5.3 Complex Type Definition

5.3.1 Aggregation of Java Representation

A Java representation for the entire schemais built based on aggregation. A
schema component aggregates the Java representation of al the schema
components that it references. This processis done until al the Java
representation for the entire schemais built. Hence a general model for
aggregation is specified here once and referred to in different parts of the
specification.

The model assumes that there is a schema component SP which references
another schema component SC. The Java representation of SP needs to
aggregate the Java representation of SC. There are two possibilities:

« SCisbound to aproperty set.
« SCisbound to aJavadatatype or a Javainterface.

Each of these is described bel ow.

5.3.1.1 Aggregation of Datatype/Interface

If a schema component SC is bound to a Java datatype or a Javainterface, then
SP aggregates SC' s Java representation as a simple property defined by:

« name: the name is the interface name or the Java datatype or a name
determined by SP. The name of the property is therefore defined by the
schema component which is performing the aggregation.

« basetype: If SC isbound to a Java datatype, the base typeis the Java
datatype. If SC isbound to a Javainterface, then the base typeisthe
interface name, including a dot separated list of interface names within
which SC is nested.

« collection type: Thereis no collection type.

1/8/03 JAXB Specification — Final, V1.0 67

Binding XML Schema to Java Representations

« predicate: Thereisno predicate.

5.3.1.2 Aggregation of Property Set

If SCisbound to a property set, then SP aggregates by adding SC’ s property set
to its own property set.

Aggregation of property sets can result in name collisions. A name collision can
arise if two property names are identical. A binding compiler must generate an
error on name collision. Name collisions can be resolved by using
customization to change a property name.

5.3.2 Java Content Interface

The binding of a complex type definition to a Java content interface is based on
the abstract model propertiesin Section E.1.3, “Complex Type Definition
Schema Component,” on page 204. The Java content interface must be defined
as specified here.?

« name: name is the Javaidentifier obtained by mapping the XML name
{ nanme} using the name mapping algorithm, specified in Section C.2,
“The Nameto Identifier Mapping Algorithm,” on page 189. For
anonymous complex type definitions, see Section 5.7.2, “Binding of an
anonymous complex type definition” for the specification of how aname
value is derived from its parent element declaration.

« package

o Foraglobal complex type definition, thederived Javacontent interface
isgenerated into the Java package that representsthe binding of {target

namespace}

o For thevalue of package for an anonymous complex type definition,
see Section 5.7.2, “Binding of an anonymous complex type
definition".

« outer class name:

o Thereisno outer class name for a globa complex type definition.

o Section 5.7.2, “Binding of an anonymous complex type definition"

2 Note that Section 5.7.2, “Binding of an anonymous complex type definition” defines the name
and package property for anonymous type definitions occurring within an element declaration.

68 JAXB Specification — Final, V1.0 1/8/03

Complex Type Definition

defines how to derive this property from the element declaration that
contains the anonymous complex type definition.

« baseinterface: A complex type definition can derive by restriction or
extension (i.e. {derivation method} is either “extension” or
“restriction”). However, since there is no concept in Java programming
similar to restriction, both are handled the same. If the {base type
definition} isitself mapped to a Java content interface (Ci2), then the
base interface must be Ci2. This must be realized as:

public interface Cil extends C 2 {

See example of derivation by extension at the end of this section.

« property set: The Javarepresentation of each of the following must be
aggregated into Java content interface’s property set (Section 5.3.1,
“Aggregation of Java Representation”).

o A subset of { attribute uses} isconstructed. The subset must include the
schema attributes corresponding to the<xs: at t ri but e> children
and the { attribute uses} of the schema attribute groups resolved by the
<ref> attribute. Every attribute’ s Java representation (Section 5.8,
“Attribute use”) in the set of attributes computed above must be
aggregated.

o The Javarepresentation for {content type} must be aggregated.

For a“Complex Type Definition with complex content,” the Java
representation for {content type} is specified in Section 5.9, “ Content
Model - Particle, Model Group, Wildcard.”

For acomplex type definition which isa“ Simple Type Definition with
simple content,” the Java representation for {content type} is specified
in Section 5.3.2.1, “Simple Content Binding.”

o If acomplex type derives by restriction, there is no requirement that
Javapropertiesrepresenting the attributes or elements removed by the
restriction need to be disabled. Thisis because (as noted earlier),
derivation is handled the same as derivation by restriction.

Example: Complex Type: Derivation by Extension

XML Schema Fragment (from XSD PART 0 primer):

1/8/03 JAXB Specification — Final, V1.0 69

Binding XML Schema to Java Representations

<xs: conpl exType nane="Address">
<Xs:sequence>

<xs: el enent nanme="nane" type="xs:string"/>
<xs:el enent nanme="street" type="xs:string"/>
<xs:el enent name="city" type="xs:string"/>

</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="USAddress" >
<xs: conpl exCont ent >
<xs: extension base="ipo: Address"
<Xs:sequence>

\Y

<xs:el enent name="state" type="xs:string"/>
<xs: el enent nanme="zip" type="xs:integer"/>
</ xs: sequence>
</ xs: ext ensi on>
</ xs: conpl exCont ent >
</ xs: conpl exType>

Default Java binding:

public interface Address {
String get Name();
voi d set Name(String);
String getStreet();
voi d setStreet (String);
voi d getCGity();
voi d setCity(String);

i mport java. nat h. Bi gl nt eger;
public interface USAdress extends Address {
String getState();
void setState(String);
Bi gl nt eger get Zip();
void set Zi p(Bi gl nteger);

5.3.2.1 Simple Content Binding

Binding to Property

By default, a complex type definition with simple content is bound to a Java
property defined by:

70 JAXB Specification — Final, V1.0 1/8/03

Attribute Group Definition

« name: The property name must be “val ue”.

« basetype, predicate, collection type: As specified in [XSD Part 1],
when a complex type has simple content, the content type ({content
type}) is always a simple type schema component. And a simple type
component always maps to a Java datatype (Section 5.2, “Simple Type
Definition™). Vaues of the following three properties are copied from
that Java type:

o basetype
o predicate
o collection type

Example: Simple Content: Binding To Property
XML Schema fragment:

<xs: conpl exType name="i nternational Price">
<xs: si npl eCont ent >
<xs: extension base="xs: deci mal ">
<xs:attribute nane="currency" type="xs:string"/>
</ xs: ext ensi on>
</ xs: si npl eCont ent >
</ xs: conpl exType>

Default Java binding:

interface International Price {
/** Java property for sinple content */
java. mat h. Bi gDeci mal get Val ue();
voi d setVal ue(j ava. mat h. Bi gDeci mal val ue);

/** Java property for attribute*/
String getCurrency();
voi d setCurrency(String);

5.4 Attribute Group Definition

There is no default mapping for an attribute group definition. When an attribute
group is referenced, each attribute in the attribute group definition becomes a

1/8/03 JAXB Specification — Final, V1.0 71

Binding XML Schema to Java Representations

part of the [attribute uses] property of acomplex type definition. Each attribute
is mapped to a Java property as described in (section, “Attribute Use”).

5.5 Model Group Definition

By default, a model group definition is not bound to a Java content interface.
Rather, when a named model group is referenced, the JAXB property set
representing its content model is aggregated into the Java content interface
representing the complex type definition that referenced the named model group
definition asillustrated in Section Figure 5.2, “Default binding for a reference
to amodel group definition.”

XML Schema Components JAXB Java Representation
- = — — i Property Set
" content modelj_ B derlve | pery
L — — — J
lrefs |
v P
/ Model Group B
r— o — .
content mode! - - derive
K e Content Interface C
ComplexType C ok | Property Set
refs .
N e - =
_ content model derive

Figure 5.2 Default binding for a reference to a model group definition.

This default binding style results in the same properties occurring within both
Java content interface’ s A and C to represent the referenced Model Group B’s
content model. However, this shared set of methodsisnot promoted to be a Java
interface by default binding since named model group definitions are not
considered part of XML Schema s type derivation hierarchy and thus this
relationship should not be reflected in the Java representation of the two
complex types that reference the same model group definition.

72 JAXB Specification — Final, V1.0 1/8/03

Model Group Definition

When amodel group definition’s content model contains an XML Schema
component that is to be bound to a content interface, element interface or
typesafe enum class, it is desirable to only create a single Java representation,
not one for each complex content that references the named model group
definition. This default binding from amodel group definition’s content model
is defined in Section 5.5.4, “Deriving Class Names for Named Model Group
Descendants."

For those who prefer to formerly preserve model group definitions in the Java
representation of a schema, a customized binding of amodel group definition to
a Java content interface is discussed in Section 5.5.3, “Bind to a Java content
interface.”

5.5.1 Bind to a set of properties

A non-repeating reference to amodel group definition, when the particle
referencing the group has {max occurs} equal to one, resultsin aset of content
properties being generated to represent the content model. Section 5.9, “ Content
Model - Particle, Model Group, Wildcard” describes how a content model is
bound to a set of properties and has examples of the binding.

5.5.2 Bind to alist property

When amodel group definition is referenced from a particle with {max occurs}
greater than one, it is useful to map the reference to aList property in the
following manner:

« Thename of the Javaproperty isderived from the model group definition
{name} property using the XML Name to Javaidentifier name mapping
algorithm specified in Section C.2, “The Name to I dentifier Mapping
Algorithm,” on page 189.

« TheJavaproperty’shbasetypeisj ava. | ang. Obj ect .

« Thepredicate for the Javaproperty isall the elements/va uesthat can be
placed into the list and the ordering restrictions between elements.

« The Java property collection typeis java.util.List.

« The property has no default value.

1/8/03 JAXB Specification — Final, V1.0 73

Binding XML Schema to Java Representations

Example:

Schema fragment contains a particle that references the model group definition
has a{maxOccurs} value greater than one.

<xs: group nane="AMddel G oup" >
<xs: choi ce>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:float"/>
</ xs: choi ce>
</ xs: group>

<xs: conpl exType name="f o00">
<XS:sequence>
<xs:group ref="Awbdel G oup" maxCccurs="unbounded"/>
<xs:el enent name="C' type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>

Derived Java representation:

interface Avbdel GroupA {

int getValue(); void setValue(int);}
interface Avbdel GroupB {

float getValue(); void setValue(float);}

interface Foo {

/** A valid general content property that contains
i nstances of AMdodel G- oupA and Albdel G oupB. */

java.util.List get Avodel Group();

float getC();
void setC(float val ue);

5.5.3 Bind to a Java content interface
With the appropriate customization specified, as defined in Section 6.7.3.2,

“Model Group Definition,” a named model group is bound to a Java content
interface in the following manner:

74 JAXB Specification — Final, V1.0 1/8/03

Model Group Definition

1/8/03

A namefor the content interface, which is either computed directly from
an XML name or specified by the binding customization for the model
group definition;

A package name, which iseither computed from the target namespace of
the model group definition or specified by binding customization of the
target namespace or a specified package name for components that are

scoped to no target namespace.

There is no outer class hame context since a named model group
definition must be a top-level schema component.

There is no schema derived baseinterfacefor this Java content interface,
sinceit isindependent of the type definition derivation hierarchy.

Set of Java properties which provide access and modification to the
content model represented by the interface.

Set of element interfaces, content interfaces and typesafe enum classes
representing element declarations and anonymous type definitions
occurring within content model of model group definition. These
interfaces are derived from XML Schema components occurring within
the content model of the model group definition either by default or due
to customizations. These interfaces and classes are nested within the
model group definition’s Java representation as a content interface.

A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include local
structural constraints detailed in Section 2.2, “V arieties of validation,”
on page 17.

A factory method is generated in the packag€e' s Obj ect Fact or y class
introduced in Section 4.2, “Java Package.” The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:;

o Thestring constant cr eat e.
o The name of the Java content interface.

For example, if aJava content interface named Foo represents a model
group definition Foo, it would have the following factory method
signature generated in the containing Java package's Obj ect Fact ory
class:

Foo creat eFoo()

JAXB Specification — Final, V1.0 75

Binding XML Schema to Java Representations

All references to a model group definition bound to a Java content interface are
mapped to a Java property with a base type of the Java content interface
representing the model group definition. If the particlereferencing the group has
an occurrence greater than one, then the reference is mapped to a Collection
property with abase type of the Java content interface representing the model
group definition.

Note that areference to amodel group definition from acomplex type definition
content model with a{content type} of mixed can not be bound to asimple
property with abase type of a Java content interface. It must be bound to a
general content property as detailed in Section 5.9.4, “Bind mixed content.”

Example:

Given the XML Schema fragment and assume the appropriate customizations
exist in an external binding file®:

<xs: group nane="AMddel G oup" >
<Xs:sequence>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:float"/>
</ xs: sequence>
</ xs: group>

<xs: conpl exType name="f o00">
<Xs:sequence>
<xs:group ref="AMdel G oup"/>
<xs:el enent name="C' type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>

Derived Java representation:

public interface Avbdel Group {
void setA(int value);
int getA();
voi d setB(float val ue);
float getB();

3 Note the actual binding declarations are not explicitly used since they are not introduced till the
customization section.

76 JAXB Specification — Final, V1.0 1/8/03

Model Group Definition

public interface Foo {
AMbdel Group get AMbdel Group();
voi d set AMbdel G oup(AMbdel Group val ue);
float getC();
void setC(float val ue);

b

cl ass ObjectFactory {
Foo createFoo();
AMbdel Group cr eat eAvbdel Group() ;

The binding of a<xs: choi ce>to aclassis specified in Section 5.9.10.1,
“Bind a Choice Group to a Content Interface.”

5.5.4 Deriving Class Names for Named Model
Group Descendants

When amodel group definition is not customized to be bound to a content
interface, as described in the previous subsection, and its content model
contains XML Schema components that need to be bound to a Java class or
interface, this section describes how to derive the package and name for the Java
content interface, typesafe enum class or element interface derived from the
content model of the model group definition. The binding of XML Schema
components to Java classes/interfaces is only performed once when the model
group definition is processed, not each time the model group definition is
referenced as is done for the property set of the model group definition.

XML Schema components occurring within a model group definition’s content
model that are specified by this chapter and the customization chapter to be
bound to an interface or typesafe enum class are bound as specified with the
following naming exceptions:;

« package: The element interface, content interface or typesafe enum class
is bound in the Java package that represents the target namespace
containing the model group definition.

« name: The name of the interface or class is generated as previously
specified with one additional step to promote uniqueness between
interfaces/classes promoted from a model group definition to be bound

1/8/03 JAXB Specification — Final, V1.0 77

Binding XML Schema to Java Representations

78

to atop-level classwithin aJavapackage. A prefix for theinterface/class
name is computed from the model group definition’s {name} using the
XML name to Javaidentifier algorithm.

JAXB Specification — Final, V1.0 1/8/03

Model Group Definition

For example, given amodel group definition named Foo containing an element
declaration named bar with an anonymous complex type definition, the
anonymous complex type definition is bound to a Java content interface with the
name FooBarType. The following figure illustrates this example.

XML Schema Components

ComplexType A

r |
content model
L J

‘refs

Model Group Foo

r I
content mode! - - - -+
L ._I‘

refs

ComplexType C

r 1
\Lcontent model - -

Figure 5.3 Default binding for anonymous type def within a model group definition.

JAXB Java Representation

-
| v

Content Interface A

Property Set

FooBar Type getBar();

Content interface
FooBar Type

EN

Content Interface C

-

Property Set

FooBar Type getBar();

Note that even customization specified interface or typesafe enum class names
are prepended with the model group definition’s name. Thus, if a model group

definition named Foo contains an anonymous simple type definition with a

typesafe enum class customization name of Col or s, thetypesafe enum class

nameis FooCol or s.

1/8/03 JAXB Specification — Final, V1.0

79

Binding XML Schema to Java Representations

5.6 Attribute Declaration

An attribute declaration is bound to a Java property when it is referenced or
declared, as described in Section 5.8, “Attribute use,” from a complex type
definition.

57 Element Declaration

This section describes the binding of an XML element declaration to a Java
representation. It also introduces why a JAXB technology user would want to
use instances of a Java Element interface as opposed to instances of Java
datatypes or content interfaces when manipulating XML content.

An XML element declaration is composed of two key components:;

« itsqualified nameis {target namespace} and {name}
« itsvalueisan instance of the Java class binding of its {type definition}

A Java Element interface is generated to represent both of these components.
An instance of a Java content interface or a Java class represents only the value
of an element. Commonly in JAXB binding, the Java representation of XML
content enables one to manipulate just the value of an XML element, not an
actual element instance. The binding compiler statically associates the XML
element qualified name to a content property and this information is used at
unmarshal/marshal time. The following schema/derived Java code example
illustrates this point.

Example:
Given the XML Schema fragment:

<xs: conpl exType nane="chair_ki nd">
<Xs:sequence>
<xs:el enent nanme="has_armrest" type="xs:bool ean"/>
</ xs: sequence>
</ xs: conpl exType>

80 JAXB Specification — Final, V1.0 1/8/03

Element Declaration

Schema-derived Java content interface:

public interface ChairKind {
bool ean i sHasArnRest ();
voi d set HasAr nRest (bool ean val ue);

}

A user of the Java interface Chai r Ki nd never has to create a Java instance that
both has the value of local element has_ar m r est and knows that its XML
element nameishas_ar m r est . The user only provides the value of the
element to the content-property has Ar mRest . A JAXB implementation
associ ates the content-property hasAr nRest with XML element name

has_ar m rest when marshalling an instance of Chai rKi nd.

The next schema/derived Java code example illustrates when XML element
information can not be inferred by the derived Java representation of the XML
content. Note that this example relies on binding described in Section 5.9.5,
“Bind wildcard schema component.”

Example:

<xs: conpl exType nane="chair_ki nd">
<Xs:sequence>
<xs:any/>
</ xs: sequence>
</ xs: conpl exType>

public interface ChairKind {

java.l ang. Obj ect getAny();

voi d set Any(java.lang. Obj ect el ement O Val ue);
}

For this example, the user can provide an Element instance to the any content-
property that contains both the value of an XML element and the XML element
name since the XML element name could not be statically associated with the
content-property any when the Java representation was derived from its XML
Schema representation. The XML element information is dynamically provided
by the application for this case. Section 5.9, “Content Model - Particle, Model
Group, Wildcard,” on page 89 cover additional circumstances when one can use
instances of Element interface.

1/8/03 JAXB Specification — Final, V1.0 81

Binding XML Schema to Java Representations

5.7.1

Bind to Java Element Interface

The characteristics of the generated Java Element interface are derived in terms
of the properties of the “Element Declaration Schema Component” on page 205
asfollows:

82

The name of the generated Java Element interface is derived from the
element declaration {name} using the XML Name to Java identifier
mapping algorithm for class names.

If the element declaration’ s {type definition} isa
o Complex Type definition

The derived Java Element interface extends the Java content interface
representing the {type definition}.

o Simple type definition

The generated element interface has a Java simple content-property
named " val ue".

Obj ect Fact or y method to create an instance of the Element
interface takes aval ue parameter of the Java classbinding of thesimple
type definition.

If {scope} is

o Global: The derived Element interface is generated into the Java
package that represents the binding of {target namespace}.

o A Complex Type Definition: The derived Element interface is
generated within the Java content interface represented by the complex
type definition value of {scope}.

Each generated Element interface must extend the Java marker interface
j avax. xml . bi nd. El ement . This enables JAXB implementations

to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

If {nillable} is"t rue", themethodsset Ni | () andi sNi | () are
generated.

Optional {value constraint} property with pair of def aul t orfi xed
and avalue.

If adefault or fixed value is specified, the data binding system must
substitute the default or fixed value if an empty tag for the element
declaration occursin the XML content.

JAXB Specification — Final, V1.0 1/8/03

Element Declaration

« |If an element declaration schema component has an {abstract} property
of "true",an Obj ect Fact ory factory method must not be
generated for it.

Note — Substitution properties are not covered since support is not required in this
version of the specification as stated in Section E.2, “Not Required XML
Schema concepts,” on page 208.

Default binding rules require an element declaration to be bound to derived
Element interface under the following conditions:;

« All element declarations with global {scope} are bound to aderived Java
Element interface. The rationale is that any global element declaration
can occur within awildcard context and one might want to provide
element instances, not instances of the element’s type, the element’s
value, for this case.

« All local element declarations, having a {scope} of a complex type
definition, occurring within content that is mapped to a general content
property must have derived Java Element interfaces generated. General
content property is specified in Section 5.9.3, “General content
property” An example of when a content model is mapped to a general
content property, forcing the generation of element declarationsis at
Section 5.9.3.1, “Examples.”

5.7.2 Binding of an anonymous complex type
definition

An anonymous complex type definition of an element declaration is mapped to
acontent interface’. The naming characteristics of the generated Java Content
interface is derived in terms of the properties of the “ Element Declaration
Schema Component” on page 205 as follows:

« The name of the generated Java Content interface is derived from the
element declaration {name} using the XML Nameto Javaidentifier with
a“Type’ suffix appended, by default. If there exists a customization for
adding a prefix or suffix to anonymous type definitions that are bound to

* See Section 5.5, “Model Group Definition” for how anonymous complex type definitionswith a
named model group as an ancestor are handled.

1/8/03 JAXB Specification — Final, V1.0 83

Binding XML Schema to Java Representations

aJavaclass or interface, the default “ Type” suffix is not added.
Section 6.6, “ <schemaBindings> Declaration” specifies the element
<j axb: anonynousTypeNane> to describe the customization.

« The package of the generated Java Content interface is the same as the
package derived from the element declaration’ s {target namespace} .

« Theouter class names of the generated Java Content interface is
determined by the element declaration’s {scope}. If {scope} is:

o Global
There is no outer class name.

o A Complex Type Definition
The derived Content interface is generated nested within the Java
content interface represented by the complex type definition value of
{scope}.

Section 5.3, “Complex Type Definition” defines how the remaining Java
content interface properties are derived from the anonymous complex type
definition.

Example:

Given XML Schema fragment:

<xs: el enent name="f oo">
<xs: conpl exType>
<Xs:sequence>
<xs:el enent name="bar" type="xs:int"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

Derived Java code:

/** Java content interface generated
from anonynous conplex type definition of elenment foo. */
interface FooType {
int getBar();
voi d setBar (int val ue);
}
/** Java El ement interface. */
interface Foo extends javax.xmnl .bind. El enent, FooType {};

84 JAXB Specification — Final, V1.0 1/8/03

Attribute use

5.7.3

5.8

Bind to a Property

Loca element declaration

Map local element declaration with a fixed {value constraint} to a Java
constant property.

If an element declaration has a{nillable} property thatis“t rue” and
its {type definition} is mapped by default to a non-referenceable
primitive Javatype, the base type for the Java property is mapped to the
corresponding Javawrapper class for the Javaprimitive type. Setting the
property tothenul | value indicatesthat the property has been set to the
XML Schemaconcept of ni | =" true’.

Attribute use

A ‘required’ or ‘optional’ attribute use is bound by default to a Java property as
described in Section 4.5, “Properties,” on page 40. The characteristics of the
Java property are derived in terms of the properties of the “Attribute Use
Schema Component” on page 207 and “ Attribute Declaration Schema
Component” on page 206 as follows:

1/8/03

The name of the Javaproperty isderived from the{attribute declaration}
property’s {name} property using the XML Nameto Java ldentifier
mapping algorithm described in Section C.2, “The Name to Identifier
Mapping Algorithm,” on page 189.

A base type for the Java property isderived fromthe{attri but e
decl arati on} property’s{type definition} property as
described in binding of Simple Type Definition in Section 5.2, “ Simple
Type Definition.”

An optional predicate for the Java property is constructed from the
{attribute declaration} property’s{type definition}
property as described in the binding of simple type definition to a Java
representation.

An optional collection type for the Java property is derived from the
{attribute declaration} property’s{type definition}
property as described in the binding of simple type definition to a Java
representation.

JAXB Specification — Final, V1.0 85

Binding XML Schema to Java Representations

« The default value for the Java property is the value from the attribute
use' s {value constraint} property. If the optional {value constraint} is
absent, the default value for the Java property is the Java default value
for the base type.

This Java property is a member of the Java content interface that represents the
binding of the complex type definition contai ning the attribute use.

Design Note — Since the target namespace is not being considered when
mapping an attribute to a Java property, two distinct attributes that have the same
{name} property but not the same {target namespace} will result in a Java
property naming collision. As specified generically in Section C.2.1, “Collisions
and conflicts,” on page 192, the binding compiler detect this name collision
between the two distinct properties and report the error. The user can provide a
customization that provides an alternative Java property name to resolve this
situation.

Example:
Given XML Schema fragment:

<xs: conpl exType nanme="USAddress" >
<xs:attribute nane="country" type="xs:string"/>
</ xs: conpl exType>

Default derived Java code:

public interface USAddress ({
public String getCountry();
public void setCountry(String val ue);

5.8.1 Bind to a Java Constant property

An attribute use with af i xed {value constraint} property can be bound to a
Java Constant property. This mapping is not performed by default sincef i xed
isavalidation constraint. Since validation is not required to unmarshal or
marshal, XML content can have an alternative value for an attribute than the
fixed value. The user must set the binding declaration attribute

fi xedAttributeToConstant Property on<j axb: gl obal Bi ndi ng> element
as specified in Section 6.5.1, “Usage,” on page 121 or on

86 JAXB Specification — Final, V1.0 1/8/03

Attribute use

<j axb: propert y> element as specified in Section 6.8.1, “Usage,” on page
134 to enable this mapping.

Example:

Given XML Schema fragment:

<Xs:annot at i on><xs: appi nf o>
<j axb: gl obal Bi ndi ngs fi xedAttributeAsConstant Property="true"/>
</ xs: appi nf o></ xs: annot ati on>
<xs: conpl exType nanme="USAddress" >
<xs:attribute nane="country" type="xs: NMTOKEN' fi xed="US"/>
</ xs: conpl exType>

If the appropriate binding schema customization enables mapping afixed XML
value to Java constant property, the following Java code fragment is generated.

public interface USAddress ({
public static final String COUNTRY="US";

5.8.1.1 Contributions to Local Structural Constraint

If the attribute use's {required} property istrue, thelocal structural constraint
for an instance of the Java content interface requires that the corresponding Java
property to be set when the Java content interface instance is validated.

