
The Java™ Architecture for
XML Binding (JAXB)

Final, V1.0
January 8th, 2003

Editors:
Joseph Fialli,

Sekhar Vajjhala
Comments to: jaxb-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

Java™ Architecture for XML Binding (JAXB) Specification (“Specification”)
Version: 1.0
Status: FCS
Release: January 8th, 2003

Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-exclusive, non-transferable, world-
wide, limited license (without the right to sublicense), under the Sun's applicable intellectual property
rights to view, download, use and reproduce the Specification only for the purpose of internal evaluation,
which shall be understood to include developing applications intended to run on an implementation of the
Specification provided that such applications do not themselves implement any portion(s) of the Specifi-
cation.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license
(without the right to sublicense) under any applicable copyrights or patent rights it may have in the Speci-
fication to create and/or distribute an Independent Implementation of the Specification that: (i) fully
implements the Spec(s) including all its required interfaces and functionality; (ii) does not modify, subset,
superset or otherwise extend the Licensor Name Space, or include any public or protected packages,
classes, Java interfaces, fields or methods within the Licensor Name Space other than those required/
authorized by the Specification or Specifications being implemented; and (iii) passes the TCK (including
satisfying the requirements of the applicable TCK Users Guide) for such Specification. The foregoing
license is expressly conditioned on your not acting outside its scope. No license is granted hereunder for
any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular “pass
through” requirements in any license You grant concerning the use of your Independent Implementation
or products derived from it. However, except with respect to implementations of the Specification (and
products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph, You may nei-
ther: (a) grant or otherwise pass through to your licensees any licenses under Sun's applicable intellectual
property rights; nor (b) authorize your licensees to make any claims concerning their implementation's
compliance with the Spec in question.

For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of the
Specification that neither derives from any of Sun's source code or binary code materials nor, except with
an appropriate and separate license from Sun, includes any of Sun's source code or binary code materials;
and “Licensor Name Space” shall mean the public class or interface declarations whose names begin with
“java”, “javax”, “com.sun” or their equivalents in any subsequent naming convention adopted by Sun
through the Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any mate-
rial provision of or act outside the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors
is granted hereunder. Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, and J2EE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS.” SUN MAKES NO REPRESENTATIONS OR WAR-
RANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT,
THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This doc-
ument does not represent any commitment to release or implement any portion of the Specification in any
product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE
CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF
ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR
THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such
changes in the Specification will be governed by the then-current license for the applicable version of the
Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE
LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROF-
ITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE
OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting
from: (i) your use of the Specification; (ii) the use or distribution of your Java application, applet and/or
clean room implementation; and/or (iii) any claims that later versions or releases of any Specification fur-
nished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government's rights in the Soft-
ware and accompanying documentation shall be only as set forth in this license; this is in accordance with
48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your use of the Specification (“Feedback”). To the extent that you provide Sun with any Feedback, you
hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential basis, and (ii)
grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to subli-
cense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the
Feedback for any purpose related to the Specification and future versions, implementations, and test suites
thereof.

(LFI#123847/Form ID#011801)

C O N T E N T S
1 Introduction . 1
1.1 Data binding . 2
1.2 Goals. 3
1.3 Non-Goals . 5
1.4 Requirements . 7
1.5 Use Cases. 8
1.6 Conventions . 9
1.7 Expert Group Members. 10
1.8 Acknowledgements . 10

2 Architecture . 13
2.1 Overview . 13

2.1.1 Java Representation . 14
2.1.2 Binding Framework . 15
2.1.3 Binding Declarations . 16

2.2 Varieties of validation . 17
2.2.1 Handling Validation Failures . 19

2.3 An example . 19

3 The Binding Framework . 23
3.1 Binding Runtime Framework Rationale. 24
3.2 JAXBContext. 24
3.3 General Validation Processing . 26
3.4 Validator . 28
3.5 Unmarshalling . 29
3.6 Marshalling . 31

3.6.1 Marshalling Properties . 32
3.7 Validation Handling . 33

4 Java Representation of XML Content . 35
4.1 Mapping between XML Names and Java Identifiers 35
4.2 Java Package . 36
4.3 Typesafe Enum Class . 37
4.4 Java Content Interface . 39
4.5 Properties . 40

4.5.1 Simple Property . 41
4.5.2 Collection Property . 43

4.5.2.1 Indexed Property . 43
4.5.2.2 List Property . 45
1/8/03 JAXB Specification – Final, V1.0 v

4.5.3 Constant Property . 46
4.5.4 isSet Property Modifier . 46
4.5.5 Property Summary . 48

4.6 Java Element Interface . 49
4.7 Summary. 53

5 Binding XML Schema to Java Representations 55
5.1 Overview . 55
5.2 Simple Type Definition . 56

5.2.1 Type Categorization . 56
5.2.2 Atomic Datatype. 56
5.2.3 Type Safe Enumeration . 59

5.2.3.1 Enumeration Class . 60
5.2.3.2 Enumeration Class . 61
5.2.3.3 Constant Fields. 62
5.2.3.4 XML Enumvalue-to-Java Identifier Mapping. 63
5.2.3.5 Methods and Constructor . 63

5.2.4 List . 64
5.2.5 Union Property . 65
5.2.6 Union . 66

5.3 Complex Type Definition . 67
5.3.1 Aggregation of Java Representation 67

5.3.1.1 Aggregation of Datatype/Interface 67
5.3.1.2 Aggregation of Property Set 68

5.3.2 Java Content Interface . 68
5.3.2.1 Simple Content Binding . 70

5.4 Attribute Group Definition . 71
5.5 Model Group Definition . 72

5.5.1 Bind to a set of properties . 73
5.5.2 Bind to a list property . 73
5.5.3 Bind to a Java content interface. 74
5.5.4 Deriving Class Names for Named Model Group Descendants .

77
5.6 Attribute Declaration . 80
5.7 Element Declaration . 80

5.7.1 Bind to Java Element Interface . 82
5.7.2 Binding of an anonymous complex type definition 83
5.7.3 Bind to a Property . 85

5.8 Attribute use . 85
5.8.1 Bind to a Java Constant property. 86

5.8.1.1 Contributions to Local Structural Constraint 87
5.8.2 Binding an IDREF component to a Java property 87

5.9 Content Model - Particle, Model Group, Wildcard. 89
5.9.1 Element binding style . 90
5.9.2 Bind each element declaration name to a content property. . 90
vi JAXB Specification – Final, V1.0 1/8/03

5.9.3 General content property . 93
5.9.3.1 Examples . 95

5.9.4 Bind mixed content. 96
5.9.5 Bind wildcard schema component . 98
5.9.6 Bind a repeating occurrence model group 99
5.9.7 Content Model Default Binding . 99

5.9.7.1 Default binding of content model “derived by
extension”101

5.9.8 Model group binding style . 102
5.9.9 Bind Top-level Model Group to a Property Set 103
5.9.10 Bind Nested Model Group . 103

5.9.10.1 Bind a Choice Group to a Content Interface. 104
5.9.10.2 Bind choice group to a choice content property . . 108

5.9.11 Model Group binding algorithm . 109
5.10 Default Binding Rule Summary . 110

6 Customization . 113
6.1 Binding Language . 113

6.1.1 Extending the Binding Language . 114
6.1.2 Inline Annotated Schema . 115
6.1.3 External Binding Declaration . 115

6.1.3.1 Restrictions. 116
6.1.4 Version Attribute. 116
6.1.5 Invalid Customizations . 117

6.2 Notation. 117
6.3 Naming Conventions. 118
6.4 Customization Overview . 118

6.4.1 Scope . 118
6.4.2 XML Schema Parsing . 120

6.5 <globalBindings> Declaration . 121
6.5.1 Usage. 121
6.5.2 Customized Name Mapping. 124
6.5.3 Underscore Handling . 124

6.6 <schemaBindings> Declaration . 125
6.6.1 Usage. 125

6.6.1.1 package . 126
6.6.1.2 nameXmlTransform . 127

6.7 <class> Declaration . 128
6.7.1 Usage. 128
6.7.2 Customization Overrides . 129
6.7.3 Customizable Schema Elements . 129

6.7.3.1 Complex Type Definition 129
6.7.3.2 Model Group Definition. 130
6.7.3.3 Model Group. 131
6.7.3.4 Global Element Declaration 131
1/8/03 JAXB Specification – Final, V1.0 vii

6.7.3.5 Local Element . 132
6.8 <property> Declaration . 133

6.8.1 Usage. 134
6.8.1.1 baseType . 135
6.8.1.2 Usage Constraints . 135

6.8.2 Customization Overrides . 137
6.8.3 Customizable Schema Elements . 138

6.8.3.1 Global Attribute Declaration 138
6.8.3.2 Local Attribute. 138
6.8.3.3 Global Element Declaration 140
6.8.3.4 Local Element . 140
6.8.3.5 Wildcard . 143
6.8.3.6 Model Group. 143
6.8.3.7 Model Group Reference . 149
6.8.3.8 ComplexType . 150

6.9 <javaType> Declaration . 151
6.9.1 Usage. 151

6.9.1.1 name. 152
6.9.1.2 xmlType. 152
6.9.1.3 hasNsContext . 152
6.9.1.4 Namespace Context . 153
6.9.1.5 parseMethod . 153
6.9.1.6 printMethod . 155

6.9.2 DatatypeConverter. 155
6.9.2.1 Usage . 156
6.9.2.2 Lexical And Value Space 157

6.9.3 Built-in Conversions . 158
6.9.4 Events . 160
6.9.5 Customization Overrides . 161
6.9.6 Customizable Schema Elements . 161

6.9.6.1 Simple Type Definition . 161
6.9.6.2 GlobalBindings . 161
6.9.6.3 <baseType> declaration 161

6.10 <typesafeEnum> Declaration. 162
6.10.1 Usage. 162
6.10.2 value Attribute . 163
6.10.3 Inline Annotations. 164
6.10.4 Customization Overrides . 164
6.10.5 Customizable Schema Elements . 165

6.11 <javadoc> Declaration . 167
6.11.1 Javadoc Sections . 168
6.11.2 Usage. 168
6.11.3 Javadoc Customization . 168

6.12 Annotation Restrictions . 169
viii JAXB Specification – Final, V1.0 1/8/03

7 Compatibility . 171

8 References . 173

A Package javax.xml.bind . 175

B Normative Binding Schema Syntax . 177

C Binding XML Names to Java Identifiers 189
C.1 Overview . 189
C.2 The Name to Identifier Mapping Algorithm . 189

C.2.1 Collisions and conflicts . 192
C.3 Deriving a legal Java identifier from xs:string 193
C.4 Deriving an identifier for a model group . 194
C.5 Generating a Java package name . 194

C.5.1 Mapping from a Namespace URI. 195
C.6 Conforming Java Identifier Algorithm . 196

D External Binding Declaration . 199
D.1 Example . 199
D.2 Transformation . 201

E XML Schema . 203
E.1 Abstract Schema Model . 203

E.1.1 Simple Type Definition Schema Component 203
E.1.2 Enumeration Facet Schema Component 204
E.1.3 Complex Type Definition Schema Component 204
E.1.4 Element Declaration Schema Component 205
E.1.5 Attribute Declaration Schema Component. 206
E.1.6 Model Group Definition Schema Component. 206
E.1.7 Identity-constraint Definition Schema Component 206
E.1.8 Attribute Use Schema Component. 207
E.1.9 Particle Schema Component . 207
E.1.10 Wildcard Schema Component . 207
E.1.11 Model Group Schema Component. 208

E.2 Not Required XML Schema concepts . 208
E.2.1 Concepts detected at binding compilation time 208

E.2.1.1 Binding Compilation Errors 208
E.2.1.2 Binding compilation warnings 209

E.2.2 Not supported while manipulating the XML content 210

F Relationship to JAX-RPC Binding . 211
F.1 Overview . 211
F.2 Mapping XML name to Java identifier. 211
F.3 Bind XML enum to a typesafe enumeration 212

F.3.1 Restriction Base Type . 212
1/8/03 JAXB Specification – Final, V1.0 ix

F.3.2 Enumeration Name Handling . 212

G Change Log . 213
G.1 Changes for Final . 213
G.2 Changes for Proposed Final . 213
G.3 Changes for Public Draft 2 . 215
G.4 Changes for Public Draft . 216
x JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 1
INT R OD U CT I ON

XML is, essentially, a platform-independent means of structuring information.
An XML document is a tree of elements. An element may have a set of
attributes, in the form of key-value pairs, and may contain other elements, text,
or a mixture thereof. An element may refer to other elements via identifier
attributes, thereby allowing arbitrary graph structures to be represented.

An XML document need not follow any rules beyond the well-formedness
criteria laid out in the XML 1.0 specification. To exchange documents in a
meaningful way, however, requires that their structure and content be described
and constrained so that the various parties involved will interpret them correctly
and consistently. This can be accomplished through the use of a schema. A
schema contains a set of rules that constrains the structure and content of a
document’s components, i.e., its elements, attributes, and text. A schema also
describes, at least informally and often implicitly, the intended conceptual
meaning of a document’s components. A schema is, in other words, a
specification of the syntax and semantics of a (potentially infinite) set of XML
documents. A document is said to be valid with respect to a schema if, and only
if, it satisfies the constraints specified in the schema.

In what language are schemas written? The XML specification itself describes a
sublanguage for writing document-type definitions, or DTDs. As schemas go,
however, DTDs are fairly weak. They support the definition of simple
constraints on structure and content, but provide no real facility for expressing
datatypes or complex structural relationships. They have also prompted the
creation of more sophisticated schema languages such as XDR, SOX, RELAX,
TREX, and, most significantly, the XML Schema language recently defined by
the World Wide Web Consortium.

This specification mandates support for a subset of the W3C XML Schema
language.
JAXB Specification – Final, V1.0 1

Data binding
1.1 Data binding

Any nontrivial application of XML will, then, be based upon one or more
schemas and will involve one or more programs that create, consume, and
manipulate documents whose syntax and semantics are governed by those
schemas. While it is certainly possible to write such programs using the low-
level SAX parser API or the somewhat higher-level DOM parse-tree API, doing
so is likely to be tedious and error-prone. The resulting code is also likely to
contain many redundancies that will make it difficult to maintain as bugs are
fixed and as the schemas evolve.

It would be much easier to write XML-enabled programs if we could simply
map the components of an XML document to in-memory objects that represent,
in an obvious and useful way, the document’s intended meaning according to its
schema. Of what classes should these objects be instances? In some cases there
will be an obvious mapping from schema components to existing classes,
especially for common types such as String, Date, Vector, and so forth. In
general, however, classes specific to the schema being used will be required.
Rather than burden developers with having to write these classes we can
generate the classes directly from the schema, thereby creating a Java object-
level binding of the schema.

An XML data-binding facility therefore contains a binding compiler that binds
components of a source schema to schema-derived Java content classes. Each
class provides access to the content of the corresponding schema component via
a set of JavaBeans-style access (i.e., get and set) methods. Binding
declarations provides a capability to customize the binding from schema
components to Java representation. Such a facility also provides a binding
framework, a runtime API that, in conjunction with the derived classes, supports
three primary operations:

 ● The unmarshalling of an XML document into a tree of interrelated
instances of both existing and schema-derived classes,

 ● The marshalling of such content trees back into XML documents, and

 ● The validation of content trees against the constraints expressed in the
schema.

The unmarshalling process has the capability to check incoming XML
documents for validity with respect to the schema. Similarly, a JAXB
implementation provides a means to enforce the constraints expressed in the
schema; some of these constraints may always be enforced, while others may
1/8/03 JAXB Specification – Final, V1.0 2

Goals
only be checked upon explicit request. Validation can be used to ensure that
only valid content trees are marshalled.

Figure 1.1 A mapping of XML to Java objects

To sum up: Schemas describe the structure and meaning of an XML document,
in much the same way that a class describes an object in a program. To work
with an XML document in a program we would like to map its components
directly to a set of objects that reflect the document’s meaning according to its
schema. We can achieve this by compiling the schema into a set of derived
content classes that can be marshalled, unmarshalled and validated. Data
binding thus allows XML-enabled programs to be written at the same
conceptual level as the documents they manipulate, rather than at the more
primitive level of parser events or parse trees.

1.2 Goals

This specification aims to describe an XML data-binding facility with the
following general properties:

 ● Be easy to use – Lower the barrier to entry to manipulating XML
documents within Java programs. Programmers should be able to access
and modify XML documents via a Java binding of the data, not via SAX
or DOM. It should be possible for a developer who knows little about
XML to compile a simple schema and immediately start making use of
the classes that are produced.

 ● Be customizable – Provide a standard way to customize the binding of
existing schema’s components to Java representation of the components.
Sophisticated applications sometimes require fine control over the
structure and content of schema-derived classes, both for their own
purposes and for that of coping with schema evolution.

Schema�

Document�

Classes�

Objects�

compile�

unmarshal�

marshal�

instanceof�follows�
1/8/03 JAXB Specification – Final, V1.0 3

Introduction
 ● Portability – It should be possible to write a JAXB application in such a
way that the JAXB implementation can be replaced without changes to
the source code. Minimally, the schema would need to be submitted to
the replacement JAXB implementations binding compiler and the output
would need to be bundled with the application.

 ● Deliver Sooner rather than Later – Given the needs of the Java
Community for a standardized XML data-binding solution to be
delivered in a timely fashion, it was a important goal to identify a core
set of functionality for this initial version of the specification that can be
built upon in future versions. This document will identify the core
requirements for the initial version and list the requirements and features
for future consideration.

The derived classes produced by the binding compiler should, more specifically,

 ● Be natural – Insofar as possible, derived classes should observe standard
Java API design guidelines and naming conventions. If new conventions
are required then they should mesh well with existing conventions. A
developer should not be astonished when trying to use a derived class.

 ● Match the conceptual level of the source schema – It should be
straightforward to examine any content-bearing component of the source
schema and identify the corresponding Java language construct in the
derived classes.

 ● Hide all the plumbing – All the details of unmarshalling, marshalling,
and validation should be completely encapsulated by schema-derived
implementation classes and the runtime APIs upon which they depend.
A developer should not have to think about SAX or DOM or any other
XML-related API in order to perform unmarshal, marshal or validation
on the schema-derived classes.

 ● Support validation on demand – While working with a content tree
corresponding to an XML document it is often necessary to validate the
tree against the constraints in the source schema. It should be possible to
do this at any time, without the user having to first marshal the tree into
XML.

 ● Preserve equivalence (round tripping) – Transforming a Java content
tree to XML content and back to Java content again should result in an
equivalent Java content tree before and after the transformation.
4 JAXB Specification – Final, V1.0 1/8/03

Non-Goals
1.3 Non-Goals

 ● Defining a standardized binding framework runtime system.

The schema-derived Java implementation classes generated by one
JAXB implementation are not required to work with the runtime system
of another JAXB implementation. To switch to an alternative JAXB
implementations, one is required to regenerate the schema-derived
implementation using the alternative JAXB implementation’s binding
compiler. Trying to identify a clear cut, acceptable common framework
would jeopardize our “deliver sooner than later” goal. As XML
processing technologies mature, we hope to identify a common
framework solution in a future version of this specification. See
Section 3.1, “Binding Runtime Framework Rationale,” on page 24 for
further details.

 ● Preserving equivalence of XML document when round tripping
from XML document to Java representation and back to XML
document again.

While the JAXB specification does not require the preservation of the
XML information set, it does not forbid the preservation of it.

 ● Formally describing support for binding an existing JavaBean class
to schema.

The feature will be considered for a future release but it was considered
out of scope for this release.

 ● Schema evolution support.

It is beyond the scope of the first version of the specification to address
this important but difficult problem.

 ● Providing support for accessing/adding of elements or attributes not
initially declared in the schema.

The usage of <anyAttribute> in a schema allows an XML
document to dynamically introduce data of a structure and content that
was not described in the schema submitted to the binding compiler. It is
not possible to generate type-safe accessors and classes for datatypes
introduced by an XML document.

A future version of the specification may provide access to dynamically
introduced XML content, perhaps by returning the XML content in a
generic XML representation, such as DOM.
1/8/03 JAXB Specification – Final, V1.0 5

Introduction
 ● Provide partial binding of an XML content root to a Java
representation, skipping descendants of the XML content root that
are not relevant to the task at hand.

If there is only a partial binding of all non-optional XML elements
reachable from an XML element, it would no longer be possible to
roundtrip the data back to its original XML content form. Partial
mapping results in a one-way trip from the XML to a Java
representation. There would be no marshal method from a Java
representation back to XML since in general it would not be possible to
produce a valid XML content from a partial Java representation of the
XML content root and its descendants.

 ● Requiring a facility described by this specification to implement
every feature of the schema language it supports.

More precisely, a given schema-language feature need not be
implemented if it is not commonly used in data-oriented applications of
XML and if supporting it would unduly complicate either this
specification or its implementations. This does not imply that
supporting document-oriented applications is something to be avoided;
it merely points out that some schema-language features that are used
primarily in such applications do not always fit well into the context of
an XML data-binding facility. This specification and its
implementations will support document-oriented applications insofar as
doing so does not interfere with achieving the above goals.

 ● Explicit support for specifying the binding of DTD to a Java
representation.

While it was desired to explicitly support binding DTD to a Java
representation, it became impractical to describe both XML Schema
binding and DTD binding. The existence of several conversion tools
that automate the conversion of a DTD to XML Schema allows DTD
users to be able to take advantage of JAXB technology by converting
their existing DTDs to XML Schema.
6 JAXB Specification – Final, V1.0 1/8/03

Requirements
1.4 Requirements

1. Standardized schema input to binding compiler

Supported schema language:

❍ Subset of W3C XML Schema.

All implementations are required to support the minimal required
subset of W3C XML Schema. Non-required constructs are specified in
Section E.2, “Not Required XML Schema concepts,” on page 208. It is
acceptable that an implementation support more than the minimal
required subset in an implementation-dependent manner. Future
versions of the specification will consider adding more complete
support for W3C XML Schema.

2. Describe default bindings from schema to Java representation

There must be a detailed, unambiguous description of the default
mapping of schema components to Java representations in order to
satisfy the portability goal. The default binding will be described from
abstraction definitions of XML Schema components[XML Schema Part
1]. Each JAXB implementation must generate the same group of
schema-derived interfaces and property accessors.

❍ Default binding from XML Schema built-in data types to Java built-in
classes

❍ Default binding of XML Schema component, as described by abstract
data model, to a Java representation.

3. Standardized Customized Binding Schema

A binding schema language and its formats must be specified. There
must be a means to describe the binding without requiring modification
to the original schema. Additionally, the same XML Schema language
must be used for the two different mechanisms for expressing a binding
declaration.

4. Capability to specify an override for default binding behavior

Given the diverse styles that can be used to design a schema, it is
daunting to identify a single ideal default binding solution. For
situations where several equally good binding alternatives exist, the
specification will describe the alternatives and select one to be the
default (see 3).
1/8/03 JAXB Specification – Final, V1.0 7

Introduction
The binding schema must provide a means to specify an alternative
binding for the scope of an entire schema. This mechanism ensures that
if the default binding is not sufficient, it can easily be overridden in a
portable manner.

5. Provide ability to disable schema validation for unmarshal and
marshal operations

There exist a significant number of scenarios that do not require
validation and/or can not afford the overhead of schema validation. An
application must be allowed to disable schema validation checking
during unmarshal and marshal operations. The goal of this requirement
is to provide the same flexibility and functionality that a SAX or DOM
parser allows for. Please note that this specification can not define
deterministic behavior of unmarshalling an invalid document or
marshalling an invalid content tree when validation has been disabled.

1.5 Use Cases

Since the JAXB architecture provides a Java application the ability to
manipulate XML content via generated Java interfaces, all of these uses cases
assume the operation is occurring from within a Java application.

 ● Access configuration values from a properties file stored in a XML
format. Tool allowing for the creation or modification to a configuration
properties file represented in XML format.

 ● Receive data in the format of an XML document and would like to
access/update it without having to write SAX event handlers or traverse
a DOM parse tree.

 ● Validate user-inputted data, for example, from a form presented in a web
browser. Form data could be mapped to an XML document. JAXB
technology provides capability to validate the accuracy of the data using
the validation constraints of a schema that describes the data collected
from the form.

 ● Bind an XML document into a Java representation, update the content
via Java interfaces, validate this changes against the constraints within
the schema and then write the updated Java representation back to an
XML document format.
8 JAXB Specification – Final, V1.0 1/8/03

Conventions
 ● Unmarshal an XML document that it is known to already be valid, thus
the application disables validation checking while unmarshalling the
document to improve performance.

1.6 Conventions

Within normative prose in this specification, the words should and must are
defined as follows:

 ● should
Conforming implementations are permitted to but need not behave as
described.

 ● must
Conforming implementations are required to behave as described;
otherwise they are in error.

Throughout the document, the XML namespace prefix xs: and xsd: refers to
schema components in W3C XML Schema namespace as specified in [XSD
Part 1] and [XSD Part 2]. Additionally, the XML namespace prefix jaxb:
refers to the JAXB namespace, http::/java.sun.com/xml/ns/jaxb.

All examples in the specification are for illustrative purposes to assist in
understanding concepts and are non-normative. If an example conflicts with the
normative prose, the normative prose always takes precedence over the
example.
1/8/03 JAXB Specification – Final, V1.0 9

Introduction
1.7 Expert Group Members

The following people have contributed to this specification effort.

Arnaud Blandin, Intalio
Steve Brodsky, IBM
Christian Campo, Software AG
Kohsuke Kawaguchi, Sun
Chris Fry, BEA
Eric Johnson, TIBCO
Anjana Manian, Oracle
Ed Merks, IBM
Greg Messner, The Breeze Factor
Masaya Naito, Fujitsu
David Stephenson, HP
Keith Visco, Intalio
Scott Ziegler, BEA

1.8 Acknowledgements

This document is a derivative work of concepts and an initial draft initially led
by Mark Reinhold of Sun Microsystems. Our thanks to all who were involved in
pioneering that initial effort. The feedback from the Java User community on
the initial JAXB technology prototype greatly assisted in identifying
requirements and directions.

The data binding experiences of the expert group members have been
instrumental in identifying the proper blend of the countless data binding
techniques that we have considered in the course of writing this specification.
We thank them for their contributions and their review feedback.

Kohsuke Kawaguchi and Ryan Shoemaker have directly contributed content to
the specification and wrote the companion javadoc. The following JAXB
technology team members have been invaluable in keeping the specification
effort on the right track: Tom Amiro, Leonid Arbouzov, Evgueni Astigueevitch,
Jennifer Ball, Carla Carlson, Patrick Curran, Scott Fordin, Omar Fung, Peter
Kacandes, Dmitry Khukhro, Tom Kincaid, K. Ari Krupnikov, Ramesh
Mandava, Bhakti Mehta, Ed Mooney, Ilya Neverov, Oleg Oleinik, Brian Ogata,
Vivek Pandey, Cecilia Peltier, Evgueni Rouban and Leslie Schwenk. The
10 JAXB Specification – Final, V1.0 1/8/03

Acknowledgements
following people, all from Sun Microsystems, have provided valuable input to
this effort: Roberto Chinnici, Chris Ferris, Mark Hapner, Eve Maler, Farrukh
Najmi, Eduardo Pelegri-llopart, Bill Shannon and Rahul Sharma.

The JAXB TCK software team would like to acknowledge that the NIST XML
Schema test suite [NIST] has greatly assisted the conformance testing of this
specification.
1/8/03 JAXB Specification – Final, V1.0 11

Introduction
12 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 2
AR CH IT E CT U RE

2.1 Overview

The primary components of the XML data-binding facility described in this
specification are the binding compiler, the binding framework, and the binding
language.

 ● The binding compiler transforms, or binds, a source schema to a set of
content classes in the Java programming language. As used in this
specification, the term schema includes the W3C XML Schema as
defined in the XML Schema 1.0 Recommendation[XSD Part 1][XSD
Part 2].

 ● The binding runtime framework provides the interfaces for the
functionality of unmarshalling, marshalling, and validation for content
classes.

 ● The binding language is an XML-based language that describes the
binding of a source schema to a Java representation. The binding
declarations written in this language specify the details of the package,
interfaces and classes derived from a particular source schema.
JAXB Specification – Final, V1.0 13

Architecture
Figure 2.1 describes concepts to be presented in this chapter.

Figure 2.1 Non-Normative JAXB Architecture diagram

Note that the binding declarations object in the above diagram is logical.
Binding declarations can either be inlined within the schema or they can appear
in an external binding file that is associated with the source schema. Also, note
that the application accesses only the derived content interfaces, factory
methods and javax.xml.bind APIs directly. This convention is necessary to enable
switching between JAXB implementations.

2.1.1 Java Representation

A coarse-grained content-bearing schema component, such as a complex type
definition, is generally bound to a content interface. The data binding uses the
Java class hierarchy between content interfaces to preserve an XML Schema’s
“derived by extension” type definition hierarchy.

A fine-grained schema component, such as an attribute declaration or an
element declaration with a simple type, is bound directly to a property within a
content interface. A property is realized in a content interface by a set of
JavaBeans-style access methods. These methods include the usual get and set

Application Code

Source Schema Derived
Interfaces,
Factory Methods

Implementation
classes, helper
classes, ...

Package
javax.xml.bind

XML/Java
Customization
Binding
Declarations

Binding

Binding
Framework
Implementation

Application

Compiler

Schema
14 JAXB Specificatio
n – Final, V1.0
 1/8/03

Overview
methods for retrieving and modifying a property’s value; they also provide for
the deletion and, if appropriate, the re-initialization of a property’s value.

Properties are also used for references from one content instance to another. If
an instance of a schema component X can occur within, or be referenced from,
an instance of some other component Y then the content class derived from Y
will define a property that can contain instances of X.

To add flexibility within the JAXB architecture, a content class is represented as
both a content interface and an implementation of that interface rather than just
a class. This separation enables a sophisticated users of the JAXB architecture
to be able to specify their own implementation of the content interface to be
used within the binding framework. Typical users will rely on the binding
compiler to generate both schema-derived content interfaces and their
implementations.

2.1.2 Binding Framework

The primary operations that can be performed on the set of schema-derived
content interfaces and implementation classes are those of unmarshalling,
marshalling, and validation.

 ● Unmarshalling is the process of reading an XML document and
constructing a tree of content objects. Each content object corresponds
directly to an instance in the input document of the corresponding
schema component, hence this content tree reflects the document’s
content.

 ● Marshalling is the inverse of unmarshalling, i.e., it is the process of
traversing a content tree and writing an XML document that reflects the
tree’s content.

 ● Validation is the process of verifying that all constraints expressed in the
source schema hold for a given content tree. A content tree is valid if, and
only if, marshalling the tree would generate a document that is valid with
respect to the source schema.

When the unmarshalling process incorporates validation and it successfully
completes without any validation errors, both the input document and the
resulting content tree are guaranteed to be valid. The marshalling process, on
the other hand, does not actually perform validation. If only validated content
trees are marshalled, this guarantees that generated XML documents are always
valid with respect to the source schema.
1/8/03 JAXB Specification – Final, V1.0 15

Architecture
However, always requiring validation during unmarshalling and only allowing
the marshalling of validated content trees proves to be too rigid and restrictive a
requirement. Since existing XML parsers allow schema validation to be
disabled, there exist a significant number of XML processing uses that disable
schema validation to improve processing speed and/or to be able to process
documents containing invalid or incomplete content. To enable the JAXB
architecture to be used in these processing scenarios, the binding framework
makes validation optional. How a JAXB technology implementation handles
unmarshalling of an invalid document when validation is disabled is
implementation-specific. The same holds true for marshalling an invalid content
tree. It is expected that once an implementation is aware that it cannot
unambiguously complete unmarshalling or marshalling, it will terminate
processing with an exception.

Unmarshalling is not the only means by which a content tree may be created.
Schema-derived content classes also support the programmatic construction of
content trees by direct invocation of the appropriate factory methods. Once
created, a content tree may be re-validated, either in whole or in part, at any
time.

2.1.3 Binding Declarations

A particular binding of a given source schema is defined by a set of binding
declarations. Binding declarations are written in a binding language, which is
itself an application of XML. A binding declaration can occur within the
annotation appinfo of each XML Schema component. Alternatively, binding
declarations can occur in an auxiliary file.Eeach binding declaration within the
auxiliary file is associated to a schema component in the source schema. It was
necessary to support binding declarations external to the source schema in order
to allow for customization of an XML Schemas that one prefers not to modify.
The binding compiler hence actually requires two inputs, a source schema and a
set of binding declarations.

Binding declarations enable one to override default binding rules, thereby
allowing for user customization of the schema-derived content interfaces.
Additionally, binding declarations allows for further refinements to be
introduced into the binding to Java representation that could not be derived from
the schema alone.

The binding declarations need not define every last detail of a binding. The
binding compiler assumes default binding declarations for those components of
the source schema that are not mentioned explicitly by binding declarations.
16 JAXB Specification – Final, V1.0 1/8/03

Varieties of validation
Default declarations both reduce the verbosity of the customization and make it
more robust to the evolution of the source schema. The defaulting rules are
sufficiently powerful that in many cases a usable binding can be produced with
no binding declarations at all. By defining a standardized format for the binding
declarations, it is envisioned that tools will be built to greatly aid the process of
customizing the binding from schema components to a Java representation.

2.2 Varieties of validation

The constraints expressed in a schema fall into three general categories:

 ● A type constraint imposes requirements upon the values that may be
provided by constraint facets in simple type definitions.

 ● A local structural constraint imposes requirements upon every instance
of a given element type, e.g., that required attributes are given values and
that a complex element’s content matches its content specification.

 ● A global structural constraint imposes requirements upon an entire
document, e.g., that ID values are unique and that for every IDREF
attribute value there exists an element with the corresponding ID
attribute value.

A document is valid if, and only if, all of the constraints expressed in its schema
are satisfied. Similarly, a content tree is valid if, and only if, marshalling the
tree would produce a valid document. It would be both inconvenient and
inefficient to have to marshal a content tree just to check its validity.

The manner in which constraints are enforced in a set of derived classes has a
significant impact upon the usability of those classes. All constraints could, in
principle, be checked only during unmarshalling and validation. This approach
would, however, yield classes that violate the fail-fast principle of API design:
errors should, if feasible, be reported as soon as they are detected. In the context
of schema-derived implementation classes, this principle ensures that violations
of schema constraints are signalled when they occur rather than later on when
they may be more difficult to diagnose.

With this principle in mind we see that schema constraints can, in general, be
enforced in three ways:
1/8/03 JAXB Specification – Final, V1.0 17

Architecture
 ● Static enforcement leverages the type system of the Java programming
language to ensure that a schema constraint is checked at application’s
compilation time. Type constraints are often good candidates for static
enforcement. If an attribute is constrained by a schema to have a boolean
value, e.g., then the access methods for that attribute’s property can
simply accept and return values of type boolean.

 ● Simple dynamic enforcement performs a trivial run-time check and
throws an appropriate exception upon failure. Type constraints that do
not easily map directly to Java classes or primitive types are best
enforced in this way. If an attribute is constrained to have an integer
value between zero and 100, e.g., then the corresponding property’s
access methods can accept and return int values and its mutation
method can throw a run-time exception if its argument is out of range.

 ● Complex dynamic enforcement performs a potentially costly run-time
check, usually involving more than one content object, and throwing an
appropriate exception upon failure. Local structural constraints are
usually enforced in this way: the structure of a complex element’s
content, e.g., can in general only be checked by examining the types of
its children and ensuring that they match the schema’s content model for
that element. Global structural constraints must be enforced in this way:
the uniqueness of ID values, e.g., can only be checked by examining the
entire content tree.