5.8.2 Binding an IDREF component to a Java
property

An element or attribute with atype of xs: | DREF refers to the element in the
instance document that has an attribute with a type of xs: | D or derived from
type xs: | D with the same value as the xs: | DREF value. Rather than expose the
Java programmer to this XML Schema concept, the default binding of an

xs: | DREF component maps it to a Java property with a base type of
javalang.Object. The caller of the property setter method must be sure that its
parameter isidentifiable. An object is considered identifiable if one of its
properties is derived from an attribute that is or derives from type xs: 1 D. There
is an expectation that all instances provided as values for properties
representing an xs: | DREF should have the Java property representing the xs: 1 D
of the instances set before the content tree containing both the xs: | Dand

1/8/03 JAXB Specification — Final, V1.0 87

Binding XML Schema to Java Representations

xs: | DREF is (1) globally validated or (2) marshalled. If a property representing
an xs: | DREF is set with an object that does not have itsxs: | D set, the
Not | dent i f i abl eEvent is reported by (1) validation or (2) marshalling.

« Thename of the Javaproperty is derived from the {name} property of the
attribute or element using the XML Name to Java Identifier mapping
algorithm described in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 189.

« A base type for the Java property is java.lang.Object.
« Thereisno predicate for a property representing an xs: | DREF.
« An optiona collection type

« Default and fixed values can not be supported for an attribute with type
xs: | DREF.

Example:
Given XML Schema fragment:

<xs: conpl exType name="Book" >
<Xs:sequence>
<xs: el ement nanme="aut hor" type="xs:|DREF"/>
S
</ xs: sequence>
</ xs: conpl exType>
<xs: conpl exType nanme="Aut hor Bi 0" >
<xs:sequence><!-- ... --> </xs:sequence>
<xs:attribute name="name" type="xs:ID'/>
</ xs: conpl exType>

88 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

Schema-derived Java content interfaces:

public interface Book {
java.l ang. Obj ect get Aut hor();

/** Paraneter referencedOj should have an attribute or
* child elenent with base type of xs:ID by validation
* or marshal tinme.
*/
voi d set Aut hor (j ava. |l ang. Obj ect referencedObj);
}
public interface AuthorBio{
String get Nanme();
void setNane(String val ue);

}
Demonstration of a Java content instance referencing another instance;

Book book = ...;

Aut hor Bio authorBio = ...;

book. set Aut hor (aut hor Bi 0) ;

aut hor Bi 0. set Nane(" <sone aut hor’s name>");

/1 The content instance root used to validate or marshal book nust
/1 also include "authorBio" as a child el enent sonmewhere.

/1 A Java content instance is not included

Note that ID and IDREF mechanisms does not incorporate the type definitions
that can be referenced. A binding declaration customization could specify that
the base type for the author property of content interface Book should be
AuthorBio instead of javalang.Object to make for a more meaningful binding.

5.9 Content Model - Particle, Model
Group, Wildcard

This section describes the possible Java bindings for the content model of a
complex type definition schema component with a {content type} property of
nm xed orel ement - onl y. The possible element content(s) and the valid
orderings between those contents are constrained by the {particles} describing
the complex type definition’ s content model. The Java binding of a content
model is realized by the derivation of one or more content-properties to

1/8/03 JAXB Specification — Final, V1.0 89

Binding XML Schema to Java Representations

represent the element content constrained by the model group. Section 5.9
introduces to logically different binding styles. Section 5.9.1 through 5.9.7
describes the default binding style that is referred to as the element binding of
the content model. From Section 5.9.8 till the end of Section 5.9, model group
binding style is defined. Note that model group binding is only enabled by
customizations described in Section 6.

5.9.1 Element binding style

Theideal Java binding would be to map each uniquely named element
declaration occurring within a content model to a single Java content-property.
The model group schema component constraint, element declarations
consistent, specified in [XSD-Part 1] ensures that all element declarations/
references having the same { target namespace} and { name} must have the same
top-level type definition. This model allows the JAXB technology user to
specify only the content and the JAXB implementation infers the valid ordering
between the element content based on the {particles} constraintsin the source
schema. However, there do exist numerous scenarios that thisideal binding is
not possible for parts of the content model or potentially the entire content
model. For these cases, default binding has a fallback position of representing
the element content and the ordering between the content using a general
content model. The scenarios where one must fallback to the general content
model will be identified later in this subsection.

5.9.2 Bind each element declaration name to a
content property

This approach relies on the fact that a model group merely provide constraints
on the ordering between children elements and the user merely wishes to
provide the content. It is easiest to introduce this concept without allowing for
repeating occurrences of model groups within a content model. Conceptually,
this approach presents all element declarations within a content model as a set
of element declaration {name}’s. Each one of the {name}’'sis mapped to a
content-property. Based on the element content that is set by the JAXB
application via setting content-properties, the JAXB implementation can
compute the order between the element content using the following methods.

Computing the ordering between el ement content within [children] of an
element information item

90 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

« Schema constrained fixed ordering or semantically insignificant

ordering

The sequence in the schema represents an ordering between children
elements that is completely fixed by the schema. Schema-constrained
ordering is not exposed to the Java programmer when mapping each
element in the sequence to a Java property. However, it is necessary for
the marshal/unmarshal process to know the ordering. No new ordering
constraints between children elements can be introduced by an XML
document or Java application for this case. Additionally, the Java
application does not need to know the ordering between children
elements. When the compositor isal | , the ordering between element
content is not specified semantically and any ordering is okay. So this
additional case can be handled the same way.

Schema only constrains content and does not significantly constrain
ordering

If the ordering between the children elements is significant and must be
accessible to the Java application, then the ordering is naturally
preserved in Java representation via a collection. Below are examples
where schema provides very little help in constraining order based on
content.

<xs: choi ce maxQccur s="unbounded"> ... </choice>
<xs:sequence maxQccurs="unbounded"> ... </sequence>

Schema constrained partial ordering

The ordering between children elementsis constrained by a
combination of constraints between content specified in the schemaand
the actual content within the XML content. The schema provides
constraints on ordering for this case that is computed based on the
content assigned from the XML document during unmarshalling or
from the set values by the Java application. There exists a significant
number of cases where the ordering constraints can be computed based
on the set value content and partial ordering between elements specified
in the schema.

Below is an exampl e demonstrating the ordering of children elements using
partially schema constrained ordering. Given that the following schemais
mapped to four Java properties: A, B, C and D,

1/8/03

JAXB Specification — Final, V1.0 91

Binding XML Schema to Java Representations

<xs: choi ce>
<Xs:sequence>
<xs:el enent ref="A"/>
<xs:el enent ref="C"/>
<xs:el enent ref="D"/>
</ xs: sequence>
<Xs:sequence>
<xs:el enent ref="B"/>
<xs: choi ce>
<xs:elenent ref="C"/>
<xs:elenent ref="D"/>
</ xs: choi ce>
</ xs: sequence>
</ xs: choi ce>

one can compute if only the properties for A, C and D are set, that the content
should be marshalled out in the order constrained by the first choice sequence. If
the content is set for either B and C or B and D, then the second choice sequence
ordering constraint between elements should be followed.

Example:
Given XML Schema fragment:

<xs: conpl exType nane="USAddress"/>
<xs: conpl exType name="ltens"/>
<xs: el enent name="comment" type="xs:string"/>
<xs: conpl exType nane="PurchaseOrder Type" >
<Xs:sequence>
<xs: choi ce>
<XS: group ref="shi pAndBi | | "/ >
<xs: el enent nanme="si ngl eUSAddr ess" type="USAddr ess"/>
</ xs: choi ce>
<xs: el enent ref="coment" m nCccurs="0"/>
<xs:el enent name="itens" type="Itens"/>
</ xs: sequence>
<xs:attribute nane="orderDate" type="xs:date"/>
</ xs: conpl exType>
<xs:group nane="shi pAndBill">
<Xs:sequence>
<xs: el enent nanme="shi pTo" type="USAddress"/>
<xs:el enent name="bill To" type="USAddress"/>
</ xs: sequence>
</ xs: group>

92 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

Generate following Java code and assume USAddr ess isacomplex type
definition that is bound to a Java content interface USAddr ess.

public interface PurchaseO der Type {
voi d set Shi pTo(USAddress);
USAddr ess get Shi pt To();
voi d setBill To(USAddress);
USAddr ess getBill To();
voi d set Si ngl eUSAddr ess(USAddr ess) ;
USAddr ess get Si ngl eUSAddr ess();
voi d set Conment (String);
String get Comment () ;
void set OrderDate(java. util.Cal endar);
java.util. Calendar getOrderDate();
void setltens(ltens);
Items getltens();

}

User is responsible for knowing that a valid content model requires either
property si ngl eUSAddr ess to be set or for propertiesshi pTo and

bi I | To must be set. Note that the user does not have to concern themselves
with the ordering between properties. A JAXB implementation is responsible
for inferring the order between elements based on what content is set. If the
system is unable to infer the ordering at validation time, a validation event is
thrown. The marshalling of invalid content is not specified so it is non-
deterministic what a system does for that case.

5.9.3 General content property

A general content property is, asits name implies, the most general of all
content properties. Such a property can be used with any content specification,
no matter how complex. A general content property is represented as a List
property as introduced in Section 4.5.2.2, “List Property,” on page 45. Unlike
the prior approach where the JAXB implementation must infer ordering
between the element content, this approach always requires the JAXB
technology user to specify avalid ordering of element and text content. This
approach has the benefit of providing the application with more control over
setting and knowing the order between element content.

A general content property is capable of representing both element information
items and character data items occurring within [children] of an element

1/8/03 JAXB Specification — Final, V1.0 93

Binding XML Schema to Java Representations

information item. Character data isinserted into the list as java.lang.String
values. Element datais added to the list as instances of Java Element interfaces.

94 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

5.9.3.1 Examples

Example 1: Complex content model of Elements with primitive types

<xs: conpl exType nanme="Base" >
<xs: choi ce maxCccur s="unbounded" >
<xs:el enent name="A" type="xs:string"/>
<xs:el enent name="B" type="xs:string"/>
<xs:el enent name="C' type="xs:int"/>
</ xs: choi ce>
</ xs: conpl exType>

public interface Base {
interface A extends javax.xnl.bind. El ement {
String getValue(); void setValue(String);}
interface B extends javax.xnl.bind. El ement {
String getValue(); void setValue(String);}
interface C extends javax.xnl.bind. El ement {
int getValue(); void setValue(int);}

/**
* A general content list that can contain
* elenment instances of Base. A Base.B and Base.C.
* <insert appropriate schema fragnent here>
*/
Li st get AOrBO () ;
}

Example 2: XML Schema element declaration with Complex Type Definition

XML Schema fragment:

<xs: conpl exType name="AType"/>
<xs: conpl exType name="BType"/>
<xs: conpl exType FooBar >
<xs: choi ce maxCccur s="unbounded" >
<xs: el enent name="foo" type="AType"/>
<xs:el enent name="bar" type="BType"/>
</ xs: choi ce>
</ xs: conpl exType>

1/8/03 JAXB Specification — Final, V1.0

95

Binding XML Schema to Java Representations

Default derived Java code:

interface AType { ... }
interface BType { ... }

interface FooBar {
interface Foo extends AType, javax.xm.bind.El ement {...}
interface Bar extends BType, javax.xm .bind.El ement {...}
/**
‘* Avalid general content list contains instances of
* Foo and/or Bar.
*/
Li st get FooOrBar();

594 Bind mixed content

When a complex type definition’s {content type} is“mixed,” its character and
element information content is bound to general content list as described in
Section 5.9.3, “General content property.” Character information datais
inserted asinstancesof j ava. | ang. Stringintoa java. util.Li st
instance. The local structural constraints of the {content type} particlesis
propagated up to the Java content interface representing the complex type
definition.

Example:

Schema fragment loosely derived from mixed content example from
[XSD Part Q].

<xs: el enent name="| etterBody">
<xs:conpl exType m xed="true">
<XS:sequence>
<xs: el enent name="nane" type="xs:string"/>
<xs:el enent name="quantity" type="xs:positivelnteger"/>
<xs: el enent name="product Name" type="xs:string"/>
<l-- etc. -->
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >

Derived Java code:

96 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

i mport java. nat h. Bi gl nt eger;
interface LetterBodyType {

}

interface Nane extends javax.xml.bind. El enent {

String getValue(); void setValue(String); }
interface Quantity extends javax.xmnl.bind. El enent {

Bi gl nt eger getVal ue(); void setVal ue(Biglnteger); }
interface Product Nane extends javax.xnl . bind. El ement {

String getValue(); void setValue(String);}

/** M xed content can contain instances of Elenent interfaces
Name, Quantity and Product Nane. Text data is represented as
java.util.String for text.

*/

Li st getContent();

public interface LetterBody extends

javax. xnml . bi nd. El enent, LetterBodyType { };

The following instance document

<l ett er Body>

Dear M. <nanme>Robert Sm th</nanme>

Your order of <quantity>1</quantity> <product Nane>Baby
Moni t or </ product Nanme> shi pped from our warehouse.

</

et t er Body>

could be constructed using JAXB API.

LetterBody Ib = hjectFactory. createlLetterBody();

Li st gcl = Ib.getContent();
gcl.add("Dear M.");
gcl . add(Obj ect Fact ory. creat eLett er BodyNane("Robert Smth"));
gcl . add("Your order of ");
gcl . add(Obj ect Fact ory.
createletterBodyQuantity(new Biglnteger("1")));
gcl . add(Obj ect Fact ory. creat eLet t er BodyPr oduct Narme(" Baby Monitor"));
gcl . add("shi pped from our warehouse");

Note that if any element instance is placed into the general content list, gcl, that
is not an instance of LetterBody.Name, LetterBody.Quantity Or LetterBody.ProductName,
validation would detect the invalid content model. With the fail fast
customization enabled, element instances of the wrong type are detected when
being added to the general content list, gcl.

1/8/03

JAXB Specification — Final, V1.0 97

Binding XML Schema to Java Representations

5.9.5 Bind wildcard schema component

A wildcard is mapped to a simple content-property with:

« Content-property name set to the constant “any”. A binding schema
customization could provide a more semantically meaningful content-
property name.

« Content-property basetypesettoj ava. | ang. Obj ect by default.
Wildcard content encountering during unmarshalling is supported if
global XML element tags occurring in “strict” or “lax” wildcard context
are known to the instance of j avax. xm . bi nd. JAXBCont ext ,
meaning that the schema(s) describing the element content occurring in
thewildcard context isregistered with the JAXBCont ext instance, see
Section 3.2, “JAXBContext,” on page 24 on how bindings are registered
with aJAXBCont ext instance. A JAXB implementation is only
required to be able to marshall and unmarshal global element content to/
from “strict”/“lax” wildcard context that is registered and valid®
according to the schema(s) registered to JAXBCont ext . The
specification does not specify how a JAXB implementation handles
element content that it does not know how to map to a Java
representation.

« See content-property predicate for a wildcard.

. If themaxQOccur s isgreater than one, the content property is mapped
to a collection property. The default collection property isa List

property.
« Theseisno default value.

Note that the default base type being the marker class for an XML element
indicates that awildcard content handled by default as an instance of an XML
Element. Since the schema does not contain any information about the element
content of awildcard content, even the content-property, by default, can not
infer an XML element tag for wildcard element content.

* The wildcard content must conform to the schema(s) registered with JAXBCont ext .

98 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

5.9.6 Bind arepeating occurrence model group

A choice or sequence model group with arepeating occurrence, maxQOccur s
attribute greater than one, is bound to a general content property in the
following manner:

« Content-property nameis derived in following ways:

o If anamed model group definition is being referenced, the value of its
{name} property is mapped to a Javaidentifier for a method using the
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 189.

o To derive a content property name for unnamed model group, see
Section C.4, “Deriving an identifier for amodel group,” on page 194.

« Content-property basetypesettoj ava. | ang. Obj ect . A binding
schema customization could provide a more specialized java class.

« Content-property predicate validates the order between element
instances in the list and whether the occurrence constraints for each
element instance typeis valid according to the schema.

« Sincethe maxQccur s isaways greater than one, the content property
is mapped to a collection property. The default collection property isa
List property.

« Theseisno default value.

Local structural Constraints

Thelist content property’ s value must satisfy the content specification of the
model group. The ordering and element contents must satisfy the constraints
specified by the model group.

5.9.7 Content Model Default Binding

The following rules define element binding style for acomplex type definition’s
content model.

1. If {content type} is mixed, bind the entire content model to a general con-
tent property with the content-property name “cont ent ”. See
Section 5.9.4, “Bind mixed content” for more details.

2. If (1) aparticle has {max occurs} >1 and (2) its {term} isamodel group,
then that particle and its descendants are mapped to one general content

1/8/03 JAXB Specification — Final, V1.0 99

Binding XML Schema to Java Representations

property that represents them. See Section 5.9.6, “Bind a repeating
occurrence model group” for details.

Processall theremaining particles (1) whose {term} are wildcard particles
and (2) that did not belong to arepeating occurrence model group bound
instep. 2. If thereisonly onewildcard, bind it asspecifiedin Section 5.9.5,
“Bind wildcard schema component.” If there is more than one, then
fallback to representing the entire content model as a single general
content property.

Processall particles (1) whose{term} are element declarations and (2) that
do not belong to a repeating occurrence model group bound in step.2.

First, we say a particle hasalabel L if it refersto an element declaration
whose {name} is L. Then, for all the possible pair of particles P and P’
in this set, ensure the following constraints are met:

a. If Pand P’ havethe same label, then they must refer to the same
element declaration.

b. If Pand P’ refer to the same element reference, then its closest
common ancestor particle may not have sequence as its {term}.

If either of the above constraints are violated, then the binding compiler
must report a property naming collision that can be corrected via
customization.

Create a content property for each label L as follows:
o The content property name is derived from label name L.

o The base type will be the Java type to which the referenced element
declaration maps.

o The content property predicate reflects the occurrence constraint.

o Thecontent property collection typedefaultsto‘l i st ' if thereexist a
particle with label L that has {maxOccurs} > 1.

o For the default value, if al particles with label L has a{term} with the
same {value constraint} default or fixed value, then this value.
Otherwise none.

Note — Note: Binding schema customization can be used to give particles a different

name to avoid the fallback.

100

JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

Below is an example demonstrating violation of rules 4(a) and 4(b) specified
above.

<Xs:sequence>
<xs: choi ce>
<xs:el enent ref="nsl:bar"/> (A
<xs:el enent ref="ns2:bar"/> (B)
</ xs: choi ce>
<xs: el enent ref="nsl:bar"/> (Q
</ xs: sequence>

The pair (A,B) violates the first clause because they both have the label “bar”
but they refer to different element declarations. The pair (A,C) violates the
second clause because their nearest common ancestor particle is the outermost
<sequence>.

5.9.7.1 Default binding of content model “derived by extension”

If a content-property haming collision occurs between a content-property that
existsin an base compl ex type definition and a content-property introduced by a
“derive by extension” derived complex type definition, the content-properties
from the colliding property on are represented by a general content property
with the default property namer est .

Example:
derivation by extension content model with a content-property collision.

Given XML Schema fragment:

<xs: conpl exType nanme="Base" >
<XS:sequence>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:int"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nanme="Derived">
<xs: conpl exCont ent >
<xs:extension base="Base">
<Xs:sequence>
<xs:el enent name="A" type="xs:int"/>
</ xs: sequence>
</ xs: ext ensi on>

1/8/03 JAXB Specification — Final, V1.0 101

Binding XML Schema to Java Representations

</ xs: conpl exCont ent >
</ xs: conpl exType>

Default binding derived Java code:

interface Base {
int getA(); void setA(int);
int getB(); void setB(int);
}

interface Derived extends Base {
interface A extends javax.xnl.bind. El ement {
int getVal ue();
voi d setVal ue(int value);

}

/**

* |Instances of Derived.A nust be placed in this general

* content propert that represents the rest of the content
* model . © */

Li st getRest();

5.9.8 Model group binding style

An alternative binding approach to treating the content model asjust alist of
elements is to map model groups nested in the content model to Java content
interfaces. The benefit of this binding approach is the generated content
interfaces and content properties capture the semantics of model groups, aiding
the user in constructing valid content. Additionally, the additional content
interfaces allow this style of binding to rely alot less on the general content
model, only mixed content models have to be represented as a general content
property. Unfortunately, this approach does result in an increase in the number
of generated Java content interfaces. Additionally, this approach benefits from
bi nding schema customizations that provide semantically meaningful names to
represent the content interfaces generated to represent nested choice and
sequence model groups. Thus, it was not considered as good a candidate for
default binding but it is considered a valuable alternative binding option.

& Specifying a customization of thelocal element declaration A within Derived complex typeto a
different property name than A would avoid the fallback position for this case.

102 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

5.9.9 Bind Top-level Model Group to a Property Set

The contents of non-repeating top-level model group’ is bound to a property set
as specified in Section 5.9.11, “Model Group binding algorithm.” This property
set aggregates into either to a Java content interface derived from a complex
type definition in Section 5.3.2, “Java Content Interface” or to a model group
definition as described in Section 5.5.3, “Bind to a Java content interface.

There is one exception case that must be excluded from this style of binding. If
the top-level model group is a choice for a complex type definition with
attributes, then the top-level model group should be bound asif it were a nested
model group. The rationale for this exception case is that there exist a
relationship between the properties of a choice content property, described in
Section 5.9.10.1, “Bind a Choice Group to a Content Interface.” that does not
accommodate simply aggregating the properties representing attributes into the
same interface.

5.9.10 Bind Nested Model Group

This subsection describes how a repeating top-level model group or a model

group nested® within a content model! is bound to a content interface. Chapter 6,
“Customization” describes the various customizations that enable this binding.

The characteristics of the content interface are derived in terms of the properties
of the “Model Group Schema Component” on page 2088 as follows:

« The content interface name for a unnamed model group is either derived
as specified in Section C.4, “Deriving an identifier for a model group,”
on page 194 or specified explicitly by customization.

« A package name which is the same as the package name for the primary
schema component containing the nested model group.

« For anested model group, the outer class name context is adot-separated
list of Java class hamesrepresenting the first ancestor of the model group
that was mapped to a content interface. The ancestor of the model group

A top-level model group represents the entire content model of a complex type definition or
model group definition. Any model group occurring within atop-level model group is referred
to as a hested model group.

& A model group reference can not be bound to a content interface, only the model group defini-
tion it isreferencing can be bound to a content interface.

1/8/03 JAXB Specification — Final, V1.0 103

Binding XML Schema to Java Representations

for this caseis either acomplex type definition or amodel group that was
also mapped to a content interface.
« By default, the content interface does not have a base interface type.

« Set of Java properties which provide access and modification of the
content model represented by the interface.

o When the model group’s{compositor} ischoi ce, Section 5.9.10.1,
“Bind a Choice Group to a Content Interface” defines the property set.

o When the model group’s{compositor} isal | or sequence,
Section 5.9.11, “Model Group binding algorithm” defines how to
compute the property set.

« A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include attribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

« A factory method is generated in the package's Obj ect Fact ory class
introduced in Section 4.2, “Java Package.” The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:;

The string constant cr eat e.
If the Java content interface is nested within another interface, then the
concatenation of all outer Java class names.

o The name of the Java content interface.

5.9.10.1 Bind a Choice Group to a Content Interface

A choice group in XML Schema specifies one or more particles and where only
one can occur in content. A choice group could be accessed either as a single
entity or as a set of Java properties, only one of which is ever set at one time.
The following subsections describe two styles of binding a choice group to its
Java representation.

A <class> hinding declaration customization of a choice group indicates that its
content model should be represented by a generated content interface that
encapsulates all of its properties and also allows for access of the choice as a
single entity. The customization is specified in Section 6.7.3.3, “Model Group.”
All of the characteristics necessary to generate a choice content interface are
defined in the previous subsection except for the specification of choice
property set.

104 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

The property set that represents a choice group consists of the following
property kinds:

« Set of choice properties (one for each significant® particle in choice
model group). At agiven point in time, at most one of these choice
properties is ever set.

« Aread-only cont ent property. This convenience property represents
the current state of the choice content interface.

The choice property set is defined by the following method signatures:;

« ldentify the properties for the choice model group using Section 5.9.11,
“Model Group binding algorithm.” The choice content interface adds the
following behaviors to the Java properties specified in Section 4.

o i sSet | d methodreturnstrueif the choice property isspecified by the
particle corresponding to | d. At any point in time, only one choice
property in achoice content classistrue, all others will be false.

o |If the choice property represents a Simple or Indexed Property:
(i) get 1 d method returns the current value of the choice property if
the choices content is specified by | d; otherwise, returnnul | . The
method returns a Java primitive type when appropriate.
(ii) set | d method setsthe given value of the choice property. Thisis
amutually exclusive set. It logically unsets the previously set value for
the choice and makes this only set property for the choice content
interface.

o Elseif the choice property represents aList property:
(i) get | Dmethod returnsaj ava. uti | . Li st.When this property
isnot the set choicefor thechoicegroup,i.e.i sSet | Dreturnsf al se,
this method returns a zero-length j ava. ut i | . Li st.
(ii) Thej ava. uti | . Li st methodsthat allow adding to thelist are
the settersfor alist property. When achoicelist property hasitsfirst
element added to it, the previously set choice property is considered to
beunset. If the previously set choice property wasalist property, itslist
content is cleared so thelist isa zero-lengthj ava. util . Li st.

« Theget Cont ent method returns the current value for the choice
content interface.

° A insignificant particle is defined in the Model group binding algorithm as the sequence nested
within another sequence or a choice nested within another choice.

1/8/03 JAXB Specification — Final, V1.0 105

Binding XML Schema to Java Representations

Thereturntypefor theget Cont ent method signatureisdeterminedin
the following manner:

a. If al choiceproperty’sget t er methods have the same Javadatatype
as areturn type, then this datatype isthe get Cont ent method’'s
return type and we are finished. Otherwise, proceed to next step.

b. Compute the most common base type of the return type over al the
choice property’sget t er accessor methods, considering Java
primitive datatypes as their corresponding Java wrapper class.

For example,

o If al choiceitem properties bind to a List property, the return type for
get Content isjava. util.List.

o If all choiceitem propertieshbind to an indexed property, thereturntype
isan array of the most common Java supertype shared among the
choice item properties base types.

o If al choice item properties are different Java numeric primitive
datatypes, the get Cont ent method has a return type of
j ava. | ang. Number .

o |f some choice item properties are collection properties and some are
content values or Java primitive datatypes, the return type is
j ava. | ang. Obj ect.

The actual instance returned by get Cont ent method isthe same as if
the specific get t er method for the currently set choice property was
invoked. The exception being when that property would have returned a
primitive datatype and step (b) above promoted it to its wrapper class.
Additionally, if no choice properties are considered set (when

i sSet Cont ent () isf al se), then the VM default value for an
uninitialized field is returned by an invocation of the get Cont ent
method.

e« Thei sSet Cont ent method returnst r ue if one of the N choice
properties has a current value.

« Theunset Cont ent method discards the property’s given value, if
any.

Example:

XML Schema fragment:

106 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

<xs: conpl exType name="SonmeConpl exType"/ >
<xs: choi ce maxCccur s="unbounded" >
<xs: el enent nanme="foo" type="xs:int"/>
<xs:el enent name="bar" type="xs:string"/>
</ xs: choi ce>
</ xs: conpl exType>

Derived Java interfaces:

public interface SomeConpl exType {
/** class generated to represent <insert choice fragment here>*/
public interface FooO Bar {
/** Setting Foo inplies all other properties are not set and
* and only isSetFoo() will return true.*/
voi d setFoo(int val ue);
int getFoo();
bool ean i sSet Foo();

/** Setting Bar inplies all other properties are not set.*/
voi d setBar(String val ue);

String getBar();

bool ean i sSetBar();

/** returns an instance of java.lang.lnteger or String.*/
java.l ang. Obj ect getContent ();
/** returns true if isSetFoo or isSetBar is true.*/

bool ean i sSet Content();
voi d unset Content ();

Li st get FooOrBar();
cl ass ObjectFactory {

SoneConpl exType creat eSomeConpl exType() ;
SoneConpl exType. FooOr Bar creat eSonmeConpl exTypeFooOr Bar () ;

1/8/03 JAXB Specification — Final, V1.0 107

Binding XML Schema to Java Representations

5.9.10.2 Bind choice group to a choice content property

Setting the choi ceCont ent Pr operty attribute of
<j axb: gl obal Bi ndi ngs> as specified in Section 6.5.1, “Usage,” on page
121 enables this customized binding option.

A non-repeating choice model group is bound to a simple property. A repeating
choice model group is bound to acollection property. A choice content property
is derived from a choice model group as follows:

« The choice content property name is either the referenced model group
definition {name} or obtained using the algorithm specified in
Section C.4, “Deriving an identifier for amodel group,” on page 194.

« Thechoice content property base t ype isthefirst common supertype
of all itemswithin the choice model group, withj ava. | ang. Obj ect

always being a common root for all Java objects.™
« The predicate

« The collection type defaults to List if the choice model group has {max
occurs} greater than one.

« No default value.
A choice property consists of the following methods:

« Theget Choi cel D method returnsthe set value. If the property hasno
set value then thevalue nul | isreturned. Note that a set value of a
primitive Java typeis returned as an instance of the corresponding Java
wrapper class.

« Theset Choi cel D method has a single parameter that is the type of
the choice content property base type.

Thegl obal Bi ndi ngs and property customization attribute,
choi ceCont ent Property, enables this customized binding. The
customization is specified in Section 6.5, “<global Bindings> Declaration.”

10Note that primitive Java types must be represented by their Javawrapper classes when base type
isused in the choice content property method signatures. Also, all sequence descendants of the
choice are treated as either ageneral content property or are mapped to their own Java content
interface.

108 JAXB Specification — Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard

Example:

XML Schema representation of a choice model group.

<xs: choi ce>

<xs:el enent name="foo" type="xs:int"/>
<xs:el enent name="bar" type="xs:string"/>

</ xs: choi ce>

Derived choice content property method signatures:

voi d set FooOr Bar (Obj ect) ;
Obj ect get FooOrBar ();

5.9.11 Model Group binding algorithm

The following rules describe how to bind a content model to its Java
representation when customizations specify that a content model or nested
model group be bound using the model group binding style:

1

2.

3.

1/8/03

When {content type} is

a. m xed - Bind the entire content model to a general content property
with the content-property name " content”. See Section 5.9.3, “General
content property” for more details.

b. el enent - only - Apply al binding declaration customizations on
model groups within the content model.

Normalize unnecessary nested, non-repeating model groups remaining
after applying previous step.

Given particle T that contains a particle N, (1) if the {term} for both
particle T and N represent the same compositor, either <sequence> or
<choi ce> and (2) particle N has {max occurs} == 1, then one can
flatten all the particles from particle N’s {term} model group into the
particle T's {term} model group.

This process should be repeated until the top level particle only contains
a. choice groups containing nested, non-repeating sequences

b. seguence groups containing nested, non-repeating choices

c. directly or indirectly, repeating occurrence model groups

Bind all repeating occurrence model groups remaining after applying the

JAXB Specification — Final, V1.0 109

Binding XML Schema to Java Representations

previous steps in the following manner:

a. Bind each sequence or choice group to the appropriate Java content
interface.

b. Represent the multiple occurrences of the model group asalList
property with base type of the Java content interface derived in step
3(a).

Bind all non-repeating model groups remaining after applying previous

stepsin the following manner:

a. Bind each non-repeating top-level model group to a Java content
interface that also representsits parent complex type definition or
model group definition.

b. Bind each nested model group to a Java content interface.

c. Map each model group to asimple property with abase type of the
Java content interface derived in step 4(b).

Bind elements occurring within the remai ning sequencesto the appropriate
Java property.

5.10 Default Binding Rule Summary

Note that this summary is non-normative and all default binding rules specified
previously in the chapter take precedence over this summary.

110

Bind the following to Java package:

o XML Namespace URI

Bind the following XML Schema components to Java content interface:
o Named complex type

o Anonymousinlined type definition of an element declaration

Bind to typesafe enum class:

o A named simple type definition with a basetype that derives from
“xs: NCNamre” and has enumeration facets.

Bind the following XML Schema components to a Java Element
interface

JAXB Specification — Final, V1.0 1/8/03

Default Binding Rule Summary

o A globa element declaration to a Element interface.

o Local element declaration that can be inserted into a general content
list.

« Bind to Javaproperty
o Attribute use

o Particlewith aterm that is an e ement reference or local element
declaration.

« Bind model group and wildcard content with arepeating occurrence and
complex type definitions with mi xed {content type} to:

o A genera content property - aList content-property that holds Java
instances representing element information items and character data
items.

1/8/03 JAXB Specification — Final, V1.0 111

Binding XML Schema to Java Representations

112 JAXB Specification — Final, V1.0 1/8/03

CHAPTERDG

CUSTOMIZATION

The default binding of source schema components to derived Java
representation by a binding compiler sometimes may not meet the requirements
of a JAXB application. In such cases, the default binding can be customized
using a binding declaration. Binding declarations are specified by a binding
language, the syntax and semantics of which are defined in this chapter.

All JAXB implementations are required to provide customization support
specified here unless explicitly stated as optional.

6.1 Binding Language

The binding language is an XML based language which defines constructs
referred to as binding declarations. A binding declaration can be used to
customize the default binding between an XML schema component and its Java
representation.

The schemafor binding declarations is defined in the namespace ht t p: / /
java. sun. conm xnl / ns/ j axb. This specification uses the namespace
prefix “j axb” to refer to the namespace of binding declarations. For example,

<j axb: binding declaration >

A binding compiler interprets the binding declaration relative to the source
schemaand a set of default bindingsfor that schema. Therefore a source schema
need not contain a binding declarations for every schema component. This
makes the job of a JAXB application developer easier.

1/8/03 JAXB Specification — Final, V1.0 113

Customization

There are two ways to associate a binding declaration with a schema element:

« as part of the source schema (inline annotated schema)
« external to the source schemain an external binding declaration.

The syntax and semantics of the binding declaration is the same regardless of
which of the above two methods is used for customization.

A binding declaration itself does not identify the schema component to which it
applies. A schema component can be identified in several ways.

« explicitly - e.g. QName, X Path expressions etc.
« implicitly - based on the context in which the declaration occurs.

It is this separation which allows the binding declaration syntax to be shared
between inline annotated schema and the external binding.

6.1.1 Extending the Binding Language

In recognition that there will exist a need for additional binding declarations
than those currently specified in this specification, a formal mechanismis
introduced so all JAXB processors are able to identify extension binding
declarations. An extension binding declaration is not specified in the jaxb:
namespace, is implementation specific and its use will impact portability.
Therefore, binding customi zation that must be portable between JAXB
implementations should not rely on particular customization extensions being
available.

The namespaces containing extension binding declarations are specified to a
JAXB processor by the occurrence of the global attribute

<j axb: ext ensi onBi ndi ngPr ef i xes> within an instance of

<xs: schema> element. The value of this attribute is a whitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixesis
designated as a customization declaration namespace. Prefixes are resolved on
the <xs: schenm> element that carries this attribute. It isan error if the prefix
failsto resolve. Thisfeature is quite similar to the extension-element-prefixes
attribute in [XSLT 1.0] htt p: / / www. w3. or g/ TR/ xsl t 10/ #ext ensi on,
introduces extension namespaces for extension instructions and functions for
XSLT 1.0.

114 JAXB Specification — Final, V1.0 1/8/03

Binding Language

This specification does not define any mechanism for creating or processing
extension binding declarations and does not require that implementations
support any such mechanism. Such mechanisms, if they exist, are
implementation-defined.

6.1.2 Inline Annotated Schema

This method of customization utilizes on the <appi nf o> element specified by
the XML Schema [XSD PART 1]. A binding declaration is embedded within
the <appi nf o> element asillustrated below.

<xs:annot ati on>
<xs: appi nf o>
<bi ndi ng decl arati on>
</ xs: appi nf o>
</ xs: annot ati on>

The inline annotation where the binding declaration is used identifies the
schema component.

6.1.3 External Binding Declaration

The external binding declaration format enables customized binding without
requiring modification of the source schema. Unlike inline annotation, the
remote schema component to which the binding declaration applies must be
identified explicitly. The <j axb: bi ndi ngs> element enables the
specification of aremote schema context to associate its binding declaration(s)
with. Minimally, an external binding declaration follows the following format.

<j axb: bi ndi ngs schemaLocation = "xs:anyURl ">
<j axb: bi ndi ngs node = "xs:string">*
<bi ndi ng decl arati on>
<j axb: bi ndi ngs>
</ j axb: bi ndi ngs>

The attributes schemal ocation and node are used to construct a reference to a
node in a remote schema. The binding declaration is applied to this node by the

1/8/03 JAXB Specification — Final, V1.0 115

Customization

binding compiler asif the binding declaration was embedded in the node' s
<xs: appi nf o> element. The attribute values are interpreted as follows:

« schemalocation - It isa URI reference to aremote schema.
« node- Itisan XPath 1.0 expression that identifies the schema node
within schemal ocation to associate binding declarations with.

An example external binding declaration can be found in Section D.1,
“Example.”

6.1.3.1 Restrictions

« Theexternal binding element <j axb: bi ndi ngs> isonly recognized
for processing by a JAXB processor when its parent is an
<xs: appi nf o> element, it is an ancestor of another
<j axb: bi ndi ngs> element, or when it isroot element of adocument.
An XML document that hasa <j axb: bi ndi ngs> element asits root
isreferred to as an external binding declaration file.

« Thetop-most <j axb: bi ndi ng> element within an <xs: appi nf o>
element or the root element of an external binding file must have its
schemalLocat i on attribute set.

6.1.4 Version Attribute

The normative binding schema specifies a global ver si on attribute. It is used
to identify the version of the binding declarations. For example, afuture version
of this specification may use the version attribute to specify backward
compatibility. For this version of the specification, thever si on must always
"1.0". If any other version is specified, it must result in an invalid
customization as specified in Section 6.1.5, “Invalid Customizations.”

Thever si on attribute must be specified in one of the following ways:

« |If customizations are specified in inline annotations, thever si on
attribute must be specified in <xs: schena> element of the source
schema. For example,

<xs:schema jaxb:version="1.0">

« |If customizations are specified in an external binding file, then the
j axb: versi on attribute must be specified in the root element
<j axb: bi ndi ngs> inthe externa binding file. Alternately, alocal

116 JAXB Specification — Final, V1.0 1/8/03

Notation

ver si on attribute may be used. Thus the version can be specified

either as
<j axb: bi ndi ngs version="1.0" ... />
or
<j axb: bi ndi ngs j axb:version="1.0" ... />

Specification of both ver si on and <j axb: ver si on> must result
in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.”

6.1.5 Invalid Customizations

A non conforming binding declaration is a binding declaration in thej axb
namespace but does not conform to this specification. A non conforming
binding declaration results in a customization error. The binding compiler must
report the customization error. The exact error is not specified here. For
additional requirements see Chapter 7, “Compatibility.”

Therest of this chapter assumes that non conforming binding declarations are
processed as indicated above and their semantics are not explicitly specified in
the descriptions of individual binding declarations.

6.2 Notation

The source and binding-schema fragments shown in this chapter are meant to be
illustrative rather than normative. The normative syntax for the binding
language is specified in Appendix , “Normative Binding Schema Syntax.” in
addition to the other normative text within this chapter. All examples are non-
normative.

« Metavariables areinitalics.
« Optional attributes are enclosed in[squar e="bracket"].

« Optional elementsareenclosedin|[<el ement A> ... </
element A> .

« Other symbols: ‘, ” denotesasequence, ‘| ' denotesachoice, ‘+’ denotes
oneor more, ‘*’ denotes zero or more.

1/8/03 JAXB Specification — Final, V1.0 117

Customization

« Theprefix xs: isused to refer to schema componentsin W3C XML
Schema namespace.

« Inexamples, the binding declarations as well asthe customized code are
shown in bold like this: <appinfo> <annotation> or getAddress().

6.3 Naming Conventions

The naming convention for XML names in the binding language schema are;

o Thefirst |letter of thefirst word in amulti word nameisin lower case.

« Thefirst letter of every word except the first oneisin upper case.

For example, the XML name for the Java property basetype is baseType.

6.4 Customization Overview

A binding declaration customizes the default binding of a schema element to a
Java representation. The binding declaration defines one or more customization
values each of which customizes a part of Java representation.

6.4.1 Scope

When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.
The scopes are:;

« global scope: A customization value definedin <gl obal Bi ndi ngs>
has global scope. A global scope covers all the schema elementsin the
source schema and (recursively) any schemas that are included or
imported by the source schema.

« schema scope: A customization value defined in
<schenaBi ndi ngs> has schema scope. A schema scope covers all
the schema elements in the target namespace of a schema.

118 JAXB Specification — Final, V1.0 1/8/03

Customization Overview

« definition scope: A customization value in binding declarations of a
type definition or global declaration has definition scope. A definition
scope coversall schemaelementsthat reference thetype definition or the
global declaration. Thisis more precisdly specified in the context of
binding declarations later on in this chapter.

« component scope: A customization value in a binding declaration has
component scope if the customization value applies only to the schema
element that was annotated with the binding declaration.

Global Scope
<gl obal Bi ndi ngs>

Schema Scope
<schemaBi ndi ngs>
Definition Scope

Binding Declaration
Component Scope /
Binding Declaration B4
d
v ’

/V Indicates inheritance and overriding of scope.

Figure 6.1 Scoping Inheritance and Overriding For Binding Declarations

1/8/03 JAXB Specification — Final, V1.0 119

Customization

The different scopes form ataxonomy. The taxonomy defines both the
inheritance and overriding semantics of customization values. A customization
value defined in one scope isinherited for use in a binding declaration covered
by another scope as shown by the following inheritance hierarchy:

« aschemaelement in schemascopeinheritsacustomization value defined
in global scope.

« aschema element in definition scope inherits a customization value
defined in schema or global scope.

« aschema element in component scope inherits a customization value
defined in definition, schema or global scope.

Likewise, a customization value defined in one scope can override a
customization value inherited from another scope as shown below:

« valuein schema scope overrides avalue inherited from global scope.

« valuein definition scope overrides avalue inherited from schema scope
or global scope.

« valuein component scope overrides a value inherited from definition,
schema or global scope.

6.4.2 XML Schema Parsing

Chapter 5 specified the bindings using the abstract schema model.
Customization, on the other hand, is specified in terms of XML syntax not
abstract schema model. The XML Schema specification [XSD PART 1]
specifies the parsing of schema elements into abstract schema components. This
parsing is assumed for parsing of annotation elements specified here. In some
cases, [XSD PART 1] is ambiguous with respect to the specification of
annotation elements. Section 6.12, “ Annotation Restrictions’ outlines how these
are addressed.

120 JAXB Specification — Final, V1.0 1/8/03

<gl obal Bi ndi ngs> Declaration

Design Note — The reason for specifying using the XML syntax instead of
abstract schema model is as follows. For most part, there is a one-to-one mapping
between schema elements and the abstract schema components to which they are
bound. However, there are certain exceptions; local attributes and particles. A
local attribute is mapped to two schema components: { attribute declaration} and
{attribute use}. But the XML parsing process associates the annotation with the
{attribute declaration} not the {attribute use}. Thisis tricky and not obvious.
Hence for ease of understanding, a choice was made to specify customization at
the surface syntax level instead.

6.5

<gl obal Bi ndi ngs> Declaration

The customization valuesin “<gl obal Bi ndi ngs>" binding declaration
have global scope. This hinding declaration is therefore useful for customizing

at aglobal level.
6.5.1 Usage
<gl obal Bi ndi ngs>
[collectionType = "collectionType"]
[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"
]
[generatel sSet Method= "true" | "false" | "1" | "0"]
[enabl eFail Fast Check = "true" | "false" | "1" | "0"]
[choi ceContentProperty = "true" | "false" | "1" | "0"]
[underscoreBinding = "asWordSeparator" | "asCharl nWord"]
[typesaf eEnunBase = "typesaf eEnunBase" |
[typesaf eEnumvenber Nanme = "generat eName" | "generateError"]
[enabl eJavaNam ngConventions = "true" | "false" | "1" | "0"]
[bindingStyle = "el ementBi ndi ng" | "nodel GroupBi ndi ng"]
[<javaType> ... </javaType> |*

</ gl obal Bi ndi ngs>

The following customization values are defined in global scope:

« col l ectionType if specified, must be either “i ndexed" or any
fully qualified class name that implementsj ava. util . Li st.

1/8/03

JAXB Specification — Final, V1.0 121

Customization

122

fixedAttribut eAsConstant Property if specified, defines
the customization value

fixedAttribut eAsConstant Property. Thevaue must be one
of"true", false", "1" or"0". Thedefault valueis" f al se".

gener at el sSet Met hod if specified, defines the customization
value of gener at el sSet Met hod. The value must be one of
"true", false", "1" or"0". Thedefault valueis"fal se".

enabl eFai | Fast Check if specified, defines the customization
valueenabl eFai | Fast Check. Thevaluemust beoneof "t r ue",
"fal se", "1" or"0". Ifenabl eFai | Fast Check is"true"
or " 1" and the JAXB implementation supports this optional checking,
type constraint checking when setting a property is performed as
described in Section 4.5, “Properties". The default valueis" f al se".

choi ceCont ent Property if specified,defines the customization
value choi ceCont ent Property . The value must be one of
"true", false", "1" or"0". Thedefaultvalueis"f al se".
choi ceCont ent Pr operty isnot relevant when the

bi ndi ngSt yl e isel enent Bi ndi ng. Therefore, if

bi ndi ngSt yl e isspecified as el enent Bi ndi ng, then the

choi ceCont ent Proper ty must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations".

under scor eBi ndi ng if specified, defines the customization value
under scor eBi ndi ng. The value must be one of

"asWor dSeparator" or "asChar| nWr d". The default value
is"asWor dSeparat or".

enabl eJavaNani ngConventi ons if specified, defines the
customization valueenabl eJavaNam ngConventi ons. Thevalue
must beoneof "true", false", "1" or"0". Thedefaultvalue
is"true".

t ypesaf eEnunBase if specified, defines the customization value

t ypesaf eEnunmBase. Thevalue must bealist of QNames, each of
which must resolve to a simple type definition. Only simple type
definitions with an enumeration facet and arestriction base typelisted in
t ypesaf eEnunmBase or derived from atype listed in

t ypesaf eEnunBase isboundtoat ypesaf eEnunCl ass by
default as specified in Section 5.2.3, “ Type Safe Enumeration”. The
default value of t ypesaf eEnunBase is" xs: NCNane" .

Thet ypesaf eEnunBase cannot contain the following simple types
and therefore a JAX B implementation is not required to support the

JAXB Specification — Final, V1.0 1/8/03

<gl obal Bi ndi ngs> Declaration

binding of the these types to typesafe enumeration class:

"xs: QName", "xs:base64Binary", "xs:hexBinary",
"xs:date", "xs:tinme", "xs:dateTine",
"xs:duration", "xs:gbay", "xs:gMnth",
"xs:gYear", "xs:gMonthDay", "xs:Yearhonth". Ifany

of them are specified, it must result in an invalid customization as
specified in Section 6.1.5, “Invalid Customizations.” JAXB
implementation must be capable of binding any other simple type listed
int ypesaf eEnunmBase to atypesafe enumeration class.

. typesaf eEnunivenber Nane if specified, definesthe customization
valuet ypesaf eEnumvenber Nane. The value must be one of
"generateError" or"generateName". Thedefaultvalueis
"generateError".

« bi ndi ngStyl e if specified, defines the customization value
bi ndi ngSt yl e. The value must be one of " el enent Bi ndi ng",
or "model GroupBi ndi ng". The default valueis
"el ement Bi ndi ng".
If thevalueis" el ement Bi ndi ng", thebinding style specifiedin
Section 5.9.7, “Content Model Default Binding" is used. If thevalueis
"nodel GroupBi ndi ng" then the binding style specified in
Section 5.9.8, “Model group binding style” is selected.

« zeroormorej avaType binding declarations. Each binding declaration
must be specified as described in Section 6.9, “<javaType>
Declaration,” on page 151.”

The semantics of the above customization values, if not specified above, are
specified when they are actually used in the binding declarations.

For inline annotation, a<gl obal Bi ndi ngs> isavalid only in the annotation
element of the <schema> element. There must only be a single instance of a
<gl obal Bi ndi ngs> declaration in the annotation element of the
<schenma> element.

If one source schema includes or imports a second source schemathen the
<gl obal Bi ndi ngs> declaration must be declared in the first source schema.

1/8/03 JAXB Specification — Final, V1.0 123

Customization

6.5.2 Customized Name Mapping

A customization value can be used to specify aname for a Java object (e.g. class
name, package name etc.). In this case, a customization value isreferred to asa
customization name.

A customization name is always a legal Java identifier (thisis formally
specified in each binding declaration where the name is specified). Since
customization deals with customization of a Java representation to which an
XML schema element is bound, requiring a customization hame to be alegal
Javaidentifier rather than an XML name is considered more meaningful.

A customization name may or may not conform to the recommended Java
language naming conventions. [JLS - Java Language Specification, Second
Edition, Section 6.8, “Naming Conventions’]. The customization value
enableJavaNamingConventions determines if a customization name is mapped
to a Javaidentifier that follows Javalanguage naming conventions or not.

If enableJavaNamingConventionsisdefined and thevalueis"t rue" or" 1",
then the customization name (except for constant name) specified in the section
from where this section is referenced must be mapped to Javaidentifier which
follows the Java language naming conventions as specified in Section C.6,
“Conforming Java I dentifier Algorithm”; otherwise the customized name must
be used asiis.

6.5.3 Underscore Handling

This section applies only when XML names are being mapped to alegal Java
Identifier by default. In thiscase, the treatment of underscore (‘') is determined
by under scor eBi ndi ng.

If under scor eBi ndi ng is"asWr dSepar at or", thenunderscore
(‘') must be treated as a punctuation character; otherwise if

under scor eBi ndi ng is"asChar | nwor d", thenunderscore (*_') must
be treated as a character in the word. The default value for

under scor eBi ndi ng is" asWor dSepar at or ".

124 JAXB Specification — Final, V1.0 1/8/03

<schenmaBi ndi ngs> Declaration

6.6 <schemaBi ndi ngs> Declaration

The customization valuesin <schemaBi ndi ngs> binding declaration have
schema scope. This binding declaration is therefore useful for customizing at a
schema level.

6.6.1 Usage

<schemaBi ndi ngs>

[<package> package </ package>]

[<nameXm Transforne ... </nameXm Transforn>]*
</ schenmaBi ndi ngs>

<package [nane = "packageNane"]
[<javadoc> ... </javadoc>]

</ package>

<nanmeXm Tr ansf or >

[<typeNane [suffix="suffix"]

[prefix="prefix"] />]
[<el ement Nane [suffix="suffix"]

[prefix="prefix"] />]
[<nodel G oupNanme [suffix="suffix"]

[prefix="prefix"] />]
[<anonynousTypeNane [suffix="suffix"]

[prefix="prefix"] />]

</ naneXnm Tr ansf or m»

For readability, the <nanmeXnl Tr ansf or > and <package> elementsare
shown separately. However, they are local elements within the
<schemaBi ndi ngs> element.

The semantics of the customization value are specified when they are actually
used in the binding declarations.

For inline annotation, a<schemaBi ndi ngs> isvalid only in the annotation
element of the <schema> element. There must only be a single instance of a
<schemaBi ndi ngs> declaration in the annotation element of the
<schenma> element.

If one source schema includes (via the include mechanism specified by XSD
PART 1) a second source schema, then the <schenmaBi ndi ngs> declaration

1/8/03 JAXB Specification — Final, V1.0 125

Customization

must be declared in the first including source schema. It should be noted that
there is no such restriction on <schenaBi ndi ngs> declarations when one
source schema imports another schema since the scope of

<schemaBi ndi ngs> hinding declaration is schema scope.

6.6.1.1 package
Usage

« nane if specified, defines the customization value packageNane.
packageName must be avalid Java package name.

« <j avadoc> if specified, customizes the package level Javadoc.
<j avadoc> must be specified as described in Section 6.11,
“<javadoc> Declaration.” The Javadoc must be generated as specified in
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customized isthe package secti on.

Design Note — The word “package” has been prefixed to nane used in the
binding declaration. This is because the attribute or element tag names “name” is
not unique by itself across all scopes. For e.g., “name” attribute can be specified in
the <property> declaration. The intent is to disambiguate by reference such as
“packageNane”.

The semantics of the packageNane is specified in the context whereit is
used. If neither packageNanme nor the <j avadoc> element is specified, then
the binding declaration has no effect.

Example: Customizing Package Name

<j axb: schenmaBi ndi ngs>
<j axb: package nane = "org. exanple.po" />
</ j axb: schemaBi ndi ngs>

specifies“or g. exanpl e. po” as the package to be associated with the
schema.

126 JAXB Specification — Final, V1.0 1/8/03

<schenmaBi ndi ngs> Declaration

6.6.1.2 nameXm Transform

The use case for this declaration is the UDDI Version 2.0 schema. The UDDI
Version 2.0 schema contains many declarations of the following nature:

<xs: el enent name="bi ndi ngTenpl ate" type="uddi: bi ndi ngTenpl ate"/ >

The above declaration results in a name collision since both the element and
type names are the same - although in different XML Schema symbol spaces.
Normally, collisions are supposed to be resolved using customization. However,
since there are many collisions for the UDDI V2.0 schema, thisis not a
convenient solution. Hence the binding declaration nanme X Tr ansf or mis
being provided to automate name collision resolution.