It is straightforward to implement both static and simple dynamic checks so as
to satisfy the fail-fast principle. Constraints that require complex dynamic
checks could, in theory, also be implemented so as to fail as soon as possible.
The resulting classes would be rather clumsy to use, however, because it is often
convenient to violate structural constraints on a temporary basis while
constructing or manipulating a content tree.

Consider, e.g., a complex type definition whose content specification is very
complex. Suppose that an instance of the corresponding content interface is to
be modified, and that the only way to achieve the desired result involves a
sequence of changes during which the content specification would be violated.
If the content instance were to check continuously that its content is valid, then
the only way to modify the content would be to copy it, modify the copy, and
then install the new copy in place of the old content. It would be much more
convenient to be able to modify the content in place.

A similar analysis applies to most other sorts of structural constraints, and
especially to global structural constraints. Schema-derived classes will therefore
18 JAXB Specification – Final, V1.0 1/8/03

An example
be able to enable or disable a mode that verifies type constraints and will be able
to check structural constraints upon demand.

2.2.1 Handling Validation Failures

While it would be possible to notify a JAXB application that a validation error
has occurred by throwing a JAXBException when the error is detected, this
means of communicating a validation error results in only one failure at a time
being handled. Potentially, the validation operation would have to be called as
many times as there are validation errors. Both in terms of validation processing
and for the application’s benefit, it is better to detect as many errors and
warnings as possible during a single validation pass. To allow for multiple
validation errors to be processed in one pass, each validation error is mapped to
a validation error event. A validation error event relates the validation error or
warning encountered to the location of the text or object(s) involved with the
error. The stream of potential validation error events can be communicated to
the application either through a registered validation event handler at the time
the validation error is encountered, or via a collection of validation failure
events that the application can request after the operation has completed.

Unmarshalling and on-demand validation of in-memory objects are the two
operations that can result in multiple validation failures. The same mechanism is
used to handle both failure scenarios. See Section 3.3, “General Validation
Processing,” on page 26 for further details.

2.3 An example

Throughout this specification we will refer and build upon the familiar schema
from [XSD Part 0], which describes a purchase order, as a running example to
illustrate various binding concepts as they are defined. Note that all schema
name attributes with values in this font are bound by JAXB technology to either
a Java interface or JavaBean-like property. Please note that the derived Java
code in the example only approximates the default binding of the schema-to-
Java representation.
1/8/03 JAXB Specification – Final, V1.0 19

Architecture
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="purchaseOrder" type="PurchaseOrderType"/>
<xsd:element name="comment" type="xsd:string"/>
<xsd:complexType name="PurchaseOrderType">

<xsd:sequence>

<xsd:element name="shipTo" type="USAddress"/>

<xsd:element name="billTo" type="USAddress"/>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="items" type="Items"/>

</xsd:sequence>

<xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>

<xsd:element name="street" type="xsd:string"/>

<xsd:element name="city" type="xsd:string"/>

<xsd:element name="state" type="xsd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>

<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>

<xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">

<xsd:simpleType>

<xsd:restriction base="xsd:positiveInteger">

<xsd:maxExclusive value="100"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="USPrice" type="xsd:decimal"/>

<xsd:element ref="comment" minOccurs="0"/>

<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>

<xsd:attribute name="partNum" type="SKU" use="required"/>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<!-- Stock Keeping Unit, a code for identifying products -->

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">

<xsd:pattern value="\d{3}-[A-Z]{2}"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>
20 JAXB Specification – Final, V1.0 1/8/03

An example
Binding of purchase order schema to a Java representation:

import java.util.Calendar; import java.util.List;

public interface PurchaseOrderType {

USAddress getShipTo(); void setShipTo(USAddress);
USAddress getBillTo(); void setBillTo(USAddress);
/** Optional to set Comment property. */

String getComment(); void setComment(String);
Items getItems(); void setItems(Items);
Calendar getOrderDate(); void setOrderDate(Calendar);

};

public interface USAddress {
String getName(); void setName(String);
String getStreet(); void setStreet(String);
String getCity(); void setCity(String);
String getState(); void setState(String);
int getZip(); void setZip(int);
static final String COUNTRY=”USA”;1

};

public interface Items {
public interface ItemType {

String getProductName(); void setProductName(String);
/** Type constraint on Quantity setter value 0..99.2*/

int getQuantity(); void setQuantity(int);
float getUSPrice(); void setUSPrice(float);
/** Optional to set Comment property. */

String getComment(); void setComment(String);
Calendar getShipDate(); void setShipDate(Calendar);
/** Type constraint on PartNum setter value "\d{3}-[A-Z]{2}".2*/

String getPartNum(); void setPartNum(String);

};

/** Local structural constraint 1 or more instances of Items.ItemType.*/
List getItem();

}

public interface PurchaseOrder extends PurchaseOrderType, javax.xml.bind.Element {};
public interface Comment extends javax.xml.bind.Element{

String getValue(); void setValue(String)};

public class ObjectFactory {
Object newInstance(Class javaInterface);
PurchaseOrderType createPurchaseOrderType();
USAddress createUSAddress();
Items createItems();
Items.ItemType createItemsItemType();
PurchaseOrder createPurchaseOrder();
Comments createComment();
Comments createComment(String value);

}

1. Appropriate customization required to bind a fixed attribute to a constant value.

2. Type constraint checking only performed if customization enables it and implementation sup-
ports fail-fast checking
1/8/03 JAXB Specification – Final, V1.0 21

Architecture
The purchase order schema does not describe any global structural constraints.

The coming chapters will identify how these XML Schema concepts were
bound to a Java representation. Just as in [XSD Part 0], additions will be made
to the schema example to illustrate the binding concepts being discussed.
22 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 3
TH E BI ND I NG FRA ME WO RK

The binding framework defines APIs to access unmarshalling, validation and
marshalling operations for manipulating XML data and Java content instances.
The framework is presented here in overview; its full specification is available
in the javadoc for the package javax.xml.bind.

The binding framework resides in two main packages. The javax.xml.bind
package defines abstract classes and interfaces that are used directly with
content classes. The javax.xml.bind package defines the
Unmarshaller, Validator, and Marshaller classes, which are
auxiliary objects for providing their respective operations.

The JAXBContext class is the entry point for a Java application into the
JAXB framework. A JAXBContext instance manages the binding relationship
between XML element names to Java content interfaces for a JAXB
implementation to be used by the unmarshal, marshal and validation operations.
The javax.xml.bind.helper package provides partial default
implementations for some of the javax.xml.bind interfaces.
Implementations of JAXB technology can extend these classes and implement
the abstract methods. These APIs are not intended to be used directly by
applications using the JAXB architecture. A third package,
javax.xml.bind.util, contains utility classes that may be used directly
by client applications.

Finally, the binding framework defines a rich hierarchy of validation event and
exception classes for use when marshalling/unmarshalling errors occur, when
constraints are violated, and when other types of errors are detected.
JAXB Specification – Final, V1.0 23

The Binding Framework
3.1 Binding Runtime Framework
Rationale

This version of the specification does not attempt to standardize the binding
runtime framework, or expose at the JAXB API layer whether the Java content
classes are capable of validating, marshalling and unmarshalling themselves and
whether this functionality exists external to the instance. There is not enough
experience at this time to identify a single acceptable framework suitable for all.

For example, some would like to pursue reflective, dynamic solutions that
provide marshalling/unmarshalling capabilities, while others would like to
generate static, fixed code solutions. Some would like to use non-standard pull
parsing for unmarshalling, while others would rather leverage JAXP parsing and
its validation capabilities for unmarshalling.

It would prematurely restrict the exploration of possible alternative solutions to
attempt to identify a common runtime framework for all implementations to
conform to at this time. It is hoped that as XML processing technologies mature
in the future, it will be possible to identify a common binding runtime
framework in a future version of the specification.

One unfortunate result of not standardizing the binding framework runtime
system is that there is a tight coupling between the schema-derived
implementation classes and the JAXB implementation’s runtime framework.
Users are required to regenerate the schema-derived implementation classes
when changing JAXB implementations. However, note that all implementations
are required to support the ability to use multiple implementations of the JAXB
architecture at the same time. For example, a third party library jar that an
application uses might use one JAXB implementation and the application
wishes to choose a different JAXB implementation to use. Details on how this
can be achieved are discussed in the next section on JAXBContext class.

3.2 JAXBContext

The JAXBContext class provides the client’s entry point to the JAXB API. It
provides an abstraction for managing the XML/Java binding information
necessary to implement the JAXB binding framework operations: unmarshal,
marshal, and validate. Additionally, the JAXBContext class is designed to
24 JAXB Specification – Final, V1.0 1/8/03

JAXBContext
ensure that the correct binding framework implementation is used with Java
content implementation classes.

The following summarizes the JAXBContext class defined in package
javax.xml.bind.

public abstract class JAXBContext {

static final String JAXB_CONTEXT_FACTORY;

static JAXBContext newInstance(String contextPath)

static JAXBContext newInstance(String contextPath,

 ClassLoader contextPathCL)

abstract Unmarshaller createUnmarshaller();

abstract Marshaller createMarshaller();

abstract Validator createValidator();

}

A client application obtains new instances of this class via the
newInstance(String) factory method.

JAXBContext jc =

JAXBContext.newInstance(“com.acme.foo:com.acme.bar”);

The following ordered lookup procedure for the newInstance()method is
used to determine which concrete implementation of JAXBContext to load:

 ● Search the context path for the first occurrence of a file named
jaxb.properties containing the
javax.xml.bind.context.factory property and use its value.

The contextPath parameter to the newInstance method contains a list of
Java package names that contain implementation specific means for mapping
XML document instances for the specified schema vocabularies to Java content
instances. Typically, the XML/Java binding information is expected to be
generated by the binding compiler. However, note that all implementations are
required to support the ability to use multiple implementations of the JAXB
architecture at the same time. By allowing multiple Java packages to be
specified, the JAXBContext instance allows for the management of multiple
schemas at one time. All Java packages specified in the contextPath
parameter must contain XML/Java binding information from only one JAXB
implementation or, if there exists an ambiguity in the multiple schemas being
joined by the JAXBContext instance, that a JAXBException is thrown by
the newInstance(String) method.
1/8/03 JAXB Specification – Final, V1.0 25

The Binding Framework
By enabling a JAXBContext to represent more than one schema at a time, an
Unmarshaller created from it is capable of processing XML instance
documents from more than one schema in one unmarshal invocation. The use
case exists where an application receives an XML document instance from an
external source and the application does not know the precise schema
vocabulary for the document but it does know that the document is an instance
of one of several schemas. This use case is the motivation for JAXBContext
being able to represent multiple schemas at one time.

See the javadoc for JAXBContext for more details on this class.

3.3 General Validation Processing

Three identifiable forms of validation exist within the JAXB architecture
include:

 ● Unmarshal-time validation

This form of validation enables a client application to be notified of
validation errors and warnings detected while unmarshalling XML data
into a Java content tree and is completely orthogonal to the other types
of validation. To enable or disable it, see the javadoc for method
Unmarshaller.setValidating(boolean).

 ● On-demand validation

An application may wish to validate the correctness of the Java content
tree based on schema validation constraints. This form of validation
enables an application to initiate the validation process on a Java
content tree at a point in time that it feels it should be valid. The
application is notified about validation errors and warnings detected in
the Java content tree.

 ● Fail-fast validation

This form of validation enables a client application to receive
immediate feedback about a modification to the Java content tree that
violates a type constraint of a Java property. An unchecked exception is
thrown if the value provided to a set method is invalid based on the
constraint facets specified for the basetype of the property. This style of
validation is optional in the initial version of this specification. Of the
JAXB implementations that do support this type of validation, it is
26 JAXB Specification – Final, V1.0 1/8/03

General Validation Processing
customization-time decision to enable or disable fail-fast validation
when setting a property.

Unmarshal-time and on-demand validation use an event-driven mechanism to
enable multiple validation errors and warnings to be processed during a single
operation invocation. If the validation or unmarshal operation terminates with
an exception upon encountering the first validation warning or error, subsequent
validation errors and warnings would not be discovered until the first reported
error is corrected. Thus, the validation event notification mechanism provides
the application a more powerful means to evaluate validation warnings and
errors as they occur and gives the application the ability to determine when a
validation warning or error should abort the current operation (such as a value
outside of the legal value space). Thus, an application could allow locally
constrained validation problems to not terminate validation processing.

If the client application does not set an event handler on a Validator or
Unmarshaller instance prior to invoking the validate or unmarshal
operations, then a default event handler will receive notification of any errors or
fatal errors encountered and stop processing the XML data. In other words, the
default event handler will fail on the first error that is encountered.

There are three ways to handle validation events encountered during the
unmarshal and validate operations:

 ● Rely on the default validation event handler
The default handler will fail on the first error or fatal error encountered.

 ● Implement and register a custom validation event handler
Client applications that require sophisticated event processing can
implement the ValidationEventHandler interface and register it
with the Validator or Unmarshaller instance respectively.

 ● Request an error/warning event list after the operation completes
By registering the ValidationEventCollector helper, a
specialized event handler, with the setEventHandler method, the
ValidationEvent objects created during the unmarshal and validate
operations are collected. The client application can then request the list
after the operation completes.

Validation events are handled differently depending on how the client
application is configured to process them as described previously. However,
there are certain cases where a JAXB implementation needs to indicate that it is
no longer able to reliably detect and report errors. In these cases, the JAXB
implementation will set the severity of the ValidationEvent to
1/8/03 JAXB Specification – Final, V1.0 27

The Binding Framework
FATAL_ERROR to indicate that the unmarshal or validate operation
should be terminated. The default event handler and
ValidationEventCollector helper class must terminate processing after
being notified of a fatal error. Client applications that supply their own
ValidationEventHandler should also terminate processing after being
notified of a fatal error. If not, unexpected behavior may occur.

3.4 Validator

The Validator class is responsible for controlling the validation of a content
tree of in-memory objects. The following summarizes the available operations
on the class.

public interface Validator {

ValidationEventHandler getEventHandler()

void setEventHandler(ValidationEventHandler)

boolean validate(java.lang.Object subrootObject)

boolean validateRoot(java.lang.Object rootObject)

java.lang.Object getProperty(java.lang.String name)

void setProperty(java.lang.String name, java.lang.Object value)

}

The JAXBContext class provides a factory to create a Validator
instance. After an application has made a series of modifications to a Java
content tree, the application validates the content tree on-demand. As far as the
application is concerned, this validation takes place against the Java content
instances and validation constraint warnings and errors are reported to the
application relative to the Java content tree. Validation is initiated by invoking
the validateRoot(Object) method on the root of the Java content tree or
by invoking validate(Object) method to validate any arbitrary subtree of
the Java content tree. The only difference between these two methods is global
constraint checking (i.e. verifying ID/IDREF constraints.) The
validateRoot(Object) method includes global constraint checking as
part of its operation, whereas the validate(Object) method does not.

The validator governs the process of validating the content tree, serves as a
registry for identifier references, and ensures that all local (and when
28 JAXB Specification – Final, V1.0 1/8/03

Unmarshalling
appropriate, global) structural constraints are checked before the validation
process is complete.

If a violation of a local or global structural constraint is detected, then the
application is notified of the event with a callback passing an instance of a
ValidationEvent as a parameter.

Design Note – The specification purposely does not state how validation is to be
implemented since there exist several different approaches which have their own
pros and cons. For example, the validation could be completely generated Java
code. It is believed that this approach would yield the fastest validation and easiest
time relating the validation errors and warnings to the Java content instances.
However, this approach will take a large effort to implement for XML Schema,
could result in large generated code size and would take a while to become as
mature as alternative implementation approaches. An alternative implementation
approach is to stream the content tree into SAX 2 events validate using one of the
existing, proven XML Schema validators.

3.5 Unmarshalling

The Unmarshaller class governs the process of deserializing XML data into
a Java content tree, capable of validating the XML data as it is unmarshalled. It
provides the basic unmarshalling methods:

public interface Unmarshaller {

ValidationEventHandler getEventHandler()

void setEventHandler(ValidationEventHandler)

java.lang.Object getProperty(java.lang.String name)

void setProperty(java.lang.String name, java.lang.Object value)

boolean isValidating()

void setValidating(boolean validating)

UnmarshallerHandler getUnmarshallerHandler()

java.lang.Object unmarshal(java.io.File)

java.lang.Object unmarshal(java.net.URL)
1/8/03 JAXB Specification – Final, V1.0 29

The Binding Framework
java.lang.Object unmarshal(java.io.InputStream)

java.lang.Object unmarshal(org.xml.sax.InputSource)

java.lang.Object unmarshal(org.w3c.dom.Node)

java.lang.Object unmarshal(javax.xml.transform.Source)

}

The JAXBContext class contains a factory to create an Unmarshaller
instance. The JAXBContext instance manages the XML/Java binding data
that is used by unmarshalling. If the JAXBContext object that was used to
create an Unmarshaller does not know how to unmarshal the XML content
from a specified input source, then the unmarshal operation will abort
immediately by throwing an UnmarshalException. There are six
convenience methods for unmarshalling from various input sources.

An application can enable or disable unmarshal-time validation using the
setValidating() method. The application has the option to customize
validation error handling by overriding the default event handler using the
setEventHandler(ValidationEventHandler). The default event
handler aborts the unmarshalling process when the first validation error event is
encountered. Validation processing options are presented in more detail in
Section 3.3, “General Validation Processing.”

When the unmarshalling process detects a structural inconsistency that it is
unable to recover from, it should abort the unmarshal process by throwing
UnmarshalException.

An application has the ability to specify a SAX 2.0 parser to be used by the
unmarshal operation using the
unmarshal(javax.xml.transform.Source) method. Even though
the JAXB provider’s default parser is not required to be SAX2.0 compliant, all
providers are required to allow an application to specify their own SAX2.0
parser. Some providers may require the application to specify the SAX2.0
parser at binding compile time. See the method javadoc
unmarshal(Source) for more detail on how an application can specify its
own SAX 2.0 parser.

The getProperty/setProperty methods introduce a mechanism to
associate implementation specific property/value pairs to the unmarshalling
process. At this time there are no standard JAXB properties specified for the
unmarshalling process.
30 JAXB Specification – Final, V1.0 1/8/03

Marshalling
3.6 Marshalling

The Marshaller class is responsible for governing the process of serializing
a Java content tree into XML data. It provides the basic marshalling methods:

interface Marshaller {

static final string JAXB_ENCODING;

static final string JAXB_FORMATTED_OUTPUT;

static final string JAXB_SCHEMA_LOCATION;

static final string JAXB_NO_NAMESPACE_SCHEMA_LOCATION;

<PROTENTIALLY MORE PROPERTIES...>

java.lang.Object getProperty(java.lang.String name)

void setProperty(java.lang.String name, java.lang.Object value)

void setEventHandler(ValidationEventHandler handler)

ValidationEventHandler getEventHandler()

void marshal(java.lang.Object obj, java.io.Writer writer)

void marshal(java.lang.Object obj, java.io.OutputStream os)

void marshal(java.lang.Object obj, org.xml.sax.ContentHandler)

void marshal(java.lang.Object obj, javax.xml.transform.Result)

void marshal(java.lang.Object obj, org.w3c.dom.Node)

org.w3c.dom.Node getNode(java.lang.Object contentTree)

}

The JAXBContext class contains a factory to create a Marshaller
instance. Convenience method overloadings of the marshal() method allow
for marshalling a content tree to common Java output targets and to common
XML output targets of a stream of SAX2 events or a DOM parse tree.

Although each of the marshal methods accepts a java.lang.Object as its
first parameter, JAXB implementations are not required to be able to marshal
any arbitrary java.lang.Object. If the JAXBContext object that was
used to create this Marshaller does not know how to marshal the object
parameter (or any objects reachable from it), then the marshal operation will
throw a MarshalException. Even though JAXB implementations are not
required to be able to marshal arbitrary java.lang.Object objects, an
implementation is allowed to support this type of marshalling.
1/8/03 JAXB Specification – Final, V1.0 31

The Binding Framework
The marshalling process does not validate the content tree being marshalled, but
if the marshalling process detects a structural inconsistency during its process
that it is unable to recover from, it should abort the marshal process by throwing
MarshalException.

Client applications are not required to validate the Java content tree prior to
calling one of the marshal APIs. Furthermore, there is no requirement that the
Java content tree be valid with respect to its original schema in order to marshal
it back into XML data. Different JAXB providers will support marshalling
invalid Java content trees at varying levels; however, all JAXB Providers must
be able to marshal a valid content tree back to XML data. A JAXB Provider
must throw a MarshalException when it is unable to complete the marshal
operation due to invalid content. Some JAXB providers could fully allow
marshalling invalid content, others can fail on the first validation error.

3.6.1 Marshalling Properties

The following subsection highlights properties that can be used to control the
marshalling process. These properties must be set prior to the start of a
marshalling operation: the behavior is undefined if these attributes are altered in
the middle of a marshalling operation. The following standard properties have
been identified:

 ● jaxb.encoding: output character encoding

 ● jaxb.formatted.output:
true - human readable indented xml data
false - unformatted xml data

 ● jaxb.schemaLocation
This property allows the client application to specify an
xsi:schemaLocation attribute in the generated XML data.

 ● jaxb.noNamespaceSchemaLocation
This property allows the client application to specify an
xsi:noNamespaceSchemaLocation attribute in the generated
XML data.
32 JAXB Specification – Final, V1.0 1/8/03

Validation Handling
3.7 Validation Handling

Methods defined in the binding framework can cause validation events to be
delivered to the client application’s ValidationEventHandler. Setter
methods generated in schema-derived implementation classes are capable of
throwing TypeConstraintExceptions, all of which are defined in the
binding framework.

The following list describes the primary event and constraint-exception classes:

 ● An instance of a TypeConstraintException subclass is thrown
when a violation of a dynamically-checked type constraint is detected.
Such exceptions will be thrown by property-set methods, for which it
would be inconvenient to have to handle checked exceptions; type-
constraint exceptions are therefore unchecked, i.e, this class extends
java.lang.RuntimeException. The constraint check is always
performed prior to the property-set method updating the value of the
property, thus if the exception is thrown, the property is guaranteed to
retain the value it had prior to the invocation of the property-set method
with an invalid value. This functionality is optional to implement in this
version of the specification. Additionally, a customization mechanism is
provided to control enabling and disabling this feature.

 ● An instance of a ValidationEvent is delivered whenever a violation
is detected during on-demand validation or unmarshal-time validation.
Additionally, ValidationEvents can be discovered during
marshalling such as ID/IDREF violations and print conversion failures.
These violations may indicate local and global structural constraint
violations, type conversion violations, type constraint violations, etc.

 ● Since the unmarshal operation involves reading an input document,
lexical well-formedness errors may be detected or an I/O error may
occur. In these cases, an UnmarshalException will be thrown to
indicate that the JAXB provider is unable to continue the unmarshal
operation.

 ● During the marshal operation, the JAXB provider may encounter errors
in the Java content tree that prevent it from being able to complete. In
these cases, a MarshalException will be thrown to indicate that the
marshal operation can not be completed.
1/8/03 JAXB Specification – Final, V1.0 33

The Binding Framework
34 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 4
JA VA RE PRE S E NT A T IO N O F

XML CO N T EN T

This section defines the basic binding representation of package, content and
element interfaces, properties and typesafe enum class within the Java
programming language. Each section briefly states the XML Schema
components that could be bound to the Java representation. A more rigorous and
thorough description of possible bindings and default bindings occurs in
Chapter 5, “Binding XML Schema to Java Representations” and in Chapter 6,
“Customization.”

4.1 Mapping between XML Names and
Java Identifiers

XML schema languages use XML names, i.e., strings that match the Name
production defined in XML 1.0 (Second Edition) to label schema components.
This set of strings is much larger than the set of valid Java class, method, and
constant identifiers. Appendix C, “Binding XML Names to Java Identifiers,”
specifies an algorithm for mapping XML names to Java identifiers in a way that
adheres to standard Java API design guidelines, generates identifiers that retain
obvious connections to the corresponding schema, and results in as few
collisions as possible. It is necessary to rigorously define a standard way to
perform this mapping so all implementations of this specification perform the
mapping in the same compatible manner.
JAXB Specification – Final, V1.0 35

Java Representation of XML Content
4.2 Java Package

Just as the target XML namespace provides a naming context for the named
type definitions, named model groups, global element declarations and global
attribute declarations for a schema vocabulary, the Java package provides a
naming context for Java interfaces and classes. Therefore, it is natural to map
the target namespace of a schema to be the package that contains the Java
content interfaces representing the structural content model of the document.

A package consists of:

 ● A name, which is either derived directly from the XML namespace URI
as specified in Section C.5, “Generating a Java package name” or
specified by a binding customization of the XML namespace URI as
described in Section 6.6.1.1, “package.”

 ● A set of Java content interfaces representing the content models declared
within the schema.

 ● A set of Java element interfaces representing element declarations
occurring within the schema. Section 5.7.1, “Bind to Java Element
Interface” discusses the binding of an element declaration in more detail.

 ● The class ObjectFactory containing:

❍ A public no-arguments constructor.

❍ An instance factory method for each Java content and element interface
within the package.

Given Java content interface named Foo, here is the derived factory
method:

public Foo createFoo() throws JAXBException;

❍ Dynamic instance factory allocator:

public Object newInstance(Class javaContentInterface)

throws JAXBException;

❍ Property setter/getter
Provide the ability to associate implementation specific property/value
pairs with the instance creation process.

java.lang.Object getProperty(String name)

void setProperty(String name, Object value)
36 JAXB Specification – Final, V1.0 1/8/03

Typesafe Enum Class
 ● A set of typesafe enum classes.

 ● Package javadoc.

Example:

Purchase Order Schema fragment with targetNamespace:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:po="http://www.example.com/PO1"

targetNamespace="http://www.example.com/PO1">

<xs:element name="purchaseOrder" type="po:PurchaseOrderType"/>

<xs:element name="comment" type="xs:string"/>

<xs:complexType name="PurchaseOrderType"/>

...

</xs:schema>

Default derived Java code:

import javax.xml.bind.Element;

package com.example.PO1;

interface PurchaseOrderType { };

interface PurchaseOrder extends PurchaseOrderType, Element;

interface Comment { String getValue(); void setValue(String); }

...

class ObjectFactory {

PurchaseOrderType createPurchaseOrderType();

PurchaseOrder createPurchaseOrder();

Comment createComment(String value);

...

}

4.3 Typesafe Enum Class

A simple type definition whose value space is constrained by an enumeration is
worth consideration for binding to a Java typesafe enum class. The typesafe
enum design pattern is described in detail in [BLOCH]. To summarize the
concept, if an application wishes to refer to the values of a class by descriptive
constants and manipulate those constants in a type safe manner, it should
consider binding the XML component to a typesafe enum class.
1/8/03 JAXB Specification – Final, V1.0 37

Java Representation of XML Content
A typesafe enum class consists of:

 ● A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component.

 ● A package name, which is either computed from the target namespace of
the schema component or specified within a binding declaration as a
customization of the target namespace or a specified package name for
components that are scoped to no target namespace.

 ● Outer Class Names is “.” separated list of outer class names.

By default, if the XML component containing a typesafe enum class to
be generated is scoped within a complex type as opposed to a global
scope, the typesafe enum class should occur as a nested class within the
Java content interface representing the complex type scope.
Absolute class name is PackageName.[OuterClassNames.]Name.
Note: Outer Class Name is null if interface is a top-level interface.

 ● A set of enum constants.

 ● A set of enumvalue constants.

 ● Class javadoc is a combination of a documentation annotation from the
schema component and/or javadoc specified by customization.

An enum constant consists of:

 ● A name, which is either computed from the value or specified by
customization.

 ● A datatype for the constant.

 ● A value for the constant.

 ● Javadoc for the constant field is a combination of a documentation
annotation for an enumeration value facet and/or javadoc specified by
customization.

An enumvalue constant consists of:

 ● A name, which is either computed from the value or specified by
customization.

 ● A datatype for the constant.

 ● A value for the constant.
38 JAXB Specification – Final, V1.0 1/8/03

Java Content Interface
4.4 Java Content Interface

Complex type definitions are bound to a Java content interface. The attributes
and children element content of these schema building blocks are represented as
properties of the content interface that are introduced in Section 4.5,
“Properties,” on page 40.

A Java content interface is defined by:

 ● A name, which is either computed directly from an XML name or
specified by a binding customization for the schema component.

 ● A package name, which is either computed from the target namespace of
the schema component or specified by a binding customization of the
target namespace or a specified package name for components that are
scoped to no target namespace.

 ● The outer class name context, a dot-separated list of Java class names.

By default, if the XML schema component for which a Java context
interface is to be generated is scoped within a complex type as opposed
to globally, the complex class should occur as a nested class within the
Java content interface representing the complex type scope.

The absolute class name is PackageName.[OuterClassNames.]Name.
Note: The OuterClassNames is null if the interface is a top-level
interface.

 ● A base interface that this interface extends. See Section 5.3, “Complex
Type Definition,” on page 67 for further details.

 ● A set of Java properties providing access and modification to the
attributes and content model represented by the interface.

 ● A local structural constraint predicate representing all the structural
constraints for the content of the class. The constraints include attribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

 ● Class-level javadoc is a combination of a documentation annotation from
the schema component and/or javadoc specified within customization.

 ● A factory method in the package’s ObjectFactory class (introduced in
Section 4.2, “Java Package”). The factory method returns the type of the
Java content interface. The name of the factory method is generated by
concatenating the following components:
1/8/03 JAXB Specification – Final, V1.0 39

Java Representation of XML Content
❍ The string constant create.
❍ If the Java content interface is nested within another interface, then the

concatenation of all outer Java class names.
❍ The name of the Java content interface.

For example, a Java content interface named Foo that is nested within
Java content interface Bar would have the following factory method
signature generated in the containing Java package’s ObjectFactory
class:

Bar.Foo createBarFoo()

4.5 Properties

The binding compiler binds local schema components to properties within a
Java content interface.

A property is defined by:

 ● A name, which is either computed from the XML name or specified by a
binding customization for the schema component.

 ● A base type, which may be a Java primitive type (e.g., int) or a
reference type.

 ● An optional predicate, which is a mechanism that tests values of the base
type for validity and throws a TypeConstraintException if a type
constraint expressed in the source schema is violated. 1

 ● An optional collection type, which is used for properties whose values
may be composed of more than one value.

 ● A default value. Schema component has a schema specified default value
which is used when property’s value is not set and not nil.

 ● Is nillable. A property is nillable when it represents a nillable element
declaration.

1. Note that it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.
40 JAXB Specification – Final, V1.0 1/8/03

Properties
A property is realized by a set of access methods. Several property models are
identified in the following subsections; each adds additional functionally to the
basic set of access methods.

A property’s access methods are named in the standard JavaBeans style: the
name-mapping algorithm is applied to the property name and then each method
name is constructed by prefixing the appropriate verb (get, set, etc.).

A property is said to have a set value if that value was assigned to it during
unmarshalling2 or by invoking its mutation method. The value of a property is
its set value, if defined; otherwise, it is the property’s schema specified default
value, if any; otherwise, it is the default initial value for the property’s base type
as it would be assigned for an uninitialized field within a Java class3. illustrates
the states of a JAXB property and the invocations that result in state changes.

4.5.1 Simple Property

A non-collection property prop with a base type Type is realized by the two
methods

where Id is a metavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm” to prop. There is one exception to this general
rule in order to support the boolean property described in [BEANS]. When Type
is boolean, the getId method specified above is replaced by the method
signature, boolean isId().

 ● The get or is method returns the property’s value as specified in the
previous subsection. If null is returned, the property is considered to be
absent from the XML content that it represents.

2. An unmarshalling implementation should distinguish between a value from an XML instance
document and a schema specified defaulted value when possible. A property should only be
considered to have a set value when there exists a corresponding value in the XML content
being unmarshalled. Unfortunately, unmarshalling implementation paths do exist that can not
identify schema specified default values, this situation is considered a one-time transformation
for the property and the defaulted value will be treated as a set value.

3. Namely, a boolean field type defaults to false, integer field type defaults to 0, object
reference field type defaults to null, floating point field type defaults to +0.0f.

public Type getId ();

public void setId (Type value);
1/8/03 JAXB Specification – Final, V1.0 41

Java Representation of XML Content
 ● The set method defines the property’s set value to be the argument
value. If the argument value is null, the property’s set value is
discarded. Prior to setting the property’s value when TypeConstraint
validation is enabled4, a non-null value is validated by applying the
property’s predicate. If TypeConstraintException is thrown,
the property retains the value it had prior to the set method invocation.

When the base type for a property is a primitive non-reference type, the
corresponding Java wrapper class can be used as the base type to enable
discarding the property’s set value by invoking the set method with a null
parameter. See Section 4.5.4, “isSet Property Modifier,” on page 46 for an
alternative to using a wrapper class for this purpose.

Example

In the purchase order schema, the partNum attribute of the item element
definition is declared:

<xs:attribute name="partNum" type="SKU" use="required"/>

This element declaration is bound to a simple property with the base type
java.lang.String:

public String getPartNum();

public void setPartNum(String x);

The setPartNum method could apply a predicate to its argument to ensure
that the new value is legal, i.e., that it is a string value that complies with the
constraints for the simple type definition, SKU, and that derives by restriction
from xs:string and restricts the string value to match the regular expression
pattern "\d{3}-[A-Z]{2}".

It is legal to pass null to the setPartNum method even though the
partNum attribute declaration’s attribute use is specified as required. The
determination if partNum content actually has a value is a local structural
constraint rather than a type constraint, so it is checked during validation rather
than during mutation.

4. Note that it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.
42 JAXB Specification – Final, V1.0 1/8/03

Properties
4.5.2 Collection Property

A collection property may take the form of an indexed property or a list
property. The base type of an indexed property may be either a primitive type or
a reference type, while that of a list property must be a reference type.

4.5.2.1 Indexed Property

This property follows the indexed property design pattern for a multi-valued
property from the JavaBean specification. An indexed property prop with base
type Type is realized by the five methods

regardless of whether Type is a primitive type or a reference type. Id is
computed from prop as it was defined in simple property.

 ● getId()

The array getter method returns an array containing the property’s
value. If the property’s value has not set, then null is returned.

 ● setId(Type [])
The array setter method defines the property’s set value. If the
argument itself is null then the property’s set value, if any, is discarded.
If the argument is not null and TypeConstraint validation is
enabled 5 then the sequence of values in the array are first validated by
applying the property’s predicate, which may throw a
TypeConstraintException. If the
TypeConstraintException is thrown, the property retains the
value it had prior to the set method invocation. The property’s value is
only modified after the TypeConstraint validation step.

 ● setId(int, Type)
The indexed setter method allows one to set a value within the array.
The runtime exception java.lang.ArrayIndexOutOfBoundsException

public Type [] getId();

public void setId (Type [] value);

public void setId(int index, Type value);

public Type getId(int index);

public int getIdLength();

5. Note that it is optional for a JAXB implementation to support type constraint checks when set-
ting a property in this version of the specification.
1/8/03 JAXB Specification – Final, V1.0 43

Java Representation of XML Content
may be thrown if the index is used outside the current array bounds. If
the value argument is non-null and TypeConstraint validation is
enabled5, the value is validated against the property’s predicate, which
may throw an unchecked TypeConstraintException. If
TypeConstraintException is thrown, the array index remains set
to the same value it had before the invocation of the indexed setter
method.

 ● getId(int)

The indexed getter method returns a single element from the array. The
runtime exception java.lang.ArrayIndexOutOfBoundsException may
be thrown if the index is used outside the current array bounds. In order
to change the size of the array, you must use the array set method to set
a new (or updated) array.