ThenaneXm Tr ansf orm allowsasuffix andaprefi x to be specified
on aper symbol space basis. The following symbol spaces are supported:

« <typeNane> for the symbol space “type definitions’
« <el enent Nanme> for the symbol space “element definitions’

« <nodel G oupName> for the symbol space “model group
definitions.”

« <anonynmousTypeName> for customizing Java content interface to
which an anonymous type is bound.*

If suf fi x isspecified, it must be appended to all the default XML namesin
the symbol space. The pr ef i x if specified, must be prepended to the default
XML name. Furthermore, this XML name transformation must be done before
the XML name to Java ldentifier algorithm is applied to map the XML name to
aJavaidentifier. The XML name transformation must not be performed on
customization names.

By using adifferent pr ef i x and/or suf fi x for each symbol space, identical
names in different symbol spaces can be transformed into non-colliding XML
names.

L XML schema does not associate anonymous types with a specific symbol space. However,
nanmeXm Tr ansf or misused sinceit provides a convenient way to customize the Java content
interface to which an anonymous type is bound.

1/8/03 JAXB Specification — Final, V1.0 127

Customization

anonynmousTypeNanme

As specified in Section 5.7.2, “Binding of an anonymous complex type
definition”, by default a“ Type’ suffix is added to the name of the Java content
interface to which an anonymous type is bound. The
<anonynmousTypeName> declaration can be used to customize the suffix
and prefix for the Java content interface. If suf fi x isspecified, it must
replace the “Type” suffix in the Java content interface name. If prefi x is
specified, then it must be prepended to the Java content interface name for the
anonymous type.

6.7 <cl ass> Declaration

This binding declaration can be used to customize the binding of a schema
element to a Java content interface or a Java Element interface. The
customizations can be used to specify:

« aname for the derived Java interface.
« animplementation class for the derived Java content interface. An
implementation cannot be specified for a Java Element interface.

Specification of an alternate implementation for a Java content interface allows
implementations generated by atool (e.g. based on UML) to be used in place of
the default implementation generated by a JAXB provider.

The implementation class may have a dependency upon the runtime of the
binding framework. Since aruntime is not specified in this version of the
specification, the implementation class may not be portable across JAXB
provider implementations. Hence one JAXB provider implementation is not
required to support the implementation class from another JAXB provider.

6.7.1 Usage
<class [nane = "className"]>
[inpl dass= "inpldass"]
[<javadoc> ... </javadoc>]
</ cl ass>

« cl assNane isthe name of the derived Javainterface, if specified. It
must be alegal Javainterface name and must not contain a package

128 JAXB Specification — Final, V1.0 1/8/03

<cl ass> Declaration

prefix. The package prefix isinherited from the current val ue of
package.

« i npl Cl ass if specified, is the name of the implementation class for
cl assName and must include the complete package name.

« <j avadoc> element, if specified customizes the Javadoc for the
derived Javainterface. <j avadoc> must be specified as described in
Section 6.11, “<javadoc> Declaration.”

6.7.2 Customization Overrides

When binding a schema element’ s Java representation to a Java content
interface or a Java Element interface, the following customization values
override the defaults specified in Chapter 5. It is specified in a common section
here and referenced from Section 6.7.3, “ Customi zable Schema Elements.”

« name: Thenameiscl assName if specified.

« package name: The name of the packageis packageNamne inherited
from a scope that covers this schema element.

NOTE: The packageNanme isonly setinthe <package> declaration.
The scope of packageNane isschema scope and is thusinherited by
all schema elements within the schema.

« javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customizedisthecl ass/i nterface section.

6.7.3 Customizable Schema Elements

6.7.3.1 Complex Type Definition

When <cl ass> customization specified in the annotation element of the
complex type definition, the complex type definition must be bound to a Java
content interface as specified in Section 5.3.2, “ Java Content Interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides.”

1/8/03 JAXB Specification — Final, V1.0 129

Customization

Example: Class Customization: Complex Type Definition To Java Content
Interface

XML Schema fragment:

<xs: conpl exType nanme="USAddress" >
<xs:annot ati on> <xs: appi nf o>
<j axb: cl ass name="M/Address" />
</ xs: appi nf o></ xs: annot ati on>
<xs:sequence>. .. </ xs:sequence>
<xs:attribute nane="country" type="xs:string"/>
</ xs: conpl exType>

Customized code:

/1 public interface USAddress { // Default Code
public interface MyAddress { // Custom zed Code
public String getCountry();
public void setCountry(String val ue);

6.7.3.2 Model Group Definition

Whena<cl ass> declaration is specified in the annotation element of a model
group definition, the model group definition must be bound to a Java content
interface as specified in Section 5.5.3, “Bind to a Java content interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides.”

Example: Class Customization: Model Group Definition To Class
XML Schema Fragment:

<xs: group nane="AMddel G oup" >
<Xs:annot ati on> <xs: appi nf o>
<j axb: cl ass name="MyModel G oup" />
</ xs: appi nf o></ xs: annot ati on>
<xs: choi ce>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:float"/>
</ xs: choi ce>
</ xs: group>

130 JAXB Specification — Final, V1.0 1/8/03

<cl ass> Declaration

Customized code:

/1 interface Avbdel Group // Default code

interface MyModel Group { // Custom zed code (custom zed cl ass nane)

void setA(int value);
int getA();

voi d setB(float val ue);
float getB();

6.7.3.3 Model Group

When a<cl ass> customization is specified in the annotation element of the
model group’s compositor, the model group must be bound to a Java content
interface as specified in Section 5.9.10, “Bind Nested Model Group” applying

the customization overrides as specified in Section 6.7.2, “ Customization

Overrides.”

6.7.3.4 Global Element Declaration

A <cl ass> declaration is allowed in the annotation element of the global

element declaration. However, thei npl Cl ass attribute is not allowed. The
global element declaration must be bound as specified in Section 5.7.1, “Bind to

Java Element Interface” applying the customization overrides A specified in

Section 6.7.2, “Customization Overrides.”
Example: Class Customization: Global Element to Class

XML Schema Fragment:

<xs: conpl exType nanme="AConpl exType" >
<Xs:sequence>
<xs:el enent name="A" type="xs:int"/>
<xs:el enent name="B" type="xs:string"/>
</ xs: sequence>
</ xs: conpl exType>
<xs: el enent name="AnEl ement" type="AConpl exType">
<Xs:annot ati on><xs: appi nf o>
<j axb: cl ass name="MWEl emrent "/ >
</ xs: appi nf o></ xs: annot ati on>
</ xs: el enent >

Customized code:

1/8/03 JAXB Specification — Final, V1.0

131

Customization

public interface AConpl exType {
void setA(int value);
int getA();
void setB(String val ue);
String getB();
b
/1 follow ng interface woul d be generated by defaul t
/1 public interface AnEl enent extends AConpl exType,
/1 javax. xnml . jaxb. El ement {};

/1 following interface is generated because of custom zation
public interface M/El enent extends AConpl exType,
javax. xnml . jaxb. El ement {};

public class ObjectFactory {

/1 AnEl enent createAnEl ement(); // Default code

AnEl ement createMyEl enent(); // Custom zed code

AConpl exType creat eAConpl exType();

ot her factory methods ...

6.7.3.5 Local Element

A local element is a schema element that occurs within a complex type
definition. A local element is one of:

« local element reference (using the “ref” attribute) to a global element
declaration.

« local element declaration (“ref” attribute is not used).

A <cl ass> declaration is allowed in the annotation element of alocal
element. Section 6.12, “ Annotation Restrictions” contains more information
regarding the annotation element for alocal element reference. However, the
i mpl C ass attributeis not allowed.

A <cl ass> customization onlocal element reference must result in aninvalid
customization as specified in Section 6.1.5, “Invalid Customizations’ since a
local element reference is never bound to a Java Element interface.

A <cl ass> customization on local element declaration applies only when a
local element declaration is bound to a Java Element interface. Otherwise it
must result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.” If applicable, alocal e ement must be bound as specified in

132 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides as specified in Section 6.7.2, “ Customization Overrides.”

Example: Class Customization: Local Element Declaration To Java Element
Interface

The following example is from Section 5.9.3.1, “Examples.”

XML Schema fragment:

<xs: conpl exType nanme="Base" >
<xs: choi ce maxCccur s="unbounded" >
<xs:el enent name="A" type="xs:string">
<Xs:annot ati on><xs: appi nf o>
<j axb: cl ass nanme="Bar"/ >
</ xs: appi nf 0></ xs: annot ati on>
</ xs: el enent >
<xs:el enent name="B" type="xs:string"/>
<xs:el enent name="C' type="xs:int"/>
</ xs: choi ce>
</ xs: conpl exType>

Customized code:

i mport javax.xm . bind. El enent;

interface Base {
/1 interface A extends Elenment {...} // Default code
interface Bar extend Elenent {...}// Custom zed code
interface B extends Elenent {...}
interface C extends Elenent {...}

/**

* A general content list that can contain

* el enent instances of Base.Bar, Base.B and Base.C.
*/

Li st get AOrBO () ;

6.8 <property> Declaration

This binding declaration allows the customization of abinding of an XML
schema element to its Java representation as a property. This section identifies

1/8/03 JAXB Specification — Final, V1.0 133

Customization

all XML schema elements that can be bound to a Java property and how to
customize that binding.

The scope of customization value can either be definition scope or component
scope depending upon which XML schema element the <pr oper t y> binding
declaration is specified.

6.8.1 Usage

<property [nane = "propertyNanme"]
[collectionType = "propertyCol | ectionType"]

[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"
]

[generatel sSet Met hod= "true" | "false" | "1" | "0"]

[enabl eFail Fast Check="true" | "false" | "1" | "0"]

[<baseType> ... </baseType>]

[<javadoc> ... </javadoc>]

</ property>

<baseType>
<j avaType> ... </javaType>
</ baseType>

For readability, the <baseType> element is shown separately. However, it
can be used only as aloca element within the<pr opert y> element.

The use of this declaration is subject to the constraints specified in
Section 6.8.1.2, “Usage Constraints.”

The customi zation values defined are;

« name if specified, definesthe customization value pr oper t yNane;
it must be alegal Javaidentifier.

« col |l ecti onType if specified, defines the customization value
propertyCol | ecti onType whichisthe collection type for the
property. propertyCol | ecti onType if specified, must be either
“i ndexed" or any fully qualified class name that implements
java.util.List.

o fixedAttributeAsConstant Property if specified, defines
the customization value
fixedAttribut eAsConstant Property. Thevaue must be one
of"true", false", "1" or"0".

134 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

« gener at el sSet Met hod if specified, defines the customization
value of gener at el sSet Met hod. The value must be one of
"true", false", "1" or"0".

. enabl eFai | Fast Check if specified, defines the customization
valueenabl eFai | Fast Check. Thevaluemust beoneof "t r ue",
fal se", "1" or"0".

« <j avadoc> element, if specified customizes the Javadoc for the
property’s getter method. <j avadoc> must be specified asdescribed in
Section 6.11, “<javadoc> Declaration.”

6.8.1.1 baseType

The<baseType> element isintended to alow the customization of a base
type aproperty. Specifically, it allows the customization of a simple type at the
point of reference to the simple type. A future version of this specification my
define additional usesfor <baseType>. The syntax for <baseType>is
designed to accommaodate both the current and the intended future uses.

The<j avaType>, if specified, defines the customization valuej avaType
and must be specified as specified in Section 6.9, “<javaType> Declaration.”
The customi zation value defined has component scope.

If <j avaType> is specified with a XML schema element not listed above, it
must result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.”

6.8.1.2 Usage Constraints

The usage constraints on <pr oper t y> are specified below. Any constraint
violation must result in an invalid customization as specified in Section 6.1.5,
“Invalid Customizations.” The usage constraints are;

1. The<baseType> isonly alowed with the following XML schema ele-
ments from the Section 6.8.3, “ Customizable Schema Elements”:

a Local Element, Section 6.8.3.4, “Local Element.”
b. Local Attribute, Section 6.8.3.2, “Local Attribute.”
c. ComplexType with simpleContent, Section 6.8.3.8, “ComplexType.”

2. Thefi xedAttri but eAsConst ant Property isonly alowed
with alocal attribute, Section 6.8.3.2, “Local Attribute" , that is fixed.

1/8/03 JAXB Specification — Final, V1.0 135

Customization

3. Ifa<property> declarationisassociated withthe<conpl exType>,
then a<pr opert y> customization cannot be specified on the following
schema elements that are scoped to <conpl exType>:

a. Local Element
b. Model group
c. Model Group Reference

Thereason isthat a<pr opert y> declaration associated with a
complex type binds the content model of the complex type to a general
content property. If a<pr oper t y> declaration is associated with a
schema element listed above, it would create a conflicting
customization.

Design Note — A Local Attribute is excluded from the list above. The reason is
that a local attribute is not part of the content mode of a complex type. This
allows alocal attribute to be customized (using a <property> declaration)
independently from the customization of a complex type’s content model.

Example: Property Customization: simple type customization

<xs: conpl exType name="i nternational Price">

<xs:attribute nane="currency" type="xs:string">
<Xs:annot ati on> <xs: appi nf o>
<j axb: property>
<j axb: baseType>
<j axb: javaType nane="j ava. mat h. Bi gDeci mal "
par seMet hod="j avax. xml . bi nd. Dat at ypeConvert er. par sel nt eger"
print Met hod="j avax. xml . bi nd. Dat at ypeConverter. printlnteger"/>
</ j axb: baseType>
</ j axb: property>
</ xs: appi nf o></ xs: annot ati on>
</ xs:attribute>
</ xs: conpl exType>

The code generated is:

public interface International Price {
/1 String getCurrency(); default
j ava. mat h. Bi gDeci mal getCurrency() ; // custom zed
public void setCurrency(java. math. Bi gDeci mal val); // custom zed

136 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

6.8.2

Customization Overrides

When binding a schema element’ s Java representation to a property, the
following customi zation values override the defaults specified in Chapter 5. It is
specified in acommon section here and referenced from Section 6.8.3,
“Customizable Schema Elements.”

name: If propertyName is defined, then it is the name obtained by
mapping the name as specified in Section 6.5.2, “ Customized Name

Mapping.”

basetype: The basetypeispr opert yBaseType if defined. The
propertyBaseTypeisdefined by aX ML schemaelementin Section 6.8.3,
“Customizable Schema Elements.”

collection type: Thecollectiontypeispr opertyCol | ecti onType
if specified; otherwiseit isthepr opertyCol | ecti onType
inherited from a scope that covers this schema element.

javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customized isthe met hod secti on.

If propertyBaseType isaJdavaprimitivetype and
propertyCol | ecti onType isaclassthat implements
java.util.List, then the primitive type must be mapped to its wrapper
class.

The following does not apply if local attribute is being bound to a constant
property as specified in Section 6.8.3.2, “Local Attribute”:

« If gener at el sSet Met hod is"true" or"1", then additional

1/8/03

methods as specified in Section 4.5.4, “isSet Property Modifier” must be
generated.

If enabl eFai | Fast Check is"true" or"1" thenthetype
constraint checking when setting a property is enforced by the JAXB
implementation. Support for this feature is optional for a JAXB
implementation in this version of the specification.

JAXB Specification — Final, V1.0 137

Customization

6.8.3 Customizable Schema Elements

6.8.3.1 Global Attribute Declaration

A <pr opert y> declaration is allowed in the annotation element of the global
attribute declaration.

The binding declaration does not bind the global attribute declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local attributes (Section 6.8.3.2, “Local Attribute”)
that can reference this global attribute declaration. Thisis useful since it allows
the customization to be done once when a global attribute is defined instead of
at each local attribute that references the global attribute declaration.

6.8.3.2 Local Attribute

A local attribute is an attribute that occurs within an attribute group definition,
model group definition or a complex type. A local attribute can either be a

« local attribute reference (using the “ref” attribute) to aglobal attribute
declaration.

« local attribute declaration (“ref” attribute is not used).

A <pr oper t y> declaration is allowed in the annotation element of alocal
attribute.Chapter 6, “ Annotation Restrictions’ contains more information
regarding the annotation element for alocal attribute reference. The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

If j avaType isdefined, thenthe pr opert yBaseType isdefined to be Java
datatype specified inthe " nane" attribute of thej avaType.

o IffixedAttribut eAsConstant Property is“true" or“l"
and the local attributeis afixed, the local attribute must be bound to a
Java Constant property as specified in Section 5.8.1, “Bind to a Java
Constant property” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides.” The
gener at el sSet Met hod, choi ceCont ent Property and
enabl eFai | Fast Check must be considered to have been set to
false.

138 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

« Otherwise, it is bound to a Java property as specified in Section 5.8,

“Attribute use” applying customization overrides as specified in
Section 6.8.2, “ Customization Overrides.”

Example: Customizing Java Constant Property
XML Schema fragment:

<xs: conpl exType nanme="USAddress" >

<xs:attribute nane="country" type="xs: NMTOKEN' fi xed="US">
<Xs:annot ati on><xs: appi nf 0>

<j axb: property nanme="MY_COUNTRY"
fi xedAttri but eAsConst ant Property="true"/>
</ xs: appi nf o></ xs: annot ati on>
</ xs:attribute>
</ xs: conpl exType>

Customized derived code:

public interface USAddress {

public static final String MY_COUNTRY = "US"; // Custom zed Code
}

Example 2: Customizing to other Java Property
XML Schema fragment:

<xs: conpl exType nanme="USAddress" >
<xs:attribute nane="country" type="xs:string">
<Xs:annot ati on><xs: appi nf 0>
<j axb: propertyname="M/Country"/ >
</ xs: appi nf o></ xs: annot ati on>
</ xs:attribute>
</ xs: conpl exType>

Customized derived code:

public interface USAddress ({

/1 public getString getCountry(); /1 Default Code
/1 public void setCountry(string value);// Default Code
public String get MCountry(); /1 Custom zed Code

public void set M/ Country(String value); // Custom zed Code

1/8/03 JAXB Specification — Final, V1.0 139

Customization

Example 3: Generating IsSet Methods

XML Schema fragment:

<xs:attribute nane="account" type = "xs:int">
<Xs:annot ati on><xs: appi nf 0>
<j axb: property generat el sSet Met hod="true"/ >
</ xs: appi nf o></ xs: annot ati on>
</ xs:attribute>

Customized code:

public int getAccount();

public void set Account(int account);

public bool ean isSetAccount(); // Custom zed code
public void unsetAccount (); /1 Custom zed code

6.8.3.3 Global Element Declaration

A <pr operty> declaration isalowed in the annotation element of a global
element declaration. However, the usage is constrained as follows:

The binding declaration does not bind the global element declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local elements (Section 6.8.3.4, “Local Element”)
that can reference this globa element declaration. Thisis useful since it allows
the customization to be done once when a global element is defined instead of at
each local element that references the global element declaration.

6.8.3.4 Local Element

A local element is a schema element that occurs within a complex type
definition. A local element is one of:

« local element reference (using the “ref” attribute) to a global element
declaration.

« local element declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of alocal
element. Section 6.12, “ Annotation Restrictions” contains more information
regarding the annotation element for alocal element reference.

140 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

The customi zation values must be defined as specified in Section 6.8.1, “Usage”
and have component scope.

If j avaType isdefined, thenthe pr opert yBaseType isdefined to be Java
datatype specified inthe " nane" attribute of thej avaType.

Thelocal element must be bound as specified in Section 5.9.7, “Content M odel
Default Binding” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides.”

See example in “Example 3: Property Customization: Model Group To Content
Property Set” in section Section 6.8.3.6, “Model Group.”

Relationship To Element Binding

The<pr oper t y> declaration takes precedence over el enent Bi ndi ng, if
specified and must therefore be processed before element binding is attempted.

Example: Property Customization: Element Binding
The following schema fragment

<xs:conpl exType name="Bar">
<xs: choi ce>
<XS:sequence>
<xs:el enent name = "A" type = "xs:int">
<Xs:annot ati on><xs: appi nf 0>
<j axb: property nane="fo0"/> <!--custom zati on-->
</ xs: appi nf o></ xs: annot ati on>
</ xs: el enent >
</ xs: sequence>
<XS:sequence>

<xs: el enent nane "B" type "xs:string"/>
<xs:el enent name = "A" type = "xs:int"/>
</ xs: sequence>
</ xs: choi ce>

</ xs: conpl exType>

1/8/03 JAXB Specification — Final, V1.0 141

Customization

The generated code is:

interface Bar {
public int getA();
public void setA(int value); // accessor for elenment A
public String setB();
public void setB(String val ue);
public int getFoo(); /'l another accessor for elenent A
public void setFoo(int value);

}

Since <property> declaration taking precedence, this can lead to generation of
multiple accessor and mutator methods for local elements. If bi ndi ngSt yl e
isel enent Bi ndi ng, either mutator method may be used to set the content.
In the above example, the content for the second sequence may be set in one of
the following ways:

/1l one way to set content for second sequence
set B();
set A();

/1 another way to set content for second sequence
set B();
set Foo();

When el enmrent Bi ndi ng is specified, the multiple accessors/mutators can be
eliminated by associating the same <pr oper t y> declaration with multiple
occurrences of local elements. For e.g.,

<xs: conpl exType name="bar">
<xs: choi ce>
<Xs:sequence>
<xs:el enent name = "A" type = "xs:int">
<Xs:annot ati on><xs: appi nf 0>
<j axb: property nanme="fo0"/>
</ xs: appi nf o></ xs: annot ati on>
</ xs: el enent >
</ xs: sequence>
<XS:sequence>
<xs:el enent name = "B" type = "xs:string"/>
<xs:el enent name = "A" type = "xs:int">
<xs:annot ati on><xs: appi nf 0>
<j axb: property nanme="fo0"/>
</ xs: appi nf o></ xs: annot ati on>

142 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

</ xs: el enent >
</ xs: sequence>
</ xs: choi ce>
</ xs: conpl exType>

6.8.3.5 Wildcard

A <property> declaration isallowed in the annotation element of the
wildcard schema component. The customization values must be defined as
specified in Section 6.8.1, “Usage’ and have component scope.

The wildcard schema component must be bound to a property as specified in
Section 5.9.5, “Bind wildcard schema component” applying customization
overrides as specified in Section 6.8.2, “ Customization Overrides.”

Example: The following schema exampleisfrom UDDI V2.0

<xs: conpl exType nane="busi nessEntityExt">
<XS:sequence>
<XS:any nanespace="##ot her"
processContent s="strict"
m nCccurs="1" nmaxOccur s="unbounded" >
<Xs:annot ati on><xs: appi nf 0>
<j axb: property name="Extension"/>
</ xs: appi nf o></ xs: annot ati on>
</ xs:any>

</ xs: sequence>
</ xs: conpl exType>

Customized derived code:

public interface BusinessEntityExt {

/] List getAny(); // Default Code
Li st getExtension(); // Custom zed Code

6.8.3.6 Model Group

A <pr operty> hinding declaration is allowed in the annotation element of
the compositor (i.e. <choi ce>, <sequence> or <al | >). The

1/8/03 JAXB Specification — Final, V1.0 143

Customization

customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

The customi zed binding of a model group is determined by the following:

« model GroupBi ndi ng attributein <gl obal Bi ndi ngs>.
« choi ceCont ent Property attributein <gl obal Bi ndi ngs>.

« any <cl ass> customization associated with the model group in
addition to this<pr opert y> declaration.

The following table shows the binding based on all three of the above. The table
is non-normative and is intended for ease of understanding of the model group
customization. Normative text follows the table.

Table 6-1 Model group binding with customizations (Non-normative)
globalBinding.
globalBinding. choiceContent
1D bindingStyle Property property class Binding
1 Element Binding true/false/not set not set not set model group bound
(value not used) to genera content
property.
2 Element Binding true / false/ not set not set model group bound
set to ageneral content
(value not used) property;
3 Element Binding true / false / not not set set model group is
set (dlowsclass bound to aclass;
(value not used) customization)
4 Element Binding true / false / not set set model group bound
set (allows (dlows to a content
(value not used) property class interface;
customiza customization)
tion)
5 Model Group false or not set not set not set choice bindsto
Binding choice content
interface;
other model groups
bind to content
interface.
144 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

Table 6-1 Model group binding with customizations (Non-normative) (Continued)
6 Model Group true not set not set choice bindsto
Binding choice content
property;
other model groups
bind to content
interface.
7 Model Group false/true/ not not set set model group binds
Binding set (allows content to content interface;
(value not used) interface
customization)
8 Model Group false/true/ not set not set choice bindsto
Binding set (allows choice content
(value not used) property property; other
customiza model groups bind
tion) to content interface;
9 Model Group false/true/ not set set model group -
Binding set (allows (allows content including choice -
(value not used) property interface bind to content
customiza customization) interface;
tion)

If el ement Bi ndi ng is specified then the binding al gorithm specified in
section Section 5.9.7, “ Content Model Default Binding” isin effect. The value
of thechoi ceCont ent Property, if specified has no effect when this
binding styleisin effect. A model group must be bound as follows:;

1. Assume propertySet and propertyBaseType are both undefined to start

with.

2. If a<cl ass> declarationisalso associated with the model group, then the
model group must be bound to Java content interface as specified in
Section 6.7.3.3, “Model Group.” The propertyBaseType is defined to be
the Java content interface to which the model group is bound.

3. Otherwiseif thereisa<pr operty> declaration, thenthe model isbound
to ageneral content property as specified in Section 5.9.6, “Bind a
repeating occurrence model group” applying customization overrides as
specified in Section 6.8.2, “ Customization Overrides.” The propertySet is
defined to be the general content property to which the model group is

bound.

1/8/03 JAXB Specification — Final, V1.0

145

Customization

4,

If propertyBaseType is defined, and a<pr oper t y> declarationisalso
present, then the customization overrides specified in Section 6.8.2,
“Customization Overrides’ must be applied by the model group’s parent
schema element to the property used to aggregate the Java content
interface.

If propertySet is defined, then the model group’s parent schema el ement
must aggregate the property set as specified in Section 5.3.1.2,
“Aggregation of Property Set.”

When bi ndi ngSt yl e=npdel Gr oupBi ndi ng, the model group is binding
isin effect. The value of the choi ceCont ent Property, if specified does
impact the model group binding in this case. A model must be bound as follows
following the stepsin order.

1.

146

Assume propertySet and propertyBaseType are both undefined to start
with.

If <cl ass> declaration is associated with the model group, then the
model group is bound to Java content interface as specified in

Section 6.7.3.3, “Model Group.” The propertyBaseType is defined to be
the Java content interface to which the model group is bound.

Otherwise if thereisa<pr opert y> declaration and

choi ceCont ent Property is"true" andthe model groupisa
choice model group, then the choice model group is bound to a choice
content property as specified in Section 5.9.10.2, “Bind choice group to a
choice content property” applying customization overrides specified in
Section 6.8.2, “ Customization Overrides.” The propertySet is defined to
be the set of properties generated for the choice content property.

Otherwise, if thereis<pr opert y> declaration, then the model group is
bound to a class as specified in Section 5.9.10, “Bind Nested M odel
Group.” The propertyBaseType is defined to be the Java content interface
to which the model group is bound.

If propertyBaseType is defined and a<pr opert y> declaration isalso
present, then the customization overrides specified in Section 6.8.2,
“Customization Overrides’ must be applied by the model group’s parent
schema element to the property used to aggregate the Java content
interface.

If propertySet is defined, then the model group’s parent schema element

JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

must aggregate the property set as specified in Section 5.3.1.2,
“Aggregation of Property Set.”

Examplel: Property Customization: Model Group To ChoiceContent
Property

XML Schema fragment

<Xs:annot ati on><xs: appi nf 0>
<j axb: gl obal Bi ndi ngs bi ndi ngStyl e=" nbdel G oupBi ndi ng"
choi ceCont ent Property="true"/>
</ xs: appi nf o></ xs: annot ati on>
<xs: conpl exType nane="AType” >
<xs: choi ce>
<xs:el enent name="foo" type="xs:int"/>
<xs:el enent name="bar" type="xs:string"/>
</ xs: choi ce>
</ xs: conpl exType>

Customized derived code:

interface AType {
interface Foo extends javax.xm .bind.Elenent { ... }
interface Bar extends javax.xm .bind.Elenent { ... }

voi d set FooOrBar (j ava. |l ang. Cbject 0); //custom zed code
Ooj ect get FooOrBar (); /1 custom zed code
}

Thechoi ceCont ent Property isrequired to bind the choice model group
to a choice content property. The bi ndi ngSt yl e attribute isalso required

sincechoi ceCont ent Pr operty isonly applicable when the binding style
ismodel Gr oupBi ndi ng.

1/8/03 JAXB Specification — Final, V1.0 147

Customization

Example 2: Property Customization: Model Group To General Content Property

XML Schema fragment:

<xs: conpl exType nanme="Base" >
<xs: choi ce maxQCccur s="unbounded" >
<xs:annot ati on><xs: appi nf o>
<j axb: property nane="itens" />
</ xs: appi nf o></ xs: annot ati on>
<xs:el enent name="A" type="xs:string"/>
<xs:el enent name="B" type="xs:string"/>
<xs:el enent name="C' type="xs:int"/>
</ xs: choi ce>
</ xs: conpl exType>

Customized derived code:

interface Base {

interface A extends javax.xm .bind. Element {...}
interface B extends javax.xm .bind. Element {...}
interface C extends javax.xm .bind. Element {...}
/**

* A general content list that can contain

* instances of Base.A Base.B and Base.C.

*/
/1 List getAOrBOC(); - default

Li st getltens();// Custom zed Code

148 JAXB Specification — Final, V1.0 1/8/03

<pr opert y> Declaration

Example 3: Property Customization: Model Group To Content Property Set
XML Schema fragment:

<xs: conpl exType nane="USAddress"/>
<xs: conpl exType nane="PurchaseOrder Type" >
<Xs:sequence>
<xs: choi ce>
<XS: group ref="shi pAndBi | | "/ >
<xs: el enent name="si ngl eUSAddr ess" type="USAddr ess" >
<Xs:annot ati on><xs: appi nf 0>
<j axb: property nane="address"/>
</ xs: appi nf 0></ xs: annot ati on>
</ xs: el enent >
</ xs: choi ce>
</ xs: sequence>
</ xs: conpl exType>
<xs:group nane="shi pAndBill">
<XS:sequence>
<xs: el enent name="shi pTo" type="USAddress">
<xs:annot ati on><xs: appi nf o>
<j axb: property nane="shi pAddress"/>
</ appi nf o></ annot ati on>
</ xs: el enent >
<xs:el enent name="bill To" type="USAddress">
<Xs:annot ati on><xs: appi nf o>
<j axb: property nane="bil | Address"/ >
</ xs: appi nf 0></ xs: annot ati on>
</ xs: el enent >
</ xs: sequence>
</ xs: group>

Customized derived code:

public interface PurchaseO derType {
USAddr ess get Shi pAddress(); void set Shi pAddress(USAddr ess) ;
USAddr ess getBill Address(); void setBill Address(USAddress);
USAddr ess get Address(); voi d set Addr ess(USAddr ess) ;

6.8.3.7 Model Group Reference

A model group referenceis areference to a model group using the “ref”
attribute. A property customization is allowed on the annotation property of the

1/8/03 JAXB Specification — Final, V1.0 149

Customization

model group reference. Section Chapter 6, “ Annotation Restrictions’ contains
more information regarding the annotation element for amodel group reference.

The customi zation values must be defined as specified in Section 6.8.1, “Usage”
and have component scope. A model group reference is bound to a Java
property set or alist property as specified in Chapter 5, “ Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides.”

6.8.3.8 ComplexType

A <pr opert y> customization is allowed on the annotation element of a
complex type. The customization values must be defined as specified in
Section 6.8.1, “Usage” and have component scope. The result of this
customization depends upon the content type of the complex type.

« |If the content type of the content model is simple content, then the
content model must be bound to a property as specified in
Section 5.3.2.1, “Simple Content Binding.” applying the customization
overrides as specified in Section 6.8.2, “Customization Overrides.” If
j avaType isdefined, thenthepr opert yBaseType isdefinedto be
Java datatype specified inthe " name" attribute of thej avaType.

« For all other content types, the content model is bound to a property as
specified by one of the two binding algorithms;

o If thebi ndi ngSt yl e isel erent Bi ndi ng, then the content
model must be bound as specified in step 1. of Section 5.9.7, “ Content
Model Default Binding” applying the customization overrides as
specified in Section 6.8.2, “ Customization Overrides'.

o If thebi ndi ngSt yl e isnodel Gr oupBi ndi ng, then the content
model is bound as specified in step l1a. of Section 5.9.11, “Model
Group binding algorithm.” applying the customization overrides as
specified in Section 6.8.2, “ Customization Overrides'.

Design Note — The <property> declaration is not allowed on an annotation
element of attribute group definition. However, attributes within the attribute
group definition can themselves be customized as described in the “Local
Attribute” section above. Section 6.8.3.2, “Local Attribute.”

150 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

6.9 <javaType> Declaration

A <j avaType> declaration provides away to customize the binding of an
XML schema atomic datatype to a Java datatype, referred to as the target Java
datatype. The target Java datatype can be a Java built-in datatype or an
application specific Java datatype. This declaration also provides two additional
methods:. a parse method and a print method.

The parse method converts alexical representation of the XML schemadatatype
into avalue of the target Java datatype. The parse method isinvoked by a JAXB
provider’'s implementation during unmarshalling.

The print method converts avalue of the target Java datatype into its lexical
representation of the XML schema datatype. The print method isinvoked by a
JAXB provider’s implementation during marshalling.

An application specific datatype used as a target Java datatype must provide an
implementation of both the parse method and print method.

6.9.1 Usage

<j avaType nane="javaType"
[xm Type="xm Type"]
[hasNsContext = “true” | “false”]
[parseMet hod="par seMet hod"]
[printMethod="printMethod"]>

The binding declaration can be used in one of the following:

« a<gl obal Bi ndi ngs> declaration.

« annotation element of one of the XML schema elements specified in
Section 6.9.6, “ Customizable Schema Elements.”

« ina<propert y> declaration. See Section 6.8, “<property>
Declaration.” This can be used for customization at the point of reference
to asimple type.

When used in a<gl obal Bi ndi ngs> declaration, <j avaType> defines
customization values with global scope. When used in an annotation element of

1/8/03 JAXB Specification — Final, V1.0 151

Customization

one of the schema elements specified in Section 6.9.6, “ Customizable Schema
Elements.” the customization values have component scope.

6.9.1.1 name

Thej avaType, if specified, is the Java datatype to which xm Type isto be
bound. Therefore, j avaType must be alegal Javatype name, which may
include a package prefix. If the package prefix is not present, then the Javatype
name must be one of the Java built-in primitive types[JLS - Java Language
Specification, Second Edition, Section 4.2, “Primitive Types and Vaues’ |.
(For example, “i nt ") or aJavaclass in the unnamed package.

6.9.1.2 xm Type

Thexm Type, if specified, is the name of the XML Schema datatype to which
j avaType istobound. If specified, xm Type must bea XML atomic
datatype derived from restriction. The use of thexm Type isfurther
constrained as follows.

The purpose of thexm Type attributeisto allow the global customization of a
XML schemato Java datatype. Hence xnl Type attribute is required when

<j avaType> declaration’s parent is<gl obal Bi ndi ngs>. If absent, it must
result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.” Otherwise, thexnl Type attribute must not be present since
the XML datatype is determined from the XML schema el ement with which the
annotation element containing <j avaType> declaration or the<baseType>
(containing the <j avaType>) is associated. If present, it must result in an
invalid customization as specified in Section 6.1.5, “Invalid Customizations.”

Examples can be found in “Example: javaType Customization: Java Built-in
Type’ and “Example: javaType Customization: User Specified Parse M ethod”

6.9.1.3 hasNsCont ext

ThehasNsCont ext , if specified, must beoneof "t rue","fal se" " 1", or
"0" and defines the customization value hasNsCont ext . The default value
isfal se.

The purpose of hasNs Cont ext attribute isto allow a namespace context to
be specified as a second parameter to aprint or a parse method. The rationale for
passing the namespace context and its usage is explained in Section 6.9.1.4,
“Namespace Context.”

152 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

6.9.1.4 Namespace Context

A namespace context may need to be passed to a parse or a print method for two
reasons. QNames and X Path expressions.

A QName consists of a namespace prefix and alocal part. The scope of a
namespace prefix isthe document in which it is declared. However, there are
instances, where the name space prefix is of value to applications and needs to
be preserved. However, the namespace prefix cannot be interpreted without a
namespace context.

Element and attribute values can contain X Path expression which can also
contain QNames and/or X Path name functions. A namespace context is aso
needed for such XPath expressions.

If hasNsCont ext is"true", then the JAXB implementation must pass a
namespace context to the namespace context parameter of the user specified
parse method or the print method. The hamespace context passed must
implement the NanespaceCont ext interface as specified in the Javadoc for
j ava. xm . nanespace. NanmespaceCont ext .

Note — Thej avax. xm . nanmespace package contains NamespaceCont ext
interface and QNan® class. The
j avax. xm . namespace. NamespaceCont ext interfaceis specified
by JAXB technology. SinceaNanmespaceCont ext represents a mapping
between a XML namespace URI and XML namespace prefixes, the interface
isof useto other XML enabling Java technologies. Hence the version of
javax. xm . nanespace. NanespaceCont ext interface specified here
isan interim version until such time acommon NarmespaceCont ext
interface is defined in a JSR common to XML enabling technologies.

Thej avax. xnl . namespace. QNane classis specified by JAX-RPC
V1.0 specification.

6.9.1.5 par seMet hod

The parse method if specified, must be applied during unmarshalling in order to
convert astring from the input document into a value of the target Java datatype.
The parse method must be invoked as follows:

« The parse method may be specified asnew providedj avaType isnot
aJavaprimitivetypesuchas("i nt").Ifj avaType isaJavaprimitive

1/8/03 JAXB Specification — Final, V1.0 153

Customization

type, then this must result in an invalid customization as specified in
Section 6.1.5, “Invalid Customizations.” Otherwise, the binding
compiler must assume that the target type is a class that defines a
constructor as follows:;

o Stri ng asthefirst parameter of the constructor.

o java.xm . nanmespace. NanespaceCont ext asasecond
parameter, when hasNs Cont ext is"true".

To apply the conversion to a string it must generate code that invokes
this constructor, passing it the input string and namespace context (if
hasNsCont ext is"true") as specified in Section 6.9.1.3,
“hasNsContext.”

« The parse method may be specified in the form
ClassName.methodName, where the ClassNameisafully qualified class
name that includes the package name. A compiler must assume that the
class ClassName exists and that it defines a static method named
methodName that takes:

o String asthefirst argument.

o java.xm . nanmespace. NanespaceCont ext asasecond
parameter, when hasNs Cont ext is"true".

To apply the conversion to a string it must generate code that invokes
this method, passing it the input string and namespace context (if
hasNsCont ext is"true") as specified in Section 6.9.1.3,
“hasNsContext.”

« The parse method may be specified in the form methodName provided
j avaType isnotaJavaprimitivetype(suchas"i nt").Ifj avaType
is Java primitive type, then this must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations.” Otherwise, the
bi nding compiler must assume that methodName is a method in the class
j avaType. The binding compiler must therefore prefix the
j avaType tothe methodNameand processj avaType. methodName
as specified in above.

The string passed to parse method can be any lexical representation for
xm Type asspecified in [XSD PARTZ].

154 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

6.9.1.6 pri nt Met hod

The print method if specified, must be applied during marshalling in order to
convert avalue of the target type into a lexical representation:

« The print method is specified in the form methodName provided
j avaType isnotaJavaprimitivetype(suchas"i nt").Ifj avaType
is Java primitive type, then this must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations.” Otherwise, the
compiler must assume that the target type is a class or an interface that
defines a zero-argument instance method named methodName that
returnsa St ri ng. To apply the conversion it must generate code to
invoke this method upon an instance of the target Java datatype.

« If theprint method isspecified in the form ClassName.methodName then
the compiler must assume that the class ClassName exists and that it
defines a static method named methodName that returns a string that
takes the following:

o thefirst parameter isthetarget Java datatype.

o java.xm . nanmespace. NanespaceCont ext asasecond
parameter, when hasNs Cont ext is"true".

To apply the conversion to a string it must generate code that invokes
this method, passing it avalue of the target Java datatype and
namespace context (if hasNsCont ext is"true") asspecifiedin
Section 6.9.1.3, “hasNsContext.”

The lexical representation to which the value of the target typeis converted can
be any lexical representation for xml Type asspecified in [XSD PARTZ2].

6.9.2 Dat at ypeConverter

Writing customized parse and print methods can be difficult for a Java
programmer. This requires a programmer to understand the lexical
representations of XML schema datatypes. To make it easier, an interface,
Dat at ypeConverterlnterface, andaclassDat atypeConverter
are defined to expose the parse and print methods of a JAXB implementation.
These can be invoked by user defined parse and print methods. This shifts the
burden of dealing with lexical spaces back to the JAXB implementation.

The Dat at ypeConvert er | nt er f ace defines parse and print methods for
XML schema datatypes. There is one parse and print method for each of XML

1/8/03 JAXB Specification — Final, V1.0 155

Customization

schema datatype specified in Table 5-1, “ Java M apping for XML Schema Built-
in Types,” on page 58. The interface is fully specified by the Javadoc specified
inj ava. xnl . bi nd. Dat at ypeConverterlnterface.

The Dat at ypeConvert er classdefines astatic parse and print method
corresponding to each parse and print method respectively in the

Dat at ypeConverterl nterface interface. The property

j avax. xml . bi nd. Dat at ypeConvert er canbe used to select the name
of a class that provides an implementation of the parse and print methods. The
name specified in the property must be a fully qualified class hame and must
implement the interface Dat at ypeConverterl nterface. Theclassis
fully specified by the Javadoc specified in

java. xm . bi nd. Dat at ypeConverter.

6.9.2.1 Usage

The following example demonstrates the use of the Dat at ypeConvert er
class for writing a customized parse and print method.

Example: javaType Customization: User Specified Parse Method

This example shows the binding of XML schematype" xs: dat " ishound to
aJava datatypel ong using user specified print and parse methods.

<j axb: gl obal Bi ndi ngs>
<j axb: javaType nane="long" xm Type="xs: date"
par seMet hod="pkg. MyDat at ypeConvert er. nyPar seDat e"
pri nt Met hod="pkg. MyDat at ypeConverter. nyPrintDate"/>
</ jaxb:javaType>
</ j axb: gl obal Bi ndi ngs>

package pkg;
i mport javax.xm . bi nd. Dat at ypeConverter;
public class MyDatatypeConverter {
public static long nmyParseDate(String s) {
java.util.Calendar d = DatatypeConverter.parse(s);
| ong resul t= cvtCal endar ToLong(d) ; // user defined nethod
return result;
}
public static String nyPrintDate(long |) {
java.util. Calendar d = cvtLongToCal endar(l); //user defined
return Dat atypeConverter.print(d);

156 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

}
}

The implementation of the print methods (par seDat e and pri nt Dat e) are
provided by the user.

The customization is applied during the processing of XML instance document.
During unmarshalling, the JAXB implementation invokes myPar seDat e. If
my Par seDat e method throws a Par seExcepti on, thenthe JAXB
implementation code catches the exception, and generate a

par seConver si onEvent.

6.9.2.2 Lexical And Value Space

[XSD PART 2] specifies both avalue space and a lexical space for an schema
datatypes. There can be more than one lexical representation for a given value.

Examples of multiple lexical representations for a single value are:

« For boolean, thevaluet r ue hastwo lexical representations”t r ue"
ar]d n 1II i

« Forinteger, thevaluel hastwo lexical representations” 1. 0" and
mn 1II i

XSD PART 2 also specifies acanonical representation for all XML schema
atomic datatypes.

The requirements on the parse and print methods are as follows:

« A JAXB implementation of a parse method in
Dat at ypeConvert er | nt er f ace must be capable of aprocessing
all lexical representations for avalue as specified by [XSD PART 2].
This ensuresthat an instance document containing avalue in any lexical
representation specified by [XSD PART 2] can be marshalled.

« A JAXB implementation of a print method in
Dat at ypeConvert er | nt er f ace must convert avalue into any
lexical representation of the XML schema datatype to which the parse
method applies, as specified by [XSD PART 2] and which is valid with
respect to the application’s schema.

1/8/03 JAXB Specification — Final, V1.0 157

Customization

Design Note — The print methods that are exposed may not be portable. The
only requirement on a print method is that it must output a lexical representation
that is valid with respect to the schema. So two vendors can choose to output
different lexical representations. However, there is value in exposing them despite
being non portable. Without the print method, a user would have to be
knowledgeable about how to output a lexical representation for a given schema
datatype, which is not desirable.

6.9.3 Built-in Conversions

Asaconvenience to the user, this section specifies some built-in conversions. A
built-in conversion is one where the parse and the print method may be omitted
by auser. The built-in conversions leverage the narrowing and widening
conversions defined in [JL S - Java Language Specification, Second Edition],
Section 5.1.2, “Widening Primitive Conversion” and Section 5.1.3, “Narrowing
Primitive Conversions.” For example;

<xs:si npl eType nane="foo" type="xs:|long">
<Xs:annot ati on><xs: appi nf o>
<j j axb: avaType name="int"/>
</ xs: appi nf o></ xs: annot ati on>
</ xs: si npl eType>

If the parse method is omitted, then a JAXB implementation must perform the
following steps:

a. ifj avaType isnot one of the primitive types or its corresponding
wrapper class as shown in Table 6-2, “Built-In Conversions,” on
page 159, then it must result in an invalid customization as specified
in Section 6.1.5, “Invalid Customizations.” Skip steps b through d.

b. bindxm Type toits default Javadatatype using the parse method for
thexm Type defined in Dat at ypeConverter.IfjavaType is
the same as the default Java datatype or its wrapper class, then skip
stepsbandc.

c. If default Javadatatypein step a. isnot found in Column 1, “ Default
Javatype” of Table 6-2, “Built-In Conversions,” on page 159, then this
must result in an invalid binding customization as specified in
Section 6.1.5, “Invalid Customizations. Skip step d.

d. Convert the default Java datatype from step a. to value of type

158 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

j avaType using a method in the Java package wrapper class for
j avaType asshown in Table 6-2, “Built-In Conversions,” on

page 159.
Thefollowing is split into two tables for formatting purposes but islogically a
single table.
Table 6-2 Built-In Conversions
Default byte short int long
JavaTlype
byte N/A Byte. Byte. Byte.
shortValue() intValue() longValue()
short Short. N/A Short. Short.
byteValue() intValue() longValue()
int Integer. Integer. N/A Integer.
byteValue() shortVaue() longValue()
long Long. Long. Long. N/A
byteValue() shortVaue() intVaue()
double Double. Double. Double. Double.
byteValue() shortVaue() intValug() longValue()
float Float. Float. Float. Float.
byteValue() shortVaue() intValue() doubleValue()
Default double float
JavaTlype
byte Byte. Byte.
doubleVaue() floatValue()
short Short. Short.
doubleVaue() floatValue()
int Integer. Integer.
doubleVaue() floatValue()
1/8/03 JAXB Specification — Final, V1.0

159

Customization

long Long. Long.
doubleVaue() floatValue()

double N/A Double.
floatValue()
float Float. N/A
doubleVaueg()

Example: javaType Customization: Java Built-in Type

This exampleillustrates how to bind a XML schematype to a Javatype
different from the default one.

XML Schema fragment:

<xs: el enent name="part Nunber" type="xs:int"/>

Customization:

<j axb: gl obal Bi ndi ngs>

<j axb: j avaTypenanme="1 ong"
xm Type="xs:int"/>
</ j axb: gl obal Bi ndi ngs>

Since a Java built-in is specified, aparse or a print method need not be
specified. A JAXB implementation uses the parse and print methods defined in
Dat at ypeConvert er classfor converting between lexical representations
and values. A JAXB implementation unmarshalls an input value using the
following methods:

long i = DataTypeConverter. parseLong(string);
int j = (new java.lang.Long(i)).intValue();

6.9.4 Events

The parse method par seMet hod may fail, sinceit is only defined on those
strings that are valid representations of target Java datatype values and it can be
applied to arbitrary strings. A parse method must indicate failure by throwing an
exception of whatever type is appropriate, though it should never throw a
TypeConstrai nt Excepti on. A JAXB implementation must ensure that

160 JAXB Specification — Final, V1.0 1/8/03

<j avaType> Declaration

an exception thrown by a parse method is caught and a
par seConver si onEvent eventisgenerated.

The print method pri nt Met hod usually does not fail. If it does, then the
JAXB implementation must ensure that the exception thrown by a print method
iscaught and apri nt Conver si onEvent isgenerated.

6.9.5 Customization Overrides

The<j avaType> overridesthe default binding of xm Type to the Java
datatype specified in Table 5-1, “Java Mapping for XML Schema Built-in
Types,” on page 58.

6.9.6 Customizable Schema Elements

6.9.6.1 Simple Type Definition

A <j avaType> binding declaration is allowed in the annotation el ement of the
of asimpletype definition. Thej avaType overrides the default binding of
xm Type tothe Javadatatype specified in Table 5-1, “Java Mapping for XML
Schema Built-in Types,” on page 58. The customization values defined have
definition scope and thus covers al references to this simple type definition.

6.9.6.2 A obal Bi ndi ngs

A <j avaType> binding declaration is allowed as part of

<gl obal Bi ndi ngs>. Thej avaType overridesthe default binding of
xm Type tothe Javadatatype specified in Table 5-1, “Java Mapping for XML
Schema Built-in Types,” on page 58. The customization values defined have
global scope.

6.9.6.3 <baseType> declaration

A <j avaType> binding declaration is allowed as part of <baseType> in
the<pr opert y> binding declaration. Thej avaType overridesthe default
binding of xm Type to the Java datatype specified in Table 5-1, “ Java
Mapping for XML Schema Built-in Types,” on page 58. Additional semantics
are specified in Section 6.8.1.1, “baseType” also apply.

1/8/03 JAXB Specification — Final, V1.0 161

Customization

6.10 <t ypesaf eEnunt Declaration

This binding declaration allows the customization of abinding of an XML
schema element to its Java representation as atypesafe enumeration class
[BLOCH]. Only simple type definitions with enumeration facets can be
customized using this binding declaration.

6.10.1 Usage
<t ypesaf eEnuntCl ass[nane = "enunCl assNane"]
[<typesaf eEnumVenber> ... </typesafeEnumvenber>]*

[<javadoc> enunC assJavadoc </javadoc>]
</ typesaf eEnuntCl ass>

<t ypesaf eEnumVenber nanme = "enunivenber Nane" >
[value = "enumMVenber Val ue"]
[<javadoc> enumMenber Javadoc </javadoc>]
</ t ypesaf eEnunivenber >

There are two binding declarations <t ypesaf eEnuntCl ass> and

<t ypesaf eEnumvenber >. The two binding declarations allow the
enumeration members of an enumeration class and enumeration classitself to be
customized independently.

The<t ypesaf eEnuntCl ass> declaration defines the following
customization values:

« name defines a customization value enunCl assNane, if specified.
enunCl assNane must be alegal Java ldentifier; it must not have a
package prefix.

For an anonymous simple type, the nane attribute must be present. If
absent, it must result in an invalid customization as specified in
Section 6.1.5, “Invalid Customizations.”

« <j avadoc> element, if specified customizes the Javadoc for the
enumeration class. <j avadoc> defines the customization value
enuntCl assj avadoc if specified as described in Section 6.11,
“<javadoc> Declaration.”

« Zeroor more <t ypesaf eEnumvenber > declarations. The
customization values are as defined as specified by the
<t ypesaf eEnumMVenber > declaration.

162 JAXB Specification — Final, V1.0 1/8/03

<t ypesaf eEnun® Declaration

The<t ypesaf eEnumMVenber > declaration defines the following
customization values:

« name must always be specified and defines a customization value
enumvenber Nane. enunmvenber Name must be alegal Java
identifier.

« val ue defines a customization value enumvenber Val ue, if
specified. enunivenber Val ue must be the enumeration value
specified in the source schema. The usage of val ue is further
constrained as specified in Section 6.10.2, “value Attribute.”

« <j avadoc> if specified, customizes the Javadoc for the enumeration
constant. <j avadoc> defines a customization value
enumvenber j avadoc if specified as described in Section 6.11,
“<javadoc> Declaration.”

For inline annotation, the <t ypesaf eEnuntCl ass> must be specified in the
annotation element of the <si npl eType> element. The

<t ypesaf eEnumvenber > must be specified in the annotation element of the
enumeration member. This allows the enumeration member to be customized
independently from the enumeration class.

6.10.2 val ue Attribute

The purpose of the val ue attribute is to support customization of an
enumeration value using an external binding syntax. When the

<t ypesaf eEnumvenber > isusedin aninline annotation, the enumeration
value being customized can be identified by the annotation element with which
it is associated. However, when an external binding declaration is used, while
possible, it is not desirable to use XPath to identify an enumeration value.