 ● getIdLength()

The indexed length method returns the length of the array. This method
enables you to iterate over all the items within the indexed property using
the indexed mutators exclusively. Exclusive use of indexed mutators and
this method enable you to avoid the allocation overhead associated with
array getter and setter methods.

The arrays returned and taken by these methods are not part of the content
object’s state. When an array getter method is invoked, it creates a new array
to hold the returned values. Similarly, when the corresponding array setter
method is invoked, it copies the values from the argument array.

To test whether an indexed property has a set value, invoke its array
getter method and check that the result is not null. To discard an indexed
property’s set value, invoke its array setter method with an argument of
null.

See the customization attribute collectionType in Section 6.5,
“<globalBindings> Declaration” and Section 6.8, “<property> Declaration” on
how to enable the generation of indexed property methods for a collection
property.

Example

In the purchase order schema, we have the following repeating element
occurrence of element item within complexType Items.

<xs:complexType name="Items">
<xs:sequence>
44 JAXB Specification – Final, V1.0 1/8/03

Properties
<xs:element name="item" minOccurs="1"maxOccurs="unbounded">
<xs:complexType>...</xs:complexType>

</xs:element>

</xs:complexType>

The content specification of this element type could be bound to an array
property realized by these four methods:

public Items.ItemType[] getItem();

public void setItem(Items.ItemType[] value);

public void setItem(int index, Items.ItemType value);

public Items.ItemType getItem(int index);

4.5.2.2 List Property

A list property prop with base type Type is realized by the method where List

is the interface java.util.List, Id is defined as above.

 ● The get method returns an object that implements the List interface,
is mutable, and contains the values of type Type that constitute the
property’s value. If the property does not have a set value or a schema
default value, a zero length java.util.List instance is returned.

The List returned by the get method is a component of the content object’s
state. Modifications made to this list will, in effect, be modifications to the
content object. If TypeConstraint validation is enabled, the list’s mutation
methods apply the property’s predicate to any non-null value before adding
that value to the list or replacing an existing element’s value with that value; the
predicate may throw a TypeConstraintException.

The unset method introduced in Section 4.5.4, “isSet Property Modifier,” on
page 46 enables one to discard the set value for a List property.

Design Note – A future version of the Java programming language may support
generic types, in which case this specification may be revised so that list-retrieval
methods have the type List<Type>.

public List getId();
1/8/03 JAXB Specification – Final, V1.0 45

Java Representation of XML Content
Example

The content specification of the item element type could alternatively be
bound to a list property realized by one method:

public List getItem();

The list returned by the getItem method would be guaranteed only to contain
instances of the Item class. As before, its length would be checked only during
validation, since the requirement that there be at least one item in an element
instance of complex type definition Items is a structural constraint rather than
a type constraint.

4.5.3 Constant Property

An attribute use named prop with a schema specified fixed value can be bound
to a Java constant value. Id is computed from prop as it was defined in simple

property. The value of the fixed attribute of the attribute use provides the
<fixedValue> constant value.

The binding customization attribute fixedAttributeToConstantProperty
enables this binding style. Section 6.5, “<globalBindings> Declaration” and
Section 6.8, “<property> Declaration” describe how to use this attribute.

4.5.4 isSet Property Modifier

This optional modifier augments a modifiable property to enable the
manipulation of the property’s value as a set value or a defaulted value. Since
this functionality is above and beyond the typical JavaBean pattern for a
property, the method(s) associated with this modifier are not generated by
default. Chapter 6, “Customization” describes how to enable this customization
using the generateIsSetMethod attribute.

The method signatures for the isSet property modifier are the following:

where Id is defined as it was for simple and collection property.

static final public Type ID = <fixedValue>;

public boolean isSetId();
46 JAXB Specification – Final, V1.0 1/8/03

Properties
 ● The isSet method returns true if the property has been set during
unmarshalling or by invocation of the mutation method setId with a
non-null value. 6

To aid the understanding of what isSet method implies, note that the
unmarshalling process only unmarshals set values into XML content.

A list property and a simple property with a non-reference base type require an
additional method to enable you to discard the set value for a property:

 ● The unset method marks the property as having no set value. A
subsequent call to getId method returns the schema-specified default
if it existed; otherwise, it returns the Java default initial value for Type.

All other property kinds rely on the invocation of their set method with a value
of null to discard the set value of its property. Since this is not possible for
primitive types or a List property, the additional method is generated for these
cases. illustrates the method invocations that result in transitions between the
possible states of a JAXB property value.

6. A Java application does not need to distinguish between the absence of a element from the
infoset and when the element occurred with nil content. Thus, in the interest of simplifying the
generated API, methods were not provided to distinguish between the two. The marshalling pro-
cess should always output an element with nil content for a property that is not set and it repre-
sents a required nillable element declaration.

public void unsetId();
1/8/03 JAXB Specification – Final, V1.0 47

Java Representation of XML Content
Figure 4.1 States of a Property Value

Example

In the purchase order schema, the partNum attribute of the element item’s
anonymous complex type is declared:

<xs:attribute name="partNum" type = "SKU" use="required"/>

This attribute could be bound to a isSet simple property realized by these four
methods:

public int getPartNum();

public void setPartNum(String skuValue);

public boolean isSetPartNum();

public void unsetPartNum();

It is legal to invoke the unsetPartNum method even though the attribute’s
use is “required” in the XML Schema. That the attribute actually has a
value is a local structural constraint rather than a type constraint, so it is checked
during validation rather than during mutation.

4.5.5 Property Summary

The following core properties have been defined:

Unset
(default or null)

unmarshal
or set(v)

or List.add(v)

new
instance

unset() or
set(null)

Legend:
new instance - create JAXB object

default - schema specfied default

null - uninitialized JVM field default

contains 0..N
properties

Set Value
48 JAXB Specification – F
inal, V1.0
 1/8/03

Java Element Interface
 ● Simple property - JavaBean design pattern for single value property
 ● Indexed property - JavaBean design pattern for multi-valued property
 ● List property - Leverages java.util.Collection
 ● Constant property

The methods generated for these four core property kinds are sufficient for most
applications. Configuration-level binding schema declarations enable an
application to request finer control than provided by the core properties. For
example, the isSet property modifier enables an application to determine if a
property’s value is set or not.

4.6 Java Element Interface

Based on criteria to be identified in Section 5.7.1, “Bind to Java Element
Interface,” on page 82, the binding compiler binds an element declaration to a
Java element interface. An element interface is defined as:

 ● An interface name is generated from the element declaration’s name
using the XML Name to Java identifier name mapping algorithm
specified in Section C.2, “The Name to Identifier Mapping Algorithm,”
on page 189.

 ● If the element declaration’s type definition is a:

❍ Complex Type definition

The element interface extends the Java content interface representing
the complex type definition of the element declaration

❍ Simple type definition

The generated element interface has a Java property named “value”.

The factory method within the package’s ObjectFactory method
to create an instance of the element takes a value parameter of the Java
class binding of the simple type definition.

 ● Scope of element class

❍ Global element declarations are declared in package scope.

❍ Local element declarations occur in the scope of the first ancestor
complex type definition that contains the declaration.
1/8/03 JAXB Specification – Final, V1.0 49

Java Representation of XML Content
 ● Each generated Element interface must extend the Java marker interface
javax.xml.bind.Element. This enables JAXB implementations
to differentiate between instances representing an XML element directly
and instances representing the type of the XML element.

 ● A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “Java Package.” The factory method returns
the type of the Java element interface. The name of the factory method is
generated by concatenating the following components:

❍ The string constant create.
❍ If the Java element interface is nested within another interface, then the

concatenation of all outer Java class names.
❍ The name of the Java content interface.

For example, a Java element interface named Foo that is nested within
Java content interface Bar would have the following factory method
generated in the containing Java package’s ObjectFactory class:

Bar.Foo createBarFoo()

 ● The optional methods setNil() and isNil() enable Element
instances to be set to the XML concept of nil and to check whether an
Element instance is nil. See Section 5.7.1, “Bind to Java Element
Interface,” on page 82 for details on when these methods are generated.

Example 1:

Given global XML Schema element declaration with a complex type definition:

<xs:complexType name="AComplexType">

<xs:sequence>

<xs:element name="A" type="xs:int"/>

<xs:element name="B" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="AnElement" type="AComplexType"/>
50 JAXB Specification – Final, V1.0 1/8/03

Java Element Interface
Its Java binding looks like this:

public interface AComplexType {

void setA(int value);

int getA();

void setB(String value);

String getB();

};

public interface AnElement extends

AComplexType, javax.xml.bind.Element {};

public class ObjectFactory {

AnElement createAnElement();

AComplexType createAComplexType();

... other factory methods ...

}

Example 2:

Given local XML Schema element declaration with a simple type definition:

<xs:complexType name="AComplexType" mixed=”true”>7

<xs:sequence>

<xs:element name="ASimpleElement" type="xs:int"/>

</xs:sequence>

</xs:complexType>

Its Java representation:

public interface AComplexType {

public interface ASimpleElement extends javax.xml.bind.Element {

void setValue(int value);

int getValue();

}

...

7. Assume that this schema fragment meets one of the criteria specified in Section 5.7.1, “Bind to
Java Element Interface,” on page 82 that requires that <ASimpleElement> element be bound
to a Java element interface.
1/8/03 JAXB Specification – Final, V1.0 51

Java Representation of XML Content
};

class ObjectFactory {

AComplexType createAComplexType();

AComplexType.ASimpleElement

createAComplexTypeASimpleElement(int value);

AComplexType.ASimpleElement

createAComplexTypeASimpleElement();

...

}

52 JAXB Specification – Final, V1.0 1/8/03

Summary
4.7 Summary

The composition and relationships between the Java components introduced in
this section are reflected in the following diagram.

Figure 4.2 UML Diagram of Java representation
1/8/03 JAXB Specification – Final, V1.0 53

Java Representation of XML Content
54 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 5
BI ND I NG XML SCH E MA T O

JAV A REP RE SE N T A TI O N S

This chapter describes the default behavior for binding a subset of XML schema
components to Java. Unsupported XML Schema components are described in
Appendix E.2. The next chapter specifies how to customize the default
behavior.

5.1 Overview

The abstract model described in [XSD Part 1] is used to discuss the default
binding of each schema component type. Each schema component is described
as a list of properties and their semantics. References to properties of a schema
component as defined in [XSD Part 1] are denoted using the notation {schema
property} throughout this section. References to properties of information items
as defined in [XML-Infoset] are denoted the notation [property].

All JAXB implementations are required to implement the default bindings
specified in this chapter. However, users and JAXB implementors can use the
global configuration capabilities of the custom binding mechanism to override
the defaults in a portable manner.

All examples are non-normative.
JAXB Specification – Final, V1.0 55

Binding XML Schema to Java Representations
5.2 Simple Type Definition

A schema component using a simple type definition typically binds to a Java
property. Since there are different kinds of such schema components, the
following Java property attributes (common to the schema components) are
specified here and include:

 ● base type
 ● collection type if any
 ● predicate

The rest of the Java property attributes are specified in the schema component
using the simple type definition.

5.2.1 Type Categorization

The simple type definitions can be categorized as:

 ● schema built-in datatypes [XSD PART2]
 ● user-derived datatypes

Conceptually, there is no difference between the two. A schema built-in
datatype can be a primitive datatype. But it can also, like a user-derived
datatype, be derived from a schema built-in datatype. Hence no distinction is
made between the schema built-in and user-derived datatypes.

The specification of simple type definitions is based on the abstract model
described in Section 4.1, “Simple Type Definition” [XSD PART2]. The abstract
model defines three varieties of simple type definitions: atomic, list, union. The
Java property attributes for each of these are described next.

5.2.2 Atomic Datatype

If an atomic datatype has been derived by restriction using an “enumeration”
facet, the Java property attributes are defined by Section 5.2.3, “Type Safe
Enumeration.” Otherwise they are defined as described here.

The base type is derived upon the XML built-in type hierarchy [XSD PART2,
Section 3] reproduced below.
56 JAXB Specification – Final, V1.0 1/8/03

Simple Type Definition
Figure 5.1 XML Built-In Type Hierarchy

The above diagram is the same as the one in [XSD PART2] except for the
following:

 ● Only schema built-in atomic datatypes derived by restriction have been
shown.

 ● The schema built-in atomic datatypes have been annotated with Java data
types from the “Java Mapping for XML Schema Built-in Types” table
below.

anySimpleType

stringstringstring decimaldecimaldecimal

normalizedStringnormalizedStringnormalizedString integerintegerinteger

NCNameNCNameNCName shortshortshort unsignedIntunsignedIntunsignedInt

IDREFIDREFIDREFIDIDID ENTITYENTITYENTITY bytebytebyte unsignedShortunsignedShortunsignedShort

unsignedByteunsignedByteunsignedByte

languagelanguagelanguage NameNameName NMTOKENNMTOKENNMTOKEN negativeIntegernegativeIntegernegativeInteger intintint unsignedLongunsignedLongunsignedLong positiveIntegerpositiveIntegerpositiveInteger

tokentokentoken nonPositiveIntegernonPositiveIntegernonPositiveInteger longlonglong nonNegativeIntegernonNegativeIntegernonNegativeInteger

durationdurationduration dateTimedateTimedateTime timetimetime datedatedate gYearMonthgYearMonthgYearMonth gYeargYeargYear gMonthDaygMonthDaygMonthDay gDaygDaygDay gMonthgMonthgMonth

booleanbooleanboolean base64Binarybase64Binarybase64Binary hexBinaryhexBinaryhexBinary floatfloatfloat doubledoubledouble anyURIanyURIanyURI QNameQNameQName NOTATIONNOTATIONNOTATION

java.util.Calendarjava.util.Calendar

java.lang.String

boolean byte[] float doublebyte[] javax.xml.namespace.QName

NOT_SUPPORTED

NOT_SUPPORTED

java.math.BigDecimal

java.math.BigInteger

long

long

int

short

byte int

short

java.lang.Object

java.util.Calendar

built-in derived types unsupported types Java classes

ur types built-in primitive types
1/8/03 JAXB Specification – Final, V1.0 57

Binding XML Schema to Java Representations
The following is a mapping for subset of the XML schema built-in data types to
Java data types. This table is used to specify the base type later.

The mapping shown in the table above is aligned with the default mapping of
XML schema built-in atomic datatypes in [JAX-RPC]. These are indicated in
bold in the above table. In addition, it also defines mappings for datatypes not
specified in [JAX-RPC].

The base type is determined as follows:

1. If a mapping is defined for the simple type in Table 5.1, the base type de-
faults to its defined Java datatype.

2. Otherwise, the base type must be the result obtained by repeating the step
1 using the {base type definition}. For schema datatypes derived by

Table 5-1 Java Mapping for XML Schema Built-in Types

XML Schema Data type Java Data Type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int int

xsd.long long

xsd:short short

xsd:decimal java.math.BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

xsd:QName javax.xml.namespace.QName

xsd:dateTime java.util.Calendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time java.util.Calendar

xsd:date java.util.Calendar

xsd:anySimpleType java.lang.String
58 JAXB Specification – Final, V1.0 1/8/03

Simple Type Definition
restriction, the {base type definition} represents the simple type definition
from which it is derived. Therefore, repeating step 1 with {base type
definition} essentially walks up the XML Schema built-in type hierarchy
until a simple type definition which is mapped to a Java datatype is found.

The simple type definition xsd:anySimpleType is always mapped
to java.lang.String. Since all XML simple types are derived
from xsd:anySimpleType, a mapping for a simple type definition
to java.lang.String is always guaranteed.

The Java property predicate must be as specified in “Simple Type Definition
Validation Rules,” Section 4.1.4[XSD PART2].

Example:

The following schema fragment (taken from Section 4.3.1, “Length” [XSD
PART2]):

<xs:simpleType name="productCode">

<xs:restriction base="xs:string">

<xs:length value="8" fixed="true"/>

</xs:restriction>

</xs:simpleType>

The facet “length” constrains the length of a product code (represented by
productCode) to 8 characters (see section 4.3.1 [XSD PART2] for details).

The Java property attributes corresponding to the above schema fragment are:

 ● There is no Java datatype mapping for productCode. So the Java
datatype is determined by walking up the built-in type hierarchy.

 ● The {base type definition} of productCode is
xs:string. xs:string is mapped to java.lang.String (as
indicated in the table, and assuming no customization). Therefore,
productCode is mapped to the Java datatype java.lang.String.

 ● The predicate enforces the constraints on the length.

5.2.3 Type Safe Enumeration

A named atomic type that is derived by restriction with enumeration facet(s) and
whose restriction base type (represented by {base type definition}) is
“xsd:NCName” or derived from it must be mapped to a typesafe enum class.
1/8/03 JAXB Specification – Final, V1.0 59

Binding XML Schema to Java Representations
The [typesafeEnumBase] attribute customization described in Section 6.5,
“<globalBindings> Declaration," enables global configuration so named atomic
types derived from other restriction base types are bound by default to typesafe
enumeration class. An anonymous simple type definition is never bound to a
typesafe enum class by default, but it can be customized as described in
Section 6.10, “<typesafeEnum> Declaration” to bind to a typesafe enum class.

The default binding described here is technically aligned with JAX-RPC
specified typesafe enumeration binding but there are a few differences that are
discussed in Section F.3, “Bind XML enum to a typesafe enumeration.”

5.2.3.1 Enumeration Class

A type safe enum class must be defined as specified here. An example is
provided first followed by a more formal specification.

XML Schema fragment:

<xs:simpleType name="USState">

<xs:restriction base="xs:NCName">

<xs:enumeration value="AK"/>

<xs:enumeration value="AL"/>

</xs:restriction>

</xs:simpleType>
60 JAXB Specification – Final, V1.0 1/8/03

Simple Type Definition
The corresponding typesafe enum class is:

public class USState {

// Constructor

protected USSate(String value) { ... }

// one enumeration constant for each enumeration value

public static final String _AK="AK";

public static final USState AK= new USState(_AK);

public static final String _AL="AL";

public static final USState AL= new USState(_AL);

// Gets the value for an enumerated value

public String getValue();

// Gets enumeration with a specific value

// Required to throw java.lang.IllegalArgumentException if

// any invalid value is specified

public static USState fromValue(String value) {...}

// Gets enumeration from a String

// Required to throw java.lang.IllegalArgumentException if

// any invalid value is specified

public static USState fromString(String value){ ... }

// Returns String representation of the enumerated value

public String toString() { ... }

public boolean equals(Object obj) { ... }

public int hashCode() { ... }

}

5.2.3.2 Enumeration Class

The enumeration class is defined as follows:

 ● name: The default name of the enumeration class, enumClassName, is
computed by applying the XML Name to Java identifier mapping
algorithm to the {name} of the simple type definition. There is no
mechanism to derive a name for an anonymous simple type definition,
the customization must provide the name.

 ● package name: The package name is determined from the {targetname
space} of the schema that directly contains the simple type definition.

 ● outer class name:

❍ There is no outer class name for a global simple type definition.
❍ The outer class name for an anonymous simple type definition is com-

puted by traversing up the anonymous simple type definition’s ancestor
1/8/03 JAXB Specification – Final, V1.0 61

Binding XML Schema to Java Representations
tree until the first ancestor is found that is:
- an XML component that is mapped to a Java content interface, the
outer class name is composed of the concatenation of this content in-
terface’s outer class name, ".", and its name.
- a global declaration or definition is reached. There is no outer class
name for this case.

Example:

public class USState { ... } // Enumeration class

5.2.3.3 Constant Fields

For each enumeration value (represented by schema property {value}, there are
two public, static and final constant fields in the enumeration class: enumvalue
constant and enum constant.

An enumvalue constant set contains a enum constant for each enumeration
value. Each member of the set is defined as follows:

 ● name: A name is computed as specified in Section 5.2.3.4, “XML
Enumvalue-to-Java Identifier Mapping” and prefixing it with an
underscore (‘_’).

 ● type: The Java type binding of the XML datatype,
{base_type_definition}.

 ● value: The value is {value}.

An enum constant set contains an enum constant for each enumeration value.
Each member of the set is defined as follows:

 ● name: a name that is computed as specified in Section 5.2.3.4, “XML
Enumvalue-to-Java Identifier Mapping.”

 ● type: The type is enumClassName.

 ● value: value is an instance of enumClassName constructed with a
{value}. The instance is unique except in the following case.
XSD PART 2 permits identical enumeration values to be specified in an
XML enumeration. In that case, the enum constant name cannot be
uniquely by default. Instead, an error must be reported.

Example:

public static final String _AK="AK";// enumvalue constant

public static final USState AK= new USState(_AK); // enumeration constant
62 JAXB Specification – Final, V1.0 1/8/03

Simple Type Definition
5.2.3.4 XML Enumvalue-to-Java Identifier Mapping

Default names for enumvalue constant and enum constant are based on mapping
of the XML enumeration value to a Java identifier described here.

An attempt is made to map the XML enumeration value {value} to a Java
Identifier using the XML Name to Java Identifier algorithm. If one or more
enumerated values in an XML enumeration cannot map to valid Java identifier
(examples are “3.14”, “int”) or there is a collision among the generated constant
fields name, then the result is determined as follows:

 ● If the customization option typesafeEnumMemberName is
specified and set to “generateError,” an error must be reported.
This is also the default behavior if typesafeEnumMemberName has
not been specified.

 ● If the customization option, element <jaxb:globalBindings>
[typesafeEnumMemberName]is set to the value
“generateName,” the constant fields name is "VALUE_<N>"
where <N> is 1 for the first enumeration value and increments by 1 to
represent each value within the XML enumeration.

5.2.3.5 Methods and Constructor

Type is defined in enumvalue constant set in Section 5.2.3.3, “Constant
Fields.” enumClassName is defined in Section 5.2.3.2, “Enumeration Class.”

There are three accessor methods: getValue, fromValue and fromString.

public Type getValue()

public enumClassName fromValue(Type value)

public enumClassName fromString(String value)

The fromValue and fromString method must throw a
java.lang.IllegalArgumentException if value is not one of the
enumeration values specified in the XML enumeration datatype.

The constructor must be declared protected as shown below:

protected enumClassName(Type value) { ... }

An enumeration class must contain the following methods which override the
object methods:
1/8/03 JAXB Specification – Final, V1.0 63

Binding XML Schema to Java Representations
public String toString() { ... }

public final boolean equals(Object obj) { ... }

public final int hashCode() { ... }

The equals() and hashCode() must be final and must invoke the Object
methods. This ensures that no subclass of typesafe enumeration class
accidentally overrides theses methods. This in turn guarantees that two equal
objects of the enumeration class are also identical. [BLOCH]

5.2.4 List

A list simple type definition can only contain list items of atomic or union
datatypes. The item type within the list is represented by the schema property
{item type definition}.

The Java property attributes for a list simple type definition are:

 ● The base type is derived from the {item type definition} as follows. If the
Java datatype for {item type definition} is a Java primitive type, then the
base type is the wrapper class for the Java primitive type. Otherwise, the
Java datatype is derived from the XML datatype as specified in
Section 5.2.2, “Atomic Datatype” and Section 5.2.3, “Type Safe
Enumeration.”

 ● The collection type defaults to an implementation of java.util.List. Note that
this specification does not specify the default implementation for the
interface java.util.List, it is implementation dependent.

 ● The predicate is derived from the “Simple Type Definition Validation
Rules,” in section 4.1.4,[XSD PART2].

Example:

For the following schema fragment:

<xs:simpleType name="xs:USStateList">

<xs:list itemType="xs:string"/>

</xs:simpleType>

The corresponding Java property attributes are:

 ● The base type is derived from {item type definition} which is XML
datatype, “xs:string”, thus the Java datatype is java.util.String as specified
in Section Table 5-1, “Java Mapping for XML Schema Built-in Types.”
64 JAXB Specification – Final, V1.0 1/8/03

Simple Type Definition
 ● The collection type defaults to an implementation of java.util.List.

 ● The predicate only allows instances of base type to be inserted into the
list. When failfast check is being performed1, the list’s mutation methods
apply the property’s predicate to any non-null value before adding that
value to the list or replacing an existing element’s value with that value;
the predicate may throw a TypeConstraintException.

5.2.5 Union Property

A union property prop is used to bind a union simple type definition schema
component. A union simple type definition schema component consists of union
members which are schema datatypes. A union property, is therefore, realized
by:

where Id is a metavariable that represents the Java method identifier computed
by applying the name mapping algorithm described in Section C.2, “The Name
to Identifier Mapping Algorithm,” on page 189 to prop.

The base type is the first common supertype of all the Java representations to
which union member types are bound with java.lang.Object always
being a common root for all Java objects. For member types that are derived by
list, the {item type} of the list is used for determining the base type. For the
purposes of determining the supertype, if a union member that is bound to a
Java primitive type, the corresponding Java wrapper class is used instead. If
none of the union member types are derived by list, then Type is base type. If
one of the member types is derived by list, then the Union property is
represented as the appropriate collection property as specified by the
customization <jaxb:globalBindings> @collectionType value,
specified in Section 6.5.1, “Usage.”

 ● The getId method returns the set value. If the property has no set value
then the value null is returned. The value returned is an instance of one
of the union member types.

1. Section 6.5.1, “Usage” describes the enableFailFastCheck customization and
Section 2.2, “Varieties of validation” defines fail-fast checking.

public Type getId();

public void setId(Type value);
1/8/03 JAXB Specification – Final, V1.0 65

Binding XML Schema to Java Representations
 ● The setId method sets the set value. The value is mapped to the
appropriate union member type by a JAXB technology implementation.
A union schema component does not have a tag to distinguish between
union member types. However, [XSD PART2] does specify the order of
evaluation for a given value. Thus, for the following example,

<xs:union memberTypes="xs:integer xs:string"/>

the order of evaluation specified by [XSD PART2] is first “integer”
and then “string”.

The order of evaluation specified by [XSD PART2] must be followed
by a JAXB implementation to map a value to the appropriate union
member type.

If value is null, the property’s set value is discarded. Prior to setting
the property’s value when TypeConstraint validation is enabled, a non-
null value is validated by applying the property’s predicate, which
may throw a TypeConstraintException.

Example: Default Binding: Union

The following schema fragment:

<xs:complexType name="CTType">

<xs:attribute name="state" type="ZipOrName"/>

</xs:complexType>

<xs:simpleTypename="ZipOrName"

memberTypes="xs:integer xs:string"/>

is bound to the following Java representation.

public interface CTType {

Object getState();

 void setState(Object value);

}

5.2.6 Union

A simple type definition derived by a union is bound using the union property
with the following Java property attributes:

 ● the base type as specified in Section 5.2.5, “Union Property.”
66 JAXB Specification – Final, V1.0 1/8/03

Complex Type Definition
 ● if one of the member types is derived by <xs:list>, then the union is
bound as a Collection property.

 ● The predicate is the schema constraints specified in “Simple Type
Definition Validation Rules,” Section 4.1.4 [XSD PART2].

5.3 Complex Type Definition

5.3.1 Aggregation of Java Representation

A Java representation for the entire schema is built based on aggregation. A
schema component aggregates the Java representation of all the schema
components that it references. This process is done until all the Java
representation for the entire schema is built. Hence a general model for
aggregation is specified here once and referred to in different parts of the
specification.

The model assumes that there is a schema component SP which references
another schema component SC. The Java representation of SP needs to
aggregate the Java representation of SC. There are two possibilities:

 ● SC is bound to a property set.
 ● SC is bound to a Java datatype or a Java interface.

Each of these is described below.

5.3.1.1 Aggregation of Datatype/Interface

If a schema component SC is bound to a Java datatype or a Java interface, then
SP aggregates SC’s Java representation as a simple property defined by:

 ● name: the name is the interface name or the Java datatype or a name
determined by SP. The name of the property is therefore defined by the
schema component which is performing the aggregation.

 ● base type: If SC is bound to a Java datatype, the base type is the Java
datatype. If SC is bound to a Java interface, then the base type is the
interface name, including a dot separated list of interface names within
which SC is nested.

 ● collection type: There is no collection type.
1/8/03 JAXB Specification – Final, V1.0 67

Binding XML Schema to Java Representations
 ● predicate: There is no predicate.

5.3.1.2 Aggregation of Property Set

If SC is bound to a property set, then SP aggregates by adding SC’s property set
to its own property set.

Aggregation of property sets can result in name collisions. A name collision can
arise if two property names are identical. A binding compiler must generate an
error on name collision. Name collisions can be resolved by using
customization to change a property name.

5.3.2 Java Content Interface

The binding of a complex type definition to a Java content interface is based on
the abstract model properties in Section E.1.3, “Complex Type Definition
Schema Component,” on page 204. The Java content interface must be defined
as specified here.2

 ● name: name is the Java identifier obtained by mapping the XML name
{name} using the name mapping algorithm, specified in Section C.2,
“The Name to Identifier Mapping Algorithm,” on page 189. For
anonymous complex type definitions, see Section 5.7.2, “Binding of an
anonymous complex type definition” for the specification of how a name
value is derived from its parent element declaration.

 ● package:

❍ For a global complex type definition, thederived Java content interface
is generated into the Java package that represents the binding of {target
namespace}

❍ For the value of package for an anonymous complex type definition,
see Section 5.7.2, “Binding of an anonymous complex type
definition".

 ● outer class name:

❍ There is no outer class name for a global complex type definition.

❍ Section 5.7.2, “Binding of an anonymous complex type definition"

2. Note that Section 5.7.2, “Binding of an anonymous complex type definition” defines the name
and package property for anonymous type definitions occurring within an element declaration.
68 JAXB Specification – Final, V1.0 1/8/03

Complex Type Definition
defines how to derive this property from the element declaration that
contains the anonymous complex type definition.

 ● base interface: A complex type definition can derive by restriction or
extension (i.e. {derivation method} is either “extension” or
“restriction”). However, since there is no concept in Java programming
similar to restriction, both are handled the same. If the {base type
definition} is itself mapped to a Java content interface (Ci2), then the
base interface must be Ci2. This must be realized as:

public interface Ci1 extends Ci2 {

.....

}

See example of derivation by extension at the end of this section.

 ● property set: The Java representation of each of the following must be
aggregated into Java content interface’s property set (Section 5.3.1,
“Aggregation of Java Representation”).

❍ A subset of {attribute uses} is constructed. The subset must include the
schema attributes corresponding to the <xs:attribute> children
and the {attribute uses} of the schema attribute groups resolved by the
<ref> attribute. Every attribute’s Java representation (Section 5.8,
“Attribute use”) in the set of attributes computed above must be
aggregated.

❍ The Java representation for {content type} must be aggregated.

For a “Complex Type Definition with complex content,” the Java
representation for {content type} is specified in Section 5.9, “Content
Model - Particle, Model Group, Wildcard.”
For a complex type definition which is a “Simple Type Definition with
simple content,” the Java representation for {content type} is specified
in Section 5.3.2.1, “Simple Content Binding.”

❍ If a complex type derives by restriction, there is no requirement that
Java properties representing the attributes or elements removed by the
restriction need to be disabled. This is because (as noted earlier),
derivation is handled the same as derivation by restriction.

Example: Complex Type: Derivation by Extension

XML Schema Fragment (from XSD PART 0 primer):
1/8/03 JAXB Specification – Final, V1.0 69

Binding XML Schema to Java Representations
<xs:complexType name="Address">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="street" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="USAddress">

<xs:complexContent>

<xs:extension base="ipo:Address">

<xs:sequence>

<xs:element name="state" type="xs:string"/>

<xs:element name="zip" type="xs:integer"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

Default Java binding:

public interface Address {

String getName();

void setName(String);

String getStreet();

void setStreet(String);

void getCity();

void setCity(String);

}

import java.math.BigInteger;

public interface USAdress extends Address {

String getState();

void setState(String);

BigInteger getZip();

void setZip(BigInteger);

}

5.3.2.1 Simple Content Binding

Binding to Property

By default, a complex type definition with simple content is bound to a Java
property defined by:
70 JAXB Specification – Final, V1.0 1/8/03

Attribute Group Definition
 ● name: The property name must be “value”.

 ● base type, predicate, collection type: As specified in [XSD Part 1],
when a complex type has simple content, the content type ({content
type}) is always a simple type schema component. And a simple type
component always maps to a Java datatype (Section 5.2, “Simple Type
Definition”). Values of the following three properties are copied from
that Java type:

❍ base type
❍ predicate
❍ collection type

Example: Simple Content: Binding To Property

XML Schema fragment:

<xs:complexType name="internationalPrice">

<xs:simpleContent>

<xs:extension base="xs:decimal">

<xs:attribute name="currency" type="xs:string"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

Default Java binding:

interface InternationalPrice {

/** Java property for simple content */

java.math.BigDecimal getValue();

void setValue(java.math.BigDecimal value);

/** Java property for attribute*/

String getCurrency();

void setCurrency(String);

}

5.4 Attribute Group Definition

There is no default mapping for an attribute group definition. When an attribute
group is referenced, each attribute in the attribute group definition becomes a
1/8/03 JAXB Specification – Final, V1.0 71

Binding XML Schema to Java Representations
part of the [attribute uses] property of a complex type definition. Each attribute
is mapped to a Java property as described in (section, “Attribute Use”).

5.5 Model Group Definition

By default, a model group definition is not bound to a Java content interface.
Rather, when a named model group is referenced, the JAXB property set
representing its content model is aggregated into the Java content interface
representing the complex type definition that referenced the named model group
definition as illustrated in Section Figure 5.2, “Default binding for a reference
to a model group definition.”

Figure 5.2 Default binding for a reference to a model group definition.

This default binding style results in the same properties occurring within both
Java content interface’s A and C to represent the referenced Model Group B’s
content model. However, this shared set of methods is not promoted to be a Java
interface by default binding since named model group definitions are not
considered part of XML Schema’s type derivation hierarchy and thus this
relationship should not be reflected in the Java representation of the two
complex types that reference the same model group definition.

ComplexType A

Model Group B

Content Interface A

Property Set

content model

content model

refs

XML Schema Components JAXB Java Representation

ComplexType C

content model
refs

Content Interface C

Property Set

derive

derive

derive
72 JAXB Specification – Final, V1.0 1/8/03

Model Group Definition
When a model group definition’s content model contains an XML Schema
component that is to be bound to a content interface, element interface or
typesafe enum class, it is desirable to only create a single Java representation,
not one for each complex content that references the named model group
definition. This default binding from a model group definition’s content model
is defined in Section 5.5.4, “Deriving Class Names for Named Model Group
Descendants."

For those who prefer to formerly preserve model group definitions in the Java
representation of a schema, a customized binding of a model group definition to
a Java content interface is discussed in Section 5.5.3, “Bind to a Java content
interface.”

5.5.1 Bind to a set of properties

A non-repeating reference to a model group definition, when the particle
referencing the group has {max occurs} equal to one, results in a set of content
properties being generated to represent the content model. Section 5.9, “Content
Model - Particle, Model Group, Wildcard” describes how a content model is
bound to a set of properties and has examples of the binding.

5.5.2 Bind to a list property

When a model group definition is referenced from a particle with {max occurs}
greater than one, it is useful to map the reference to a List property in the
following manner:

 ● The name of the Java property is derived from the model group definition
{name} property using the XML Name to Java identifier name mapping
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 189.

 ● The Java property’s base type is java.lang.Object.

 ● The predicate for the Java property is all the elements/values that can be
placed into the list and the ordering restrictions between elements.

 ● The Java property collection type is java.util.List.

 ● The property has no default value.
1/8/03 JAXB Specification – Final, V1.0 73

Binding XML Schema to Java Representations
Example:

Schema fragment contains a particle that references the model group definition
has a {maxOccurs} value greater than one.