So when customizing using external binding syntax, theval ue attribute must
be provided. This serves as a key to identify the enumeration value to which the
<t ypesaf eEnumMvenber > applies. It's useis therefore further constrained
asfollows:

« When <t ypesaf eEnunMenber > is specified in the annotation
element of the enumeration member or when XPath refers directly to a
single enumeration facet, then the value attribute must be absent. If
present, it must result in must result in an invalid customization as
specified in Section 6.1.5, “Invalid Customizations.”

1/8/03 JAXB Specification — Final, V1.0 163

Customization

« When <t ypesaf eEnunMenber > is scoped to the
t ypesaf eEnuntCl ass declaration, the value attribute must be
present. If absent, it must result in must result in aninvalid customization
as specified in Section 6.1.5, “Invalid Customizations.” The
enumMemberValue must be used to identify the enumeration member to
which the <t ypesaf eEnumvVenber > applies.

An example of external binding syntax can be found in “Example 2:
typesafeEnum Customization: External Binding Declaration.”

6.10.3 Inline Annotations

There are two ways to customize an enumeration class.

« splitinline annotation

« combined inline annotation

In split inline annotation, the enumeration value and the enumeration class are
customized separately i.e. the <t ypesaf eEnumvenber > isused
independently not as a child element of <t ypesaf eEnunCl ass>. An
example of thisis shown in “Example 1: typesaf eEnum Customization: Split
Inline Annotation.”

In combined inline annotation, the enumeration val ue and the enumeration class
are customized together i.e. the <t ypesaf eEnunmvenber > isused asachild
element of <t ypesaf eEnuntCl ass>. Thisissimilar to the customization
used in external binding declaration. In this case theval ue attribute must be
present in the <t ypesaf eEnunmMvenber > for reasons noted in

Section 6.10.2, “value Attribute.” An example of this customizationisshown in
“Example 3: typesafeEnum Customization: Combined Inline Annotation.”

6.10.4 Customization Overrides

When binding a schema element’ s Java representation to a typesafe
enumeration class, the following customization values override the defaults
specified in Chapter 5. It is specified in acommon section here and referenced
from Section 6.8.3, “ Customizable Schema Elements.”

« name: If enumClassNameisdefined, then the name obtained by mapping
enumClassName as specified in Section 6.5.2, “ Customized Name

Mapping.”

164 JAXB Specification — Final, V1.0 1/8/03

<t ypesaf eEnun® Declaration

« packagename: The name obtained by inheriting packgeNane froma
scope that covers this schema element and mapping packageName as
specified in Section 6.5.2, “ Customized Name Mapping.”

« enumclassjavadoc: enunCl assJavabDoc if defined, customizesthe
class/interface section (Section6.11.1, “Javadoc
Sections”) for the enumeration class, as specified in Section 6.11.3,
“Javadoc Customization.”

« enum constant set: Each member of the set is computed as follows:

o name: If enumMemberName is defined, the name obtained by
mapping enumMemberName as specified in Section 6.5.2,
“Customized Name Mapping.”

o javadoc: enumvenber JavaDoc if defined, customizesthef i el d
section (Section6.11.1, “Javadoc Sections’) for the
enumeration class, as specified in Section 6.11.3, “ Javadoc
Customization.”

« enumvalue constant set: Each member of the set is computed as
follows:

o name: If enumMemberValueName is defined, the name obtained by
mapping enumMemberValueName as specified in Section 6.11.3,
“Javadoc Customization” and prefixing the obtained name with an
underscore (*).

6.10.5 Customizable Schema Elements

Any XML Schema simple type which has an enumeration facet can be
customized.

1/8/03 JAXB Specification — Final, V1.0 165

Customization

Example 1: typesafeEnum Customization: Split Inline Annotation

XML Schema fragment:

<xs:si npl eType nane="USSt at e" >
<Xs:annot ati on><xs: appi nf 0>
<j axb: t ypesaf eEnunCl ass nane="USSt at eAbbr "/ >
</ xs: appi nf o></ xs: annot ati on>
<xs:restrictionbase="xs: NCNane" >
<xs:enuneration val ue="AK">

<Xs:annot ati on><xs: appi nf 0>
<j axb: t ypesaf eEnunmvenber nanme=" STATE_AK"/ >
</ xs: appi nf o></ xs: annot ati on>

</ Xxs: enunerati on>

<xs:enuneration val ue="AL">

<Xs:annot ati on><xs: appi nf 0>
<j axb: t ypesaf eEnunmvenber nanme=" STATE _AL"/>
</ xs: appi nf 0></ xs: annot ati on>

</ Xs: enunerati on>
</xs:restriction>
</ xs: si npl eType>

Customized derived code:

public class USStateAbbr {
protected USSt ateAbbr(String value) { ... }
public static final String _STATE AL="AL";
public static final USStateAbbr STATE AL=

publ i
publ i

publ i
publ i
publ i
publ i
publ i
publ i

166

O O o o0 o o

new USSt at eAbbr (_STATE_AL) ;

static final String _STATE AK="AK";
static final USStateAbbr STATE_AK=
new USSt at eAbbr (_STATE_AK) ;

String getValue();
static USStateAbbr fronValue(String value) {...}
static USStateAbbr fronString(String val ue){

String toString() { ... }
bool ean equal s(Object "obj) { ... }
int hashCode() { ... }

JAXB Specification — Final, V1.0

1/8/03

<j avadoc> Declaration

Example 2: typesafeEnum Customization: External Binding Declaration

The following example shows how to customize the above XML schema
fragment using an external binding syntax.

<j axb: t ypesaf eEnunCl ass nane="USSt at eAbbr " >
<j axb: t ypesaf eEnunMenber nanme="STATE_AK" val ue="AK">
<j axb: t ypesaf eEnunVenber name="STATE_AL" val ue="AL"/>
</ j axb: typesaf eEnunC ass>

The attribute val ue must be specified for <t ypesaf eEnumvenber >. This
identifies the enumeration member to which <t ypesaf eEnumvenber >

applies.

Example 3: typesafeEnum Customization: Combined Inline Annotation

The following example shows how to customize the above XML schema
fragment using inline annotation which does not split the external binding
syntax.

<xs:si npl eType nane="USSt at e" >
<Xs:annot ati on><xs: appi nf o>
<j axb: t ypesaf eEnunCl ass nane="USSt at eAbbr " >
<j axb: t ypesaf eEnumVenber name=" STATE_AK" val ue="AK"/>
<j axb: t ypesaf eEnumVenber name="STATE_AL" val ue="AL"/>
</ j axb: typesaf eEnunC ass>
</ xs: appi nf o></ xs: annot ati on>
<xs:restriction base="xs: NCNane" >
<xs:enuner ation val ue="AK"/ >
<xs:enuneration val ue="AL"/>
</ xs:restriction>
</ xs: si npl eType>

The attribute value must be specified for t ypesaf eEnunmivenber . This
identifies the enumeration member to which the binding declaration applies.

6.11 <j avadoc> Declaration

The <j avadoc> declaration allows the customization of ajavadoc that is
generated when an XML schema element is bound to its Java representation.

1/8/03 JAXB Specification — Final, V1.0 167

Customization

This binding declaration is not aglobal XML element. Hence it can only be
used as alocal element within the content model of another binding declaration.
The binding declaration in which it is used determines the section of the
Javadoc that is customi zed.

6.11.1 Javadoc Sections

The terminology used for the javadoc sections is derived from “Requirements
for Writing Java APl Specifications” which can be found online at / /
java. sun. coni j 2se/j avadoc/ wri ti ngapi specs/i ndex. htnl .

The following sections are defined for the purposes for customization:
« package section (corresponds to package specification)
« clasd/interface section (corresponds to class/interface specification)

« method section (corresponds to method specification)

« field section (corresponds to field specification)

6.11.2 Usage

Note that the text content of a<j avadoc> element must use CDATA or &l t ;
to escape embedded HTML tags.

<j avadoc>
Contents in & t;b>Javadoc& t;\b> format.
</ j avadoc>

or

<j avadoc>
<<! [CDATA[
Contents in Javadoc<\b> for nat

11>

</ j avadoc>

6.11.3 Javadoc Customization

The Javadoc must be generated from the <j avadoc> element if specified. The
Javadoc section depends upon where <j avadoc> element isused. JAXB

168 JAXB Specification — Final, V1.0 1/8/03

Annotation Restrictions

providers may generate additional provider specific Javadoc information (for
example, contents of the <xs: docunment at i on> element).

6.12 Annotation Restrictions

[XSD PART 1] allows an annotation element to be specified for most elements
but is ambiguous in some cases. The ambiguity and the way they are addressed
are described here.

The source of ambiguity is related to the specification of an annotation element
for areference to a schema element using the “ref” attribute. Thisarisesin three
cases.

« Alocal attribute references aglobal attribute declaration (using the “ref”
attribute).

« A local element in a particle references a global element declaration
using the “ref” attribute.

« A model group in aparticlereferencesamodel group definition using the
“ref” attribute.

For example in the following schema fragment (for brevity, the declaration of
the global element “Name’ has been omitted).

<xs: el enent name = "Custoner">
<xs: conpl exType>
<xs:el enent ref "Nane"/ >
<xs:elenent ref = "Address" />
</ xs: conpl exType>
</ xs: el enent >

XML Schema spec is ambiguous on whether an annotation element can be
specified at the reference to the “Name” element.

The restrictions on annotation elements has been submitted as an issue to the
W3C Schema Working Group along with JAXB technology reguirements
(which is that annotations should be allowed anywhere). Pending a resol ution,
the semantics of annotation elements where the XML spec is unclear are
assumed as specified as follows.

1/8/03 JAXB Specification — Final, V1.0 169

Customization

This specification assumes that an annotation element can be specified in each
of the three cases outlined above. Furthermore, an annotation element is
assumed to be associated with the abstract schema component as follows:

« The annotation element on an element ref is associated with { Attribute
Use}

« The annotation element on amodel group ref or an element referenceis
associated with the { particle} .

170 JAXB Specification — Final, V1.0 1/8/03

CHAPTERY/

COMPATIBILITY

This section describes the conformance requirements for an implementor of this
specification. A JAXB implementation must implement these constraints,
without exception, to provide a predictable environment for application
development and deployment.

This section explicitly lists the high level requirements of this specification.
Additional requirements can be found in other sections of this specification and
the associated javadoc for packagej avax. xml . bi nd and its subpackages. If
any requirements listed here conflict with requirements listed elsewhere in the
specification, the requirements here take precedence and replace the conflicting
requirements.

For the purpose of portability, all operating modes of a JAXB implementation
must support all the XML Schema-to-Java bindings described in this
specification.Specifically, other operating modes must not implement a default
binding for XML Schema-to-Java bindings as an aternative to those specified
in Section 5, “Binding XML Schema to Java Representations’ nor alternative
interpretations for the standard customizations described in Section 6,
“Customization.”

The default operating mode for a JAXB implementation MUST report an error
to users when an XML Schema contains constructs for which the Java Binding
has not been specified by this specification as summarized in Appendix

E.2.1," Concepts detected at binding compilation time.”

The default operating mode for a JAXB implementation MUST report an error
when extension binding declaration is encountered. All operating modes for a
JAXB implementation MUST report an error if aninvalid binding
customization is detected as defined in Section 6. An extension binding
declaration must be introduced in the following cases:

1. toalter abinding customization that is allowed to be associated with a

1/8/03 JAXB Specification — Final, V1.0 171

Compatibility

schema element as specified in Section 6, “ Customization.”
2. to associate a binding customization with a schema element whereitis
disallowed as specified in Section 6, “ Customization.”

The default operating mode for a JAXB binding compiler MUST report an error
when processing a schema that does not comply with the 2001 W3C
Recommendation for XML Schema, [XSD Part 1] and [XSD Part 2].

A JAXB implementation MAY support non-default operating modes that are
capable of generating bindings for XML Schema constructs not required by this
specification.

A JAXB implementation exposes the JAXP 1.1 or higher APIs.

A JAXB compiler MAY support non-default operating modes for binding
schema languages other than XML Schema.

A JAXB implementation MUST be able to generate Java classes that are able to
run on at least one J2SE Java Runtime Environment.

172 JAXB Specification — Final, V1.0 1/8/03

CHAPTERS8

REFERENCES

[XSD Part 0] XML Schema Part O: Primer,

W3C Recommendation 2 May 2001

Availableatht t p: // www. w3. or g/ TR/ xm schenma- 0/
(schema fragments borrowed from this widely used source)

[XSD Part 1] XML Schema Part 1: Structures,
W3C Recommendation 2 May 2001
Availableathtt p: // www. w3. or g/ TR/ xm schenma- 1/

[XSD Part 2] XML Schema Part 2: Datatypes,
W3C Recommendation 2 May 2001
Availableatht t p: // www. w3. or g/ TR/ xm schenma- 2/

[XMI-Infoset] XML Information Set, John Cowan and Richard Tobin, eds.,
W3C, 16 March 2001. Availableat ht t p: / / www. w3. or g/ TR/ 2001/ W\D-
xm -i nfoset-20010316/

[XML 1.0] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000.
Availableat ht t p: // www. w3. or g/ TR/ 2000/ REC- xmi - 20001006.

[Namespacesin XML] Namespacesin XML

W3C Recommendation 14 January 1999.

Availableat ht t p: // www. w3. or g/ TR/ 1999/ REC- xnl - nanes-
19990114

[XPath], XML Path Language, James Clark and Steve DeRosg, eds., W3C, 16
November 1999. Availableat ht t p: / / www. w3. or g/ TR/ 1999/ REC-
xpat h- 19991116

[XSLT 1.0] XSL Transformations (XSLT), Version 1.0, James Clark, W3C
Recommendation 16 November 1999. Available at http://www.w3.0org/ TR/
1999/REC-xs|t-19991116.

1/8/03 JAXB Specification — Final, V1.0 173

References

[BEANS] JavaBeans(TM), Version 1.01, July 24, 1997. Availableatht t p: / /
j ava. sun. conl beans.

[XSD Primer] XML Schema Part O: Primer,
W3C Recommendation 2 May 2001
Availableat ht t p: // www. w3. or g/ TR/ xm schenma- 0/

[BLOCH] Joshua Bloch, Effective Java, Chapter 3, Typesafe Enums
http://devel oper.java. sun. conl devel oper/ Books/
shi ftintojavapagel. ht nl #r epl aceenum

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, ht t p: / /
ww. i etf.org/rfc/rfc2396.txt.

[JAX-RPC] Java® API for XML-based RPC JAX-RPC 1.0, htt p: //
j ava. sun. com xnl / downl oads/ j axrpc. html .

[JLS] The Java Language Specification, 2nd Edition, Gosling, Joy,
Steele.Bracha.
Availableat .ht t p: / /] ava. sun. com docs/ books/j I s.

[NIST] NIST XML Schema Test Suite, ht t p: //
XxwW2k. sdct.itl.nist.gov/xm/paged. htnl.

174 JAXB Specification — Final, V1.0 1/8/03

APPENDIXA

PACKAGE JAVAX.XML.BIND

<Available as a separate document.>

1/8/03 JAXB Specification — Final, V1.0 175

Packagejavax.xml.bind

176 JAXB Specification — Final, V1.0 1/8/03

APPENDIXB

NORMATIVE BINDING SCHEMA

SYNTAX

<?xm version = "1.0" encoding = "UTF-8"?>
<xs:schemat ar get Nanespace = "http://java. sun.com xm / ns/jaxb"

1/8/03

xm ns:jaxb = "http://java.sun.com xm / ns/jaxb"
xm ns: xs = "http://ww. w3. org/ 2001/ XM_.Schem"
el enent FornmDef ault = "qualified"
attributeFornDefault = "unqualified">
<xs:annot ati on><xs: docunent ati on>
Schema for binding schema. JAXB Version 1.0
</ xs: docunent ati on></ xs: annot ati on>
<xs:group nane = "declaration">
<xs:annot ation>
<xs: docunentation>
Model group that represents a binding declarati on.
Each new bindi ng declaration added to the jaxb
nanmespace that is not restricted to gl obal Bi ndi ngs
shoul d be added as a child elenent to this nodel group
</ xs: docunent ati on>
<xs: docunent ati on>
Al l ow for extension binding declarations.
</ xs: docunent ati on>
</ xs: annot ati on>
<! -- each new binding declaration, not restricted to
gl obal Bi ndi ngs, should be added here -->
<xs: choi ce>

<xs: el enent ref = "jaxb: gl obal Bi ndi ngs"/>
<xs:elenent ref = "jaxb:schemaBindi ngs"/>
<xs:elenent ref = "jaxb:class"/>

<xs:elenent ref = "jaxb:property"/>
<xs: el enent ref = "jaxb:typesaf eEnunCl ass"/ >
<xs:el enent ref = "jaxb:javaType"/>

JAXB Specification — Final, V1.0 177

Normative Binding Schema Syntax

178

<xs: el enent ref = "jaxb:typesaf eEnunivenber"/>
<Xs:any nanespace = "##other" processContents = "lax"/>
</ xs: choi ce>
</ xs: group>
<xs:attribute nane = "version" type="xs:token" >
<xs:annot ati on><xs: docunent ati on>
Used to specify the version of the binding schema on the
schema el enent for inline annotations or jaxb: bindi ngs
for external binding.
</ xs: docunent ati on></ xs: annot ati on>
</ xs:attribute>
<xs:attributeGroup nane = "propertyAttributes">
<xs:annot ation>
<xs: docunent ati on>
Attributes used for property custom zation. The
attribute group can be referenced either fromthe
gl obal Bi ndi ngs declaration or fromthe property
decl aration.
The following defaults are defined by the JAXB
specification in global scope only. Thus they apply
when the propertyAttributes group is referenced
fromthe gl obal Bi ndi ngs decl arati on but not when
referenced fromthe property declaration.
coll ectionType class that inplenents
java.util.List. The class is
JAXB i npl enent ati on dependent.
fi xedAttri but eAsConst ant Property fal se
enabl eFai | Fast Check fal se
gener at el sSet Met hod fal se
</ xs: docunent ati on>
</ xs: annot ati on>
<xs:attribute nane = "collectionType"
type="j axb: referenceCol | ecti onType"/ >
<xs:attribute nane = "fixedAttributeAsConst ant Property"
type = "xs:bool ean"/>
<xs:attribute name = "enabl eFai | Fast Check"
type = "xs:bool ean"/>
<xs:attribute nane = "gener at el sSet Met hod"
type = "xs:bool ean"/>
</ xs:attri buteG oup>
<xs:attributeG oup nane = " XM.NaneToJaval dMappi ngDef aul ts" >
<xs:annot ation>
<xs: docunent ati on>
Custom ze XM Nanes to Java id mappi ng

JAXB Specification — Final, V1.0 1/8/03

1/8/03

</ xs: docunent ati on>
</ xs: annot ati on>

<xs:attribute nane = "under scor eBi ndi ng"
default = "asWordSepar at or"
type = "jaxb: under scor eBi ndi ngType"/ >
<xs:attribute nane = "typesaf eEnunmMenber Nane"
default = "generateError"

type = "jaxb:typesaf eEnumMeneber NameType"/ >
</ xs:attri buteG oup>

<xs:attributeGoup nane = "typesaf eEnunmCl assDef aul t s" >
<xs:attribute nane = "typesaf eEnunBase"
default = "xs: NCNane"
type = "jaxb:typesaf eEnunBaseType"/ >

</ xs:attributeG oup>
<xs:el enent name = "gl obal Bi ndi ngs" >
<Xs:annot ati on>
<xs: docunent ati on>
Custom zation val ues defined in global scope.
</ xs: docunment ati on>
</ xs: annot ati on>
<xs: conpl exType>

<xs:sequence m nCccurs = "0">
<xs:elenent ref = "jaxbh:javaType"
m nCccurs = "0" maxCccurs = "unbounded"/ >
<XS:any nanmespace = "##other" processContents = "l ax">

<xs:annot ati on> <xs: docunentati on>
al | ows ext ensi on binding declarations to be
speci fi ed.

</ xs: docunment at i on></ xs: annot at i on>

</ xs:any>
</ xs: sequence>
<XS:attributeGoup ref = "jaxb: XM_LNameToJaval dMappi ngDef aul t s"/>
<xs:attributeGroup ref = "jaxb:typesafeEnund assDefaul ts"/ >
<xs:attributeGroup ref = "jaxb: propertyAttributes"/>
<xs:attribute nane = "enabl eJavaNam ngConventi ons"
default = "true"
type = "xs:bool ean"/>
<xs:attribute nane = "bindi ngStyle"
default = "el emrent Bi ndi ng"
type = "jaxb: bindi ngStyl eType"/ >
<xs:attribute nane = "choi ceContent Property"
default = "fal se"
type = "xs:bool ean"/>

</ xs: conpl exType>

JAXB Specification — Final, V1.0 179

Normative Binding Schema Syntax

</ xs: el enent >
<xs: el enent name = "schemaBi ndi ngs" >
<xs:annot ati on>
<xs: docunent ati on>
Custom zation values with schema scope
</ xs: docunment ati on>
</ xs: annot ati on>
<xs: conpl exType>
<xs:al | >
<xs: el enent nanme = "package" type = "jaxb: packageType
m nCccurs = "0"/>
<xs:el enent nane = "nameXm Transforni

type = "jaxb: naneXm Tr ansf or niType"
m nCccurs = "0"/>

</xs:all>
</ xs: conpl exType>
</ xs: el enent >
<xs:el enent name = "cl ass">
<Xs:annot ati on>
<xs: docunent ati on>Cust om ze i nterface and i npl ementati on
cl ass. </ xs: docunent ati on>
</ xs: annot ati on>
<xs: conpl exType>
<Xs:sequence>

<xs:el enent name = "javadoc" type = "xs:string"
m nCccurs = "0"/>
</ xs: sequence>
<xs:attribute nane = "nane"

type = "jaxb:javaldentifierType">
<Xs:annot at i on><xs: docunent ati on>
Java cl ass nane wi t hout package prefix.
</ xs: document ati on></ xs: annot at i on>
</ xs:attri bute>
<XS:attribute nane = "inpl dass" type = "jaxb:javaldentifierType">
<Xs:annot ati on><xs: docunent ati on>
I npl enent ati on cl ass nanme i ncl udi ng packagepr efi x.
</ xs: docunment ati on></ xs: annot at i on>
</ xs:attribute>
</ xs: conpl exType>
</ xs: el enent >
<xs:el enent name = "property">
<Xs:annot at i on><xs: docunent ati on>
Custom ze property.
</ xs: docunment ati on></ xs: annot at i on>

180 JAXB Specification — Final, V1.0 1/8/03

<xs: conpl exType>

<xs:al | >
<xs:el enent name = "javadoc" type = "xs:string"
m nCccurs = "0"/>
<xs: el enent name = "baseType"
type = "jaxb: propertyBaseType"
m nCccurs="0"/>
</xs:all>
<xs:attribute name = "nane"

type = "jaxb:javaldentifierType"/>
<xs:attributeGoup ref =
"j axb: propertyAttri butes"/>
</ xs: conpl exType>
</ xs: el enent >
<xs:el enent name = "javaType">
<xs:annot ati on><xs: docunent ati on>
Data type conversions; overriding builtins
</ xs: docunent ati on></ xs: annot ati on>
<xs: conpl exType>
<xs:attribute nane = "nanme" use = "required"
type = "jaxb:javaldentifierType">
<xs:annot ati on><xs: docunent ati on>

name of the java type to which xm type is to be

bound.
</ xs: document ati on></ xs: annot at i on>
</ xs:attribute>
<xs:attribute nane = "xm Type" type = "QName">
<Xs:annot at i on><xs: docunent ati on>

xm type to which java datatype has to be bound.