<xs:group name="AModelGroup">

<xs:choice>

<xs:element name="A" type="xs:int"/>

 <xs:element name="B" type="xs:float"/>

</xs:choice>

</xs:group>

<xs:complexType name="foo">

<xs:sequence>

<xs:group ref="AModelGroup" maxOccurs="unbounded"/>

<xs:element name="C" type="xs:float"/>

</xs:sequence>

</xs:complexType>

Derived Java representation:

interface AModelGroupA {

int getValue(); void setValue(int);}

interface AModelGroupB {

float getValue(); void setValue(float);}

interface Foo {

/** A valid general content property that contains

 instances of AModelGroupA and AModelGroupB.*/

java.util.List getAModelGroup();

float getC();

void setC(float value);

};

5.5.3 Bind to a Java content interface

With the appropriate customization specified, as defined in Section 6.7.3.2,
“Model Group Definition,” a named model group is bound to a Java content
interface in the following manner:
74 JAXB Specification – Final, V1.0 1/8/03

Model Group Definition
 ● A name for the content interface, which is either computed directly from
an XML name or specified by the binding customization for the model
group definition;

 ● A package name, which is either computed from the target namespace of
the model group definition or specified by binding customization of the
target namespace or a specified package name for components that are
scoped to no target namespace.

 ● There is no outer class name context since a named model group
definition must be a top-level schema component.

 ● There is no schema derived base interface for this Java content interface,
since it is independent of the type definition derivation hierarchy.

 ● Set of Java properties which provide access and modification to the
content model represented by the interface.

 ● Set of element interfaces, content interfaces and typesafe enum classes
representing element declarations and anonymous type definitions
occurring within content model of model group definition. These
interfaces are derived from XML Schema components occurring within
the content model of the model group definition either by default or due
to customizations. These interfaces and classes are nested within the
model group definition’s Java representation as a content interface.

 ● A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include local
structural constraints detailed in Section 2.2, “Varieties of validation,”
on page 17.

 ● A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “Java Package.” The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:

❍ The string constant create.
❍ The name of the Java content interface.

For example, if a Java content interface named Foo represents a model
group definition Foo, it would have the following factory method
signature generated in the containing Java package’s ObjectFactory
class:

Foo createFoo()
1/8/03 JAXB Specification – Final, V1.0 75

Binding XML Schema to Java Representations
All references to a model group definition bound to a Java content interface are
mapped to a Java property with a base type of the Java content interface
representing the model group definition. If the particle referencing the group has
an occurrence greater than one, then the reference is mapped to a Collection
property with a base type of the Java content interface representing the model
group definition.

Note that a reference to a model group definition from a complex type definition
content model with a {content type} of mixed can not be bound to a simple
property with a base type of a Java content interface. It must be bound to a
general content property as detailed in Section 5.9.4, “Bind mixed content.”

Example:

Given the XML Schema fragment and assume the appropriate customizations
exist in an external binding file3:

<xs:group name="AModelGroup">

<xs:sequence>

<xs:element name="A" type="xs:int"/>

 <xs:element name="B" type="xs:float"/>

</xs:sequence>

</xs:group>

<xs:complexType name="foo">

<xs:sequence>

<xs:group ref="AModelGroup"/>

<xs:element name="C" type="xs:float"/>

</xs:sequence>

</xs:complexType>

Derived Java representation:

public interface AModelGroup {

void setA(int value);

int getA();

void setB(float value);

float getB();

};

3. Note the actual binding declarations are not explicitly used since they are not introduced till the
customization section.
76 JAXB Specification – Final, V1.0 1/8/03

Model Group Definition
public interface Foo {

AModelGroup getAModelGroup();

void setAModelGroup(AModelGroup value);

float getC();

void setC(float value);

};

class ObjectFactory {

Foo createFoo();

AModelGroup createAModelGroup();

};

The binding of a <xs:choice> to a class is specified in Section 5.9.10.1,
“Bind a Choice Group to a Content Interface.”

5.5.4 Deriving Class Names for Named Model
Group Descendants

When a model group definition is not customized to be bound to a content
interface, as described in the previous subsection, and its content model
contains XML Schema components that need to be bound to a Java class or
interface, this section describes how to derive the package and name for the Java
content interface, typesafe enum class or element interface derived from the
content model of the model group definition. The binding of XML Schema
components to Java classes/interfaces is only performed once when the model
group definition is processed, not each time the model group definition is
referenced as is done for the property set of the model group definition.

XML Schema components occurring within a model group definition’s content
model that are specified by this chapter and the customization chapter to be
bound to an interface or typesafe enum class are bound as specified with the
following naming exceptions:

 ● package: The element interface, content interface or typesafe enum class
is bound in the Java package that represents the target namespace
containing the model group definition.

 ● name: The name of the interface or class is generated as previously
specified with one additional step to promote uniqueness between
interfaces/classes promoted from a model group definition to be bound
1/8/03 JAXB Specification – Final, V1.0 77

Binding XML Schema to Java Representations
to a top-level class within a Java package. A prefix for the interface/class
name is computed from the model group definition’s {name} using the
XML name to Java identifier algorithm.
78 JAXB Specification – Final, V1.0 1/8/03

Model Group Definition
For example, given a model group definition named Foo containing an element
declaration named bar with an anonymous complex type definition, the
anonymous complex type definition is bound to a Java content interface with the
name FooBarType. The following figure illustrates this example.

Figure 5.3 Default binding for anonymous type def within a model group definition.

Note that even customization specified interface or typesafe enum class names
are prepended with the model group definition’s name. Thus, if a model group
definition named Foo contains an anonymous simple type definition with a
typesafe enum class customization name of Colors, the typesafe enum class
name is FooColors.

ComplexType A

Model Group Foo

Content Interface A

content model

content model

refs

XML Schema Components JAXB Java Representation

ComplexType C

content model

refs
Content Interface C

derive

derive

Content interface
FooBarType

derive

Property Set

FooBarType getBar();

Property Set

FooBarType getBar();
1/8/03 JAXB Specification – Fi
nal,
 V
1.0 79

Binding XML Schema to Java Representations
5.6 Attribute Declaration

An attribute declaration is bound to a Java property when it is referenced or
declared, as described in Section 5.8, “Attribute use,” from a complex type
definition.

5.7 Element Declaration

This section describes the binding of an XML element declaration to a Java
representation. It also introduces why a JAXB technology user would want to
use instances of a Java Element interface as opposed to instances of Java
datatypes or content interfaces when manipulating XML content.

An XML element declaration is composed of two key components:

 ● its qualified name is {target namespace} and {name}
 ● its value is an instance of the Java class binding of its {type definition}

A Java Element interface is generated to represent both of these components.
An instance of a Java content interface or a Java class represents only the value
of an element. Commonly in JAXB binding, the Java representation of XML
content enables one to manipulate just the value of an XML element, not an
actual element instance. The binding compiler statically associates the XML
element qualified name to a content property and this information is used at
unmarshal/marshal time. The following schema/derived Java code example
illustrates this point.

Example:

Given the XML Schema fragment:

<xs:complexType name="chair_kind">

<xs:sequence>

<xs:element name="has_arm_rest" type="xs:boolean"/>

</xs:sequence>

</xs:complexType>
80 JAXB Specification – Final, V1.0 1/8/03

Element Declaration
Schema-derived Java content interface:

public interface ChairKind {

boolean isHasArmRest();

void setHasArmRest(boolean value);

}

A user of the Java interface ChairKind never has to create a Java instance that
both has the value of local element has_arm_rest and knows that its XML
element name is has_arm_rest. The user only provides the value of the
element to the content-property hasArmRest. A JAXB implementation
associates the content-property hasArmRest with XML element name
has_arm_rest when marshalling an instance of ChairKind.

The next schema/derived Java code example illustrates when XML element
information can not be inferred by the derived Java representation of the XML
content. Note that this example relies on binding described in Section 5.9.5,
“Bind wildcard schema component.”

Example:

<xs:complexType name="chair_kind">

<xs:sequence>

<xs:any/>

</xs:sequence>

</xs:complexType>

public interface ChairKind {

java.lang.Object getAny();

void setAny(java.lang.Object elementOrValue);

}

For this example, the user can provide an Element instance to the any content-
property that contains both the value of an XML element and the XML element
name since the XML element name could not be statically associated with the
content-property any when the Java representation was derived from its XML
Schema representation. The XML element information is dynamically provided
by the application for this case. Section 5.9, “Content Model - Particle, Model
Group, Wildcard,” on page 89 cover additional circumstances when one can use
instances of Element interface.
1/8/03 JAXB Specification – Final, V1.0 81

Binding XML Schema to Java Representations
5.7.1 Bind to Java Element Interface

The characteristics of the generated Java Element interface are derived in terms
of the properties of the “Element Declaration Schema Component” on page 205
as follows:

 ● The name of the generated Java Element interface is derived from the
element declaration {name} using the XML Name to Java identifier
mapping algorithm for class names.

 ● If the element declaration’s {type definition} is a

❍ Complex Type definition

The derived Java Element interface extends the Java content interface
representing the {type definition}.

❍ Simple type definition

The generated element interface has a Java simple content-property
named "value".

ObjectFactory method to create an instance of the Element
interface takes a value parameter of the Java class binding of the simple
type definition.

 ● If {scope} is

❍ Global: The derived Element interface is generated into the Java
package that represents the binding of {target namespace}.

❍ A Complex Type Definition: The derived Element interface is
generated within the Java content interface represented by the complex
type definition value of {scope}.

 ● Each generated Element interface must extend the Java marker interface
javax.xml.bind.Element. This enables JAXB implementations
to differentiate between instances representing a XML element directly
and instances representing the type of the XML element.

 ● If {nillable} is "true", the methods setNil() and isNil() are
generated.

 ● Optional {value constraint} property with pair of default or fixed
and a value.
If a default or fixed value is specified, the data binding system must
substitute the default or fixed value if an empty tag for the element
declaration occurs in the XML content.
82 JAXB Specification – Final, V1.0 1/8/03

Element Declaration
 ● If an element declaration schema component has an {abstract} property
of "true", an ObjectFactory factory method must not be
generated for it.

Note – Substitution properties are not covered since support is not required in this
version of the specification as stated in Section E.2, “Not Required XML
Schema concepts,” on page 208.

Default binding rules require an element declaration to be bound to derived
Element interface under the following conditions:

 ● All element declarations with global {scope} are bound to a derived Java
Element interface. The rationale is that any global element declaration
can occur within a wildcard context and one might want to provide
element instances, not instances of the element’s type, the element’s
value, for this case.

 ● All local element declarations, having a {scope} of a complex type
definition, occurring within content that is mapped to a general content
property must have derived Java Element interfaces generated. General
content property is specified in Section 5.9.3, “General content
property” An example of when a content model is mapped to a general
content property, forcing the generation of element declarations is at
Section 5.9.3.1, “Examples.”

5.7.2 Binding of an anonymous complex type
definition

An anonymous complex type definition of an element declaration is mapped to
a content interface4. The naming characteristics of the generated Java Content
interface is derived in terms of the properties of the “Element Declaration
Schema Component” on page 205 as follows:

 ● The name of the generated Java Content interface is derived from the
element declaration {name} using the XML Name to Java identifier with
a “Type” suffix appended, by default. If there exists a customization for
adding a prefix or suffix to anonymous type definitions that are bound to

4. See Section 5.5, “Model Group Definition” for how anonymous complex type definitions with a
named model group as an ancestor are handled.
1/8/03 JAXB Specification – Final, V1.0 83

Binding XML Schema to Java Representations
a Java class or interface, the default “Type” suffix is not added.
Section 6.6, “<schemaBindings> Declaration” specifies the element
<jaxb:anonymousTypeName> to describe the customization.

 ● The package of the generated Java Content interface is the same as the
package derived from the element declaration’s {target namespace}.

 ● The outer class names of the generated Java Content interface is
determined by the element declaration’s {scope}. If {scope} is:

❍ Global
There is no outer class name.

❍ A Complex Type Definition
The derived Content interface is generated nested within the Java
content interface represented by the complex type definition value of
{scope}.

Section 5.3, “Complex Type Definition” defines how the remaining Java
content interface properties are derived from the anonymous complex type
definition.

Example:

Given XML Schema fragment:

<xs:element name="foo">

<xs:complexType>

<xs:sequence>

<xs:element name="bar" type="xs:int"/>

</xs:sequence>

</xs:complexType>

</xs:element>

Derived Java code:

/** Java content interface generated

from anonymous complex type definition of element foo. */

interface FooType {

int getBar();

void setBar(int value);

}

/** Java Element interface. */

interface Foo extends javax.xml.bind.Element, FooType {};
84 JAXB Specification – Final, V1.0 1/8/03

Attribute use
5.7.3 Bind to a Property

 ● Local element declaration

Map local element declaration with a fixed {value constraint} to a Java
constant property.

 ● If an element declaration has a {nillable} property that is “true” and
its {type definition} is mapped by default to a non-referenceable
primitive Java type, the base type for the Java property is mapped to the
corresponding Java wrapper class for the Java primitive type. Setting the
property to the null value indicates that the property has been set to the
XML Schema concept of nil=’true’.

5.8 Attribute use

A ‘required’ or ‘optional’ attribute use is bound by default to a Java property as
described in Section 4.5, “Properties,” on page 40. The characteristics of the
Java property are derived in terms of the properties of the “Attribute Use
Schema Component” on page 207 and “Attribute Declaration Schema
Component” on page 206 as follows:

 ● The name of the Java property is derived from the {attribute declaration}
property’s {name} property using the XML Name to Java Identifier
mapping algorithm described in Section C.2, “The Name to Identifier
Mapping Algorithm,” on page 189.

 ● A base type for the Java property is derived from the {attribute
declaration} property’s {type definition} property as
described in binding of Simple Type Definition in Section 5.2, “Simple
Type Definition.”

 ● An optional predicate for the Java property is constructed from the
{attribute declaration} property’s {type definition}
property as described in the binding of simple type definition to a Java
representation.

 ● An optional collection type for the Java property is derived from the
{attribute declaration} property’s {type definition}
property as described in the binding of simple type definition to a Java
representation.
1/8/03 JAXB Specification – Final, V1.0 85

Binding XML Schema to Java Representations
 ● The default value for the Java property is the value from the attribute
use’s {value constraint} property. If the optional {value constraint} is
absent, the default value for the Java property is the Java default value
for the base type.

This Java property is a member of the Java content interface that represents the
binding of the complex type definition containing the attribute use.

Design Note – Since the target namespace is not being considered when
mapping an attribute to a Java property, two distinct attributes that have the same
{name} property but not the same {target namespace} will result in a Java
property naming collision. As specified generically in Section C.2.1, “Collisions
and conflicts,” on page 192, the binding compiler detect this name collision
between the two distinct properties and report the error. The user can provide a
customization that provides an alternative Java property name to resolve this
situation.

Example:

Given XML Schema fragment:

<xs:complexType name="USAddress">

<xs:attribute name="country" type="xs:string"/>

</xs:complexType>

Default derived Java code:

public interface USAddress {

public String getCountry();

public void setCountry(String value);

}

5.8.1 Bind to a Java Constant property

An attribute use with a fixed {value constraint} property can be bound to a
Java Constant property. This mapping is not performed by default since fixed
is a validation constraint. Since validation is not required to unmarshal or
marshal, XML content can have an alternative value for an attribute than the
fixed value. The user must set the binding declaration attribute
fixedAttributeToConstantProperty on <jaxb:globalBinding> element
as specified in Section 6.5.1, “Usage,” on page 121 or on
86 JAXB Specification – Final, V1.0 1/8/03

Attribute use
<jaxb:property> element as specified in Section 6.8.1, “Usage,” on page
134 to enable this mapping.

Example:

Given XML Schema fragment:

<xs:annotation><xs:appinfo>

 <jaxb:globalBindings fixedAttributeAsConstantProperty="true"/>

</xs:appinfo></xs:annotation>

<xs:complexType name="USAddress">

<xs:attribute name="country" type="xs:NMTOKEN" fixed="US"/>

</xs:complexType>

If the appropriate binding schema customization enables mapping a fixed XML
value to Java constant property, the following Java code fragment is generated.

public interface USAddress {

public static final String COUNTRY="US";

...

}

5.8.1.1 Contributions to Local Structural Constraint

If the attribute use’s {required} property is true, the local structural constraint
for an instance of the Java content interface requires that the corresponding Java
property to be set when the Java content interface instance is validated.

5.8.2 Binding an IDREF component to a Java
property

An element or attribute with a type of xs:IDREF refers to the element in the
instance document that has an attribute with a type of xs:ID or derived from
type xs:ID with the same value as the xs:IDREF value. Rather than expose the
Java programmer to this XML Schema concept, the default binding of an
xs:IDREF component maps it to a Java property with a base type of
java.lang.Object. The caller of the property setter method must be sure that its
parameter is identifiable. An object is considered identifiable if one of its
properties is derived from an attribute that is or derives from type xs:ID. There
is an expectation that all instances provided as values for properties’
representing an xs:IDREF should have the Java property representing the xs:ID
of the instances set before the content tree containing both the xs:ID and
1/8/03 JAXB Specification – Final, V1.0 87

Binding XML Schema to Java Representations
xs:IDREF is (1) globally validated or (2) marshalled. If a property representing
an xs:IDREF is set with an object that does not have its xs:ID set, the
NotIdentifiableEvent is reported by (1) validation or (2) marshalling.

 ● The name of the Java property is derived from the {name} property of the
attribute or element using the XML Name to Java Identifier mapping
algorithm described in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 189.

 ● A base type for the Java property is java.lang.Object.

 ● There is no predicate for a property representing an xs:IDREF.

 ● An optional collection type

 ● Default and fixed values can not be supported for an attribute with type
xs:IDREF.

Example:

Given XML Schema fragment:

<xs:complexType name="Book">

<xs:sequence>

<xs:element name="author" type="xs:IDREF"/>

<!-- ... -->

</xs:sequence>

</xs:complexType>

<xs:complexType name="AuthorBio">

<xs:sequence><!-- ... --> </xs:sequence>

<xs:attribute name="name" type="xs:ID"/>

</xs:complexType>
88 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
Schema-derived Java content interfaces:

public interface Book {

java.lang.Object getAuthor();

/** Parameter referencedObj should have an attribute or

 * child element with base type of xs:ID by validation

 * or marshal time.

 */

void setAuthor(java.lang.Object referencedObj);

}

public interface AuthorBio{

String getName();

void setName(String value);

}

Demonstration of a Java content instance referencing another instance:

Book book = ...;

AuthorBio authorBio = ...;

book.setAuthor(authorBio);

authorBio.setName("<some author’s name>");

// The content instance root used to validate or marshal book must

// also include "authorBio" as a child element somewhere.

// A Java content instance is not included

Note that ID and IDREF mechanisms does not incorporate the type definitions
that can be referenced. A binding declaration customization could specify that
the base type for the author property of content interface Book should be
AuthorBio instead of java.lang.Object to make for a more meaningful binding.

5.9 Content Model - Particle, Model
Group, Wildcard

This section describes the possible Java bindings for the content model of a
complex type definition schema component with a {content type} property of
mixed or element-only. The possible element content(s) and the valid
orderings between those contents are constrained by the {particles} describing
the complex type definition’s content model. The Java binding of a content
model is realized by the derivation of one or more content-properties to
1/8/03 JAXB Specification – Final, V1.0 89

Binding XML Schema to Java Representations
represent the element content constrained by the model group. Section 5.9
introduces to logically different binding styles. Section 5.9.1 through 5.9.7
describes the default binding style that is referred to as the element binding of
the content model. From Section 5.9.8 till the end of Section 5.9, model group
binding style is defined. Note that model group binding is only enabled by
customizations described in Section 6.

5.9.1 Element binding style

The ideal Java binding would be to map each uniquely named element
declaration occurring within a content model to a single Java content-property.
The model group schema component constraint, element declarations
consistent, specified in [XSD-Part 1] ensures that all element declarations/
references having the same {target namespace} and {name} must have the same
top-level type definition. This model allows the JAXB technology user to
specify only the content and the JAXB implementation infers the valid ordering
between the element content based on the {particles} constraints in the source
schema. However, there do exist numerous scenarios that this ideal binding is
not possible for parts of the content model or potentially the entire content
model. For these cases, default binding has a fallback position of representing
the element content and the ordering between the content using a general
content model. The scenarios where one must fallback to the general content
model will be identified later in this subsection.

5.9.2 Bind each element declaration name to a
content property

This approach relies on the fact that a model group merely provide constraints
on the ordering between children elements and the user merely wishes to
provide the content. It is easiest to introduce this concept without allowing for
repeating occurrences of model groups within a content model. Conceptually,
this approach presents all element declarations within a content model as a set
of element declaration {name}’s. Each one of the {name}’s is mapped to a
content-property. Based on the element content that is set by the JAXB
application via setting content-properties, the JAXB implementation can
compute the order between the element content using the following methods.

Computing the ordering between element content within [children] of an
element information item
90 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
 ● Schema constrained fixed ordering or semantically insignificant
ordering

The sequence in the schema represents an ordering between children
elements that is completely fixed by the schema. Schema-constrained
ordering is not exposed to the Java programmer when mapping each
element in the sequence to a Java property. However, it is necessary for
the marshal/unmarshal process to know the ordering. No new ordering
constraints between children elements can be introduced by an XML
document or Java application for this case. Additionally, the Java
application does not need to know the ordering between children
elements. When the compositor is all, the ordering between element
content is not specified semantically and any ordering is okay. So this
additional case can be handled the same way.

 ● Schema only constrains content and does not significantly constrain
ordering

If the ordering between the children elements is significant and must be
accessible to the Java application, then the ordering is naturally
preserved in Java representation via a collection. Below are examples
where schema provides very little help in constraining order based on
content.

<xs:choice maxOccurs="unbounded"> ... </choice>

<xs:sequence maxOccurs="unbounded"> ... </sequence>

 ● Schema constrained partial ordering

The ordering between children elements is constrained by a
combination of constraints between content specified in the schema and
the actual content within the XML content. The schema provides
constraints on ordering for this case that is computed based on the
content assigned from the XML document during unmarshalling or
from the set values by the Java application. There exists a significant
number of cases where the ordering constraints can be computed based
on the set value content and partial ordering between elements specified
in the schema.

Below is an example demonstrating the ordering of children elements using
partially schema constrained ordering. Given that the following schema is
mapped to four Java properties: A, B, C and D,
1/8/03 JAXB Specification – Final, V1.0 91

Binding XML Schema to Java Representations
 <xs:choice>

<xs:sequence>

<xs:element ref="A"/>

<xs:element ref="C"/>

<xs:element ref="D"/>

</xs:sequence>

<xs:sequence>

<xs:element ref="B"/>

<xs:choice>

<xs:element ref="C"/>

<xs:element ref="D"/>

</xs:choice>

</xs:sequence>

</xs:choice>

one can compute if only the properties for A, C and D are set, that the content
should be marshalled out in the order constrained by the first choice sequence. If
the content is set for either B and C or B and D, then the second choice sequence
ordering constraint between elements should be followed.

Example:

Given XML Schema fragment:

<xs:complexType name="USAddress"/>

<xs:complexType name="Items"/>

<xs:element name="comment" type="xs:string"/>

<xs:complexType name="PurchaseOrderType">

<xs:sequence>

<xs:choice>

<xs:group ref="shipAndBill"/>

<xs:element name="singleUSAddress" type="USAddress"/>

</xs:choice>

<xs:element ref="comment" minOccurs="0"/>

<xs:element name="items" type="Items"/>

</xs:sequence>

<xs:attribute name="orderDate" type="xs:date"/>

</xs:complexType>

<xs:group name="shipAndBill">

<xs:sequence>

<xs:element name="shipTo" type="USAddress"/>

<xs:element name="billTo" type="USAddress"/>

</xs:sequence>

</xs:group>
92 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
Generate following Java code and assume USAddress is a complex type
definition that is bound to a Java content interface USAddress.

public interface PurchaseOrderType {

void setShipTo(USAddress);

USAddress getShiptTo();

void setBillTo(USAddress);

USAddress getBillTo();

void setSingleUSAddress(USAddress);

USAddress getSingleUSAddress();

void setComment(String);

String getComment();

void setOrderDate(java.util.Calendar);

java.util.Calendar getOrderDate();

void setItems(Items);

Items getItems();

}

User is responsible for knowing that a valid content model requires either
property singleUSAddress to be set or for properties shipTo and
billTo must be set. Note that the user does not have to concern themselves
with the ordering between properties. A JAXB implementation is responsible
for inferring the order between elements based on what content is set. If the
system is unable to infer the ordering at validation time, a validation event is
thrown. The marshalling of invalid content is not specified so it is non-
deterministic what a system does for that case.

5.9.3 General content property

A general content property is, as its name implies, the most general of all
content properties. Such a property can be used with any content specification,
no matter how complex. A general content property is represented as a List
property as introduced in Section 4.5.2.2, “List Property,” on page 45. Unlike
the prior approach where the JAXB implementation must infer ordering
between the element content, this approach always requires the JAXB
technology user to specify a valid ordering of element and text content. This
approach has the benefit of providing the application with more control over
setting and knowing the order between element content.

A general content property is capable of representing both element information
items and character data items occurring within [children] of an element
1/8/03 JAXB Specification – Final, V1.0 93

Binding XML Schema to Java Representations
information item. Character data is inserted into the list as java.lang.String
values. Element data is added to the list as instances of Java Element interfaces.
94 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
5.9.3.1 Examples

Example 1: Complex content model of Elements with primitive types

<xs:complexType name="Base">

<xs:choice maxOccurs="unbounded">

<xs:element name="A" type="xs:string"/>

<xs:element name="B" type="xs:string"/>

<xs:element name="C" type="xs:int"/>

</xs:choice>

</xs:complexType>

public interface Base {

interface A extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

interface B extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

interface C extends javax.xml.bind.Element {

int getValue(); void setValue(int);}

/**

 * A general content list that can contain

 * element instances of Base.A,Base.B and Base.C.

 * <insert appropriate schema fragment here>

 */

List getAOrBOrC();

}

Example 2: XML Schema element declaration with Complex Type Definition

XML Schema fragment:

<xs:complexType name="AType"/>

<xs:complexType name="BType"/>

<xs:complexType FooBar>

<xs:choice maxOccurs="unbounded">

<xs:element name="foo" type="AType"/>

<xs:element name="bar" type="BType"/>

</xs:choice>

</xs:complexType>
1/8/03 JAXB Specification – Final, V1.0 95

Binding XML Schema to Java Representations
Default derived Java code:

interface AType { ... }

interface BType { ... }

interface FooBar {

interface Foo extends AType, javax.xml.bind.Element {...}

interface Bar extends BType, javax.xml.bind.Element {...}

/**

‘* A valid general content list contains instances of

 * Foo and/or Bar.

 */

List getFooOrBar();

};

5.9.4 Bind mixed content

When a complex type definition’s {content type} is “mixed,” its character and
element information content is bound to general content list as described in
Section 5.9.3, “General content property.” Character information data is
inserted as instances of java.lang.String into a java.util.List
instance. The local structural constraints of the {content type} particles is
propagated up to the Java content interface representing the complex type
definition.

Example:

Schema fragment loosely derived from mixed content example from
[XSD Part 0].

<xs:element name="letterBody">

<xs:complexType mixed="true">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="quantity" type="xs:positiveInteger"/>

<xs:element name="productName" type="xs:string"/>

<!-- etc. -->

</xs:sequence>

</xs:complexType>

</xs:element>

Derived Java code:
96 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
import java.math.BigInteger;

interface LetterBodyType {

interface Name extends javax.xml.bind.Element {

String getValue(); void setValue(String); }

interface Quantity extends javax.xml.bind.Element {

BigInteger getValue(); void setValue(BigInteger); }

interface ProductName extends javax.xml.bind.Element {

String getValue(); void setValue(String);}

/** Mixed content can contain instances of Element interfaces

Name, Quantity and ProductName. Text data is represented as

java.util.String for text.

*/

List getContent();

}

public interface LetterBody extends

javax.xml.bind.Element, LetterBodyType { };

The following instance document

<letterBody>

Dear Mr.<name>Robert Smith</name>

Your order of <quantity>1</quantity> <productName>Baby

Monitor</productName> shipped from our warehouse.

</letterBody>

could be constructed using JAXB API.

LetterBody lb = ObjectFactory.createLetterBody();

List gcl = lb.getContent();

gcl.add("Dear Mr.");

gcl.add(ObjectFactory.createLetterBodyName("Robert Smith"));

gcl.add("Your order of ");

gcl.add(ObjectFactory.

 createLetterBodyQuantity(new BigInteger("1")));

gcl.add(ObjectFactory.createLetterBodyProductName("Baby Monitor"));

gcl.add("shipped from our warehouse");

Note that if any element instance is placed into the general content list, gcl, that
is not an instance of LetterBody.Name, LetterBody.Quantity or LetterBody.ProductName,
validation would detect the invalid content model. With the fail fast
customization enabled, element instances of the wrong type are detected when
being added to the general content list, gcl.
1/8/03 JAXB Specification – Final, V1.0 97

Binding XML Schema to Java Representations
5.9.5 Bind wildcard schema component

A wildcard is mapped to a simple content-property with:

 ● Content-property name set to the constant “any”. A binding schema
customization could provide a more semantically meaningful content-
property name.

 ● Content-property base type set to java.lang.Object by default.
Wildcard content encountering during unmarshalling is supported if
global XML element tags occurring in “strict” or “lax” wildcard context
are known to the instance of javax.xml.bind.JAXBContext,
meaning that the schema(s) describing the element content occurring in
the wildcard context is registered with the JAXBContext instance, see
Section 3.2, “JAXBContext,” on page 24 on how bindings are registered
with a JAXBContext instance. A JAXB implementation is only
required to be able to marshall and unmarshal global element content to/
from “strict”/“lax” wildcard context that is registered and valid5
according to the schema(s) registered to JAXBContext. The
specification does not specify how a JAXB implementation handles
element content that it does not know how to map to a Java
representation.

 ● See content-property predicate for a wildcard.

 ● If the maxOccurs is greater than one, the content property is mapped
to a collection property. The default collection property is a List
property.

 ● These is no default value.

Note that the default base type being the marker class for an XML element
indicates that a wildcard content handled by default as an instance of an XML
Element. Since the schema does not contain any information about the element
content of a wildcard content, even the content-property, by default, can not
infer an XML element tag for wildcard element content.

5. The wildcard content must conform to the schema(s) registered with JAXBContext.
98 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
5.9.6 Bind a repeating occurrence model group

A choice or sequence model group with a repeating occurrence, maxOccurs
attribute greater than one, is bound to a general content property in the
following manner:

 ● Content-property name is derived in following ways:

❍ If a named model group definition is being referenced, the value of its
{name} property is mapped to a Java identifier for a method using the
algorithm specified in Section C.2, “The Name to Identifier Mapping
Algorithm,” on page 189.

❍ To derive a content property name for unnamed model group, see
Section C.4, “Deriving an identifier for a model group,” on page 194.

 ● Content-property base type set to java.lang.Object. A binding
schema customization could provide a more specialized java class.

 ● Content-property predicate validates the order between element
instances in the list and whether the occurrence constraints for each
element instance type is valid according to the schema.

 ● Since the maxOccurs is always greater than one, the content property
is mapped to a collection property. The default collection property is a
List property.

 ● These is no default value.

Local structural Constraints

The list content property’s value must satisfy the content specification of the
model group. The ordering and element contents must satisfy the constraints
specified by the model group.

5.9.7 Content Model Default Binding

The following rules define element binding style for a complex type definition’s
content model.

1. If {content type} is mixed, bind the entire content model to a general con-
tent property with the content-property name “content”. See
Section 5.9.4, “Bind mixed content” for more details.

2. If (1) a particle has {max occurs} >1 and (2) its {term} is a model group,
then that particle and its descendants are mapped to one general content
1/8/03 JAXB Specification – Final, V1.0 99

Binding XML Schema to Java Representations
property that represents them. See Section 5.9.6, “Bind a repeating
occurrence model group” for details.

3. Process all the remaining particles (1) whose {term} are wildcard particles
and (2) that did not belong to a repeating occurrence model group bound
in step. 2. If there is only one wildcard, bind it as specified in Section 5.9.5,
“Bind wildcard schema component.” If there is more than one, then
fallback to representing the entire content model as a single general
content property.

4. Process all particles (1) whose {term} are element declarations and (2) that
do not belong to a repeating occurrence model group bound in step.2.

First, we say a particle has a label L if it refers to an element declaration
whose {name} is L. Then, for all the possible pair of particles P and P’
in this set, ensure the following constraints are met:

a. If P and P’ have the same label, then they must refer to the same
element declaration.

b. If P and P’ refer to the same element reference, then its closest
common ancestor particle may not have sequence as its {term}.

If either of the above constraints are violated, then the binding compiler
must report a property naming collision that can be corrected via
customization.

Create a content property for each label L as follows:

❍ The content property name is derived from label name L.

❍ The base type will be the Java type to which the referenced element
declaration maps.

❍ The content property predicate reflects the occurrence constraint.

❍ The content property collection type defaults to ‘list’ if there exist a
particle with label L that has {maxOccurs} > 1.

❍ For the default value, if all particles with label L has a {term} with the
same {value constraint} default or fixed value, then this value.
Otherwise none.

Note – Note: Binding schema customization can be used to give particles a different
name to avoid the fallback.
100 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
Below is an example demonstrating violation of rules 4(a) and 4(b) specified
above.

<xs:sequence>

<xs:choice>

<xs:element ref="ns1:bar"/> (A)

<xs:element ref="ns2:bar"/> (B)

</xs:choice>

<xs:element ref="ns1:bar"/> (C)

</xs:sequence>

The pair (A,B) violates the first clause because they both have the label “bar”
but they refer to different element declarations. The pair (A,C) violates the
second clause because their nearest common ancestor particle is the outermost
<sequence>.

5.9.7.1 Default binding of content model “derived by extension”

If a content-property naming collision occurs between a content-property that
exists in an base complex type definition and a content-property introduced by a
“derive by extension” derived complex type definition, the content-properties
from the colliding property on are represented by a general content property
with the default property name rest.

Example:
derivation by extension content model with a content-property collision.

Given XML Schema fragment:

<xs:complexType name="Base">

<xs:sequence>

<xs:element name="A" type="xs:int"/>

 <xs:element name="B" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Derived">

<xs:complexContent>

<xs:extension base="Base">

<xs:sequence>

<xs:element name="A" type="xs:int"/>

</xs:sequence>

</xs:extension>
1/8/03 JAXB Specification – Final, V1.0 101

Binding XML Schema to Java Representations
</xs:complexContent>

</xs:complexType>

Default binding derived Java code:

interface Base {

int getA(); void setA(int);

int getB(); void setB(int);

}

interface Derived extends Base {

interface A extends javax.xml.bind.Element {

int getValue();

void setValue(int value);

}

/**

 * Instances of Derived.A must be placed in this general

 * content propert that represents the rest of the content

 * model. 6 */

List getRest();

}

5.9.8 Model group binding style

An alternative binding approach to treating the content model as just a list of
elements is to map model groups nested in the content model to Java content
interfaces. The benefit of this binding approach is the generated content
interfaces and content properties capture the semantics of model groups, aiding
the user in constructing valid content. Additionally, the additional content
interfaces allow this style of binding to rely a lot less on the general content
model, only mixed content models have to be represented as a general content
property. Unfortunately, this approach does result in an increase in the number
of generated Java content interfaces. Additionally, this approach benefits from
binding schema customizations that provide semantically meaningful names to
represent the content interfaces generated to represent nested choice and
sequence model groups. Thus, it was not considered as good a candidate for
default binding but it is considered a valuable alternative binding option.