Mist be present when javaType is scoped to
gl obal Bi ndi ngs.
</ xs: docunent ati on></ xs: annot at i on>
</ xs:attribute>
<xs:attribute name = "parseMethod"
type = "jaxb:javaldentifierType"/>
<xs:attribute name = "print Met hod"
type = "jaxb:javaldentifierType"/>
<xs:attribute name = "hasNsContext" default = "fal se
type = "xs:bool ean" >
<xs:annot ati on>
<xs: docunent ation>
If true, the parsMethod and print Method nust reference a nethod
signtature that has a second paraneter of type NanespaceContext.
</ xs: docunent ati on>

1/8/03 JAXB Specification — Final, V1.0

181

Normative Binding Schema Syntax

182

</ xs: annot ati on>
</ xs:attribute>
</ xs: conpl exType>
</ xs: el enent >
<xs:el enent name = "typesaf eEnunC ass">
<Xs:annot at i on><xs: docunent ati on>
Bind to a type safe enuneration class.
</ xs: docunment ati on></ xs: annot at i on>
<xs: conpl exType>
<Xs:sequence>

<xs:el enent name = "javadoc" type = "xs:string"
m nCccurs = "0"/>
<xs:elenent ref = "jaxb:typesaf eEnunienber"
m nCccurs = "0" maxCccurs = "unbounded"/>
</ xs: sequence>
<xs:attribute nane = "nane"

type = "jaxb:javaldentifierType"/>
</ xs: conpl exType>
</ xs: el enent >
<xs:el enent name = "typesaf eEnunmvenber" >
<xs:annot ati on><xs: docunent ati on>
Enuner ati on nmenber nanme in a type safe enuneration
cl ass.
</ xs: docunent ati on></ xs: annot ati on>
<xs: conpl exType>
<Xs:sequence>

<xs:el enent name = "javadoc" type = "xs:string"
m nCccurs = "0"/>
</ xs: sequence>
<xs:attribute nane = "value" type = "xs:string"/>
<xs:attribute nane = "nanme" use = "required"

type = "jaxb:javaldentifierType"/>
</ xs: conpl exType>
</ xs: el enent >

<l-- TYPE DEFINITIONS -->
<xs: conpl exType name = "propertyBaseType">
<Xs:annot ati on><xs: docunent ati on>
Custom ze the base type of a property.
</ xs: docunment ati on></ xs: annot at i on>
<xs:al | >
<xs:elenent ref = "jaxb:javaType" m nQccurs = "0"/>
</xs:all>
</ xs: conpl exType>

JAXB Specification — Final, V1.0 1/8/03

1/8/03

<xs:sinpl eType nane = "bindi ngStyl eType">
<Xs:annot at i on><xs: docunent ati on>
Al'l ows sel ection of a binding algorithm
</ xs: docunment at i on></ xs: annot at i on>

<xs:restriction base = "xs:string">
<xs:enuneration value = "el erent Bi ndi ng"/ >
<xs:enuneration value = "nodel G oupBi ndi ng"/>

</ xs:restriction>
</ xs: si npl eType>

<xs: conpl exType name = "packageType">

<Xs:sequence>

<xs:el enent name = "javadoc" type = "xs:string"
m nCccurs = "0"/>

</ xs: sequence>

<xs:attribute nane = "nanme" type="jaxb:javaldentifierType"/>
</ xs: conpl exType>
<xs:si npl eType nane = "underscoreBi ndi ngType" >

<xs:annot ati on><xs: docunent ati on>
Treate underscore in XM. Nane to Java identifier mapping
</ xs: docunent at i on></ xs: annot at i on>

<xs:restriction base = "xs:string">
<xs:enuneration value = "asWrdSeparator"/>
<xs:enuneration value = "asChar | nWrd"/>

</xs:restriction>
</ xs: si npl eType>
<xs:sinpl eType nane = "typesaf eEnunBaseType" >
<xs:annot ati on><xs: docunent ati on>
XML types or types derived fromthem which have
enuner ation facet(s) which are be mapped to
t ypesaf eEnuntCl ass by defaul t.
The followi ng types cannot be specified in this list:
"xs: Qane", "xs:base64Bi nary", "xs:hexBinary",
"xs:date", "xs:time", "xs:dateTime", "xs:duration",
"xs:gDay", "xs:gMonth", "xs:gYear", "xs:gMnthDay",
"xs: Year Mont h"
</ xs: docunent ati on></ xs: annot ati on>

<xs:list itenType = "xs:QName"/>
</ xs: si npl eType>
<xs:sinpl eType nane = "typesaf eEnumveneber NaneType" >

<xs:annot ati on><xs: docunent ati on>
Used to custom ze how to handl e nane collisions.
i. generate VALUE 1, VALUE 2... if generateNane

JAXB Specification — Final, V1.0 183

Normative Binding Schema Syntax

184

ii. generate an error if value is generateError.
This is JAXB default behavior.
</ xs: docunent at i on></ xs: annot at i on>

<xs:restriction base = "xs:string">
<xs:enuneration value = "generateNane"/>
<xs:enuneration value = "generateError"/>

</ xs:restriction>
</ xs: si npl eType>
<xs:sinpl eType nane = "javal dentifierType">
<Xs:annot ati on><xs: docunent ati on>
Type to indicate Legal Java identifier.
</ xs: docunment ati on></ xs: annot at i on>

<xs:restriction base = "xs: NCNanme"/ >
</ xs: si npl eType>
<xs: conpl exType nane = "nanmeXm Transfor nRul e" >

<xs:annot at i on><xs: docunent ati on>
Rule to transforman Xm nane into another Xml nane
</ xs: docunment ati on></ xs: annot at i on>
<xs:attribute nane = "prefix" type = "xs:string">
<Xs:annot at i on><xs: docunent ati on>
prepend the string to QNane.
</ xs: docunment ati on></ xs: annot at i on>
</ xs:attribute>
<xs:attribute nane = "suffix" type = "xs:string">
<Xs:annot at i on><xs: docunent ati on>
Append the string to QNane.
</ xs: docunent ati on></ xs: annot at i on>
</ xs:attribute>
</ xs: conpl exType>
<xs: conpl exType nane = "nanmeXm Transfor nType" >
<Xs:annot at i on><xs: docunent ati on>

Al'l ows transform ng an xnml nane i nto anot her xml nane.

case UDDI 2.0 schemn.
</ xs: docunent at i on></ xs: annot at i on>

<xs:al | >
<xs:el enent name = "typeNane"
type = "jaxb: naneXm Transf or nRul e"
m nCccurs = "0">

<Xs:annot ati on><xs: docunent ati on>
Mapping rule for type definitions.
</ xs: document ati on></ xs: annot at i on>
</ xs: el enent >
<xs: el enent name = "el ement Nane"
type = "jaxb: naneXm Transf or nRul e"

Use

JAXB Specification — Final, V1.0 1/8/03

m nCccurs = "0">
<Xs:annot at i on><xs: docunent ati on>
Mapping rule for elenents

</ xs: docunment ati on></ xs: annot at i on>
</ xs: el enent >

<xs: el enent name = "nodel G oupNane"
type = "jaxb: naneXm Tr ansf or nRul e"
m nCccurs = "0">

<xs:annot ati on><xs: docunent ati on>
Mapping rule for nodel group
</ xs: docunent ati on></ xs: annot ati on>
</ xs: el enent >
<xs:el enent name = "anonynousTypeNane"
type = "jaxb: naneXnl Tr ansf or nRul e" >
<xs:annot ati on><xs: docunent ati on>
Mapping rule for class nanmes generated for an
anonymous type.
</ xs: docunent ati on></ xs: annot at i on>
</ xs: el enent >
</xs:all>
</ xs: conpl exType>
<xs:attribute nane = "extensionBindi ngPrefixes">
<xs:annot ati on><xs: docunent ati on>
A binding conpiler only processes this attribute when it
occurs on an instance of xs:schemmn el enent. The val ue of
this attribute is a whitespace-separated |ist of namespace
prefixes. The nanespace bound to each of the prefixes is
designated as a custom zation decl arati on nanespace
</ xs: docunent ati on></ xs: annot at i on>
<xs: si npl eType>
<xs:list itemType = "xs:normalizedString"/>
</ xs: si npl eType>
</ xs:attribute>
<xs: el enent name = "bindi ngs">
<xs:annot ati on><xs: docunent ati on>
Bi ndi ng declaration(s) for a renpte schema
If attribute node is set, the binding declaraions
are associated with part of the renpte schema
desi gnated by schemamLocation attribute. The node
attribute identifies the node in the rembte schenma
to associate the binding declaration(s) wth.
</ xs: docunent ati on></ xs: annot at i on>
<!-- a <bi ndings> el enent can contain arbitrary nunber of
bi ndi ng decl arati ons or nested <bindings> el enents -->

1/8/03 JAXB Specification — Final, V1.0 185

Normative Binding Schema Syntax

186

<xs: conpl exType>
<Xs:sequence>

<xs:choice m nCQccurs = "0" maxQOccurs = "unbounded" >
<xs:group ref = "jaxb:declaration"/>
<xs:el enent ref = "jaxb:bindings"/>

</ xs: choi ce>
</ xs: sequence>
<xs:attribute name = "schenmmLocation" type = "xs:anyURl ">
<xs:annot ati on><xs: docunent ati on>
Locati on of the renpte schema to associate binding
decl arations with.
</ xs: docunent ati on></ xs: annot ati on>
</ xs:attribute>
<xs:attribute nane = "node" type = "xs:string">
<xs:annot ati on><xs: docunent ati on>
The value of the string is an XPATH 1.0 conpli ant
string that resolves to a node in a renmpte schema
to associ ate bi nding declarations with. The renote
schema is specified by the schemaLocati on
attribute occuring in the current element or in a
parent of this elenent.
</ xs: docunent ati on></ xs: annot at i on>
</ xs:attribute>
<xs:attribute nane = "version" type = "xs:token">
<xs:annot ati on><xs: docunent ati on>
Used to indicate the version of binding
declarations. Only valid on root |evel bindings
elenent. Either this or "jaxb:version" attribute
but not both may be specified.
</ xs: docunent ati on> </ xs: annotati on>
</ xs:attribute>
<xs:attribute ref = "jaxb:version">
<xs:annot ati on><xs: docunent ati on>
Used to indicate the version of binding
declarations. Only valid on root |evel bindings
element. Either this attribute or "version"
attribute but not both may be specified.
</ xs: docunent ati on> </ xs: annotati on>
</ xs:attribute>
</ xs: conpl exType>
</ xs: el enent >
<xs:si npl eType nane="referenceCol | ecti onType">
<XS: uni on>
<xs:si npl eType>

JAXB Specification — Final, V1.0 1/8/03

<xs:restriction base="xs:string">
<xs:enuner ation val ue="i ndexed"/ >

</ xs:restriction>

</ xs: si npl eType>

<xs: si npl eType>
<xs:restriction base="jaxb:javaldentifierType"/>

</ xs: si npl eType>

</ Xs: uni on>
</ xs: si npl eType>
</ xs: schema>

1/8/03 JAXB Specification — Final, V1.0 187

Normative Binding Schema Syntax

188 JAXB Specification — Final, V1.0 1/8/03

APPENDIXC

BINDING XML NAMES TO
JAVA IDENTIFIERS

C.1 Overview

This section provides default mappings from:

« XML Name to Javaidentifier
« Model group to Javaidentifier
« Namespace URI to Java package name

C.2 The Name to Identifier Mapping
Algorithm

Javaidentifiers typically follow three simple, well-known conventions:

« Class and interface names always begin with an upper-case letter. The
remaining characters are either digits, lower-case letters, or upper-case
letters. Upper-case | etters within a multi-word name serveto identify the
start of each non-initial word, or sometimes to stand for acronymes.

« Method names and components of a package name always begin with a
lower-case letter, and otherwise are exactly like class and interface
names.

« Constant names are entirely in upper case, with each pair of words
separated by the underscore character (* ', \uOO5F, LOW LINE).

1/8/03 JAXB Specification — Final, V1.0 189

Binding XML Names to Java Identifiers

XML names, however, are much richer than Javaidentifiers; They may include
not only the standard Javaidentifier characters but also various punctuation and
special characters that are not permitted in Java identifiers. Like most Java
identifiers, most XML names are in practice composed of more than one
natural-language word. Non-initial words within an XML name typically start
with an upper-case letter followed by alower-case letter, asin Javalanguage, or
are prefixed by punctuation characters, which is not usual in the Java language
and, for most punctuation characters, isin fact illegal.

In order to map an arbitrary XML name into a Java class, method, or constant
identifier, the XML nameisfirst broken into aword list. For the purpose of
constructing word lists from XML names we use the following definitions:;

« A punctuation character is one of the following:

A hyphen (’-’, \u002D, HY PHEN-MINUS),

A period (., \uOO2E, FULL STOP),

A colon (":", \uOO3A, COLON),
Anunderscore (', \uOO5F, LOW LINE),

A dot (*.",\u00B7, MIDDLE DOT),

\u0387, GREEK ANO TELEIA,

\u06DD, ARABIC END OF AYAH, or
\uO6DE, ARABIC START OF RUB EL HIZB.

O 0o oo o oo o

These are al legal charactersin XML names.

« A letter isacharacter for which the Char acter . i sLet t er method
returnst r ue, i.e., aletter according to the Unicode standard. Every
letter is alegal Java identifier character, both initial and non-initial.

« A digitisacharacter for which the Char act er. i sDi gi t method
returnst r ue, i.e,, adigit according to the Unicode Standard. Every digit
isalegal non-initial Javaidentifier character.

« A markisacharacter that isin none of the previous categories but for
which the Char act er. i sJaval denti fi er Part method returns
t r ue. This category includes numeric letters, combining marks, non-
spacing marks, and ignorable control characters.

Every XML name character fallsinto one of the above categories. We further
divide lettersinto three subcategories:

« An upper-case letter is aletter for which the
Char acter.i sUpper Case methodreturnstr ue,

190 JAXB Specification — Final, V1.0 1/8/03

The Name to ldentifier Mapping Algorithm

« A lowercase letter is aletter for which the
Char acter.i sLower Case method returnst r ue, and

« All other letters are uncased.

An XML nameis split into aword list by removing any leading and trailing
punctuation characters and then searching for word breaks. A word break is
defined by three regular expressions: A prefix, a separator, and a suffix. The
prefix matches part of the word that precedes the break, the separator is not part
of any word, and the suffix matches part of the word that follows the break. The
word breaks are defined as:

Table C-1 XML Word Breaks

Prefix Separator Suffix Example
[~punct] punct + [~punct] foo| --| bar
digit [~digit] f0022| bar
[~digit] digit foo| 22

| ower [~ ower] f oo| Bar
upper upper | ower FOQ Bar
letter [Metter] Foo| \ u2160
[Metter] letter \ u2160| Foo
uncased [~uncased]

[~uncased] uncased

(The character \ u2160 is ROMAN NUMERAL ONE, a numeric letter.)

After splitting, if aword begins with a lower-case character then its first
character is converted to upper case. The final result isaword list in which each
word is either

« A string of upper- and lower-case letters, the first character of whichis
upper case,

« A string of digits, or

« A string of uncased letters and marks.

Given an XML name in word-list form, each of the three types of Java
identifiers is constructed as follows:

« A classor interface identifier is constructed by concatenating the words
inthelist,

1/8/03 JAXB Specification — Final, V1.0 191

Binding XML Names to Java Identifiers

« A method identifier is constructed by concatenating thewordsin thelist.
A prefix verb (get , set, etc.) is prepended to the result.

« A constant identifier isconstructed by converting eachword in thelist to
upper case; the words are then concatenated, separated by underscores.

This algorithm will not change an XML name that is already alegal and
conventional Javaclass, method, or constant identifier, except perhapsto add an
initial verb in the case of a property access method.

Example

Table C-2 XML Names and Java Class, Method, and Constant Names

XML Name Class Name Method Name Constant Name

mixedCaseName MixedCaseName getMixedCaseName MIXED_CASE NAME
Answer42 Answer42 getAnswer42 ANSWER_42
name-with-dashes NameWithDashes getNameWithDashes NAME_WITH_DASHES

other_punct-chars OtherPunctChars getOtherPunctChars OTHER_PUNCT_CHARS

C.2.1 Collisions and conflicts

It is possible that the name-mapping algorithm will map two distinct XML
names to the same word list. Thiswill result in acollision if, and only if, the
same Java identifier is constructed from the word list and is used to name two
distinct generated classes or two distinct methods or constants in the same
generated class. Collisions are not permitted by the binding compiler and are
reported as errors; they may be repaired by revising XML name within the
source schema or by specifying a customized binding that maps one of the two
XML namesto an dternative Javaidentifier.

A class name must not conflict with the generated JAXB class,

Obj ect Fact ory, section 4.2 on page 36, that occurs in each schema-derived
Java package. Method names are forbidden to conflict with Java keywords or
literals, with methods declared inj ava. | ang. Obj ect , or with methods
declared in the binding-framework classes. Such conflicts are reported as errors
and may be repaired by revising the appropriate schema or by specifying an
appropriate customized binding that resolves the name collision.

192 JAXB Specification — Final, V1.0 1/8/03

Deriving a legal Java identifier from xs: stri ng

Design Note — Thelikelihood of collisions, and the difficulty of working around
them when they occur, depends upon the source schema, the schema language in
which it is written, and the binding declarations. In general, however, we expect

that the combination of the identifier-construction rules given above, together with
good schema-design practices, will make collisions relatively uncommon.

The capitalization conventions embodied in the identifier-construction rules will
tend to reduce collisions as long as names with shared mappings are used in
schema constructs that map to distinct sorts of Java constructs. An attribute named
f oo isunlikely to collide with an element type named f 0o because the first maps
to a set of property access methods (get Foo, set Foo, etc.) while the second
maps to a class name (Foo).

Good schema-design practices also make collisions less likely. When writing a
schemait is inadvisable to use, in identical roles, names that are distinguished
only by punctuation or case. Suppose a schema declares two attributes of a single
element type, one named Foo and the other named f 00. Their generated access
methods, namely get Foo and set Foo, will collide. This situation would best be
handled by revising the source schema, which would not only eliminate the
collision but also improve the readability of the source schema and documents that
use it.

C.3 Deriving alegal Java identifier from
XSs:string

The XML Name to Java identifier algorithm needs to be extended to
accommodate generating Javaidentifiers from xs: st ri ng due to the binding
customizationt ypesaf eEnunBase enabling enumeration values that are not
xs: NCNarmre to need to be mapped to a Java identifier by default.

Leading and trailing white space for the value of the xs: st ri ng is dropped.
All characters that return false for i sJaval denti fi erPart () aredropped.

1/8/03 JAXB Specification — Final, V1.0 193

Binding XML Names to Java Identifiers

C.4 Deriving an identifier for a model
group

XML Schema has the concept of agroup of element declarations. Occasionally,
it is convenient to bind the grouping as a Java content property or a Java content
interface. When a semantically meaningful name for the group is not provided
within the source schema or via a binding declaration customization, it is
necessary to generate a Javaidentifier from the grouping. Below is an algorithm
to generate such an identifier.

A nameiscomputed for an unnamed model group by concatenating together the
first 3 element declarations and/or wildcards that occur within the model group.
Each XML {name} is mapped to a Java identifier for amethod using the XML
Name to Java ldentifier Mapping algorithm. Since wildcard does not have a
{name} property, it isrepresented as the Java identifier “Any”. The Java
identifiers are concatenated together with the separator “And” for sequence and
all compositor and “Or " for choice compositors. For example, a sequence of
element f oo and element bar would map to “ FooAndBar ” and a choice of
element f oo and element bar mapsto “FooOr Bar .” Lastly, a sequence of
wildcard and element bar would map to the Javaidentifier “ AnyAndBar " .

Example:

Given XML Schema fragment:

<xs: choi ce>
<Xs:sequence>
<xs: el enent nanme="A"/>
<xs:any processContents="strict"/>
</ xs: sequence>
<xs:el enent nanme="C'/>
</ xs: choi ce>

The generated Java identifier would be AAndAny Or C.

C.5 Generating a Java package name

This section describes how to generate a package name to hold the derived Java
representation. The motivation for specifying a default meansto generate a Java

194 JAXB Specification — Final, V1.0 1/8/03

Generating a Java package name

package name is to increase the chances that a schema can be processed by a
binding compiler without requiring the user to specify customizations.

If a schema has a target namespace, the next subsection describes how to map
the URI into a Java package name. |f the schema has no target namespace, there
is a section that describes an algorithm to generate a Java package name from
the schema filename.

C.5.1 Mapping from a Namespace URI

An XML namespace is represented by a URI. Since XML Namespace will be
mapped to a Java package, it is necessary to specify a default mapping from a
URI to aJava package name. The URI format is described in [RFC2396].

The following steps describe how to map a URI to a Java package name. The
example URI, ht t p: // www. acme. coni go/ espeak. xsd ,isusedto
illustrate each step.

1. Removetheschemeand": " part from the beginning of the URI, if
present.
Since thereis no formal syntax to identify the optional URI scheme, re-
strict the schemes to be removed to case insensitive checks for schemes
“http” and“urn”.

!/ www. acrre. cont go/ espeak. xsd

2. Removethetrailing filetype, oneof . ?? or. ??? or. htm .

!/ www. acrre. cont go/ espeak

3. Parsetheremaining string into alist of stringsusing’ /' and‘ :’' as
separators. Treat consecutive separators as a single separator.

{"www. acne. conl', "go", "espeak" }

4. Foreachstringinthelist produced by previous step, unescape each escape
sequence octet.

{"www. acne. conl', "go", "espeak" }

5. Apply agorithm described in Section 7.7 “Unique Package Names’ in
[JLS] to derive aunique package name from the potential internet domain
name contained within the first component. The internet domain name is
reversed, component by component. Note that aleading “www.” is not
considered part of an internet domain name and must be dropped.

1/8/03 JAXB Specification — Final, V1.0 195

Binding XML Names to Java Identifiers

If the first component does not contain either one of the top-level
domain names, for example, com, gov, net, org, edu, or one of the
English two-letter codes identifying countries as specified in 1ISO
Standard 3166, 1981, this step must be skipped.

{“conm’, “acne”, “go”, “espeak”}

6. For each string in the list, convert each string to be all lower case.

{"com’, “acme”, "go", "espeak" }
7. For each string remaining, the following conventions are adopted from
[JLS] Section 7.7, “Unique Package Names.”

a. If the sting component contains a hyphen, or any other special
character not allowed in an identifier, convert it into an underscore.

b. If any of the resulting package name components are keywords then
append underscore to them.

c. If any of the resulting package nhame components start with adigit, or
any other character that is not allowed as an initial character of an
identifier, have an underscore prefixed to the component.

{"com’, “acme”, "go", "espeak" }

8. Concatenatetheresultantlist of stringsusing’ . ' asaseparating character

to produce a package name.

Fi nal package nanme: "com acne. go. espeak".

Section C.2.1, “Caoallisions and conflicts,” on page 192, specifies what to do
when the above algorithm resultsin an invalid Java package name.

C.6 Conforming Java ldentifier
Algorithm

This section describes how to convert alegal Javaidentifier which may not
conform to Java haming conventions to a Java identifier that conforms to the
standard naming conventions. Since a legal Javaidentifier isalso a XML name,
this algorithm is the same as Section C.2, “The Name to Identifier Mapping
Algorithm” with the following exception: constant names must not be mapped
to a Java constant that conforms to the Java naming convention for a constant.
Thereason is that this algorithm is used to map legal Java identifiers specified

196 JAXB Specification — Final, V1.0 1/8/03

Conforming Java ldentifier Algorithm

in customization referred to as a customization name. As specified in the
Chapter 6, “ Customization”, customization names that are nhot mapped to
constants that conform to the Java haming conventions.

1/8/03 JAXB Specification — Final, V1.0 197

Binding XML Names to Java Identifiers

198 JAXB Specification — Final, V1.0 1/8/03

APPENDIXD

EXTERNAL BINDING
DECLARATION

D.1 Example

Example: Consider the following schema and external binding file:

Source Schema: A. xsd:

<xs:schema xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenma"
xm ns: ens="http://exanpl e. conl ns"
t ar get Nanmespace="http://exanpl e. com ns" >
<xs: conpl exType nane="aType">
<XS:sequence>
<xs:el enent name="foo" type="xs:int"/>
</ xs: sequence>
<xs:attribute nane="bar" type="xs:int"/>
</ xs: conpl exType>
<xs:el enent name="root" type="ens:aType"/>
</ xs: schema>

External binding declarationsfile;

<j axb: bi ndi ngsxm ns:jaxb="http://java. sun. conl xm / ns/j axb"
xm ns: xs="http://ww. w3. org/ 2001/ XM_Schenm"
version="1.0">
<j axb: bi ndi ngs schemalLocati on="A. xsd” >
<j axb: bi ndi ngs node="//xs: conpl exType[@ane=" aType']" >

<j axb: cl ass name="cust omNaneType"/ >

<j axb: bi ndi ngs node=".//xs: el enent [@ame="foo]">
<j axb: property nane="cust onfFoo"/ >

</ j axb: bi ndi ngs>

1/8/03 JAXB Specification — Final, V1.0 199

External Binding Declaration

<j axb: bi ndi ngs node="./xs: attri bute[@anme="bar’]">
<j axb: property nane="custonBar"/>
</ j axb: bi ndi ngs>
</ j axb: bi ndi ngs>
</ j axb: bi ndi ngs>
</ j axb: bi ndi ngs>

Conceptually, the combination of the source schema and external binding file
above are the equivalent of the following inline annotated schema.

<xs:schem xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: ens="http://exanpl e. conm ns"
t ar get Nanmespace="htt p:// exanpl e. coni ns"
xm ns: jaxb="http://java. sun.com xm / ns/jaxb"
j axb: versi on="1.0">
<xs: conpl exType nane="aType">
<xs:annot ation>
<xs: appi nf o>
<j axb:cl ass nanme="custonNaneType"/ >
</ xs: appi nf 0>
</ xs:annot ati on>
<XS:sequence>
<xs: el enent name="foo" type="xs:int">
<xs:annot ation>
<xs: appi nf o>
<j axb: property nane="custonfoo"/>
</ xs: appi nf 0>
</ xs:annot ati on>
</ xs: el enent >
</ xs: sequence>
<xs:attribute nane="bar" type="xs:int">
<xs:annot ation>
<xs: appi nf o>
<j axb: property nane="custonBar"/>
</ xs: appi nf 0>
</ xs:annot ati on>
</ xs:attribute>
</ xs: conpl exType>
<xs:el enent name="root" type="ens:aType"/>
</ xs: schema>

200 JAXB Specification — Final, V1.0 1/8/03

Transformation

D.2

Transformation

Theintent of this section is to describe the transformation of external binding
declarations and their target schemasinto a set of schemas annotated with JAXB
binding declarations. ready for processing by a JAXB compliant binding
compiler.

This transformation must be understood to work on XML data model level.
Thus, this transformation is applicable even for those schemas which contain
semantic errors.

The transformation is applied as follows:

1

1/8/03

Gather al thetop-most <j axb: bi ndi ngs> elementsfrom all the sche-
madocuments and all the external binding filesthat participate in this pro-
cess. Top-most <j axb: bi ndi ngs> arethose <j axb: bi ndi ngs>
elementsthat are either aroot element in adocument or whose parent isan
<xs: appi nf o> element. We will refer to these trees as “ external bind-
ing forest.”

Collect al the namespaces used in the elements inside the external binding
forest, except the taxi namespace, " ht t p: / /j ava. sun. con? xm /
ns/j axb” , and the no namespace. Allocate an unique prefix for each of
them and declare the namespace binding at all the root <xs: schema>
elements of each schema documents.

Then add aj axb: ext ensi onBi ndi ngPr ef i x attribute to each

<xs: schena> element with all those allocated prefixes. If an

<xs: schena> element aready carries this attribute, prefixes are just
appended to the existing attributes.

Note: The net effect isthat all “foreign” namespaces used in the external
binding forest will be automatically be considered as extension
customization declaration namespaces.

For each <j axb: bi ndi ngs> eement, we determine the “target
element” that the binding declaration should be associated with. This
process proceeds in a top-down fashion as follows:

a. Letp bethetarget element of the parent <j axb: bi ndi ngs>. Ifitis
thetop most <j axb: bi ndi ngs>, thenlet p bethe
<j axb: bi ndi ngs> element itself.

JAXB Specification — Final, V1.0 201

External Binding Declaration

b. Identify the “target element” using <j axb: bi ndi ngs> attributes.
(i) If the<j axb: bi ndi ngs>hasa@chemalLocat i on, thevalue
of the attribute should be taken as an URI and be absolutized with the
base URI of the <j axb: bi ndi ngs> element. Then the target
element will bethe root node of the schemadocument identified by the
absolutized URI. If there's no such schema document in the current
input, it isan error. Note: the root node of the schema document is not
the document element.

(ii) If the<j axb: bi ndi ngs> has @ode, the value of the attribute
should be evaluated as an XPath 1.0 expression. The context nodein
this evaluation should be p as we computed in the previous step. It is
an error if this evaluation resultsin something other than anode set that
contains exactly one element. Then the target element will bethis
element.

(iii) if the<j axb: bi ndi ngs> hasneither @ chemalLocat i on nor
@ ode, then the target element will be p aswe computed in the
previous step. Note: <j axb: bi ndi ngs> elements can’t have both
@chemalLocat i on and @ode at the same time.

We define the target element of abinding declaration to be the target
element of its parent <j axb: bi ndi ngs> element. It isan error if a
target element of a binding declaration doesn’t belong to the "http://
wwww.w3.0r g/2001/ XML Schema" namespace.

4. Next, for each target element of binding declarations, if it doesn’t have any
<XS: annot ati on> <xs: appi nf o> initschildren, one will be
created and added as the first child of the target.