6. Specifying a customization of the local element declaration A within Derived complex type to a
different property name than A would avoid the fallback position for this case.
102 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
5.9.9 Bind Top-level Model Group to a Property Set

The contents of non-repeating top-level model group7 is bound to a property set
as specified in Section 5.9.11, “Model Group binding algorithm.” This property
set aggregates into either to a Java content interface derived from a complex
type definition in Section 5.3.2, “Java Content Interface” or to a model group
definition as described in Section 5.5.3, “Bind to a Java content interface.

There is one exception case that must be excluded from this style of binding. If
the top-level model group is a choice for a complex type definition with
attributes, then the top-level model group should be bound as if it were a nested
model group. The rationale for this exception case is that there exist a
relationship between the properties of a choice content property, described in
Section 5.9.10.1, “Bind a Choice Group to a Content Interface.” that does not
accommodate simply aggregating the properties representing attributes into the
same interface.

5.9.10 Bind Nested Model Group

This subsection describes how a repeating top-level model group or a model
group nested6 within a content model is bound to a content interface. Chapter 6,
“Customization” describes the various customizations that enable this binding.

The characteristics of the content interface are derived in terms of the properties
of the “Model Group Schema Component” on page 2088 as follows:

 ● The content interface name for a unnamed model group is either derived
as specified in Section C.4, “Deriving an identifier for a model group,”
on page 194 or specified explicitly by customization.

 ● A package name which is the same as the package name for the primary
schema component containing the nested model group.

 ● For a nested model group, the outer class name context is a dot-separated
list of Java class names representing the first ancestor of the model group
that was mapped to a content interface. The ancestor of the model group

7. A top-level model group represents the entire content model of a complex type definition or
model group definition. Any model group occurring within a top-level model group is referred
to as a nested model group.

8. A model group reference can not be bound to a content interface, only the model group defini-
tion it is referencing can be bound to a content interface.
1/8/03 JAXB Specification – Final, V1.0 103

Binding XML Schema to Java Representations
for this case is either a complex type definition or a model group that was
also mapped to a content interface.

 ● By default, the content interface does not have a base interface type.

 ● Set of Java properties which provide access and modification of the
content model represented by the interface.

❍ When the model group’s {compositor} is choice, Section 5.9.10.1,
“Bind a Choice Group to a Content Interface” defines the property set.

❍ When the model group’s {compositor} is all or sequence,
Section 5.9.11, “Model Group binding algorithm” defines how to
compute the property set.

 ● A local structural constraint predicate represents all the structural
constraints for the content of the class. The constraints include attribute
occurrences and local structural constraints detailed in Section 2.2,
“Varieties of validation,” on page 17.

 ● A factory method is generated in the package’s ObjectFactory class
introduced in Section 4.2, “Java Package.” The factory method returns
the type of the Java content interface. The name of the factory method is
generated by concatenating the following components:

❍ The string constant create.
❍ If the Java content interface is nested within another interface, then the

concatenation of all outer Java class names.
❍ The name of the Java content interface.

5.9.10.1 Bind a Choice Group to a Content Interface

A choice group in XML Schema specifies one or more particles and where only
one can occur in content. A choice group could be accessed either as a single
entity or as a set of Java properties, only one of which is ever set at one time.
The following subsections describe two styles of binding a choice group to its
Java representation.

A <class> binding declaration customization of a choice group indicates that its
content model should be represented by a generated content interface that
encapsulates all of its properties and also allows for access of the choice as a
single entity. The customization is specified in Section 6.7.3.3, “Model Group.”
All of the characteristics necessary to generate a choice content interface are
defined in the previous subsection except for the specification of choice
property set.
104 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
The property set that represents a choice group consists of the following
property kinds:

 ● Set of choice properties (one for each significant9 particle in choice
model group). At a given point in time, at most one of these choice
properties is ever set.

 ● A read-only content property. This convenience property represents
the current state of the choice content interface.

The choice property set is defined by the following method signatures:

 ● Identify the properties for the choice model group using Section 5.9.11,
“Model Group binding algorithm.” The choice content interface adds the
following behaviors to the Java properties specified in Section 4.

❍ isSetId method returns true if the choice property is specified by the
particle corresponding to Id. At any point in time, only one choice
property in a choice content class is true, all others will be false.

❍ If the choice property represents a Simple or Indexed Property:
(i) getId method returns the current value of the choice property if
the choices content is specified by Id; otherwise, return null. The
method returns a Java primitive type when appropriate.
(ii) setId method sets the given value of the choice property. This is
a mutually exclusive set. It logically unsets the previously set value for
the choice and makes this only set property for the choice content
interface.

❍ Else if the choice property represents a List property:
(i) getID method returns a java.util.List. When this property
is not the set choice for the choice group, i.e. isSetID returns false,
this method returns a zero-length java.util.List.
(ii) The java.util.List methods that allow adding to the list are
the setters for a list property. When a choice list property has its first
element added to it, the previously set choice property is considered to
be unset. If the previously set choice property was a list property, its list
content is cleared so the list is a zero-length java.util.List.

 ● The getContent method returns the current value for the choice
content interface.

9. A insignificant particle is defined in the Model group binding algorithm as the sequence nested
within another sequence or a choice nested within another choice.
1/8/03 JAXB Specification – Final, V1.0 105

Binding XML Schema to Java Representations
The return type for the getContent method signature is determined in
the following manner:

a. If all choice property’s getter methods have the same Java datatype
as a return type, then this datatype is the getContent method’s
return type and we are finished. Otherwise, proceed to next step.

b. Compute the most common base type of the return type over all the
choice property’s getter accessor methods, considering Java
primitive datatypes as their corresponding Java wrapper class.

For example,

❍ If all choice item properties bind to a List property, the return type for
getContent is java.util.List.

❍ If all choice item properties bind to an indexed property, the return type
is an array of the most common Java supertype shared among the
choice item properties base types.

❍ If all choice item properties are different Java numeric primitive
datatypes, the getContent method has a return type of
java.lang.Number.

❍ If some choice item properties are collection properties and some are
content values or Java primitive datatypes, the return type is
java.lang.Object.

The actual instance returned by getContent method is the same as if
the specific getter method for the currently set choice property was
invoked. The exception being when that property would have returned a
primitive datatype and step (b) above promoted it to its wrapper class.
Additionally, if no choice properties are considered set (when
isSetContent() is false), then the JVM default value for an
uninitialized field is returned by an invocation of the getContent
method.

 ● The isSetContent method returns true if one of the N choice
properties has a current value.

 ● The unsetContent method discards the property’s given value, if
any.

Example:

XML Schema fragment:
106 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
<xs:complexType name="SomeComplexType"/>

<xs:choice maxOccurs="unbounded">

<xs:element name="foo" type="xs:int"/>

<xs:element name="bar" type="xs:string"/>

</xs:choice>

</xs:complexType>

Derived Java interfaces:

public interface SomeComplexType {

/** class generated to represent <insert choice fragment here>*/

public interface FooOrBar {

/** Setting Foo implies all other properties are not set and

 * and only isSetFoo() will return true.*/

void setFoo(int value);

int getFoo();

boolean isSetFoo();

/** Setting Bar implies all other properties are not set.*/

void setBar(String value);

String getBar();

boolean isSetBar();

/** returns an instance of java.lang.Integer or String.*/

java.lang.Object getContent();

/** returns true if isSetFoo or isSetBar is true.*/

boolean isSetContent();

void unsetContent();

}

List getFooOrBar();

}

class ObjectFactory {

....

SomeComplexType createSomeComplexType();

SomeComplexType.FooOrBar createSomeComplexTypeFooOrBar();

}

1/8/03 JAXB Specification – Final, V1.0 107

Binding XML Schema to Java Representations
5.9.10.2 Bind choice group to a choice content property

Setting the choiceContentProperty attribute of
<jaxb:globalBindings> as specified in Section 6.5.1, “Usage,” on page
121 enables this customized binding option.

A non-repeating choice model group is bound to a simple property. A repeating
choice model group is bound to a collection property. A choice content property
is derived from a choice model group as follows:

 ● The choice content property name is either the referenced model group
definition {name} or obtained using the algorithm specified in
Section C.4, “Deriving an identifier for a model group,” on page 194.

 ● The choice content property base type is the first common supertype
of all items within the choice model group, with java.lang.Object
always being a common root for all Java objects.10

 ● The predicate

 ● The collection type defaults to List if the choice model group has {max
occurs} greater than one.

 ● No default value.

A choice property consists of the following methods:

 ● The getChoiceID method returns the set value. If the property has no
set value then the value null is returned. Note that a set value of a
primitive Java type is returned as an instance of the corresponding Java
wrapper class.

 ● The setChoiceID method has a single parameter that is the type of
the choice content property base type.

The globalBindings and property customization attribute,
choiceContentProperty,enables this customized binding.The
customization is specified in Section 6.5, “<globalBindings> Declaration.”

10.Note that primitive Java types must be represented by their Java wrapper classes when base type
is used in the choice content property method signatures. Also, all sequence descendants of the
choice are treated as either a general content property or are mapped to their own Java content
interface.
108 JAXB Specification – Final, V1.0 1/8/03

Content Model - Particle, Model Group, Wildcard
Example:

XML Schema representation of a choice model group.

<xs:choice>

<xs:element name="foo" type="xs:int"/>

<xs:element name="bar" type="xs:string"/>

</xs:choice>

Derived choice content property method signatures:

void setFooOrBar(Object);

Object getFooOrBar();

5.9.11 Model Group binding algorithm

The following rules describe how to bind a content model to its Java
representation when customizations specify that a content model or nested
model group be bound using the model group binding style:

1. When {content type} is

a. mixed - Bind the entire content model to a general content property
with the content-property name "content". See Section 5.9.3, “General
content property” for more details.

b. element-only - Apply all binding declaration customizations on
model groups within the content model.

2. Normalize unnecessary nested, non-repeating model groups remaining
after applying previous step.

Given particle T that contains a particle N, (1) if the {term} for both
particle T and N represent the same compositor, either <sequence> or
<choice> and (2) particle N has {max occurs} == 1, then one can
flatten all the particles from particle N’s {term} model group into the
particle T’s {term} model group.

This process should be repeated until the top level particle only contains

a. choice groups containing nested, non-repeating sequences

b. sequence groups containing nested, non-repeating choices

c. directly or indirectly, repeating occurrence model groups

3. Bind all repeating occurrence model groups remaining after applying the
1/8/03 JAXB Specification – Final, V1.0 109

Binding XML Schema to Java Representations
previous steps in the following manner:

a. Bind each sequence or choice group to the appropriate Java content
interface.

b. Represent the multiple occurrences of the model group as a List
property with base type of the Java content interface derived in step
3(a).

4. Bind all non-repeating model groups remaining after applying previous
steps in the following manner:

a. Bind each non-repeating top-level model group to a Java content
interface that also represents its parent complex type definition or
model group definition.

b. Bind each nested model group to a Java content interface.

c. Map each model group to a simple property with a base type of the
Java content interface derived in step 4(b).

5. Bind elements occurring within the remaining sequences to the appropriate
Java property.

5.10 Default Binding Rule Summary

Note that this summary is non-normative and all default binding rules specified
previously in the chapter take precedence over this summary.

 ● Bind the following to Java package:

❍ XML Namespace URI

 ● Bind the following XML Schema components to Java content interface:

❍ Named complex type

❍ Anonymous inlined type definition of an element declaration

 ● Bind to typesafe enum class:

❍ A named simple type definition with a basetype that derives from
“xs:NCName” and has enumeration facets.

 ● Bind the following XML Schema components to a Java Element
interface
110 JAXB Specification – Final, V1.0 1/8/03

Default Binding Rule Summary
❍ A global element declaration to a Element interface.

❍ Local element declaration that can be inserted into a general content
list.

 ● Bind to Java property

❍ Attribute use

❍ Particle with a term that is an element reference or local element
declaration.

 ● Bind model group and wildcard content with a repeating occurrence and
complex type definitions with mixed {content type} to:

❍ A general content property - a List content-property that holds Java
instances representing element information items and character data
items.
1/8/03 JAXB Specification – Final, V1.0 111

Binding XML Schema to Java Representations
112 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 6
CU ST O M I ZA T I ON

The default binding of source schema components to derived Java
representation by a binding compiler sometimes may not meet the requirements
of a JAXB application. In such cases, the default binding can be customized
using a binding declaration. Binding declarations are specified by a binding
language, the syntax and semantics of which are defined in this chapter.

All JAXB implementations are required to provide customization support
specified here unless explicitly stated as optional.

6.1 Binding Language

The binding language is an XML based language which defines constructs
referred to as binding declarations. A binding declaration can be used to
customize the default binding between an XML schema component and its Java
representation.

The schema for binding declarations is defined in the namespace http://
java.sun.com/xml/ns/jaxb. This specification uses the namespace
prefix “jaxb” to refer to the namespace of binding declarations. For example,

<jaxb: binding declaration >

A binding compiler interprets the binding declaration relative to the source
schema and a set of default bindings for that schema. Therefore a source schema
need not contain a binding declarations for every schema component. This
makes the job of a JAXB application developer easier.
JAXB Specification – Final, V1.0 113

Customization
There are two ways to associate a binding declaration with a schema element:

 ● as part of the source schema (inline annotated schema)
 ● external to the source schema in an external binding declaration.

The syntax and semantics of the binding declaration is the same regardless of
which of the above two methods is used for customization.

A binding declaration itself does not identify the schema component to which it
applies. A schema component can be identified in several ways:

 ● explicitly - e.g. QName, XPath expressions etc.
 ● implicitly - based on the context in which the declaration occurs.

It is this separation which allows the binding declaration syntax to be shared
between inline annotated schema and the external binding.

6.1.1 Extending the Binding Language

In recognition that there will exist a need for additional binding declarations
than those currently specified in this specification, a formal mechanism is
introduced so all JAXB processors are able to identify extension binding
declarations. An extension binding declaration is not specified in the jaxb:
namespace, is implementation specific and its use will impact portability.
Therefore, binding customization that must be portable between JAXB
implementations should not rely on particular customization extensions being
available.

The namespaces containing extension binding declarations are specified to a
JAXB processor by the occurrence of the global attribute
<jaxb:extensionBindingPrefixes> within an instance of
<xs:schema> element. The value of this attribute is a whitespace-separated
list of namespace prefixes. The namespace bound to each of the prefixes is
designated as a customization declaration namespace. Prefixes are resolved on
the <xs:schema> element that carries this attribute. It is an error if the prefix
fails to resolve. This feature is quite similar to the extension-element-prefixes
attribute in [XSLT 1.0] http://www.w3.org/TR/xslt10/#extension,
introduces extension namespaces for extension instructions and functions for
XSLT 1.0.
114 JAXB Specification – Final, V1.0 1/8/03

Binding Language
This specification does not define any mechanism for creating or processing
extension binding declarations and does not require that implementations
support any such mechanism. Such mechanisms, if they exist, are
implementation-defined.

6.1.2 Inline Annotated Schema

This method of customization utilizes on the <appinfo> element specified by
the XML Schema [XSD PART 1]. A binding declaration is embedded within
the <appinfo> element as illustrated below.

<xs:annotation>

<xs:appinfo>

<binding declaration>

</xs:appinfo>

</xs:annotation>

The inline annotation where the binding declaration is used identifies the
schema component.

6.1.3 External Binding Declaration

The external binding declaration format enables customized binding without
requiring modification of the source schema. Unlike inline annotation, the
remote schema component to which the binding declaration applies must be
identified explicitly. The <jaxb:bindings> element enables the
specification of a remote schema context to associate its binding declaration(s)
with. Minimally, an external binding declaration follows the following format.

<jaxb:bindings schemaLocation = "xs:anyURI">

<jaxb:bindings node = "xs:string">*

<binding declaration>

<jaxb:bindings>

</jaxb:bindings>

The attributes schemaLocation and node are used to construct a reference to a
node in a remote schema. The binding declaration is applied to this node by the
1/8/03 JAXB Specification – Final, V1.0 115

Customization
binding compiler as if the binding declaration was embedded in the node’s
<xs:appinfo> element. The attribute values are interpreted as follows:

 ● schemaLocation - It is a URI reference to a remote schema.
 ● node - It is an XPath 1.0 expression that identifies the schema node

within schemaLocation to associate binding declarations with.

An example external binding declaration can be found in Section D.1,
“Example.”

6.1.3.1 Restrictions

 ● The external binding element <jaxb:bindings> is only recognized
for processing by a JAXB processor when its parent is an
<xs:appinfo> element, it is an ancestor of another
<jaxb:bindings> element, or when it is root element of a document.
An XML document that has a <jaxb:bindings> element as its root
is referred to as an external binding declaration file.

 ● The top-most <jaxb:binding> element within an <xs:appinfo>
element or the root element of an external binding file must have its
schemaLocation attribute set.

6.1.4 Version Attribute

The normative binding schema specifies a global version attribute. It is used
to identify the version of the binding declarations. For example, a future version
of this specification may use the version attribute to specify backward
compatibility. For this version of the specification, the version must always
"1.0". If any other version is specified, it must result in an invalid
customization as specified in Section 6.1.5, “Invalid Customizations.”

The version attribute must be specified in one of the following ways:

 ● If customizations are specified in inline annotations, the version
attribute must be specified in <xs:schema> element of the source
schema. For example,

<xs:schema jaxb:version="1.0">

 ● If customizations are specified in an external binding file, then the
jaxb:version attribute must be specified in the root element
<jaxb:bindings> in the external binding file. Alternately, a local
116 JAXB Specification – Final, V1.0 1/8/03

Notation
version attribute may be used. Thus the version can be specified
either as

<jaxb:bindings version="1.0" ... />

or

<jaxb:bindings jaxb:version="1.0" ... />

Specification of both version and <jaxb:version> must result
in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.”

6.1.5 Invalid Customizations

A non conforming binding declaration is a binding declaration in the jaxb
namespace but does not conform to this specification. A non conforming
binding declaration results in a customization error. The binding compiler must
report the customization error. The exact error is not specified here. For
additional requirements see Chapter 7, “Compatibility.”

The rest of this chapter assumes that non conforming binding declarations are
processed as indicated above and their semantics are not explicitly specified in
the descriptions of individual binding declarations.

6.2 Notation

The source and binding-schema fragments shown in this chapter are meant to be
illustrative rather than normative. The normative syntax for the binding
language is specified in Appendix , “Normative Binding Schema Syntax.” in
addition to the other normative text within this chapter. All examples are non-
normative.

 ● Metavariables are in italics.

 ● Optional attributes are enclosed in [square="bracket"].

 ● Optional elements are enclosed in [<elementA> ... </
elementA>].

 ● Other symbols: ‘,” denotes a sequence, ‘|’ denotes a choice, ‘+’ denotes
one or more, ‘*’ denotes zero or more.
1/8/03 JAXB Specification – Final, V1.0 117

Customization
 ● The prefix xs: is used to refer to schema components in W3C XML
Schema namespace.

 ● In examples, the binding declarations as well as the customized code are
shown in bold like this: <appinfo> <annotation> or getAddress().

6.3 Naming Conventions

The naming convention for XML names in the binding language schema are:

 ● The first letter of the first word in a multi word name is in lower case.

 ● The first letter of every word except the first one is in upper case.

For example, the XML name for the Java property basetype is baseType.

6.4 Customization Overview

A binding declaration customizes the default binding of a schema element to a
Java representation. The binding declaration defines one or more customization
values each of which customizes a part of Java representation.

6.4.1 Scope

When a customization value is defined in a binding declaration, it is associated
with a scope. A scope of a customization value is the set of schema elements to
which it applies. If a customization value applies to a schema element, then the
schema element is said to be covered by the scope of the customization value.
The scopes are:

 ● global scope: A customization value defined in <globalBindings>
has global scope. A global scope covers all the schema elements in the
source schema and (recursively) any schemas that are included or
imported by the source schema.

 ● schema scope: A customization value defined in
<schemaBindings> has schema scope. A schema scope covers all
the schema elements in the target namespace of a schema.
118 JAXB Specification – Final, V1.0 1/8/03

Customization Overview
 ● definition scope: A customization value in binding declarations of a
type definition or global declaration has definition scope. A definition
scope covers all schema elements that reference the type definition or the
global declaration. This is more precisely specified in the context of
binding declarations later on in this chapter.

 ● component scope: A customization value in a binding declaration has
component scope if the customization value applies only to the schema
element that was annotated with the binding declaration.

Figure 6.1 Scoping Inheritance and Overriding For Binding Declarations

Global Scope

Schema Scope

 Definition Scope

Component Scope

Binding Declaration

Binding Declaration

<schemaBindings>

<globalBindings>

Indicates inheritance and overriding of scope.
1/8/03 JAXB Specification – Final, V1.0 119

Customization
The different scopes form a taxonomy. The taxonomy defines both the
inheritance and overriding semantics of customization values. A customization
value defined in one scope is inherited for use in a binding declaration covered
by another scope as shown by the following inheritance hierarchy:

 ● a schema element in schema scope inherits a customization value defined
in global scope.

 ● a schema element in definition scope inherits a customization value
defined in schema or global scope.

 ● a schema element in component scope inherits a customization value
defined in definition, schema or global scope.

Likewise, a customization value defined in one scope can override a
customization value inherited from another scope as shown below:

 ● value in schema scope overrides a value inherited from global scope.

 ● value in definition scope overrides a value inherited from schema scope
or global scope.

 ● value in component scope overrides a value inherited from definition,
schema or global scope.

6.4.2 XML Schema Parsing

Chapter 5 specified the bindings using the abstract schema model.
Customization, on the other hand, is specified in terms of XML syntax not
abstract schema model. The XML Schema specification [XSD PART 1]
specifies the parsing of schema elements into abstract schema components. This
parsing is assumed for parsing of annotation elements specified here. In some
cases, [XSD PART 1] is ambiguous with respect to the specification of
annotation elements. Section 6.12, “Annotation Restrictions” outlines how these
are addressed.
120 JAXB Specification – Final, V1.0 1/8/03

<globalBindings> Declaration
Design Note – The reason for specifying using the XML syntax instead of
abstract schema model is as follows. For most part, there is a one-to-one mapping
between schema elements and the abstract schema components to which they are
bound. However, there are certain exceptions: local attributes and particles. A
local attribute is mapped to two schema components: {attribute declaration} and
{attribute use}. But the XML parsing process associates the annotation with the
{attribute declaration} not the {attribute use}. This is tricky and not obvious.
Hence for ease of understanding, a choice was made to specify customization at
the surface syntax level instead.

6.5 <globalBindings> Declaration

The customization values in “<globalBindings>” binding declaration
have global scope. This binding declaration is therefore useful for customizing
at a global level.

6.5.1 Usage

<globalBindings>

[collectionType = "collectionType"]

[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"

]

[generateIsSetMethod= "true" | "false" | "1" | "0"]

[enableFailFastCheck = "true" | "false" | "1" | "0"]

[choiceContentProperty = "true" | "false" | "1" | "0"]

[underscoreBinding = "asWordSeparator" | "asCharInWord"]

[typesafeEnumBase = "typesafeEnumBase"]

[typesafeEnumMemberName = "generateName" | "generateError"]

[enableJavaNamingConventions = "true" | "false" | "1" | "0"]

[bindingStyle = "elementBinding" | "modelGroupBinding"]

[<javaType> ... </javaType>]*

</globalBindings>

The following customization values are defined in global scope:

 ● collectionType if specified, must be either “indexed" or any
fully qualified class name that implements java.util.List.
1/8/03 JAXB Specification – Final, V1.0 121

Customization
 ● fixedAttributeAsConstantProperty if specified , defines
the customization value
fixedAttributeAsConstantProperty. The value must be one
of "true", false", "1" or"0". The default value is "false".

 ● generateIsSetMethod if specified, defines the customization
value of generateIsSetMethod.The value must be one of
"true", false", "1" or"0". The default value is "false".

 ● enableFailFastCheck if specified, defines the customization
value enableFailFastCheck.The value must be one of "true",
"false", "1" or"0". If enableFailFastCheck is "true"
or "1" and the JAXB implementation supports this optional checking,
type constraint checking when setting a property is performed as
described in Section 4.5, “Properties". The default value is "false".

 ● choiceContentProperty if specified,defines the customization
value choiceContentProperty . The value must be one of
"true", false", "1" or"0". The default value is "false".
choiceContentProperty is not relevant when the
bindingStyle is elementBinding.Therefore, if
bindingStyle is specified as elementBinding, then the
choiceContentProperty must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations".

 ● underscoreBinding if specified, defines the customization value
underscoreBinding. The value must be one of
"asWordSeparator" or "asCharInWord".The default value
is "asWordSeparator".

 ● enableJavaNamingConventions if specified, defines the
customization value enableJavaNamingConventions. The value
must be one of "true", false", "1" or"0". The default value
is "true".

 ● typesafeEnumBase if specified, defines the customization value
typesafeEnumBase. The value must be a list of QNames, each of
which must resolve to a simple type definition. Only simple type
definitions with an enumeration facet and a restriction base type listed in
typesafeEnumBase or derived from a type listed in
typesafeEnumBase is bound to a typesafeEnumClass by
default as specified in Section 5.2.3, “Type Safe Enumeration". The
default value of typesafeEnumBase is "xs:NCName".

ThetypesafeEnumBase cannot contain the following simple types
and therefore a JAXB implementation is not required to support the
122 JAXB Specification – Final, V1.0 1/8/03

<globalBindings> Declaration
binding of the these types to typesafe enumeration class:
"xs:QName", "xs:base64Binary", "xs:hexBinary",
"xs:date", "xs:time", "xs:dateTime",
"xs:duration", "xs:gDay", "xs:gMonth",
"xs:gYear", "xs:gMonthDay", "xs:YearMonth". If any
of them are specified, it must result in an invalid customization as
specified in Section 6.1.5, “Invalid Customizations.” JAXB
implementation must be capable of binding any other simple type listed
in typesafeEnumBase to a typesafe enumeration class.

 ● typesafeEnumMemberName if specified, defines the customization
value typesafeEnumMemberName. The value must be one of
"generateError" or "generateName". The default value is
"generateError".

 ● bindingStyle if specified, defines the customization value
bindingStyle. The value must be one of "elementBinding",
or "modelGroupBinding". The default value is
"elementBinding".
If the value is "elementBinding", the binding style specified in
Section 5.9.7, “Content Model Default Binding" is used. If the value is
"modelGroupBinding" then the binding style specified in
Section 5.9.8, “Model group binding style” is selected.

 ● zero or more javaType binding declarations. Each binding declaration
must be specified as described in Section 6.9, “<javaType>
Declaration,” on page 151.”

The semantics of the above customization values, if not specified above, are
specified when they are actually used in the binding declarations.

For inline annotation, a <globalBindings> is a valid only in the annotation
element of the <schema> element. There must only be a single instance of a
<globalBindings> declaration in the annotation element of the
<schema> element.

If one source schema includes or imports a second source schema then the
<globalBindings> declaration must be declared in the first source schema.
1/8/03 JAXB Specification – Final, V1.0 123

Customization
6.5.2 Customized Name Mapping

A customization value can be used to specify a name for a Java object (e.g. class
name, package name etc.). In this case, a customization value is referred to as a
customization name.

A customization name is always a legal Java identifier (this is formally
specified in each binding declaration where the name is specified). Since
customization deals with customization of a Java representation to which an
XML schema element is bound, requiring a customization name to be a legal
Java identifier rather than an XML name is considered more meaningful.

A customization name may or may not conform to the recommended Java
language naming conventions. [JLS - Java Language Specification, Second
Edition, Section 6.8, “Naming Conventions”]. The customization value
enableJavaNamingConventions determines if a customization name is mapped
to a Java identifier that follows Java language naming conventions or not.

If enableJavaNamingConventions is defined and the value is "true" or "1",
then the customization name (except for constant name) specified in the section
from where this section is referenced must be mapped to Java identifier which
follows the Java language naming conventions as specified in Section C.6,
“Conforming Java Identifier Algorithm”; otherwise the customized name must
be used as is.

6.5.3 Underscore Handling

This section applies only when XML names are being mapped to a legal Java
Identifier by default. In this case, the treatment of underscore (‘_’) is determined
by underscoreBinding.

If underscoreBinding is "asWordSeparator", then underscore
(‘_’) must be treated as a punctuation character; otherwise if
underscoreBinding is "asCharInWord", then underscore (‘_’) must
be treated as a character in the word. The default value for
underscoreBinding is "asWordSeparator".
124 JAXB Specification – Final, V1.0 1/8/03

<schemaBindings> Declaration
6.6 <schemaBindings> Declaration

The customization values in <schemaBindings> binding declaration have
schema scope. This binding declaration is therefore useful for customizing at a
schema level.

6.6.1 Usage

<schemaBindings>

[<package> package </package>]

[<nameXmlTransform> ... </nameXmlTransform>]*

</schemaBindings>

<package [name = "packageName"]

[<javadoc> ... </javadoc>]

</package>

<nameXmlTransform>

[<typeName [suffix="suffix"]

 [prefix="prefix"] />]

[<elementName [suffix="suffix"]

[prefix="prefix"] />]

[<modelGroupName [suffix="suffix"]

[prefix="prefix"] />]

[<anonymousTypeName [suffix="suffix"]

 [prefix="prefix"] />]

</nameXmlTransform>

For readability, the <nameXmlTransform> and <package> elements are
shown separately. However, they are local elements within the
<schemaBindings> element.

The semantics of the customization value are specified when they are actually
used in the binding declarations.

For inline annotation, a <schemaBindings> is valid only in the annotation
element of the <schema> element. There must only be a single instance of a
<schemaBindings> declaration in the annotation element of the
<schema> element.

If one source schema includes (via the include mechanism specified by XSD
PART 1) a second source schema, then the <schemaBindings> declaration
1/8/03 JAXB Specification – Final, V1.0 125

Customization
must be declared in the first including source schema. It should be noted that
there is no such restriction on <schemaBindings> declarations when one
source schema imports another schema since the scope of
<schemaBindings> binding declaration is schema scope.

6.6.1.1 package

Usage

 ● name if specified, defines the customization value packageName.
packageName must be a valid Java package name.

 ● <javadoc> if specified, customizes the package level Javadoc.
<javadoc> must be specified as described in Section 6.11,
“<javadoc> Declaration.” The Javadoc must be generated as specified in
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customized is the package section.

Design Note – The word “package” has been prefixed to name used in the
binding declaration. This is because the attribute or element tag names “name” is
not unique by itself across all scopes. For e.g., “name” attribute can be specified in
the <property> declaration. The intent is to disambiguate by reference such as
“packageName”.

The semantics of the packageName is specified in the context where it is
used. If neither packageName nor the <javadoc> element is specified, then
the binding declaration has no effect.

Example: Customizing Package Name

<jaxb:schemaBindings>

<jaxb:package name = "org.example.po" />

</jaxb:schemaBindings>

specifies “org.example.po” as the package to be associated with the
schema.
126 JAXB Specification – Final, V1.0 1/8/03

<schemaBindings> Declaration
6.6.1.2 nameXmlTransform

The use case for this declaration is the UDDI Version 2.0 schema. The UDDI
Version 2.0 schema contains many declarations of the following nature:

<xs:element name="bindingTemplate" type="uddi:bindingTemplate"/>

The above declaration results in a name collision since both the element and
type names are the same - although in different XML Schema symbol spaces.
Normally, collisions are supposed to be resolved using customization. However,
since there are many collisions for the UDDI V2.0 schema, this is not a
convenient solution. Hence the binding declaration nameXmlTransform is
being provided to automate name collision resolution.

The nameXmlTransform allows a suffix and a prefix to be specified
on a per symbol space basis. The following symbol spaces are supported:

 ● <typeName> for the symbol space “type definitions”

 ● <elementName> for the symbol space “element definitions”

 ● <modelGroupName> for the symbol space “model group
definitions.”

 ● <anonymousTypeName> for customizing Java content interface to
which an anonymous type is bound.1

If suffix is specified, it must be appended to all the default XML names in
the symbol space. The prefix if specified, must be prepended to the default
XML name. Furthermore, this XML name transformation must be done before
the XML name to Java Identifier algorithm is applied to map the XML name to
a Java identifier. The XML name transformation must not be performed on
customization names.

By using a different prefix and/or suffix for each symbol space, identical
names in different symbol spaces can be transformed into non-colliding XML
names.

1. XML schema does not associate anonymous types with a specific symbol space. However,
nameXmlTransform is used since it provides a convenient way to customize the Java content
interface to which an anonymous type is bound.
1/8/03 JAXB Specification – Final, V1.0 127

Customization
anonymousTypeName

As specified in Section 5.7.2, “Binding of an anonymous complex type
definition”, by default a “Type” suffix is added to the name of the Java content
interface to which an anonymous type is bound. The
<anonymousTypeName> declaration can be used to customize the suffix
and prefix for the Java content interface. If suffix is specified, it must
replace the “Type” suffix in the Java content interface name. If prefix is
specified, then it must be prepended to the Java content interface name for the
anonymous type.

6.7 <class> Declaration

This binding declaration can be used to customize the binding of a schema
element to a Java content interface or a Java Element interface. The
customizations can be used to specify:

 ● a name for the derived Java interface.
 ● an implementation class for the derived Java content interface. An

implementation cannot be specified for a Java Element interface.

Specification of an alternate implementation for a Java content interface allows
implementations generated by a tool (e.g. based on UML) to be used in place of
the default implementation generated by a JAXB provider.

The implementation class may have a dependency upon the runtime of the
binding framework. Since a runtime is not specified in this version of the
specification, the implementation class may not be portable across JAXB
provider implementations. Hence one JAXB provider implementation is not
required to support the implementation class from another JAXB provider.

6.7.1 Usage

<class [name = "className"]>

[implClass= "implClass"]

[<javadoc> ... </javadoc>]

</class>

 ● className is the name of the derived Java interface, if specified. It
must be a legal Java interface name and must not contain a package
128 JAXB Specification – Final, V1.0 1/8/03

<class> Declaration
prefix. The package prefix is inherited from the current value of
package.

 ● implClass if specified, is the name of the implementation class for
className and must include the complete package name.

 ● <javadoc> element, if specified customizes the Javadoc for the
derived Java interface. <javadoc> must be specified as described in
Section 6.11, “<javadoc> Declaration.”

6.7.2 Customization Overrides

When binding a schema element’s Java representation to a Java content
interface or a Java Element interface, the following customization values
override the defaults specified in Chapter 5. It is specified in a common section
here and referenced from Section 6.7.3, “Customizable Schema Elements.”

 ● name: The name is className if specified.

 ● package name: The name of the package is packageName inherited
from a scope that covers this schema element.

NOTE: The packageName is only set in the <package> declaration.
The scope of packageName is schema scope and is thus inherited by
all schema elements within the schema.

 ● javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customized is the class/interface section.

6.7.3 Customizable Schema Elements

6.7.3.1 Complex Type Definition

When <class> customization specified in the annotation element of the
complex type definition, the complex type definition must be bound to a Java
content interface as specified in Section 5.3.2, “Java Content Interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides.”
1/8/03 JAXB Specification – Final, V1.0 129

Customization
Example: Class Customization: Complex Type Definition To Java Content
Interface

XML Schema fragment:

<xs:complexType name="USAddress">

<xs:annotation> <xs:appinfo>

<jaxb:class name="MyAddress" />

</xs:appinfo></xs:annotation>

<xs:sequence>...</xs:sequence>

<xs:attribute name="country" type="xs:string"/>

</xs:complexType>

Customized code:

// public interface USAddress { // Default Code

public interface MyAddress { // Customized Code

public String getCountry();

public void setCountry(String value);

...

}

6.7.3.2 Model Group Definition

When a <class> declaration is specified in the annotation element of a model
group definition, the model group definition must be bound to a Java content
interface as specified in Section 5.5.3, “Bind to a Java content interface”
applying the customization overrides as specified in Section 6.7.2,
“Customization Overrides.”

Example: Class Customization: Model Group Definition To Class

XML Schema Fragment:

<xs:group name="AModelGroup">

<xs:annotation> <xs:appinfo>

<jaxb:class name="MyModelGroup" />

</xs:appinfo></xs:annotation>

<xs:choice>

<xs:element name="A" type="xs:int"/>

 <xs:element name="B" type="xs:float"/>

</xs:choice>

</xs:group>
130 JAXB Specification – Final, V1.0 1/8/03

<class> Declaration
Customized code:

// interface AModelGroup // Default code

interface MyModelGroup { // Customized code (customized class name)

void setA(int value);

int getA();

void setB(float value);

float getB();

}

6.7.3.3 Model Group

When a <class> customization is specified in the annotation element of the
model group’s compositor, the model group must be bound to a Java content
interface as specified in Section 5.9.10, “Bind Nested Model Group” applying
the customization overrides as specified in Section 6.7.2, “Customization
Overrides.”

6.7.3.4 Global Element Declaration

A <class> declaration is allowed in the annotation element of the global
element declaration. However, the implClass attribute is not allowed. The
global element declaration must be bound as specified in Section 5.7.1, “Bind to
Java Element Interface” applying the customization overrides A specified in
Section 6.7.2, “Customization Overrides.”

Example: Class Customization: Global Element to Class

XML Schema Fragment:

<xs:complexType name="AComplexType">

<xs:sequence>

<xs:element name="A" type="xs:int"/>

<xs:element name="B" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="AnElement" type="AComplexType">

<xs:annotation><xs:appinfo>

<jaxb:class name="MyElement"/>

</xs:appinfo></xs:annotation>

</xs:element>

Customized code:
1/8/03 JAXB Specification – Final, V1.0 131

Customization
public interface AComplexType {

void setA(int value);

int getA();

void setB(String value);

String getB();

};

// following interface would be generated by default

// public interface AnElement extends AComplexType,

// javax.xml.jaxb.Element {};

// following interface is generated because of customization

public interface MyElement extends AComplexType,

javax.xml.jaxb.Element {};

public class ObjectFactory {

// AnElement createAnElement(); // Default code

AnElement createMyElement(); // Customized code

AComplexType createAComplexType();

... other factory methods ...

}

6.7.3.5 Local Element

A local element is a schema element that occurs within a complex type
definition. A local element is one of:

 ● local element reference (using the “ref” attribute) to a global element
declaration.

 ● local element declaration (“ref” attribute is not used).

A <class> declaration is allowed in the annotation element of a local
element. Section 6.12, “Annotation Restrictions” contains more information
regarding the annotation element for a local element reference. However, the
implClass attribute is not allowed.

A <class> customization on local element reference must result in an invalid
customization as specified in Section 6.1.5, “Invalid Customizations” since a
local element reference is never bound to a Java Element interface.

A <class> customization on local element declaration applies only when a
local element declaration is bound to a Java Element interface. Otherwise it
must result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.” If applicable, a local element must be bound as specified in
132 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
Section 5.7.1, “Bind to Java Element Interface” applying the customization
overrides as specified in Section 6.7.2, “Customization Overrides.”

Example: Class Customization: Local Element Declaration To Java Element
Interface

The following example is from Section 5.9.3.1, “Examples.”

XML Schema fragment:

<xs:complexType name="Base">

<xs:choice maxOccurs="unbounded">

<xs:element name="A" type="xs:string">

<xs:annotation><xs:appinfo>

<jaxb:class name="Bar"/>

</xs:appinfo></xs:annotation>

 </xs:element>

<xs:element name="B" type="xs:string"/>

<xs:element name="C" type="xs:int"/>

</xs:choice>

</xs:complexType>

Customized code:

import javax.xml.bind.Element;

interface Base {

// interface A extends Element {...} // Default code

interface Bar extend Element {...}// Customized code

interface B extends Element {...}

interface C extends Element {...}

/**

 * A general content list that can contain

 * element instances of Base.Bar,Base.B and Base.C.

 */

List getAOrBOrC();

}

6.8 <property> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a property. This section identifies
1/8/03 JAXB Specification – Final, V1.0 133

Customization
all XML schema elements that can be bound to a Java property and how to
customize that binding.

The scope of customization value can either be definition scope or component
scope depending upon which XML schema element the <property> binding
declaration is specified.

6.8.1 Usage

<property [name = "propertyName"]

[collectionType = "propertyCollectionType"]

[fixedAttributeAsConstantProperty= "true" | "false" | "1" | "0"

]

[generateIsSetMethod= "true" | "false" | "1" | "0"]

[enableFailFastCheck="true" | "false" | "1" | "0"]

[<baseType> ... </baseType>]

[<javadoc> ... </javadoc>]

</property>

<baseType>

<javaType> ... </javaType>

</baseType>

For readability, the <baseType> element is shown separately. However, it
can be used only as a local element within the <property> element.

The use of this declaration is subject to the constraints specified in
Section 6.8.1.2, “Usage Constraints.”

The customization values defined are:

 ● name if specified , defines the customization value propertyName;
it must be a legal Java identifier.

 ● collectionType if specified, defines the customization value
propertyCollectionType which is the collection type for the
property. propertyCollectionType if specified, must be either
“indexed" or any fully qualified class name that implements
java.util.List.

 ● fixedAttributeAsConstantProperty if specified , defines
the customization value
fixedAttributeAsConstantProperty. The value must be one
of "true", false", "1" or"0".
134 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
 ● generateIsSetMethod if specified, defines the customization
value of generateIsSetMethod.The value must be one of
"true", false", "1" or"0".

 ● enableFailFastCheck if specified, defines the customization
value enableFailFastCheck.The value must be one of "true",
false", "1" or"0".

 ● <javadoc> element, if specified customizes the Javadoc for the
property’s getter method. <javadoc> must be specified as described in
Section 6.11, “<javadoc> Declaration.”

6.8.1.1 baseType

The <baseType> element is intended to allow the customization of a base
type a property. Specifically, it allows the customization of a simple type at the
point of reference to the simple type. A future version of this specification my
define additional uses for <baseType>. The syntax for <baseType> is
designed to accommodate both the current and the intended future uses.

The <javaType>, if specified, defines the customization value javaType
and must be specified as specified in Section 6.9, “<javaType> Declaration.”
The customization value defined has component scope.

If <javaType> is specified with a XML schema element not listed above, it
must result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.”

6.8.1.2 Usage Constraints

The usage constraints on <property> are specified below. Any constraint
violation must result in an invalid customization as specified in Section 6.1.5,
“Invalid Customizations.” The usage constraints are:

1. The <baseType> is only allowed with the following XML schema ele-
ments from the Section 6.8.3, “Customizable Schema Elements”:

a. Local Element, Section 6.8.3.4, “Local Element.”

b. Local Attribute, Section 6.8.3.2, “Local Attribute.”

c. ComplexType with simpleContent, Section 6.8.3.8, “ComplexType.”

2. The fixedAttributeAsConstantProperty is only allowed
with a local attribute, Section 6.8.3.2, “Local Attribute" , that is fixed.
1/8/03 JAXB Specification – Final, V1.0 135

Customization
3. If a <property> declaration is associated with the <complexType>,
then a <property> customization cannot be specified on the following
schema elements that are scoped to <complexType>:

a. Local Element

b. Model group

c. Model Group Reference

The reason is that a <property> declaration associated with a
complex type binds the content model of the complex type to a general
content property. If a <property> declaration is associated with a
schema element listed above, it would create a conflicting
customization.

Design Note – A Local Attribute is excluded from the list above. The reason is
that a local attribute is not part of the content model of a complex type. This
allows a local attribute to be customized (using a <property> declaration)
independently from the customization of a complex type’s content model.

Example: Property Customization: simple type customization

<xs:complexType name="internationalPrice">

....

<xs:attribute name="currency" type="xs:string">

<xs:annotation> <xs:appinfo>

<jaxb:property>

<jaxb:baseType>

<jaxb:javaType name="java.math.BigDecimal"

parseMethod="javax.xml.bind.DatatypeConverter.parseInteger"

printMethod="javax.xml.bind.DatatypeConverter.printInteger"/>

</jaxb:baseType>

</jaxb:property>

</xs:appinfo></xs:annotation>

</xs:attribute>

</xs:complexType>

The code generated is:

public interface InternationalPrice {

// String getCurrency(); default

java.math.BigDecimal getCurrency() ; // customized

public void setCurrency(java.math.BigDecimal val); // customized

}

136 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
6.8.2 Customization Overrides

When binding a schema element’s Java representation to a property, the
following customization values override the defaults specified in Chapter 5. It is
specified in a common section here and referenced from Section 6.8.3,
“Customizable Schema Elements.”

 ● name: If propertyName is defined, then it is the name obtained by
mapping the name as specified in Section 6.5.2, “Customized Name
Mapping.”

 ● base type: The basetype is propertyBaseType if defined. The
propertyBaseType is defined by a XML schema element in Section 6.8.3,
“Customizable Schema Elements.”

 ● collection type: The collection type is propertyCollectionType
if specified; otherwise it is the propertyCollectionType
inherited from a scope that covers this schema element.

 ● javadoc: The Javadoc must be generated as specified in section
Section 6.11.3, “Javadoc Customization.” The Javadoc section
customized is the method section.

 ● If propertyBaseType is a Java primitive type and
propertyCollectionType is a class that implements
java.util.List, then the primitive type must be mapped to its wrapper
class.

The following does not apply if local attribute is being bound to a constant
property as specified in Section 6.8.3.2, “Local Attribute”:

 ● If generateIsSetMethod is "true" or "1", then additional
methods as specified in Section 4.5.4, “isSet Property Modifier” must be
generated.

 ● If enableFailFastCheck is "true" or "1" then the type
constraint checking when setting a property is enforced by the JAXB
implementation. Support for this feature is optional for a JAXB
implementation in this version of the specification.
1/8/03 JAXB Specification – Final, V1.0 137

Customization
6.8.3 Customizable Schema Elements

6.8.3.1 Global Attribute Declaration

A <property> declaration is allowed in the annotation element of the global
attribute declaration.

The binding declaration does not bind the global attribute declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local attributes (Section 6.8.3.2, “Local Attribute”)
that can reference this global attribute declaration. This is useful since it allows
the customization to be done once when a global attribute is defined instead of
at each local attribute that references the global attribute declaration.

6.8.3.2 Local Attribute

A local attribute is an attribute that occurs within an attribute group definition,
model group definition or a complex type. A local attribute can either be a

 ● local attribute reference (using the “ref” attribute) to a global attribute
declaration.

 ● local attribute declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of a local
attribute.Chapter 6, “Annotation Restrictions” contains more information
regarding the annotation element for a local attribute reference. The
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

If javaType is defined, then the propertyBaseType is defined to be Java
datatype specified in the "name" attribute of the javaType.

 ● If fixedAttributeAsConstantProperty is “true" or “1"
and the local attribute is a fixed, the local attribute must be bound to a
Java Constant property as specified in Section 5.8.1, “Bind to a Java
Constant property” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides.” The
generateIsSetMethod, choiceContentProperty and
enableFailFastCheck must be considered to have been set to
false.
138 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
 ● Otherwise, it is bound to a Java property as specified in Section 5.8,
“Attribute use” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides.”

Example: Customizing Java Constant Property

XML Schema fragment:

<xs:complexType name="USAddress">

<xs:attribute name="country" type="xs:NMTOKEN" fixed="US">

<xs:annotation><xs:appinfo>

<jaxb:property name="MY_COUNTRY"

fixedAttributeAsConstantProperty="true"/>

</xs:appinfo></xs:annotation>

</xs:attribute>

</xs:complexType>

Customized derived code:

public interface USAddress {

public static final String MY_COUNTRY = "US"; // Customized Code

}

Example 2: Customizing to other Java Property

XML Schema fragment:

<xs:complexType name="USAddress">

<xs:attribute name="country" type="xs:string">

<xs:annotation><xs:appinfo>

<jaxb:propertyname="MyCountry"/>

</xs:appinfo></xs:annotation>

</xs:attribute>

</xs:complexType>

Customized derived code:

public interface USAddress {

// public getString getCountry(); // Default Code

// public void setCountry(string value);// Default Code

public String getMyCountry(); // Customized Code

public void setMyCountry(String value); // Customized Code

}

1/8/03 JAXB Specification – Final, V1.0 139

Customization
Example 3: Generating IsSet Methods

XML Schema fragment:

<xs:attribute name="account" type = "xs:int">

<xs:annotation><xs:appinfo>

<jaxb:property generateIsSetMethod="true"/>

</xs:appinfo></xs:annotation>

</xs:attribute>

Customized code:

public int getAccount();

public void setAccount(int account);

public boolean isSetAccount(); // Customized code

public void unsetAccount(); // Customized code

6.8.3.3 Global Element Declaration

A <property> declaration is allowed in the annotation element of a global
element declaration. However, the usage is constrained as follows:

The binding declaration does not bind the global element declaration to a
property. Instead it defines customization values that have definition scope. The
definition scope covers all local elements (Section 6.8.3.4, “Local Element”)
that can reference this global element declaration. This is useful since it allows
the customization to be done once when a global element is defined instead of at
each local element that references the global element declaration.

6.8.3.4 Local Element

A local element is a schema element that occurs within a complex type
definition. A local element is one of:

 ● local element reference (using the “ref” attribute) to a global element
declaration.

 ● local element declaration (“ref” attribute is not used).

A <property> declaration is allowed in the annotation element of a local
element. Section 6.12, “Annotation Restrictions” contains more information
regarding the annotation element for a local element reference.
140 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope.

If javaType is defined, then the propertyBaseType is defined to be Java
datatype specified in the "name" attribute of the javaType.

The local element must be bound as specified in Section 5.9.7, “Content Model
Default Binding” applying customization overrides as specified in
Section 6.8.2, “Customization Overrides.”

See example in “Example 3: Property Customization: Model Group To Content
Property Set” in section Section 6.8.3.6, “Model Group.”

Relationship To Element Binding

The <property> declaration takes precedence over elementBinding,if
specified and must therefore be processed before element binding is attempted.

Example: Property Customization: Element Binding

The following schema fragment

<xs:complexType name="Bar">

<xs:choice>

<xs:sequence>

<xs:element name = "A" type = "xs:int">

<xs:annotation><xs:appinfo>

<jaxb:property name="foo"/> <!--customization-->

</xs:appinfo></xs:annotation>

</xs:element>

 </xs:sequence>

 <xs:sequence>

<xs:element name = "B" type = "xs:string"/>

<xs:element name = "A" type = "xs:int"/>

</xs:sequence>

</xs:choice>

</xs:complexType>
1/8/03 JAXB Specification – Final, V1.0 141

Customization
The generated code is:

interface Bar {

public int getA();

public void setA(int value); // accessor for element A

public String setB();

public void setB(String value);

public int getFoo(); // another accessor for element A

public void setFoo(int value);

}

Since <property> declaration taking precedence, this can lead to generation of
multiple accessor and mutator methods for local elements. If bindingStyle
is elementBinding, either mutator method may be used to set the content.
In the above example, the content for the second sequence may be set in one of
the following ways:

// one way to set content for second sequence

setB();

setA();

// another way to set content for second sequence

setB();

setFoo();

When elementBinding is specified, the multiple accessors/mutators can be
eliminated by associating the same <property> declaration with multiple
occurrences of local elements. For e.g.,

<xs:complexType name="bar">

<xs:choice>

<xs:sequence>

<xs:element name = "A" type = "xs:int">

<xs:annotation><xs:appinfo>

<jaxb:property name="foo"/>

</xs:appinfo></xs:annotation>

</xs:element>

 </xs:sequence>

 <xs:sequence>

 <xs:element name = "B" type = "xs:string"/>

<xs:element name = "A" type = "xs:int">

<xs:annotation><xs:appinfo>

<jaxb:property name="foo"/>

</xs:appinfo></xs:annotation>
142 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
</xs:element>

 </xs:sequence>

</xs:choice>

</xs:complexType>

6.8.3.5 Wildcard

A <property> declaration is allowed in the annotation element of the
wildcard schema component. The customization values must be defined as
specified in Section 6.8.1, “Usage” and have component scope.

The wildcard schema component must be bound to a property as specified in
Section 5.9.5, “Bind wildcard schema component” applying customization
overrides as specified in Section 6.8.2, “Customization Overrides.”

Example: The following schema example is from UDDI V2.0

<xs:complexType name="businessEntityExt">

<xs:sequence>

<xs:any namespace="##other"

processContents="strict"

minOccurs="1" maxOccurs="unbounded">

<xs:annotation><xs:appinfo>

<jaxb:property name="Extension"/>

</xs:appinfo></xs:annotation>

</xs:any>

....

</xs:sequence>

</xs:complexType>

Customized derived code:

public interface BusinessEntityExt {

...

// List getAny(); // Default Code

List getExtension(); // Customized Code

}

6.8.3.6 Model Group

A <property> binding declaration is allowed in the annotation element of
the compositor (i.e. <choice>, <sequence> or <all>). The
1/8/03 JAXB Specification – Final, V1.0 143

Customization
customization values must be defined as specified in Section 6.8.1, “Usage” and
have component scope.

The customized binding of a model group is determined by the following:

 ● modelGroupBinding attribute in <globalBindings>.

 ● choiceContentProperty attribute in <globalBindings>.

 ● any <class> customization associated with the model group in
addition to this <property> declaration.

The following table shows the binding based on all three of the above. The table
is non-normative and is intended for ease of understanding of the model group
customization. Normative text follows the table.

Table 6-1 Model group binding with customizations (Non-normative)

ID
globalBinding.
bindingStyle

globalBinding.
choiceContent
Property property class Binding

1 Element Binding true/false/not set
(value not used)

not set not set model group bound
to general content
property.

2 Element Binding true / false/ not
set
(value not used)

set not set model group bound
to a general content
property;

3 Element Binding true / false / not
set
(value not used)

not set set
(allows class
customization)

model group is
bound to a class;

4 Element Binding true / false / not
set
(value not used)

set
(allows
property
customiza
tion)

set
(allows
class
customization)

model group bound
to a content
interface;

5 Model Group
Binding

false or not set not set not set choice binds to
choice content
interface;
other model groups
bind to content
interface.
144 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
If elementBinding is specified then the binding algorithm specified in
section Section 5.9.7, “Content Model Default Binding” is in effect. The value
of the choiceContentProperty, if specified has no effect when this
binding style is in effect. A model group must be bound as follows:

1. Assume propertySet and propertyBaseType are both undefined to start
with.

2. If a <class> declaration is also associated with the model group, then the
model group must be bound to Java content interface as specified in
Section 6.7.3.3, “Model Group.” The propertyBaseType is defined to be
the Java content interface to which the model group is bound.

3. Otherwise if there is a <property> declaration, then the model is bound
to a general content property as specified in Section 5.9.6, “Bind a
repeating occurrence model group” applying customization overrides as
specified in Section 6.8.2, “Customization Overrides.” The propertySet is
defined to be the general content property to which the model group is
bound.

6 Model Group
Binding

true not set not set choice binds to
choice content
property;
other model groups
bind to content
interface.

7 Model Group
Binding

false / true / not
set
(value not used)

 not set set
(allows content
interface
customization)

model group binds
to content interface;

8 Model Group
Binding

false / true / not
set
(value not used)

set
(allows
property
customiza
tion)

not set choice binds to
choice content
property; other
model groups bind
to content interface;

9 Model Group
Binding

false / true / not
set
(value not used)

set
(allows
property
customiza
tion)

set
(allows content
interface
customization)

model group -
including choice -
bind to content
interface;

Table 6-1 Model group binding with customizations (Non-normative) (Continued)
1/8/03 JAXB Specification – Final, V1.0 145

Customization
4. If propertyBaseType is defined, and a <property> declaration is also
present, then the customization overrides specified in Section 6.8.2,
“Customization Overrides” must be applied by the model group’s parent
schema element to the property used to aggregate the Java content
interface.

5. If propertySet is defined, then the model group’s parent schema element
must aggregate the property set as specified in Section 5.3.1.2,
“Aggregation of Property Set.”

When bindingStyle=modelGroupBinding, the model group is binding
is in effect. The value of the choiceContentProperty, if specified does
impact the model group binding in this case. A model must be bound as follows
following the steps in order.

1. Assume propertySet and propertyBaseType are both undefined to start
with.

2. If <class> declaration is associated with the model group, then the
model group is bound to Java content interface as specified in
Section 6.7.3.3, “Model Group.” The propertyBaseType is defined to be
the Java content interface to which the model group is bound.

3. Otherwise if there is a <property> declaration and
choiceContentProperty is "true" and the model group is a
choice model group, then the choice model group is bound to a choice
content property as specified in Section 5.9.10.2, “Bind choice group to a
choice content property” applying customization overrides specified in
Section 6.8.2, “Customization Overrides.” The propertySet is defined to
be the set of properties generated for the choice content property.

4. Otherwise, if there is <property> declaration, then the model group is
bound to a class as specified in Section 5.9.10, “Bind Nested Model
Group.” The propertyBaseType is defined to be the Java content interface
to which the model group is bound.

5. If propertyBaseType is defined and a <property> declaration is also
present, then the customization overrides specified in Section 6.8.2,
“Customization Overrides” must be applied by the model group’s parent
schema element to the property used to aggregate the Java content
interface.

6. If propertySet is defined, then the model group’s parent schema element
146 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
must aggregate the property set as specified in Section 5.3.1.2,
“Aggregation of Property Set.”

Example1: Property Customization: Model Group To ChoiceContent
Property

XML Schema fragment

<xs:annotation><xs:appinfo>

<jaxb:globalBindings bindingStyle="modelGroupBinding"

choiceContentProperty="true"/>

</xs:appinfo></xs:annotation>

<xs:complexType name=”AType”>

<xs:choice>

<xs:element name="foo" type="xs:int"/>

<xs:element name="bar" type="xs:string"/>

</xs:choice>

</xs:complexType>

Customized derived code:

interface AType {

interface Foo extends javax.xml.bind.Element { ... }

interface Bar extends javax.xml.bind.Element { ... }

void setFooOrBar(java.lang.Object o); //customized code

Object getFooOrBar(); // customized code

}

The choiceContentProperty is required to bind the choice model group
to a choice content property. The bindingStyle attribute is also required
since choiceContentProperty is only applicable when the binding style
is modelGroupBinding.
1/8/03 JAXB Specification – Final, V1.0 147

Customization
Example 2: Property Customization: Model Group To General Content Property

XML Schema fragment:

<xs:complexType name="Base">

<xs:choice maxOccurs="unbounded">

<xs:annotation><xs:appinfo>

<jaxb:property name="items" />

</xs:appinfo></xs:annotation>

<xs:element name="A" type="xs:string"/>

<xs:element name="B" type="xs:string"/>

<xs:element name="C" type="xs:int"/>

</xs:choice>

</xs:complexType>

Customized derived code:

interface Base {

interface A extends javax.xml.bind.Element {...}

interface B extends javax.xml.bind.Element {...}

interface C extends javax.xml.bind.Element {...}

/**

 * A general content list that can contain

 * instances of Base.A, Base.B and Base.C.

 */

// List getAOrBOrC(); - default

List getItems();// Customized Code

}

148 JAXB Specification – Final, V1.0 1/8/03

<property> Declaration
Example 3: Property Customization: Model Group To Content Property Set

XML Schema fragment:

<xs:complexType name="USAddress"/>

<xs:complexType name="PurchaseOrderType">

<xs:sequence>

<xs:choice>

<xs:group ref="shipAndBill"/>

<xs:element name="singleUSAddress" type="USAddress">

<xs:annotation><xs:appinfo>

<jaxb:property name="address"/>

</xs:appinfo></xs:annotation>

</xs:element>

</xs:choice>

</xs:sequence>

</xs:complexType>

<xs:group name="shipAndBill">

<xs:sequence>

<xs:element name="shipTo" type="USAddress">

<xs:annotation><xs:appinfo>

<jaxb:property name="shipAddress"/>

</appinfo></annotation>

</xs:element>

<xs:element name="billTo" type="USAddress">

<xs:annotation><xs:appinfo>

<jaxb:property name="billAddress"/>

</xs:appinfo></xs:annotation>

</xs:element>

</xs:sequence>

</xs:group>

Customized derived code:

public interface PurchaseOrderType {

USAddress getShipAddress(); void setShipAddress(USAddress);

USAddress getBillAddress(); void setBillAddress(USAddress);

USAddress getAddress(); void setAddress(USAddress);

}

6.8.3.7 Model Group Reference

A model group reference is a reference to a model group using the “ref”
attribute. A property customization is allowed on the annotation property of the
1/8/03 JAXB Specification – Final, V1.0 149

Customization
model group reference. Section Chapter 6, “Annotation Restrictions” contains
more information regarding the annotation element for a model group reference.

The customization values must be defined as specified in Section 6.8.1, “Usage”
and have component scope. A model group reference is bound to a Java
property set or a list property as specified in Chapter 5, “Content Model Default
Binding” applying customization overrides as specified in Section 6.8.2,
“Customization Overrides.”

6.8.3.8 ComplexType

A <property> customization is allowed on the annotation element of a
complex type. The customization values must be defined as specified in
Section 6.8.1, “Usage” and have component scope. The result of this
customization depends upon the content type of the complex type.

 ● If the content type of the content model is simple content, then the
content model must be bound to a property as specified in
Section 5.3.2.1, “Simple Content Binding.” applying the customization
overrides as specified in Section 6.8.2, “Customization Overrides.” If
javaType is defined, then the propertyBaseType is defined to be
Java datatype specified in the "name" attribute of the javaType.

 ● For all other content types, the content model is bound to a property as
specified by one of the two binding algorithms:

❍ If the bindingStyle is elementBinding, then the content
model must be bound as specified in step 1. of Section 5.9.7, “Content
Model Default Binding” applying the customization overrides as
specified in Section 6.8.2, “Customization Overrides".

❍ If the bindingStyle is modelGroupBinding, then the content
model is bound as specified in step 1a. of Section 5.9.11, “Model
Group binding algorithm.” applying the customization overrides as
specified in Section 6.8.2, “Customization Overrides".

Design Note – The <property> declaration is not allowed on an annotation
element of attribute group definition. However, attributes within the attribute
group definition can themselves be customized as described in the “Local
Attribute” section above. Section 6.8.3.2, “Local Attribute.”
150 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
6.9 <javaType> Declaration

A <javaType> declaration provides a way to customize the binding of an
XML schema atomic datatype to a Java datatype, referred to as the target Java
datatype. The target Java datatype can be a Java built-in data type or an
application specific Java datatype. This declaration also provides two additional
methods: a parse method and a print method.

The parse method converts a lexical representation of the XML schema datatype
into a value of the target Java datatype. The parse method is invoked by a JAXB
provider’s implementation during unmarshalling.

The print method converts a value of the target Java datatype into its lexical
representation of the XML schema datatype. The print method is invoked by a
JAXB provider’s implementation during marshalling.

An application specific datatype used as a target Java datatype must provide an
implementation of both the parse method and print method.

6.9.1 Usage

<javaType name="javaType"

 [xmlType="xmlType"]

 [hasNsContext = “true” | “false”]

 [parseMethod="parseMethod"]

 [printMethod="printMethod"]>

The binding declaration can be used in one of the following:

 ● a <globalBindings> declaration.

 ● annotation element of one of the XML schema elements specified in
Section 6.9.6, “Customizable Schema Elements.”

 ● in a <property> declaration. See Section 6.8, “<property>
Declaration.” This can be used for customization at the point of reference
to a simple type.

When used in a <globalBindings> declaration, <javaType> defines
customization values with global scope. When used in an annotation element of
1/8/03 JAXB Specification – Final, V1.0 151

Customization
one of the schema elements specified in Section 6.9.6, “Customizable Schema
Elements.” the customization values have component scope.

6.9.1.1 name

The javaType, if specified, is the Java datatype to which xmlType is to be
bound. Therefore, javaType must be a legal Java type name, which may
include a package prefix. If the package prefix is not present, then the Java type
name must be one of the Java built-in primitive types [JLS - Java Language
Specification, Second Edition, Section 4.2, “Primitive Types and Values”].
(For example, “int”) or a Java class in the unnamed package.

6.9.1.2 xmlType

The xmlType, if specified, is the name of the XML Schema datatype to which
javaType is to bound. If specified, xmlType must be a XML atomic
datatype derived from restriction. The use of the xmlType is further
constrained as follows.

The purpose of the xmlType attribute is to allow the global customization of a
XML schema to Java datatype. Hence xmlType attribute is required when
<javaType> declaration’s parent is <globalBindings>. If absent, it must
result in an invalid customization as specified in Section 6.1.5, “Invalid
Customizations.” Otherwise, the xmlType attribute must not be present since
the XML datatype is determined from the XML schema element with which the
annotation element containing <javaType> declaration or the <baseType>
(containing the <javaType>) is associated. If present, it must result in an
invalid customization as specified in Section 6.1.5, “Invalid Customizations.”

Examples can be found in “Example: javaType Customization: Java Built-in
Type” and “Example: javaType Customization: User Specified Parse Method”

6.9.1.3 hasNsContext

The hasNsContext, if specified, must be one of "true", "false","1", or
"0" and defines the customization value hasNsContext. The default value
is false.

The purpose of hasNsContext attribute is to allow a namespace context to
be specified as a second parameter to a print or a parse method. The rationale for
passing the namespace context and its usage is explained in Section 6.9.1.4,
“Namespace Context.”
152 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
6.9.1.4 Namespace Context

A namespace context may need to be passed to a parse or a print method for two
reasons: QNames and XPath expressions.

A QName consists of a namespace prefix and a local part. The scope of a
namespace prefix is the document in which it is declared. However, there are
instances, where the name space prefix is of value to applications and needs to
be preserved. However, the namespace prefix cannot be interpreted without a
namespace context.

Element and attribute values can contain XPath expression which can also
contain QNames and/or XPath name functions. A namespace context is also
needed for such XPath expressions.

If hasNsContext is "true", then the JAXB implementation must pass a
namespace context to the namespace context parameter of the user specified
parse method or the print method. The namespace context passed must
implement the NamespaceContext interface as specified in the Javadoc for
java.xml.namespace.NamespaceContext.

Note – The javax.xml.namespace package contains NamespaceContext
interface and QName class. The
javax.xml.namespace.NamespaceContext interface is specified
by JAXB technology. Since a NamespaceContext represents a mapping
between a XML namespace URI and XML namespace prefixes, the interface
is of use to other XML enabling Java technologies. Hence the version of
javax.xml.namespace.NamespaceContext interface specified here
is an interim version until such time a common NamespaceContext
interface is defined in a JSR common to XML enabling technologies.

The javax.xml.namespace.QName class is specified by JAX-RPC
V1.0 specification.

6.9.1.5 parseMethod

The parse method if specified, must be applied during unmarshalling in order to
convert a string from the input document into a value of the target Java datatype.
The parse method must be invoked as follows:

 ● The parse method may be specified as new provided javaType is not
a Java primitive type such as ("int"). If javaType is a Java primitive
1/8/03 JAXB Specification – Final, V1.0 153

Customization
type, then this must result in an invalid customization as specified in
Section 6.1.5, “Invalid Customizations.” Otherwise, the binding
compiler must assume that the target type is a class that defines a
constructor as follows:

❍ String as the first parameter of the constructor.

❍ java.xml.namespace.NamespaceContext as a second
parameter, when hasNsContext is "true".

To apply the conversion to a string it must generate code that invokes
this constructor, passing it the input string and namespace context (if
hasNsContext is "true") as specified in Section 6.9.1.3,
“hasNsContext.”

 ● The parse method may be specified in the form
ClassName.methodName, where the ClassName is a fully qualified class
name that includes the package name. A compiler must assume that the
class ClassName exists and that it defines a static method named
methodName that takes:

❍ String as the first argument.

❍ java.xml.namespace.NamespaceContext as a second
parameter, when hasNsContext is "true".

To apply the conversion to a string it must generate code that invokes
this method, passing it the input string and namespace context (if
hasNsContext is "true") as specified in Section 6.9.1.3,
“hasNsContext.”

 ● The parse method may be specified in the form methodName provided
javaType is not a Java primitive type (such as "int"). If javaType
is Java primitive type, then this must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations.” Otherwise, the
binding compiler must assume that methodName is a method in the class
javaType. The binding compiler must therefore prefix the
javaType to the methodName and process javaType.methodName
as specified in above.

The string passed to parse method can be any lexical representation for
xmlType as specified in [XSD PART2].
154 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
6.9.1.6 printMethod

The print method if specified, must be applied during marshalling in order to
convert a value of the target type into a lexical representation:

 ● The print method is specified in the form methodName provided
javaType is not a Java primitive type (such as "int"). If javaType
is Java primitive type, then this must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations.” Otherwise, the
compiler must assume that the target type is a class or an interface that
defines a zero-argument instance method named methodName that
returns a String. To apply the conversion it must generate code to
invoke this method upon an instance of the target Java datatype.

 ● If the print method is specified in the form ClassName.methodName then
the compiler must assume that the class ClassName exists and that it
defines a static method named methodName that returns a string that
takes the following:

❍ the first parameter is the target Java datatype.

❍ java.xml.namespace.NamespaceContext as a second
parameter, when hasNsContext is "true".

To apply the conversion to a string it must generate code that invokes
this method, passing it a value of the target Java datatype and
namespace context (if hasNsContext is "true") as specified in
Section 6.9.1.3, “hasNsContext.”

The lexical representation to which the value of the target type is converted can
be any lexical representation for xmlType as specified in [XSD PART2].

6.9.2 DatatypeConverter

Writing customized parse and print methods can be difficult for a Java
programmer. This requires a programmer to understand the lexical
representations of XML schema datatypes. To make it easier, an interface,
DatatypeConverterInterface, and a class DatatypeConverter
are defined to expose the parse and print methods of a JAXB implementation.
These can be invoked by user defined parse and print methods. This shifts the
burden of dealing with lexical spaces back to the JAXB implementation.

The DatatypeConverterInterface defines parse and print methods for
XML schema datatypes. There is one parse and print method for each of XML
1/8/03 JAXB Specification – Final, V1.0 155

Customization
schema datatype specified in Table 5-1, “Java Mapping for XML Schema Built-
in Types,” on page 58. The interface is fully specified by the Javadoc specified
in java.xml.bind.DatatypeConverterInterface.

The DatatypeConverter class defines a static parse and print method
corresponding to each parse and print method respectively in the
DatatypeConverterInterface interface. The property
javax.xml.bind.DatatypeConverter can be used to select the name
of a class that provides an implementation of the parse and print methods. The
name specified in the property must be a fully qualified class name and must
implement the interface DatatypeConverterInterface. The class is
fully specified by the Javadoc specified in
java.xml.bind.DatatypeConverter.

6.9.2.1 Usage

The following example demonstrates the use of the DatatypeConverter
class for writing a customized parse and print method.

Example: javaType Customization: User Specified Parse Method

This example shows the binding of XML schema type "xs:date" is bound to
a Java datatype long using user specified print and parse methods.