After that, we move each binding declaration under the target node of its
parent <j axb: bi ndi ngs>. Consider thefirst <xs: appi nf o> child
of the target element. The binding declaration element will be moved
under this<xs: appi nf 0> element.

202 JAXB Specification — Final, V1.0 1/8/03

APPENDIXE

XML SCHEMA

E.1 Abstract Schema Model

The following summarization abstract schema component model has been
extracted from [XSD Part 1] as a convenience for those not familiar with XML
Schema component model in understanding the binding of XML Schema
components to Java representation. One must refer to [XSD Part 1] for the
complete normative description for these components.

E.1.1 Simple Type Definition Schema Component

Table E-1 Simple Type Definition Schema Components

Component Description

{ nane} Optional. An NCName as defined by [XML-
Namespaces].

{target nanespace} Either -absent- or a namespace name.

{base type definition} A simpletype definition

{facets} A set of constraining facets.
{fundanental facets} A set of fundamental facets.
{final} A subset of { extension, list, restriction, union}.

1/8/03 JAXB Specification — Final, V1.0 203

XMLSchema

Table E-1 Simple Type Definition Schema Components (Continued)

Component

Description

{variety}

{annot at i on}

One of {atomic, list, union}. Depending on the value of
{variety}, further properties are defined as follows:

aomic A built-in primitive
{prinitive type simple type definition.
definition}

list A simple type definition.
{itemtype definition}

union A non-empty sequence of
{menber type simple type definitions.

defini tions}

Optional. An annotation.

E.1.2 Enumeration Facet Schema Component

Table E-2 Enumeration Facet Schema Components

Component

Description

{val ue}

{annot at i on}

The actual value of the value. (Must be in value space of
base type definition.)

Optional annotation.

E.1.3 Complex Type Definition Schema Component

Table E-3 Complex Type Definition Schema Components

Component

Description

{nane}

{target nanespace}

{base type definition}

{derivation nethod}
{final}

{abstract}
{attribute uses}

{attribute wildcard}

Optional. An NCName as defined by [XML-
Namespaces].

Either -absent- or a namespace name.

Either a simple type definition or a complex type
definition.

Either extension or restriction.

A subset of {extension, restriction} .

A boolean

A set of attribute uses.

Optional. A wildcard.

204 JAXB Specification — Final, V1.0 1/8/03

Abstract Schema Model

Table E-3

Complex Type Definition Schema Components (Continued)

Component

Description

{content type}

{prohibited
substitutions}

{annot at i ons}

One of empty, a simple type definition, or a pair
consisting of a -content model- and one of mixed,
dement-only.

A subset of {extension, restriction} .

A set of annotations.

E.1.4 Element Declaration Schema Component
Table E-4 Element Declaration Schema Components

Component Description

{ nane} An NCName as defined by [XML-Namespaces].

{target nanespace}

{type definition}

{scope}

{val ue constraint}

{nillabl e}
{identity-constraint
defini tions}
{substitution group
affiliation}
{substitution group
excl usi ons}

{di sal | oned
substitution}

{abstract}

{annot at i on}

Either -absent- or a namespace name

Either a simple type definition or a complex type
definition.
Optional. Either global or a complex type definition.

Optional. A pair consisting of avalue and one of defaullt,
fixed.

A boolean.
A set of constraint definitions.

Optional. A top-level element definition.
A subset of {extension, restriction} .
A subset of { substitution,extension,restriction} .

A boolean.
Optional. An annotation.

1/8/03

JAXB Specification — Final, V1.0

205

XMLSchema

E.1.5 Attribute Declaration Schema Component

Table E-5 Attribute Declaration Schema Components

Component

Description

{nane}

{target nanespace}
{type definition}
{scope}

{val ue constraint}

{annot at i on}

An NCName as defined by [XML-Namespaces].
Either -absent- or a namespace name

A simpletype definition.

Optional. Either global or a complex type definition.

Optional. A pair consisting of avalue and one of defaullt,
fixed.

Optional. An annotation.

E.1.6 Model Group Definition Schema Component

Table E-6 Model Group Definition Schema Components

Component

Description

{nane}
{target nanespace}
{nodel group}

{annot at i on}

An NCName as defined by [XML-Namespaces].
Either -absent- or a namespace name.

A model group.

Optional. An annotation.

E.1.7 Identity-constraint Definition Schema
Component

Table E-7 Identity-constraint Definition Schema Components

Component

Description

{nane}
{target nanespace}

{identity-constraint
cat egory}

{sel ector}

{fields}

An NCName as defined by [XML-Namespaces].
Either -absent- or a namespace name.
One of key, keyref or unique.

A restricted XPath ([XPath]) expression.

A non-empty list of restricted XPath ([XPath])
expressions.

206 JAXB Specification — Final, V1.0 1/8/03

Abstract Schema Model

Table E-7 Identity-constraint Definition Schema Components (Continued)
Component Description
{referenced key} Required if {identity-constraint category} iskeyref,

forbidden otherwise.
An identity-constraint definition with {identity-
constraint category} equal to key or unique.

{annot at i on} Optional. An annotation.

E.1.8 Attribute Use Schema Component

Table E-8 Attribute Use Schema Components

Component Description

{required} A boolean.

{attribute declaration} An attribute declaration.

{val ue constraint} Optional. A pair consisting of avalue and one of default,
fixed.

E.1.9 Particle Schema Component

Table E-9 Particle Schema Components

Component Description

{mn occurs} A non-negative integer.

{max occurs} Either a non-negative integer or unbounded.

{term One of amodel group, awildcard, or an element
declaration.

E.1.10 W.ildcard Schema Component

Table E-10 Wildcard Schema Components

Component Description

{namespace constraint} Oneof any; apair of not and a namespace name or
-absent-; or a set whose members are either namespace

names or -absent-.

{process contents} One of skip, lax or strict.
{annot at i on} Optional. An annotation.

1/8/03 JAXB Specification — Final, V1.0 207

XMLSchema

E.1.11 Model Group Schema Component

Table E-11 Model Group Components

Component Description

{conpositor} One of all, choice or sequence.
{particles} A list of particles.

{annot at i on} An annotation.

E.2 Not Required XML Schema
concepts

A JAXB implementation is not required to support the following XML Schema
concepts for this version of the specification. A JAXB implementation may
choose to support these features in an implementation dependent manner. For
the purposes of compatibility, all JAXB technology implementations must have
a strict operating mode that reports when non-required XML schema concepts
are encountered by the binding compiler.

E.2.1 Concepts detected at binding compilation
time
A binding compilation running in the strict conforming operating mode must

report an error or warning when encountering any of these XML Schema
components.

E.2.1.1 Binding Compilation Errors

No Java representation in the form of interfaces, classes, or properties can be
derived for these schema components.
« Redefinition of declaration

This infrequently used feature of XML Schema does not have an
obvious data binding, thus, it is not supported in thisinitial release.

« Schema component: identity-constraint definition
(key, keyref, unique)

208 JAXB Specification — Final, V1.0 1/8/03

Not Required XML Schema concepts

E.2.1.2

Due to complexities surrounding supporting this feature, specify in a
future version. No JAXB properties are derived from the schemato
enable users of the JAXB technology to access and/or update the key
and keyr ef attributes. The unique attribute is not required to be
enforced by the JAXB technology validation.

Notation declaration
No Java representation is generated for Notation declaration.

Schema component: attribute wildcard
(anyAttribute)

The schema derived Java representation provides no generated method
signatures that enable attribute wildcards from an XML document to be
manipulated by a Java application. An implementation should maintain
the wildcard attribute content it parsed at unmarshal time and it can
writeit out at marshal time.

Substitution group

Any XML Schemaconceptsindicating that substitution group support is
a necessary component of the schema should be reported as an error. A
binding compiler must not report the following two cases as errors.

a <xs:elenment abstract="fal se”>

b. <xs:el ement substitutionG oup="">

Binding compilation warnings

The existence of the following XML schema concepts are not considered an
error. A JAXB implementation ignores the value of these attributes and treats
them in a specific way that is reported as a warning.

1/8/03

“block” feature

Attributes:
schenma. bl ockDef aul t, el enent . bl ock, conpl exType. bl ock

The values of these attributes are ignored and the binding compiler
treats them each one asif it was set to “#al | .

“final” feature

schemn. fi nal Def aul t, el enent. final,
conpl exType. final

JAXB Specification — Final, V1.0 209

XMLSchema

E.2.2

210

The values of these attributes are ignored and the binding compiler
treats them as if they were set to “#al | ”.

Thevalue of attribute conpl exType. abstract isignored and the
binding compiler treats it asif it were set to the value “f al se”.

Skip wildcard content - <xs: any processContents="skip”>

A warning should be issued that there is no specified standard way to
bind non-schema constrained but well-formed XML content to a Java
representation.

Not supported while manipulating the XML
content

« Schema component: wildcard

(any)

A JAXB implementation always generates a property method for XM L
content as described in Section 5.9.5, “Bind wildcard schema
component,” on page 98.

JAXB implementations are not required to unmarshal or marshal XML
content that does not conform to a schemathat is registered with
JAXBCont ext . However, wildcard content must be handled as
detailed in Section 5.9.5, “Bind wildcard schema component,” on page
98.

Substitution

Schemaderived code generated by abinding compiler operating in strict
conforming mode is not allowed to perform any group or type
substitution when unmarshalling XML content or when updating the
Java representation of XML content. One should assume that all type
definitions and element declarations in the schema have an effective
block value of “#all” imposed upon them by the JAXB binding
compilation process. Note that this specification does not specify how
these non-supported substitutions are handled.

JAXB Specification — Final, V1.0 1/8/03

APPENDIXF

RELATIONSHIP TO JAX-RPC
BINDING

F.1 Overview

Severa minor differencesin binding from XML to Java representation have
been identified between JAXB technology and the JAX-RPC 1.0 Specification
[JAX-RPC]. JAXB binding customizations are provided below that enable
JAXB technology to bind from XML to a Java representation as JAX-RPC
technology does for these cases.

F.2 Mapping XML name to Java
identifier

By default, when mapping an XML Namesto a Java identifier, the JAXB
technology treats‘ " (underscore) as a punctuation character (i.e. a word
separator). However, JAX-RPC technology treats underscore as a character
within aword as specified Section 20.1 in [JAX-RPC]. See customization
option specified in Section 6.5.3, “Underscore Handling” to enable JAX-RPC

mapping of XML nameto Javaidentifier.

Custom zation to enable JAX-RPC conform ng binding:
under scoreBi ndi ng = "asChar | nWord"

1/8/03 JAXB Specification — Final, V1.0 211

Relationship to JAX-RPC Binding

F.3 Bind XML enum to atypesafe
enumeration

The JAX-RPC specification specifies the binding of XML datatype to typesafe
enumeration class. JAXB-specified default bindings are designed to be as
similar as possible to JAX RPC-specified bindings. However, there are
differences that are described here. Customization options allow the JAX-RPC
style of binding to be generated.

F.3.1 Restriction Base Type

The default restriction base type which can be mapped to atypesafe
enumeration is different. The allowed types are customized using the
customization optiont ypesaf eEnunBase specified in Section 6.5.1,

“Usage.”

Custom zation to enable JAX-RPC conform ng binding:
typesaf eEnunBase = “xsd:string xsd:decimal xsd:float xsd:doubl e”
JAXB default is typesafeEnunBase ="xsd: NCNane"

Note that all XML Schema built-in datatypes listed in the above customization
and all datatypes that derived by restriction from these listed basetypes are
mapped to typesafe enum classes. Thus, not all JAX-RPC supported types must
be listed, only the types at the base of the derivation by restriction type
hierarchy.

F.3.2 Enumeration Name Handling

If alegal Javaidentifier cannot be generated from an XML enumeration value,
then by default, an error must be reported. However, JAX-RPC will revert the
identifiers to be default enumeration label names as specified in Section 4.2.4
“Enumeration” in [JAX-RPC]. The latter behavior can be obtained enabling the
customization t ypesaf eEnunvenber Name specified in Section 6.5.1,
“Usage.” Section 5.2.3.4, “XML Enumvalue-to-Java ldentifier Mapping,” on
page 63 describes the enumeration member names generated when

t ypesaf eEnumvenber Nane is set to “ generateName.”

Custom zation to enable JAX-RPC conform ng binding:
t ypesaf eEnuniVenber Nane = "gener at eNane"
JAXB default is typesafeEnumMenber Nane = "generateError"

212 JAXB Specification — Final, V1.0 1/8/03

APPENDIXG

CHANGE LOG

G.1 Changes for Final

« Added method j avax. xm . bi nd. Mar shal | er. get Node(Obj ect)
which returns a DOM view of the Java content tree. See method's
javadoc for details.

G.2 Changes for Proposed Final

« Added Chapter 7, “Compatibility.”

« Section 5.9.2, “General Content Property,” removed value content list
sinceit would not be tractable to support when type and group
substitution are supported by JAXB technol ogy.

« Added the ability to associate implementation specific property/value
pairsto the unmarshal, validation and JAXB instance creation. Changes
impact Section 3.4 “Unmarshalling,” Section 3.5 “Validator” and the
ObjectFactory description in Section 4.2 “ Java Package.”

« Section 5.9.10.1, “Bind a Choice Group to a Content Interface” was
updated to handle Collection properties occurring within a Choice
Content interface.

« Section 5.9.11, “Model Group binding algorithm” changed step 4(a) to
bind to choice content interface rather than choice content property.

« Section 4.5.2.2, “List Property and Section 4.5.4, “isSet Property
Modifier” updated so one can discard set value for a List property via
calling unset method.

1/8/03 JAXB Specification — Final, V1.0 213

ChangelLog

214

At end of Section 4, added an UML diagram of the JAXB Java
representation of XML content.

Updated default binding handling in Section 5.5, “Model Group
Definition.” Specifically, content interfaces, element interfaces and
typesafe enum classes derived from the content model of amodel group
definition are only bound once, not once per timethe group is referenced.

Change Section 5.9.5, “Bind wildcard schema component,” to bind to a
JAXB property with a basetype of j ava. | ang. Obj ect, not

j avax. xml . bi nd. El enment . Strict and lax wildcard validation
processing allowsfor contents constrained only by xsi : t ype attribute.
Current APIs should allow for future support of xsi : t ype.

Simplify anonymous simple type definition binding to typesafe enum
class. Replace incomplete approach to derive a name with the
requirement that the @name attribute for element typesafeEnumClassis
mandatory when associated with an anonymous simple type definition.

Changed Section 5.5.4, “ Deriving Class Namesfor Named Model Group
Descendants’ to state that all classes and interfaces generated for XML
Schema component that directly compose the content model for amodel
group, that these classes/interfaces should be generated once astop-level
interface/class in a package, not in every content model that references
the model group.

Current Section 6.5, “<globalBindings> Declaration”:
o Replaced nodel Gr oupAsCl ass withbi ndi ngSt yl e.

o Specified schematypes that cannot belisted in
t ypesaf eEnunBase.

Section 6.8, “<property> Declaration:

o Clarified the customization of model groups with respect to
choi ceCont ent Property, el ementBi ndi ng and
nodel GroupBi ndi ng. Dropped choi ceCont ent Property
from the <pr opert y> declaration.

o Added <baseType> element and clarified semantics.
o Added support for customization of simple content.
o Added customization of simple types at point of reference.

o Clarified restrictions and relationships between different
customizations.

Section 6.9, “<javaType> Declaration”:

JAXB Specification — Final, V1.0 1/8/03

Changes for Public Draft 2

G.3

o Addedjavax. xm . bi nd. Dat at ypeConverterlnterface
interface.

o Addedj ava. xm . bi nd. Dat at ypeConvert er classfor useby
user specified parse and print methods.

o Addedj ava. xml . nanespace. NanespaceCont ext classfor
processing of QNames.

o Clarified print and parse method requirements.
o Added narrowing and widening conversion requirements.

Throughout Chapter 6, “Customization,” clarified the handling of
invalid customizations.

Changes for Public Draft 2

Many changes were prompted by inconsistencies detected within the
specification by the reference implementation effort. Change bars indicate what
has changed since Public Draft.

1/8/03

Section 4.5.4, “isSetProperty Modifier,” describes the customization
required to enable its methods to he generated.

Section 5.7.2, “Binding of an anonymous type definition,” clarifiesthe
generation of content interfaces and typesafe enum classes from an
anonymous type definition.

Section 5.2.4, “List” Simple Type Definition and the handling of list
members within a union were added since public draft.

Clarification on typesafe enum global customization “generateName” in
Section 5.2.3.4, “XML Enumvaue To Java ldentifier Mapping.”

Clarification of handling binding of wildcard content in Section 5.9.4.

Chapter6, “ Customization,” resolved binding declaration naming
inconsistencies between specification and normative binding schema.

removed enabl eVal i dati on attribute (a duplicate of
enabl eFai | Fast Check) from<gl obal Bi ndi ngs>
declaration.

Added default valuesfor <gl obal Bi ndi ngs> declaration attributes.

JAXB Specification — Final, V1.0 215

ChangelLog

G4

216

Changed t ypesaf eEnunmBase to alist of QNames. Clarified the
binding to typesafe enum class.

Clarified the usage and support fori npl Cl ass attributein<cl ass>
declaration.

Clarified the usage and support for enabl eFai | Fast Check inthe
<property> declaration.

Added <j avadoc> to typesafe enum class, member and property
declarations.

Mention that embedded HTML tagsin <j avadoc> declaration must
be escaped.

Fixed mistakes in derived Java code throughout document.

Added Section 7. Compatibility and updated Appendix E.2 “Non
required XML Schema Concepts” accordingly.

Changes for Public Draft

Section 5.9.10.2, “Bind choice group to a choice content property,”
replaced overloading of choice content property setter method with a
single setter method with aval ue parameter with the common type of al
members of the choice. Since the resolution of overloaded method
invocation is performed using compile-time typing, not runtime typing,
this overloading was problematic. Same change was made to binding of
union types.

Added details on how to construct factory method signature for nested
content and element interfaces.

Section 3.3, default validation handler does not fail onfirst warning, only
on first error or fatal error.

Add ID/IDREF handling in section 5.
Updated name mapping in appendix C.
section 4.5.2.1 on page 43, added getl DL enth() to indexed property.

Removed ObjectFactory.setlmplementation method from Section 4.2,
“Java Package,” on page 36. The negative impact on implementation
provided to be greater than the benefit it provided the user.

Introduced external binding declaration format.

JAXB Specification — Final, V1.0 1/8/03

Changes for Public Draft

« Introduced a method to introduce extension binding declarations.

« Added an appendix section describing JAXB custom bindings that align
JAXB binding with JAX-RPC binding from XML to Javarepresentation.

« GenerateislD() accessor for boolean property.
« Section 6, Customization has been substantially rewritten.

1/8/03 JAXB Specification — Final, V1.0 217

ChangelLog

218 JAXB Specification — Final, V1.0 1/8/03

	The Java™ Architecture for XML Binding (JAXB)
	Introduction
	1.1 Data binding
	1.2 Goals
	1.3 Non-Goals
	1.4 Requirements
	1.5 Use Cases
	1.6 Conventions
	1.7 Expert Group Members
	1.8 Acknowledgements

	Architecture
	2.1 Overview
	2.1.1 Java Representation
	2.1.2 Binding Framework
	2.1.3 Binding Declarations

	2.2 Varieties of validation
	2.2.1 Handling Validation Failures

	2.3 An example

	The Binding Framework
	3.1 Binding Runtime Framework Rationale
	3.2 JAXBContext
	3.3 General Validation Processing
	3.4 Validator
	3.5 Unmarshalling
	3.6 Marshalling
	3.6.1 Marshalling Properties

	3.7 Validation Handling

	Java Representation of XML Content
	4.1 Mapping between XML Names and Java Identifiers
	4.2 Java Package
	4.3 Typesafe Enum Class
	4.4 Java Content Interface
	4.5 Properties
	4.5.1 Simple Property
	4.5.2 Collection Property
	4.5.2.1 Indexed Property
	4.5.2.2 List Property

	4.5.3 Constant Property
	4.5.4 isSet Property Modifier
	4.5.5 Property Summary

	4.6 Java Element Interface
	4.7 Summary

	Binding XML Schema to Java Representations
	5.1 Overview
	5.2 Simple Type Definition
	5.2.1 Type Categorization
	5.2.2 Atomic Datatype
	5.2.3 Type Safe Enumeration
	5.2.3.1 Enumeration Class
	5.2.3.2 Enumeration Class
	5.2.3.3 Constant Fields
	5.2.3.4 XML Enumvalue-to-Java Identifier Mapping
	5.2.3.5 Methods and Constructor

	5.2.4 List
	5.2.5 Union Property
	5.2.6 Union

	5.3 Complex Type Definition
	5.3.1 Aggregation of Java Representation
	5.3.1.1 Aggregation of Datatype/Interface
	5.3.1.2 Aggregation of Property Set

	5.3.2 Java Content Interface
	5.3.2.1 Simple Content Binding

	5.4 Attribute Group Definition
	5.5 Model Group Definition
	5.5.1 Bind to a set of properties
	5.5.2 Bind to a list property
	5.5.3 Bind to a Java content interface
	5.5.4 Deriving Class Names for Named Model Group Descendants

	5.6 Attribute Declaration
	5.7 Element Declaration
	5.7.1 Bind to Java Element Interface
	5.7.2 Binding of an anonymous complex type definition
	5.7.3 Bind to a Property

	5.8 Attribute use
	5.8.1 Bind to a Java Constant property
	5.8.1.1 Contributions to Local Structural Constraint

	5.8.2 Binding an IDREF component to a Java property

	5.9 Content Model - Particle, Model Group, Wildcard
	5.9.1 Element binding style
	5.9.2 Bind each element declaration name to a content property
	5.9.3 General content property
	5.9.3.1 Examples

	5.9.4 Bind mixed content
	5.9.5 Bind wildcard schema component
	5.9.6 Bind a repeating occurrence model group
	5.9.7 Content Model Default Binding
	5.9.7.1 Default binding of content model “derived by extension”

	5.9.8 Model group binding style
	5.9.9 Bind Top-level Model Group to a Property Set
	5.9.10 Bind Nested Model Group
	5.9.10.1 Bind a Choice Group to a Content Interface
	5.9.10.2 Bind choice group to a choice content property

	5.9.11 Model Group binding algorithm

	5.10 Default Binding Rule Summary

	Customization
	6.1 Binding Language
	6.1.1 Extending the Binding Language
	6.1.2 Inline Annotated Schema
	6.1.3 External Binding Declaration
	6.1.3.1 Restrictions

	6.1.4 Version Attribute
	6.1.5 Invalid Customizations

	6.2 Notation
	6.3 Naming Conventions
	6.4 Customization Overview
	6.4.1 Scope
	6.4.2 XML Schema Parsing

	6.5 <globalBindings> Declaration
	6.5.1 Usage
	6.5.2 Customized Name Mapping
	6.5.3 Underscore Handling

	6.6 <schemaBindings> Declaration
	6.6.1 Usage
	6.6.1.1 package
	6.6.1.2 nameXmlTransform

	6.7 <class> Declaration
	6.7.1 Usage
	6.7.2 Customization Overrides
	6.7.3 Customizable Schema Elements
	6.7.3.1 Complex Type Definition
	6.7.3.2 Model Group Definition
	6.7.3.3 Model Group
	6.7.3.4 Global Element Declaration
	6.7.3.5 Local Element

	6.8 <property> Declaration
	6.8.1 Usage
	6.8.1.1 baseType
	6.8.1.2 Usage Constraints

	6.8.2 Customization Overrides
	6.8.3 Customizable Schema Elements
	6.8.3.1 Global Attribute Declaration
	6.8.3.2 Local Attribute
	6.8.3.3 Global Element Declaration
	6.8.3.4 Local Element
	6.8.3.5 Wildcard
	6.8.3.6 Model Group
	6.8.3.7 Model Group Reference
	6.8.3.8 ComplexType

	6.9 <javaType> Declaration
	6.9.1 Usage
	6.9.1.1 name
	6.9.1.2 xmlType
	6.9.1.3 hasNsContext
	6.9.1.4 Namespace Context
	6.9.1.5 parseMethod
	6.9.1.6 printMethod

	6.9.2 DatatypeConverter
	6.9.2.1 Usage
	6.9.2.2 Lexical And Value Space

	6.9.3 Built-in Conversions
	6.9.4 Events
	6.9.5 Customization Overrides
	6.9.6 Customizable Schema Elements
	6.9.6.1 Simple Type Definition
	6.9.6.2 GlobalBindings
	6.9.6.3 <baseType> declaration

	6.10 <typesafeEnum> Declaration
	6.10.1 Usage
	6.10.2 value Attribute
	6.10.3 Inline Annotations
	6.10.4 Customization Overrides
	6.10.5 Customizable Schema Elements

	6.11 <javadoc> Declaration
	6.11.1 Javadoc Sections
	6.11.2 Usage
	6.11.3 Javadoc Customization

	6.12 Annotation Restrictions

	Compatibility
	References
	Package javax.xml.bind
	Normative Binding Schema Syntax
	Binding XML Names to Java Identifiers
	C.1 Overview
	C.2 The Name to Identifier Mapping Algorithm
	C.2.1 Collisions and conflicts

	C.3 Deriving a legal Java identifier from xs:string
	C.4 Deriving an identifier for a model group
	C.5 Generating a Java package name
	C.5.1 Mapping from a Namespace URI

	C.6 Conforming Java Identifier Algorithm

	External Binding Declaration
	D.1 Example
	D.2 Transformation

	XML Schema
	E.1 Abstract Schema Model
	E.1.1 Simple Type Definition Schema Component
	E.1.2 Enumeration Facet Schema Component
	E.1.3 Complex Type Definition Schema Component
	E.1.4 Element Declaration Schema Component
	E.1.5 Attribute Declaration Schema Component
	E.1.6 Model Group Definition Schema Component
	E.1.7 Identity-constraint Definition Schema Component
	E.1.8 Attribute Use Schema Component
	E.1.9 Particle Schema Component
	E.1.10 Wildcard Schema Component
	E.1.11 Model Group Schema Component

	E.2 Not Required XML Schema concepts
	E.2.1 Concepts detected at binding compilation time
	E.2.1.1 Binding Compilation Errors
	E.2.1.2 Binding compilation warnings

	E.2.2 Not supported while manipulating the XML content

	Relationship to JAX-RPC Binding
	F.1 Overview
	F.2 Mapping XML name to Java identifier
	F.3 Bind XML enum to a typesafe enumeration
	F.3.1 Restriction Base Type
	F.3.2 Enumeration Name Handling

	Change Log
	G.1 Changes for Final
	G.2 Changes for Proposed Final
	G.3 Changes for Public Draft 2
	G.4 Changes for Public Draft