<jaxb:globalBindings>

<jaxb:javaType name="long" xmlType="xs:date"

 parseMethod="pkg.MyDatatypeConverter.myParseDate"

printMethod="pkg.MyDatatypeConverter.myPrintDate"/>

</jaxb:javaType>

</jaxb:globalBindings>

package pkg;

import javax.xml.bind.DatatypeConverter;

public class MyDatatypeConverter {

public static long myParseDate(String s) {

java.util.Calendar d = DatatypeConverter.parse(s);

long result= cvtCalendarToLong(d) ; // user defined method

return result;

}

public static String myPrintDate(long l) {

 java.util.Calendar d = cvtLongToCalendar(l); //user defined

return DatatypeConverter.print(d);
156 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
}

}

The implementation of the print methods (parseDate and printDate) are
provided by the user.

The customization is applied during the processing of XML instance document.
During unmarshalling, the JAXB implementation invokes myParseDate. If
myParseDate method throws a ParseException, then the JAXB
implementation code catches the exception, and generate a
parseConversionEvent.

6.9.2.2 Lexical And Value Space

[XSD PART 2] specifies both a value space and a lexical space for an schema
datatypes. There can be more than one lexical representation for a given value.

Examples of multiple lexical representations for a single value are:

 ● For boolean, the value true has two lexical representations "true"
and "1".

 ● For integer, the value 1 has two lexical representations "1.0" and
"1".

XSD PART 2 also specifies a canonical representation for all XML schema
atomic datatypes.

The requirements on the parse and print methods are as follows:

 ● A JAXB implementation of a parse method in
DatatypeConverterInterface must be capable of a processing
all lexical representations for a value as specified by [XSD PART 2].
This ensures that an instance document containing a value in any lexical
representation specified by [XSD PART 2] can be marshalled.

 ● A JAXB implementation of a print method in
DatatypeConverterInterface must convert a value into any
lexical representation of the XML schema datatype to which the parse
method applies, as specified by [XSD PART 2] and which is valid with
respect to the application’s schema.
1/8/03 JAXB Specification – Final, V1.0 157

Customization
Design Note – The print methods that are exposed may not be portable. The
only requirement on a print method is that it must output a lexical representation
that is valid with respect to the schema. So two vendors can choose to output
different lexical representations. However, there is value in exposing them despite
being non portable. Without the print method, a user would have to be
knowledgeable about how to output a lexical representation for a given schema
datatype, which is not desirable.

6.9.3 Built-in Conversions

As a convenience to the user, this section specifies some built-in conversions. A
built-in conversion is one where the parse and the print method may be omitted
by a user. The built-in conversions leverage the narrowing and widening
conversions defined in [JLS - Java Language Specification, Second Edition],
Section 5.1.2, “Widening Primitive Conversion” and Section 5.1.3, “Narrowing
Primitive Conversions.” For example:

<xs:simpleType name="foo" type="xs:long">

<xs:annotation><xs:appinfo>

<jjaxb:avaType name="int"/>

</xs:appinfo></xs:annotation>

</xs:simpleType>

If the parse method is omitted, then a JAXB implementation must perform the
following steps:

a. if javaType is not one of the primitive types or its corresponding
wrapper class as shown in Table 6-2, “Built-In Conversions,” on
page 159, then it must result in an invalid customization as specified
in Section 6.1.5, “Invalid Customizations.” Skip steps b through d.

b. bind xmlType to its default Java datatype using the parse method for
the xmlType defined in DatatypeConverter. If javaType is
the same as the default Java datatype or its wrapper class, then skip
steps b and c.

c. If default Java datatype in step a. is not found in Column 1, “Default
Javatype” of Table 6-2, “Built-In Conversions,” on page 159, then this
must result in an invalid binding customization as specified in
Section 6.1.5, “Invalid Customizations. Skip step d.

d. Convert the default Java datatype from step a. to value of type
158 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
javaType using a method in the Java package wrapper class for
javaType as shown in Table 6-2, “Built-In Conversions,” on
page 159.

The following is split into two tables for formatting purposes but is logically a
single table.

Table 6-2 Built-In Conversions

Default
JavaType

byte short int long

byte N/A Byte.
shortValue()

Byte.
intValue()

Byte.
longValue()

short Short.
byteValue()

N/A Short.
intValue()

Short.
longValue()

int Integer.
byteValue()

Integer.
shortValue()

N/A Integer.
longValue()

long Long.
byteValue()

Long.
shortValue()

Long.
intValue()

N/A

double Double.
byteValue()

Double.
shortValue()

Double.
intValue()

Double.
longValue()

float Float.
byteValue()

Float.
shortValue()

Float.
intValue()

Float.
doubleValue()

Default
JavaType

double float

byte Byte.
doubleValue()

Byte.
floatValue()

short Short.
doubleValue()

Short.
floatValue()

int Integer.
doubleValue()

Integer.
floatValue()
1/8/03 JAXB Specification – Final, V1.0 159

Customization
Example: javaType Customization: Java Built-in Type

This example illustrates how to bind a XML schema type to a Java type
different from the default one.

XML Schema fragment:

<xs:element name="partNumber" type="xs:int"/>

Customization:

<jaxb:globalBindings>

....

<jaxb:javaTypename="long"

xmlType="xs:int"/>

</jaxb:globalBindings>

Since a Java built-in is specified, a parse or a print method need not be
specified. A JAXB implementation uses the parse and print methods defined in
DatatypeConverter class for converting between lexical representations
and values. A JAXB implementation unmarshalls an input value using the
following methods:

long i = DataTypeConverter.parseLong(string);

int j = (new java.lang.Long(i)).intValue();

6.9.4 Events

The parse method parseMethod may fail, since it is only defined on those
strings that are valid representations of target Java datatype values and it can be
applied to arbitrary strings. A parse method must indicate failure by throwing an
exception of whatever type is appropriate, though it should never throw a
TypeConstraintException. A JAXB implementation must ensure that

long Long.
doubleValue()

Long.
floatValue()

double N/A Double.
floatValue()

float Float.
doubleValue()

N/A
160 JAXB Specification – Final, V1.0 1/8/03

<javaType> Declaration
an exception thrown by a parse method is caught and a
parseConversionEvent event is generated.

The print method printMethod usually does not fail. If it does, then the
JAXB implementation must ensure that the exception thrown by a print method
is caught and a printConversionEvent is generated.

6.9.5 Customization Overrides

The <javaType> overrides the default binding of xmlType to the Java
datatype specified in Table 5-1, “Java Mapping for XML Schema Built-in
Types,” on page 58.

6.9.6 Customizable Schema Elements

6.9.6.1 Simple Type Definition

A <javaType> binding declaration is allowed in the annotation element of the
of a simple type definition. The javaType overrides the default binding of
xmlType to the Java datatype specified in Table 5-1, “Java Mapping for XML
Schema Built-in Types,” on page 58. The customization values defined have
definition scope and thus covers all references to this simple type definition.

6.9.6.2 GlobalBindings

A <javaType> binding declaration is allowed as part of
<globalBindings>. The javaType overrides the default binding of
xmlType to the Java datatype specified in Table 5-1, “Java Mapping for XML
Schema Built-in Types,” on page 58. The customization values defined have
global scope.

6.9.6.3 <baseType> declaration

A <javaType> binding declaration is allowed as part of <baseType> in
the <property> binding declaration. The javaType overrides the default
binding of xmlType to the Java datatype specified in Table 5-1, “Java
Mapping for XML Schema Built-in Types,” on page 58. Additional semantics
are specified in Section 6.8.1.1, “baseType” also apply.
1/8/03 JAXB Specification – Final, V1.0 161

Customization
6.10 <typesafeEnum> Declaration

This binding declaration allows the customization of a binding of an XML
schema element to its Java representation as a typesafe enumeration class
[BLOCH]. Only simple type definitions with enumeration facets can be
customized using this binding declaration.

6.10.1 Usage

<typesafeEnumClass[name = "enumClassName"]

[<typesafeEnumMember> ... </typesafeEnumMember>]*

[<javadoc> enumClassJavadoc </javadoc>]

</typesafeEnumClass>

<typesafeEnumMember name = "enumMemberName">

[value = "enumMemberValue"]

[<javadoc> enumMemberJavadoc </javadoc>]

</typesafeEnumMember>

There are two binding declarations <typesafeEnumClass> and
<typesafeEnumMember>. The two binding declarations allow the
enumeration members of an enumeration class and enumeration class itself to be
customized independently.

The <typesafeEnumClass> declaration defines the following
customization values:

 ● name defines a customization value enumClassName, if specified.
enumClassName must be a legal Java Identifier; it must not have a
package prefix.

For an anonymous simple type, the name attribute must be present. If
absent, it must result in an invalid customization as specified in
Section 6.1.5, “Invalid Customizations.”

 ● <javadoc> element, if specified customizes the Javadoc for the
enumeration class. <javadoc> defines the customization value
enumClassjavadoc if specified as described in Section 6.11,
“<javadoc> Declaration.”

 ● Zero or more <typesafeEnumMember> declarations. The
customization values are as defined as specified by the
<typesafeEnumMember> declaration.
162 JAXB Specification – Final, V1.0 1/8/03

<typesafeEnum> Declaration
The <typesafeEnumMember> declaration defines the following
customization values:

 ● name must always be specified and defines a customization value
enumMemberName. enumMemberName must be a legal Java
identifier.

 ● value defines a customization value enumMemberValue, if
specified. enumMemberValue must be the enumeration value
specified in the source schema. The usage of value is further
constrained as specified in Section 6.10.2, “value Attribute.”

 ● <javadoc> if specified, customizes the Javadoc for the enumeration
constant. <javadoc> defines a customization value
enumMemberjavadoc if specified as described in Section 6.11,
“<javadoc> Declaration.”

For inline annotation, the <typesafeEnumClass> must be specified in the
annotation element of the <simpleType> element. The
<typesafeEnumMember> must be specified in the annotation element of the
enumeration member. This allows the enumeration member to be customized
independently from the enumeration class.

6.10.2 value Attribute

The purpose of the value attribute is to support customization of an
enumeration value using an external binding syntax. When the
<typesafeEnumMember> is used in an inline annotation, the enumeration
value being customized can be identified by the annotation element with which
it is associated. However, when an external binding declaration is used, while
possible, it is not desirable to use XPath to identify an enumeration value.

So when customizing using external binding syntax, the value attribute must
be provided. This serves as a key to identify the enumeration value to which the
<typesafeEnumMember> applies. It’s use is therefore further constrained
as follows:

 ● When <typesafeEnumMember> is specified in the annotation
element of the enumeration member or when XPath refers directly to a
single enumeration facet, then the value attribute must be absent. If
present, it must result in must result in an invalid customization as
specified in Section 6.1.5, “Invalid Customizations.”
1/8/03 JAXB Specification – Final, V1.0 163

Customization
 ● When <typesafeEnumMember> is scoped to the
typesafeEnumClass declaration, the value attribute must be
present. If absent, it must result in must result in an invalid customization
as specified in Section 6.1.5, “Invalid Customizations.” The
enumMemberValue must be used to identify the enumeration member to
which the <typesafeEnumMember> applies.

An example of external binding syntax can be found in “Example 2:
typesafeEnum Customization: External Binding Declaration.”

6.10.3 Inline Annotations

There are two ways to customize an enumeration class:

 ● split inline annotation

 ● combined inline annotation

In split inline annotation, the enumeration value and the enumeration class are
customized separately i.e. the <typesafeEnumMember> is used
independently not as a child element of <typesafeEnumClass>. An
example of this is shown in “Example 1: typesafeEnum Customization: Split
Inline Annotation.”

In combined inline annotation, the enumeration value and the enumeration class
are customized together i.e. the <typesafeEnumMember> is used as a child
element of <typesafeEnumClass>.This is similar to the customization
used in external binding declaration. In this case the value attribute must be
present in the <typesafeEnumMember> for reasons noted in
Section 6.10.2, “value Attribute.” An example of this customization is shown in
“Example 3: typesafeEnum Customization: Combined Inline Annotation.”

6.10.4 Customization Overrides

When binding a schema element’s Java representation to a typesafe
enumeration class, the following customization values override the defaults
specified in Chapter 5. It is specified in a common section here and referenced
from Section 6.8.3, “Customizable Schema Elements.”

 ● name: If enumClassName is defined, then the name obtained by mapping
enumClassName as specified in Section 6.5.2, “Customized Name
Mapping.”
164 JAXB Specification – Final, V1.0 1/8/03

<typesafeEnum> Declaration
 ● package name: The name obtained by inheriting packgeName from a
scope that covers this schema element and mapping packageName as
specified in Section 6.5.2, “Customized Name Mapping.”

 ● enumclass javadoc: enumClassJavaDoc if defined, customizes the
class/interface section (Section 6.11.1, “Javadoc
Sections”) for the enumeration class, as specified in Section 6.11.3,
“Javadoc Customization.”

 ● enum constant set: Each member of the set is computed as follows:

❍ name: If enumMemberName is defined, the name obtained by
mapping enumMemberName as specified in Section 6.5.2,
“Customized Name Mapping.”

❍ javadoc: enumMemberJavaDoc if defined, customizes the field
section (Section 6.11.1, “Javadoc Sections”) for the
enumeration class, as specified in Section 6.11.3, “Javadoc
Customization.”

 ● enumvalue constant set: Each member of the set is computed as
follows:

❍ name: If enumMemberValueName is defined, the name obtained by
mapping enumMemberValueName as specified in Section 6.11.3,
“Javadoc Customization” and prefixing the obtained name with an
underscore (‘_’).

6.10.5 Customizable Schema Elements

Any XML Schema simple type which has an enumeration facet can be
customized.
1/8/03 JAXB Specification – Final, V1.0 165

Customization
Example 1: typesafeEnum Customization: Split Inline Annotation

XML Schema fragment:

<xs:simpleType name="USState">

<xs:annotation><xs:appinfo>

<jaxb:typesafeEnumClass name="USStateAbbr"/>

</xs:appinfo></xs:annotation>

<xs:restrictionbase="xs:NCName">

<xs:enumeration value="AK">

<xs:annotation><xs:appinfo>

<jaxb:typesafeEnumMember name="STATE_AK"/>

</xs:appinfo></xs:annotation>

</xs:enumeration>

<xs:enumeration value="AL">

<xs:annotation><xs:appinfo>

<jaxb:typesafeEnumMember name="STATE_AL"/>

</xs:appinfo></xs:annotation>

</xs:enumeration>

</xs:restriction>

</xs:simpleType>

Customized derived code:

public class USStateAbbr {

protected USStateAbbr(String value) { ... }

public static final String _STATE_AL="AL";

public static final USStateAbbr STATE_AL=

new USStateAbbr(_STATE_AL);

public static final String _STATE_AK="AK";

public static final USStateAbbr STATE_AK=

new USStateAbbr(_STATE_AK);

public String getValue();

public static USStateAbbr fromValue(String value) {...}

public static USStateAbbr fromString(String value){ ... }

public String toString() { ... }

public boolean equals(Object "obj) { ... }

public int hashCode() { ... }

}

166 JAXB Specification – Final, V1.0 1/8/03

<javadoc> Declaration
Example 2: typesafeEnum Customization: External Binding Declaration

The following example shows how to customize the above XML schema
fragment using an external binding syntax.

<jaxb:typesafeEnumClass name="USStateAbbr">

<jaxb:typesafeEnumMember name="STATE_AK" value="AK">

<jaxb:typesafeEnumMember name="STATE_AL" value="AL"/>

</jaxb:typesafeEnumClass>

The attribute value must be specified for <typesafeEnumMember>. This
identifies the enumeration member to which <typesafeEnumMember>
applies.

Example 3: typesafeEnum Customization: Combined Inline Annotation

The following example shows how to customize the above XML schema
fragment using inline annotation which does not split the external binding
syntax.

<xs:simpleType name="USState">

<xs:annotation><xs:appinfo>

<jaxb:typesafeEnumClass name="USStateAbbr">

<jaxb:typesafeEnumMember name="STATE_AK" value="AK"/>

<jaxb:typesafeEnumMember name="STATE_AL" value="AL"/>

</jaxb:typesafeEnumClass>

</xs:appinfo></xs:annotation>

<xs:restriction base="xs:NCName">

<xs:enumeration value="AK"/>

<xs:enumeration value="AL"/>

</xs:restriction>

</xs:simpleType>

The attribute value must be specified for typesafeEnumMember. This
identifies the enumeration member to which the binding declaration applies.

6.11 <javadoc> Declaration

The <javadoc> declaration allows the customization of a javadoc that is
generated when an XML schema element is bound to its Java representation.
1/8/03 JAXB Specification – Final, V1.0 167

Customization
This binding declaration is not a global XML element. Hence it can only be
used as a local element within the content model of another binding declaration.
The binding declaration in which it is used determines the section of the
Javadoc that is customized.

6.11.1 Javadoc Sections

The terminology used for the javadoc sections is derived from “Requirements
for Writing Java API Specifications” which can be found online at //
java.sun.com/j2se/javadoc/writingapispecs/index.html.

The following sections are defined for the purposes for customization:

 ● package section (corresponds to package specification)

 ● class/interface section (corresponds to class/interface specification)

 ● method section (corresponds to method specification)

 ● field section (corresponds to field specification)

6.11.2 Usage

Note that the text content of a <javadoc> element must use CDATA or <
to escape embedded HTML tags.

<javadoc>

Contents in Javadoc<\b> format.

</javadoc>

or

<javadoc>

<<![CDATA[

Contents in Javadoc<\b> format

]]>

</javadoc>

6.11.3 Javadoc Customization

The Javadoc must be generated from the <javadoc> element if specified. The
Javadoc section depends upon where <javadoc> element is used. JAXB
168 JAXB Specification – Final, V1.0 1/8/03

Annotation Restrictions
providers may generate additional provider specific Javadoc information (for
example, contents of the <xs:documentation> element).

6.12 Annotation Restrictions

[XSD PART 1] allows an annotation element to be specified for most elements
but is ambiguous in some cases. The ambiguity and the way they are addressed
are described here.

The source of ambiguity is related to the specification of an annotation element
for a reference to a schema element using the “ref” attribute. This arises in three
cases:

 ● A local attribute references a global attribute declaration (using the “ref”
attribute).

 ● A local element in a particle references a global element declaration
using the “ref” attribute.

 ● A model group in a particle references a model group definition using the
“ref” attribute.

For example in the following schema fragment (for brevity, the declaration of
the global element “Name” has been omitted).

<xs:element name = "Customer">

<xs:complexType>

<xs:element ref = "Name"/>

<xs:element ref = "Address" />

</xs:complexType>

</xs:element>

XML Schema spec is ambiguous on whether an annotation element can be
specified at the reference to the “Name” element.

The restrictions on annotation elements has been submitted as an issue to the
W3C Schema Working Group along with JAXB technology requirements
(which is that annotations should be allowed anywhere). Pending a resolution,
the semantics of annotation elements where the XML spec is unclear are
assumed as specified as follows.
1/8/03 JAXB Specification – Final, V1.0 169

Customization
This specification assumes that an annotation element can be specified in each
of the three cases outlined above. Furthermore, an annotation element is
assumed to be associated with the abstract schema component as follows:

 ● The annotation element on an element ref is associated with {Attribute
Use}

 ● The annotation element on a model group ref or an element reference is
associated with the {particle}.
170 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 7
COMP A TI BI L IT Y

This section describes the conformance requirements for an implementor of this
specification. A JAXB implementation must implement these constraints,
without exception, to provide a predictable environment for application
development and deployment.

This section explicitly lists the high level requirements of this specification.
Additional requirements can be found in other sections of this specification and
the associated javadoc for package javax.xml.bind and its subpackages. If
any requirements listed here conflict with requirements listed elsewhere in the
specification, the requirements here take precedence and replace the conflicting
requirements.

For the purpose of portability, all operating modes of a JAXB implementation
must support all the XML Schema-to-Java bindings described in this
specification.Specifically, other operating modes must not implement a default
binding for XML Schema-to-Java bindings as an alternative to those specified
in Section 5, “Binding XML Schema to Java Representations” nor alternative
interpretations for the standard customizations described in Section 6,
“Customization.”

The default operating mode for a JAXB implementation MUST report an error
to users when an XML Schema contains constructs for which the Java Binding
has not been specified by this specification as summarized in Appendix
E.2.1,“Concepts detected at binding compilation time.”

The default operating mode for a JAXB implementation MUST report an error
when extension binding declaration is encountered. All operating modes for a
JAXB implementation MUST report an error if an invalid binding
customization is detected as defined in Section 6. An extension binding
declaration must be introduced in the following cases:

1. to alter a binding customization that is allowed to be associated with a
JAXB Specification – Final, V1.0 171

Compatibility
schema element as specified in Section 6, “Customization.”

2. to associate a binding customization with a schema element where it is
disallowed as specified in Section 6, “Customization.”

The default operating mode for a JAXB binding compiler MUST report an error
when processing a schema that does not comply with the 2001 W3C
Recommendation for XML Schema, [XSD Part 1] and [XSD Part 2].

A JAXB implementation MAY support non-default operating modes that are
capable of generating bindings for XML Schema constructs not required by this
specification.

A JAXB implementation exposes the JAXP 1.1 or higher APIs.

A JAXB compiler MAY support non-default operating modes for binding
schema languages other than XML Schema.

A JAXB implementation MUST be able to generate Java classes that are able to
run on at least one J2SE Java Runtime Environment.
172 JAXB Specification – Final, V1.0 1/8/03

1/8/03
C H A P T E R 8
RE F ER E NC E S

[XSD Part 0] XML Schema Part 0: Primer,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-0/
(schema fragments borrowed from this widely used source)

[XSD Part 1] XML Schema Part 1: Structures,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-1/

[XSD Part 2] XML Schema Part 2: Datatypes,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-2/

[XMl-Infoset] XML Information Set, John Cowan and Richard Tobin, eds.,
W3C, 16 March 2001. Available at http://www.w3.org/TR/2001/WD-
xml-infoset-20010316/

[XML 1.0] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation 6 October 2000.
Available at http://www.w3.org/TR/2000/REC-xml-20001006.

[Namespaces in XML] Namespaces in XML
W3C Recommendation 14 January 1999.
Available at http://www.w3.org/TR/1999/REC-xml-names-
19990114

[XPath], XML Path Language, James Clark and Steve DeRose, eds., W3C, 16
November 1999. Available at http://www.w3.org/TR/1999/REC-
xpath-19991116

[XSLT 1.0] XSL Transformations (XSLT), Version 1.0, James Clark, W3C
Recommendation 16 November 1999. Available at http://www.w3.org/TR/
1999/REC-xslt-19991116.
JAXB Specification – Final, V1.0 173

References
[BEANS] JavaBeans(TM), Version 1.01, July 24, 1997. Available at http://
java.sun.com/beans.

[XSD Primer] XML Schema Part 0: Primer,
W3C Recommendation 2 May 2001
Available at http://www.w3.org/TR/xmlschema-0/

[BLOCH] Joshua Bloch, Effective Java, Chapter 3, Typesafe Enums
http://developer.java.sun.com/developer/Books/
shiftintojavapage1.html#replaceenum

[RFC2396] Uniform Resource Identifiers (URI): Generic Syntax, http://
www.ietf.org/rfc/rfc2396.txt.

[JAX-RPC] Javaª API for XML-based RPC JAX-RPC 1.0, http://
java.sun.com/xml/downloads/jaxrpc.html.

[JLS] The Java Language Specification, 2nd Edition, Gosling, Joy,
Steele.Bracha.
Available at .http://java.sun.com/docs/books/jls.

[NIST] NIST XML Schema Test Suite, http://
xw2k.sdct.itl.nist.gov/xml/page4.html.
174 JAXB Specification – Final, V1.0 1/8/03

1/8/03

A P P E N D I X A
PA CK AG E J A V AX.X M L.BI ND

<Available as a separate document.>
JAXB Specification – Final, V1.0 175

Package javax.xml.bind
176 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X B
NO RM A T IV E BIN D IN G SC HE MA

SY N T AX

<?xml version = "1.0" encoding = "UTF-8"?>

<xs:schematargetNamespace = "http://java.sun.com/xml/ns/jaxb"

xmlns:jaxb = "http://java.sun.com/xml/ns/jaxb"

xmlns:xs = "http://www.w3.org/2001/XMLSchema"

elementFormDefault = "qualified"

attributeFormDefault = "unqualified">

<xs:annotation><xs:documentation>

Schema for binding schema. JAXB Version 1.0

</xs:documentation></xs:annotation>

<xs:group name = "declaration">

<xs:annotation>

<xs:documentation>

 Model group that represents a binding declaration.

 Each new binding declaration added to the jaxb

namespace that is not restricted to globalBindings

should be added as a child element to this model group.

</xs:documentation>

<xs:documentation>

 Allow for extension binding declarations.

</xs:documentation>

</xs:annotation>

<!-- each new binding declaration, not restricted to

 globalBindings, should be added here -->

<xs:choice>

<xs:element ref = "jaxb:globalBindings"/>

<xs:element ref = "jaxb:schemaBindings"/>

<xs:element ref = "jaxb:class"/>

<xs:element ref = "jaxb:property"/>

<xs:element ref = "jaxb:typesafeEnumClass"/>

<xs:element ref = "jaxb:javaType"/>
JAXB Specification – Final, V1.0 177

Normative Binding Schema Syntax
<xs:element ref = "jaxb:typesafeEnumMember"/>

<xs:any namespace = "##other" processContents = "lax"/>

</xs:choice>

</xs:group>

<xs:attribute name = "version" type="xs:token" >

<xs:annotation><xs:documentation>

 Used to specify the version of the binding schema on the

schema element for inline annotations or jaxb:bindings

for external binding.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attributeGroup name = "propertyAttributes">

<xs:annotation>

<xs:documentation>

Attributes used for property customization. The

attribute group can be referenced either from the

globalBindings declaration or from the property

declaration.

The following defaults are defined by the JAXB

specification in global scope only. Thus they apply

when the propertyAttributes group is referenced

from the globalBindings declaration but not when

referenced from the property declaration.

collectionType class that implements

java.util.List. The class is

JAXB implementation dependent.

fixedAttributeAsConstantProperty false

enableFailFastCheck false

generateIsSetMethod false

</xs:documentation>

</xs:annotation>

<xs:attribute name = "collectionType"

type="jaxb:referenceCollectionType"/>

<xs:attribute name = "fixedAttributeAsConstantProperty"

type = "xs:boolean"/>

<xs:attribute name = "enableFailFastCheck"

type = "xs:boolean"/>

<xs:attribute name = "generateIsSetMethod"

type = "xs:boolean"/>

</xs:attributeGroup>

<xs:attributeGroup name = "XMLNameToJavaIdMappingDefaults">

<xs:annotation>

<xs:documentation>

Customize XMlNames to Java id mapping
178 JAXB Specification – Final, V1.0 1/8/03

</xs:documentation>

</xs:annotation>

<xs:attribute name = "underscoreBinding"

default = "asWordSeparator"

type = "jaxb:underscoreBindingType"/>

<xs:attribute name = "typesafeEnumMemberName"

default = "generateError"

type = "jaxb:typesafeEnumMemeberNameType"/>

</xs:attributeGroup>

<xs:attributeGroup name = "typesafeEnumClassDefaults">

<xs:attribute name = "typesafeEnumBase"

default = "xs:NCName"

type = "jaxb:typesafeEnumBaseType"/>

</xs:attributeGroup>

<xs:element name = "globalBindings">

<xs:annotation>

<xs:documentation>

Customization values defined in global scope.

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence minOccurs = "0">

<xs:element ref = "jaxb:javaType"

minOccurs = "0" maxOccurs = "unbounded"/>

<xs:any namespace = "##other" processContents = "lax">

 <xs:annotation> <xs:documentation>

 allows extension binding declarations to be

specified.

</xs:documentation></xs:annotation>

</xs:any>

</xs:sequence>

<xs:attributeGroup ref = "jaxb:XMLNameToJavaIdMappingDefaults"/>

<xs:attributeGroup ref = "jaxb:typesafeEnumClassDefaults"/>

<xs:attributeGroup ref = "jaxb:propertyAttributes"/>

<xs:attribute name = "enableJavaNamingConventions"

default = "true"

type = "xs:boolean"/>

<xs:attribute name = "bindingStyle"

default = "elementBinding"

type = "jaxb:bindingStyleType"/>

 <xs:attribute name = "choiceContentProperty"

default = "false"

type = "xs:boolean"/>

</xs:complexType>
1/8/03 JAXB Specification – Final, V1.0 179

Normative Binding Schema Syntax
</xs:element>

<xs:element name = "schemaBindings">

<xs:annotation>

<xs:documentation>

Customization values with schema scope

</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:all>

<xs:element name = "package" type = "jaxb:packageType"

minOccurs = "0"/>

<xs:element name = "nameXmlTransform"

 type = "jaxb:nameXmlTransformType"

 minOccurs = "0"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name = "class">

<xs:annotation>

<xs:documentation>Customize interface and implementation

class.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name = "javadoc" type = "xs:string"

 minOccurs = "0"/>

</xs:sequence>

<xs:attribute name = "name"

type = "jaxb:javaIdentifierType">

<xs:annotation><xs:documentation>

Java class name without package prefix.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "implClass" type = "jaxb:javaIdentifierType">

<xs:annotation><xs:documentation>

Implementation class name including packageprefix.

</xs:documentation></xs:annotation>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name = "property">

<xs:annotation><xs:documentation>

Customize property.

</xs:documentation></xs:annotation>
180 JAXB Specification – Final, V1.0 1/8/03

<xs:complexType>

<xs:all>

<xs:element name = "javadoc" type = "xs:string"

 minOccurs = "0"/>

<xs:element name = "baseType"

 type = "jaxb:propertyBaseType"

 minOccurs="0"/>

</xs:all>

<xs:attribute name = "name"

 type = "jaxb:javaIdentifierType"/>

<xs:attributeGroup ref =

"jaxb:propertyAttributes"/>

</xs:complexType>

</xs:element>

<xs:element name = "javaType">

<xs:annotation><xs:documentation>

Data type conversions; overriding builtins

</xs:documentation></xs:annotation>

<xs:complexType>

<xs:attribute name = "name" use = "required"

type = "jaxb:javaIdentifierType">

<xs:annotation><xs:documentation>

name of the java type to which xml type is to be

bound.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "xmlType" type = "QName">

<xs:annotation><xs:documentation>

xml type to which java datatype has to be bound.

Must be present when javaType is scoped to

globalBindings.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "parseMethod"

 type = "jaxb:javaIdentifierType"/>

<xs:attribute name = "printMethod"

type = "jaxb:javaIdentifierType"/>

 <xs:attribute name = "hasNsContext" default = "false"

type = "xs:boolean" >

 <xs:annotation>

 <xs:documentation>

If true, the parsMethod and printMethod must reference a method

signtature that has a second parameter of type NamespaceContext.

 </xs:documentation>
1/8/03 JAXB Specification – Final, V1.0 181

Normative Binding Schema Syntax
</xs:annotation>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:element name = "typesafeEnumClass">

<xs:annotation><xs:documentation>

Bind to a type safe enumeration class.

</xs:documentation></xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name = "javadoc" type = "xs:string"

 minOccurs = "0"/>

<xs:element ref = "jaxb:typesafeEnumMember"

minOccurs = "0" maxOccurs = "unbounded"/>

</xs:sequence>

<xs:attribute name = "name"

 type = "jaxb:javaIdentifierType"/>

</xs:complexType>

</xs:element>

<xs:element name = "typesafeEnumMember">

<xs:annotation><xs:documentation>

Enumeration member name in a type safe enumeration

class.

</xs:documentation></xs:annotation>

<xs:complexType>

<xs:sequence>

 <xs:element name = "javadoc" type = "xs:string"

minOccurs = "0"/>

</xs:sequence>

<xs:attribute name = "value" type = "xs:string"/>

<xs:attribute name = "name" use = "required"

 type = "jaxb:javaIdentifierType"/>

</xs:complexType>

</xs:element>

<!-- TYPE DEFINITIONS -->

<xs:complexType name = "propertyBaseType">

 <xs:annotation><xs:documentation>

Customize the base type of a property.

</xs:documentation></xs:annotation>

 <xs:all>

<xs:element ref = "jaxb:javaType" minOccurs = "0"/>

 </xs:all>

</xs:complexType>
182 JAXB Specification – Final, V1.0 1/8/03

<xs:simpleType name = "bindingStyleType">

<xs:annotation><xs:documentation>

Allows selection of a binding algorithm

</xs:documentation></xs:annotation>

 <xs:restriction base = "xs:string">

<xs:enumeration value = "elementBinding"/>

 <xs:enumeration value = "modelGroupBinding"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name = "packageType">

<xs:sequence>

<xs:element name = "javadoc" type = "xs:string"

 minOccurs = "0"/>

</xs:sequence>

<xs:attribute name = "name" type="jaxb:javaIdentifierType"/>

</xs:complexType>

<xs:simpleType name = "underscoreBindingType">

<xs:annotation><xs:documentation>

Treate underscore in XML Name to Java identifier mapping.

</xs:documentation></xs:annotation>

<xs:restriction base = "xs:string">

<xs:enumeration value = "asWordSeparator"/>

<xs:enumeration value = "asCharInWord"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name = "typesafeEnumBaseType">

<xs:annotation><xs:documentation>

XML types or types derived from them which have

enumeration facet(s) which are be mapped to

typesafeEnumClass by default.

The following types cannot be specified in this list:

 "xs:QName", "xs:base64Binary", "xs:hexBinary",

 "xs:date", "xs:time", "xs:dateTime", "xs:duration",

 "xs:gDay", "xs:gMonth", "xs:gYear", "xs:gMonthDay",

"xs:YearMonth"

</xs:documentation></xs:annotation>

<xs:list itemType = "xs:QName"/>

</xs:simpleType>

<xs:simpleType name = "typesafeEnumMemeberNameType">

<xs:annotation><xs:documentation>

Used to customize how to handle name collisions.

i. generate VALUE_1, VALUE_2... if generateName.
1/8/03 JAXB Specification – Final, V1.0 183

Normative Binding Schema Syntax
ii. generate an error if value is generateError.

This is JAXB default behavior.

</xs:documentation></xs:annotation>

<xs:restriction base = "xs:string">

<xs:enumeration value = "generateName"/>

<xs:enumeration value = "generateError"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name = "javaIdentifierType">

<xs:annotation><xs:documentation>

Type to indicate Legal Java identifier.

</xs:documentation></xs:annotation>

<xs:restriction base = "xs:NCName"/>

</xs:simpleType>

<xs:complexType name = "nameXmlTransformRule">

<xs:annotation><xs:documentation>

Rule to transform an Xml name into another Xml name

</xs:documentation></xs:annotation>

<xs:attribute name = "prefix" type = "xs:string">

<xs:annotation><xs:documentation>

prepend the string to QName.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "suffix" type = "xs:string">

<xs:annotation><xs:documentation>

Append the string to QName.

</xs:documentation></xs:annotation>

</xs:attribute>

</xs:complexType>

<xs:complexType name = "nameXmlTransformType">

<xs:annotation><xs:documentation>

Allows transforming an xml name into another xml name. Use

case UDDI 2.0 schema.

</xs:documentation></xs:annotation>

<xs:all>

<xs:element name = "typeName"

 type = "jaxb:nameXmlTransformRule"

 minOccurs = "0">

<xs:annotation><xs:documentation>

Mapping rule for type definitions.

</xs:documentation></xs:annotation>

</xs:element>

<xs:element name = "elementName"

 type = "jaxb:nameXmlTransformRule"
184 JAXB Specification – Final, V1.0 1/8/03

 minOccurs = "0">

<xs:annotation><xs:documentation>

Mapping rule for elements

</xs:documentation></xs:annotation>

</xs:element>

<xs:element name = "modelGroupName"

type = "jaxb:nameXmlTransformRule"

 minOccurs = "0">

<xs:annotation><xs:documentation>

Mapping rule for model group

</xs:documentation></xs:annotation>

</xs:element>

<xs:element name = "anonymousTypeName"

 type = "jaxb:nameXmlTransformRule">

<xs:annotation><xs:documentation>

Mapping rule for class names generated for an

anonymous type.

</xs:documentation></xs:annotation>

</xs:element>

</xs:all>

</xs:complexType>

<xs:attribute name = "extensionBindingPrefixes">

<xs:annotation><xs:documentation>

A binding compiler only processes this attribute when it

occurs on an instance of xs:schema element. The value of

this attribute is a whitespace-separated list of namespace

prefixes. The namespace bound to each of the prefixes is

designated as a customization declaration namespace.

</xs:documentation></xs:annotation>

<xs:simpleType>

<xs:list itemType = "xs:normalizedString"/>

</xs:simpleType>

</xs:attribute>

<xs:element name = "bindings">

<xs:annotation><xs:documentation>

Binding declaration(s) for a remote schema.

If attribute node is set, the binding declaraions

are associated with part of the remote schema

designated by schemaLocation attribute. The node

attribute identifies the node in the remote schema

to associate the binding declaration(s) with.

</xs:documentation></xs:annotation>

<!-- a <bindings> element can contain arbitrary number of

binding declarations or nested <bindings> elements -->
1/8/03 JAXB Specification – Final, V1.0 185

Normative Binding Schema Syntax
<xs:complexType>

<xs:sequence>

<xs:choice minOccurs = "0" maxOccurs = "unbounded">

<xs:group ref = "jaxb:declaration"/>

<xs:element ref = "jaxb:bindings"/>

</xs:choice>

</xs:sequence>

<xs:attribute name = "schemaLocation" type = "xs:anyURI">

<xs:annotation><xs:documentation>

 Location of the remote schema to associate binding

declarations with.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "node" type = "xs:string">

<xs:annotation><xs:documentation>

The value of the string is an XPATH 1.0 compliant

string that resolves to a node in a remote schema

to associate binding declarations with. The remote

schema is specified by the schemaLocation

attribute occuring in the current element or in a

parent of this element.

</xs:documentation></xs:annotation>

</xs:attribute>

<xs:attribute name = "version" type = "xs:token">

<xs:annotation><xs:documentation>

Used to indicate the version of binding

declarations. Only valid on root level bindings

element. Either this or "jaxb:version" attribute

but not both may be specified.

 </xs:documentation> </xs:annotation>

</xs:attribute>

<xs:attribute ref = "jaxb:version">

 <xs:annotation><xs:documentation>

Used to indicate the version of binding

declarations. Only valid on root level bindings

element. Either this attribute or "version"

attribute but not both may be specified.

</xs:documentation> </xs:annotation>

</xs:attribute>

</xs:complexType>

</xs:element>

<xs:simpleType name="referenceCollectionType">

 <xs:union>

 <xs:simpleType>
186 JAXB Specification – Final, V1.0 1/8/03

 <xs:restriction base="xs:string">

 <xs:enumeration value="indexed"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="jaxb:javaIdentifierType"/>

 </xs:simpleType>

 </xs:union>

</xs:simpleType>

</xs:schema>
1/8/03 JAXB Specification – Final, V1.0 187

Normative Binding Schema Syntax
188 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X C
BI ND I NG XML NA M E S T O

JA V A IDE N T IF IE R S

C.1 Overview

This section provides default mappings from:

 ● XML Name to Java identifier
 ● Model group to Java identifier
 ● Namespace URI to Java package name

C.2 The Name to Identifier Mapping
Algorithm

Java identifiers typically follow three simple, well-known conventions:

 ● Class and interface names always begin with an upper-case letter. The
remaining characters are either digits, lower-case letters, or upper-case
letters. Upper-case letters within a multi-word name serve to identify the
start of each non-initial word, or sometimes to stand for acronyms.

 ● Method names and components of a package name always begin with a
lower-case letter, and otherwise are exactly like class and interface
names.

 ● Constant names are entirely in upper case, with each pair of words
separated by the underscore character (‘_’, \u005F, LOW LINE).
JAXB Specification – Final, V1.0 189

Binding XML Names to Java Identifiers
XML names, however, are much richer than Java identifiers: They may include
not only the standard Java identifier characters but also various punctuation and
special characters that are not permitted in Java identifiers. Like most Java
identifiers, most XML names are in practice composed of more than one
natural-language word. Non-initial words within an XML name typically start
with an upper-case letter followed by a lower-case letter, as in Java language, or
are prefixed by punctuation characters, which is not usual in the Java language
and, for most punctuation characters, is in fact illegal.

In order to map an arbitrary XML name into a Java class, method, or constant
identifier, the XML name is first broken into a word list. For the purpose of
constructing word lists from XML names we use the following definitions:

 ● A punctuation character is one of the following:

❍ A hyphen (’-’, \u002D, HYPHEN-MINUS),
❍ A period (‘.’, \u002E, FULL STOP),
❍ A colon (’:’, \u003A, COLON),
❍ An underscore (’_’, \u005F, LOW LINE),
❍ A dot (‘.’, \u00B7, MIDDLE DOT),
❍ \u0387, GREEK ANO TELEIA,
❍ \u06DD, ARABIC END OF AYAH, or
❍ \u06DE, ARABIC START OF RUB EL HIZB.

These are all legal characters in XML names.

 ● A letter is a character for which the Character.isLetter method
returns true, i.e., a letter according to the Unicode standard. Every
letter is a legal Java identifier character, both initial and non-initial.

 ● A digit is a character for which the Character.isDigit method
returns true, i.e., a digit according to the Unicode Standard. Every digit
is a legal non-initial Java identifier character.

 ● A mark is a character that is in none of the previous categories but for
which the Character.isJavaIdentifierPart method returns
true. This category includes numeric letters, combining marks, non-
spacing marks, and ignorable control characters.

Every XML name character falls into one of the above categories. We further
divide letters into three subcategories:

 ● An upper-case letter is a letter for which the
Character.isUpperCase method returns true,
190 JAXB Specification – Final, V1.0 1/8/03

The Name to Identifier Mapping Algorithm
 ● A lowercase letter is a letter for which the
Character.isLowerCase method returns true, and

 ● All other letters are uncased.

An XML name is split into a word list by removing any leading and trailing
punctuation characters and then searching for word breaks. A word break is
defined by three regular expressions: A prefix, a separator, and a suffix. The
prefix matches part of the word that precedes the break, the separator is not part
of any word, and the suffix matches part of the word that follows the break. The
word breaks are defined as:

(The character \u2160 is ROMAN NUMERAL ONE, a numeric letter.)

After splitting, if a word begins with a lower-case character then its first
character is converted to upper case. The final result is a word list in which each
word is either

 ● A string of upper- and lower-case letters, the first character of which is
upper case,

 ● A string of digits, or

 ● A string of uncased letters and marks.

Given an XML name in word-list form, each of the three types of Java
identifiers is constructed as follows:

 ● A class or interface identifier is constructed by concatenating the words
in the list,

Table C-1 XML Word Breaks

Prefix Separator Suffix Example

[^punct] punct+ [^punct] foo|--|bar

digit [^digit] foo22|bar

[^digit] digit foo|22

lower [^lower] foo|Bar

upper upper lower FOO|Bar

letter [^letter] Foo|\u2160

[^letter] letter \u2160|Foo

uncased [^uncased]

[^uncased] uncased
1/8/03 JAXB Specification – Final, V1.0 191

Binding XML Names to Java Identifiers
 ● A method identifier is constructed by concatenating the words in the list.
A prefix verb (get, set, etc.) is prepended to the result.

 ● A constant identifier is constructed by converting each word in the list to
upper case; the words are then concatenated, separated by underscores.

This algorithm will not change an XML name that is already a legal and
conventional Java class, method, or constant identifier, except perhaps to add an
initial verb in the case of a property access method.

Example

C.2.1 Collisions and conflicts

It is possible that the name-mapping algorithm will map two distinct XML
names to the same word list. This will result in a collision if, and only if, the
same Java identifier is constructed from the word list and is used to name two
distinct generated classes or two distinct methods or constants in the same
generated class. Collisions are not permitted by the binding compiler and are
reported as errors; they may be repaired by revising XML name within the
source schema or by specifying a customized binding that maps one of the two
XML names to an alternative Java identifier.

A class name must not conflict with the generated JAXB class,
ObjectFactory, section 4.2 on page 36, that occurs in each schema-derived
Java package. Method names are forbidden to conflict with Java keywords or
literals, with methods declared in java.lang.Object, or with methods
declared in the binding-framework classes. Such conflicts are reported as errors
and may be repaired by revising the appropriate schema or by specifying an
appropriate customized binding that resolves the name collision.

Table C-2 XML Names and Java Class, Method, and Constant Names

XML Name Class Name Method Name Constant Name

mixedCaseName MixedCaseName getMixedCaseName MIXED_CASE_NAME

Answer42 Answer42 getAnswer42 ANSWER_42

name-with-dashes NameWithDashes getNameWithDashes NAME_WITH_DASHES

other_punct-chars OtherPunctChars getOtherPunctChars OTHER_PUNCT_CHARS
192 JAXB Specification – Final, V1.0 1/8/03

Deriving a legal Java identifier from xs:string
Design Note – The likelihood of collisions, and the difficulty of working around
them when they occur, depends upon the source schema, the schema language in
which it is written, and the binding declarations. In general, however, we expect
that the combination of the identifier-construction rules given above, together with
good schema-design practices, will make collisions relatively uncommon.

The capitalization conventions embodied in the identifier-construction rules will
tend to reduce collisions as long as names with shared mappings are used in
schema constructs that map to distinct sorts of Java constructs. An attribute named
foo is unlikely to collide with an element type named foo because the first maps
to a set of property access methods (getFoo, setFoo, etc.) while the second
maps to a class name (Foo).

Good schema-design practices also make collisions less likely. When writing a
schema it is inadvisable to use, in identical roles, names that are distinguished
only by punctuation or case. Suppose a schema declares two attributes of a single
element type, one named Foo and the other named foo. Their generated access
methods, namely getFoo and setFoo, will collide. This situation would best be
handled by revising the source schema, which would not only eliminate the
collision but also improve the readability of the source schema and documents that
use it.

C.3 Deriving a legal Java identifier from
xs:string

The XML Name to Java identifier algorithm needs to be extended to
accommodate generating Java identifiers from xs:string due to the binding
customization typesafeEnumBase enabling enumeration values that are not
xs:NCName to need to be mapped to a Java identifier by default.

Leading and trailing white space for the value of the xs:string is dropped.
All characters that return false for isJavaIdentifierPart() are dropped.
1/8/03 JAXB Specification – Final, V1.0 193

Binding XML Names to Java Identifiers
C.4 Deriving an identifier for a model
group

XML Schema has the concept of a group of element declarations. Occasionally,
it is convenient to bind the grouping as a Java content property or a Java content
interface. When a semantically meaningful name for the group is not provided
within the source schema or via a binding declaration customization, it is
necessary to generate a Java identifier from the grouping. Below is an algorithm
to generate such an identifier.

A name is computed for an unnamed model group by concatenating together the
first 3 element declarations and/or wildcards that occur within the model group.
Each XML {name} is mapped to a Java identifier for a method using the XML
Name to Java Identifier Mapping algorithm. Since wildcard does not have a
{name} property, it is represented as the Java identifier “Any”. The Java
identifiers are concatenated together with the separator “And” for sequence and
all compositor and “Or” for choice compositors. For example, a sequence of
element foo and element bar would map to “FooAndBar” and a choice of
element foo and element bar maps to “FooOrBar.” Lastly, a sequence of
wildcard and element bar would map to the Java identifier “AnyAndBar”.

Example:

Given XML Schema fragment:

<xs:choice>

<xs:sequence>

<xs:element name="A"/>

<xs:any processContents="strict"/>

</xs:sequence>

<xs:element name="C"/>

</xs:choice>

The generated Java identifier would be AAndAnyOrC.

C.5 Generating a Java package name

This section describes how to generate a package name to hold the derived Java
representation. The motivation for specifying a default means to generate a Java
194 JAXB Specification – Final, V1.0 1/8/03

Generating a Java package name
package name is to increase the chances that a schema can be processed by a
binding compiler without requiring the user to specify customizations.

If a schema has a target namespace, the next subsection describes how to map
the URI into a Java package name. If the schema has no target namespace, there
is a section that describes an algorithm to generate a Java package name from
the schema filename.

C.5.1 Mapping from a Namespace URI

An XML namespace is represented by a URI. Since XML Namespace will be
mapped to a Java package, it is necessary to specify a default mapping from a
URI to a Java package name. The URI format is described in [RFC2396].

The following steps describe how to map a URI to a Java package name. The
example URI, http://www.acme.com/go/espeak.xsd , is used to
illustrate each step.

1. Remove the scheme and ":" part from the beginning of the URI, if
present.
Since there is no formal syntax to identify the optional URI scheme, re-
strict the schemes to be removed to case insensitive checks for schemes
“http” and “urn”.

//www.acme.com/go/espeak.xsd

2. Remove the trailing file type, one of .?? or .??? or .html.

//www.acme.com/go/espeak

3. Parse the remaining string into a list of strings using ’/’ and ‘:’ as
separators. Treat consecutive separators as a single separator.

{"www.acme.com", "go", "espeak" }

4. For each string in the list produced by previous step, unescape each escape
sequence octet.

{"www.acme.com", "go", "espeak" }

5. Apply algorithm described in Section 7.7 “Unique Package Names” in
[JLS] to derive a unique package name from the potential internet domain
name contained within the first component. The internet domain name is
reversed, component by component. Note that a leading “www.” is not
considered part of an internet domain name and must be dropped.
1/8/03 JAXB Specification – Final, V1.0 195

Binding XML Names to Java Identifiers
If the first component does not contain either one of the top-level
domain names, for example, com, gov, net, org, edu, or one of the
English two-letter codes identifying countries as specified in ISO
Standard 3166, 1981, this step must be skipped.

{“com”, “acme”, “go”, “espeak”}

6. For each string in the list, convert each string to be all lower case.

{"com”, “acme”, "go", "espeak" }

7. For each string remaining, the following conventions are adopted from
[JLS] Section 7.7, “Unique Package Names.”

a. If the sting component contains a hyphen, or any other special
character not allowed in an identifier, convert it into an underscore.

b. If any of the resulting package name components are keywords then
append underscore to them.

c. If any of the resulting package name components start with a digit, or
any other character that is not allowed as an initial character of an
identifier, have an underscore prefixed to the component.

{"com”, “acme”, "go", "espeak" }

8. Concatenate the resultant list of strings using ’.’ as a separating character
to produce a package name.

Final package name: "com.acme.go.espeak".

Section C.2.1, “Collisions and conflicts,” on page 192, specifies what to do
when the above algorithm results in an invalid Java package name.

C.6 Conforming Java Identifier
Algorithm

This section describes how to convert a legal Java identifier which may not
conform to Java naming conventions to a Java identifier that conforms to the
standard naming conventions. Since a legal Java identifier is also a XML name,
this algorithm is the same as Section C.2, “The Name to Identifier Mapping
Algorithm” with the following exception: constant names must not be mapped
to a Java constant that conforms to the Java naming convention for a constant.
The reason is that this algorithm is used to map legal Java identifiers specified
196 JAXB Specification – Final, V1.0 1/8/03

Conforming Java Identifier Algorithm
in customization referred to as a customization name. As specified in the
Chapter 6, “Customization”, customization names that are not mapped to
constants that conform to the Java naming conventions.
1/8/03 JAXB Specification – Final, V1.0 197

Binding XML Names to Java Identifiers
198 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X D
EX T E RN AL BIN D I NG

DE CL A RA T I ON

D.1 Example

Example: Consider the following schema and external binding file:

Source Schema: A.xsd:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ens="http://example.com/ns"

targetNamespace="http://example.com/ns">

<xs:complexType name="aType">

<xs:sequence>

<xs:element name="foo" type="xs:int"/>

</xs:sequence>

<xs:attribute name="bar" type="xs:int"/>

</xs:complexType>

<xs:element name="root" type="ens:aType"/>

</xs:schema>

External binding declarations file:

<jaxb:bindingsxmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

version="1.0">

<jaxb:bindings schemaLocation=”A.xsd”>

<jaxb:bindings node="//xs:complexType[@name=’aType’]”>

<jaxb:class name="customNameType"/>

<jaxb:bindings node=”.//xs:element[@name=’foo’]”>

<jaxb:property name="customFoo"/>

</jaxb:bindings>
JAXB Specification – Final, V1.0 199

External Binding Declaration
<jaxb:bindings node=”./xs:attribute[@name=’bar’]”>

<jaxb:property name="customBar"/>

</jaxb:bindings>

</jaxb:bindings>

</jaxb:bindings>

</jaxb:bindings>

Conceptually, the combination of the source schema and external binding file
above are the equivalent of the following inline annotated schema.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:ens="http://example.com/ns"

targetNamespace="http://example.com/ns"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

jaxb:version="1.0">

<xs:complexType name="aType">

<xs:annotation>

<xs:appinfo>

<jaxb:class name="customNameType"/>

</xs:appinfo>

</xs:annotation>

<xs:sequence>

<xs:element name="foo" type="xs:int">

<xs:annotation>

<xs:appinfo>

<jaxb:property name="customFoo"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:attribute name="bar" type="xs:int">

<xs:annotation>

<xs:appinfo>

<jaxb:property name="customBar"/>

</xs:appinfo>

</xs:annotation>

</xs:attribute>

</xs:complexType>

<xs:element name="root" type="ens:aType"/>

</xs:schema>
200 JAXB Specification – Final, V1.0 1/8/03

Transformation
D.2 Transformation

The intent of this section is to describe the transformation of external binding
declarations and their target schemas into a set of schemas annotated with JAXB
binding declarations. ready for processing by a JAXB compliant binding
compiler.

This transformation must be understood to work on XML data model level.
Thus, this transformation is applicable even for those schemas which contain
semantic errors.

The transformation is applied as follows:

1. Gather all the top-most <jaxb:bindings> elements from all the sche-
ma documents and all the external binding files that participate in this pro-
cess. Top-most <jaxb:bindings> are those <jaxb:bindings>
elements that are either a root element in a document or whose parent is an
<xs:appinfo> element. We will refer to these trees as “external bind-
ing forest.”

2. Collect all the namespaces used in the elements inside the external binding
forest, except the taxi namespace, "http://java.sun.com/xml/
ns/jaxb”,and the no namespace. Allocate an unique prefix for each of
them and declare the namespace binding at all the root <xs:schema>
elements of each schema documents.
Then add a jaxb:extensionBindingPrefix attribute to each
<xs:schema> element with all those allocated prefixes. If an
<xs:schema> element already carries this attribute, prefixes are just
appended to the existing attributes.

Note: The net effect is that all “foreign” namespaces used in the external
binding forest will be automatically be considered as extension
customization declaration namespaces.

3. For each <jaxb:bindings> element, we determine the “target
element” that the binding declaration should be associated with. This
process proceeds in a top-down fashion as follows:

a. Let p be the target element of the parent <jaxb:bindings>. If it is
the top most <jaxb:bindings>, then let p be the
<jaxb:bindings> element itself.
1/8/03 JAXB Specification – Final, V1.0 201

External Binding Declaration
b. Identify the “target element” using <jaxb:bindings> attributes.
(i) If the <jaxb:bindings> has a @schemaLocation, the value
of the attribute should be taken as an URI and be absolutized with the
base URI of the <jaxb:bindings> element. Then the target
element will be the root node of the schema document identified by the
absolutized URI. If there’s no such schema document in the current
input, it is an error. Note: the root node of the schema document is not
the document element.

(ii) If the <jaxb:bindings> has @node, the value of the attribute
should be evaluated as an XPath 1.0 expression. The context node in
this evaluation should be p as we computed in the previous step. It is
an error if this evaluation results in something other than a node set that
contains exactly one element. Then the target element will be this
element.

(iii) if the <jaxb:bindings> has neither @schemaLocation nor
@node, then the target element will be p as we computed in the
previous step. Note: <jaxb:bindings> elements can’t have both
@schemaLocation and @node at the same time.

We define the target element of a binding declaration to be the target
element of its parent <jaxb:bindings> element. It is an error if a
target element of a binding declaration doesn’t belong to the "http://
wwww.w3.org/2001/XMLSchema" namespace.

4. Next, for each target element of binding declarations, if it doesn’t have any
<xs:annotation> <xs:appinfo> in its children, one will be
created and added as the first child of the target.

After that, we move each binding declaration under the target node of its
parent <jaxb:bindings>. Consider the first <xs:appinfo> child
of the target element. The binding declaration element will be moved
under this <xs:appinfo> element.
202 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X E
XML SC HE MA

E.1 Abstract Schema Model

The following summarization abstract schema component model has been
extracted from [XSD Part 1] as a convenience for those not familiar with XML
Schema component model in understanding the binding of XML Schema
components to Java representation. One must refer to [XSD Part 1] for the
complete normative description for these components.

E.1.1 Simple Type Definition Schema Component
Table E-1 Simple Type Definition Schema Components

Component Description

{name} Optional. An NCName as defined by [XML-
Namespaces].

{target namespace} Either ·absent· or a namespace name.

{base type definition} A simple type definition

{facets} A set of constraining facets.

{fundamental facets} A set of fundamental facets.

{final} A subset of {extension, list, restriction, union}.
JAXB Specification – Final, V1.0 203

XML Schema
E.1.2 Enumeration Facet Schema Component

E.1.3 Complex Type Definition Schema Component

{variety} One of {atomic, list, union}. Depending on the value of
{variety}, further properties are defined as follows:

atomic
{primitive type
definition}

A built-in primitive
simple type definition.

list
{item type definition}

A simple type definition.

union
{member type
definitions}

A non-empty sequence of
simple type definitions.

{annotation} Optional. An annotation.

Table E-2 Enumeration Facet Schema Components

Component Description

{value} The actual value of the value. (Must be in value space of
base type definition.)

{annotation} Optional annotation.

Table E-3 Complex Type Definition Schema Components

Component Description

{name} Optional. An NCName as defined by [XML-
Namespaces].

{target namespace} Either ·absent· or a namespace name.

{base type definition} Either a simple type definition or a complex type
definition.

{derivation method} Either extension or restriction.

{final} A subset of {extension, restriction}.

{abstract} A boolean

{attribute uses} A set of attribute uses.

{attribute wildcard} Optional. A wildcard.

Table E-1 Simple Type Definition Schema Components (Continued)

Component Description
204 JAXB Specification – Final, V1.0 1/8/03

Abstract Schema Model
E.1.4 Element Declaration Schema Component

{content type} One of empty, a simple type definition, or a pair
consisting of a ·content model· and one of mixed,
element-only.

{prohibited

substitutions}

A subset of {extension, restriction}.

{annotations} A set of annotations.

Table E-4 Element Declaration Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name

{type definition} Either a simple type definition or a complex type
definition.

{scope} Optional. Either global or a complex type definition.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

{nillable} A boolean.

{identity-constraint

definitions}

A set of constraint definitions.

{substitution group

affiliation}

Optional. A top-level element definition.

{substitution group

exclusions}

A subset of {extension, restriction}.

{disallowed

substitution}

A subset of {substitution,extension,restriction}.

{abstract} A boolean.

{annotation} Optional. An annotation.

Table E-3 Complex Type Definition Schema Components (Continued)

Component Description
1/8/03 JAXB Specification – Final, V1.0 205

XML Schema
E.1.5 Attribute Declaration Schema Component

E.1.6 Model Group Definition Schema Component

E.1.7 Identity-constraint Definition Schema
Component

Table E-5 Attribute Declaration Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name

{type definition} A simple type definition.

{scope} Optional. Either global or a complex type definition.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

{annotation} Optional. An annotation.

Table E-6 Model Group Definition Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name.

{model group} A model group.

{annotation} Optional. An annotation.

Table E-7 Identity-constraint Definition Schema Components

Component Description

{name} An NCName as defined by [XML-Namespaces].

{target namespace} Either ·absent· or a namespace name.

{identity-constraint

category}

One of key, keyref or unique.

{selector} A restricted XPath ([XPath]) expression.

{fields} A non-empty list of restricted XPath ([XPath])
expressions.
206 JAXB Specification – Final, V1.0 1/8/03

Abstract Schema Model
E.1.8 Attribute Use Schema Component

E.1.9 Particle Schema Component

E.1.10 Wildcard Schema Component

{referenced key} Required if {identity-constraint category} is keyref,
forbidden otherwise.
An identity-constraint definition with {identity-
constraint category} equal to key or unique.

{annotation} Optional. An annotation.

Table E-8 Attribute Use Schema Components

Component Description

{required} A boolean.

{attribute declaration} An attribute declaration.

{value constraint} Optional. A pair consisting of a value and one of default,
fixed.

Table E-9 Particle Schema Components

Component Description

{min occurs} A non-negative integer.

{max occurs} Either a non-negative integer or unbounded.

{term} One of a model group, a wildcard, or an element
declaration.

Table E-10 Wildcard Schema Components

Component Description

{namespace constraint} One of any; a pair of not and a namespace name or
·absent·; or a set whose members are either namespace
names or ·absent·.

{process contents} One of skip, lax or strict.

{annotation} Optional. An annotation.

Table E-7 Identity-constraint Definition Schema Components (Continued)

Component Description
1/8/03 JAXB Specification – Final, V1.0 207

XML Schema
E.1.11 Model Group Schema Component

E.2 Not Required XML Schema
concepts

A JAXB implementation is not required to support the following XML Schema
concepts for this version of the specification. A JAXB implementation may
choose to support these features in an implementation dependent manner. For
the purposes of compatibility, all JAXB technology implementations must have
a strict operating mode that reports when non-required XML schema concepts
are encountered by the binding compiler.

E.2.1 Concepts detected at binding compilation
time

A binding compilation running in the strict conforming operating mode must
report an error or warning when encountering any of these XML Schema
components.

E.2.1.1 Binding Compilation Errors

No Java representation in the form of interfaces, classes, or properties can be
derived for these schema components.

 ● Redefinition of declaration

This infrequently used feature of XML Schema does not have an
obvious data binding, thus, it is not supported in this initial release.

 ● Schema component: identity-constraint definition
(key, keyref, unique)

Table E-11 Model Group Components

Component Description

{compositor} One of all, choice or sequence.

{particles} A list of particles.

{annotation} An annotation.
208 JAXB Specification – Final, V1.0 1/8/03

Not Required XML Schema concepts
Due to complexities surrounding supporting this feature, specify in a
future version. No JAXB properties are derived from the schema to
enable users of the JAXB technology to access and/or update the key
and keyref attributes. The unique attribute is not required to be
enforced by the JAXB technology validation.

 ● Notation declaration

No Java representation is generated for Notation declaration.

 ● Schema component: attribute wildcard
(anyAttribute)

The schema derived Java representation provides no generated method
signatures that enable attribute wildcards from an XML document to be
manipulated by a Java application. An implementation should maintain
the wildcard attribute content it parsed at unmarshal time and it can
write it out at marshal time.

 ● Substitution group

Any XML Schema concepts indicating that substitution group support is
a necessary component of the schema should be reported as an error. A
binding compiler must not report the following two cases as errors.

a. <xs:element abstract=”false”>

b. <xs:element substitutionGroup=””>

E.2.1.2 Binding compilation warnings

The existence of the following XML schema concepts are not considered an
error. A JAXB implementation ignores the value of these attributes and treats
them in a specific way that is reported as a warning.

 ● “block” feature

Attributes:
schema.blockDefault,element.block, complexType.block

The values of these attributes are ignored and the binding compiler
treats them each one as if it was set to “#all”.

 ● “final” feature

schema.finalDefault,element.final,
complexType.final
1/8/03 JAXB Specification – Final, V1.0 209

XML Schema
The values of these attributes are ignored and the binding compiler
treats them as if they were set to “#all”.

 ● The value of attribute complexType.abstract is ignored and the
binding compiler treats it as if it were set to the value “false”.

 ● Skip wildcard content - <xs:any processContents=”skip”>

A warning should be issued that there is no specified standard way to
bind non-schema constrained but well-formed XML content to a Java
representation.

E.2.2 Not supported while manipulating the XML
content

 ● Schema component: wildcard
(any)

A JAXB implementation always generates a property method for XML
content as described in Section 5.9.5, “Bind wildcard schema
component,” on page 98.

JAXB implementations are not required to unmarshal or marshal XML
content that does not conform to a schema that is registered with
JAXBContext. However, wildcard content must be handled as
detailed in Section 5.9.5, “Bind wildcard schema component,” on page
98.

 ● Substitution
Schema derived code generated by a binding compiler operating in strict
conforming mode is not allowed to perform any group or type
substitution when unmarshalling XML content or when updating the
Java representation of XML content. One should assume that all type
definitions and element declarations in the schema have an effective
block value of “#all” imposed upon them by the JAXB binding
compilation process. Note that this specification does not specify how
these non-supported substitutions are handled.
210 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X F
RE L A T IO N SH I P T O JAX-RPC
BIN D I NG

F.1 Overview

Several minor differences in binding from XML to Java representation have
been identified between JAXB technology and the JAX-RPC 1.0 Specification
[JAX-RPC]. JAXB binding customizations are provided below that enable
JAXB technology to bind from XML to a Java representation as JAX-RPC
technology does for these cases.

F.2 Mapping XML name to Java
identifier

By default, when mapping an XML Names to a Java identifier, the JAXB
technology treats ‘_” (underscore) as a punctuation character (i.e. a word
separator). However, JAX-RPC technology treats underscore as a character
within a word as specified Section 20.1 in [JAX-RPC]. See customization
option specified in Section 6.5.3, “Underscore Handling” to enable JAX-RPC
mapping of XML name to Java identifier.

Customization to enable JAX-RPC conforming binding:

underscoreBinding = "asCharInWord"
JAXB Specification – Final, V1.0 211

Relationship to JAX-RPC Binding
F.3 Bind XML enum to a typesafe
enumeration

The JAX-RPC specification specifies the binding of XML datatype to typesafe
enumeration class. JAXB-specified default bindings are designed to be as
similar as possible to JAXRPC-specified bindings. However, there are
differences that are described here. Customization options allow the JAX-RPC
style of binding to be generated.

F.3.1 Restriction Base Type

The default restriction base type which can be mapped to a typesafe
enumeration is different. The allowed types are customized using the
customization option typesafeEnumBase specified in Section 6.5.1,
“Usage.”

Customization to enable JAX-RPC conforming binding:

typesafeEnumBase = “xsd:string xsd:decimal xsd:float xsd:double”

JAXB default is typesafeEnumBase ="xsd:NCName"

Note that all XML Schema built-in datatypes listed in the above customization
and all datatypes that derived by restriction from these listed basetypes are
mapped to typesafe enum classes. Thus, not all JAX-RPC supported types must
be listed, only the types at the base of the derivation by restriction type
hierarchy.

F.3.2 Enumeration Name Handling

If a legal Java identifier cannot be generated from an XML enumeration value,
then by default, an error must be reported. However, JAX-RPC will revert the
identifiers to be default enumeration label names as specified in Section 4.2.4
“Enumeration” in [JAX-RPC]. The latter behavior can be obtained enabling the
customization typesafeEnumMemberName specified in Section 6.5.1,
“Usage.” Section 5.2.3.4, “XML Enumvalue-to-Java Identifier Mapping,” on
page 63 describes the enumeration member names generated when
typesafeEnumMemberName is set to “generateName.”

Customization to enable JAX-RPC conforming binding:

typesafeEnumMemberName = "generateName"

JAXB default is typesafeEnumMemberName = "generateError"
212 JAXB Specification – Final, V1.0 1/8/03

1/8/03
A P P E N D I X G
CHA N G E LOG

G.1 Changes for Final

 ● Added method javax.xml.bind.Marshaller.getNode(Object)
which returns a DOM view of the Java content tree. See method's
javadoc for details.

G.2 Changes for Proposed Final

 ● Added Chapter 7, “Compatibility.”

 ● Section 5.9.2, “General Content Property,” removed value content list
since it would not be tractable to support when type and group
substitution are supported by JAXB technology.

 ● Added the ability to associate implementation specific property/value
pairs to the unmarshal, validation and JAXB instance creation. Changes
impact Section 3.4 “Unmarshalling,” Section 3.5 “Validator” and the
ObjectFactory description in Section 4.2 “Java Package.”

 ● Section 5.9.10.1, “Bind a Choice Group to a Content Interface” was
updated to handle Collection properties occurring within a Choice
Content interface.

 ● Section 5.9.11, “Model Group binding algorithm” changed step 4(a) to
bind to choice content interface rather than choice content property.

 ● Section 4.5.2.2, “List Property and Section 4.5.4, “isSet Property
Modifier” updated so one can discard set value for a List property via
calling unset method.
JAXB Specification – Final, V1.0 213

Change Log
 ● At end of Section 4, added an UML diagram of the JAXB Java
representation of XML content.

 ● Updated default binding handling in Section 5.5, “Model Group
Definition.” Specifically, content interfaces, element interfaces and
typesafe enum classes derived from the content model of a model group
definition are only bound once, not once per time the group is referenced.

 ● Change Section 5.9.5, “Bind wildcard schema component,” to bind to a
JAXB property with a basetype of java.lang.Object, not
javax.xml.bind.Element. Strict and lax wildcard validation
processing allows for contents constrained only by xsi:type attribute.
Current APIs should allow for future support of xsi:type.

 ● Simplify anonymous simple type definition binding to typesafe enum
class. Replace incomplete approach to derive a name with the
requirement that the @name attribute for element typesafeEnumClass is
mandatory when associated with an anonymous simple type definition.

 ● Changed Section 5.5.4, “Deriving Class Names for Named Model Group
Descendants” to state that all classes and interfaces generated for XML
Schema component that directly compose the content model for a model
group, that these classes/interfaces should be generated once as top-level
interface/class in a package, not in every content model that references
the model group.

 ● Current Section 6.5, “<globalBindings> Declaration”:

❍ Replaced modelGroupAsClass with bindingStyle.

❍ Specified schema types that cannot be listed in
typesafeEnumBase.

 ● Section 6.8, “<property> Declaration:

❍ Clarified the customization of model groups with respect to
choiceContentProperty, elementBinding and
modelGroupBinding. Dropped choiceContentProperty
from the <property> declaration.

❍ Added <baseType> element and clarified semantics.

❍ Added support for customization of simple content.

❍ Added customization of simple types at point of reference.

❍ Clarified restrictions and relationships between different
customizations.

 ● Section 6.9, “<javaType> Declaration”:
214 JAXB Specification – Final, V1.0 1/8/03

Changes for Public Draft 2
❍ Added javax.xml.bind.DatatypeConverterInterface
interface.

❍ Added java.xml.bind.DatatypeConverter class for use by
user specified parse and print methods.

❍ Added java.xml.namespace.NamespaceContext class for
processing of QNames.

❍ Clarified print and parse method requirements.

❍ Added narrowing and widening conversion requirements.

 ● Throughout Chapter 6, “Customization,” clarified the handling of
invalid customizations.

G.3 Changes for Public Draft 2

Many changes were prompted by inconsistencies detected within the
specification by the reference implementation effort. Change bars indicate what
has changed since Public Draft.

 ● Section 4.5.4, “isSetProperty Modifier,” describes the customization
required to enable its methods to he generated.

 ● Section 5.7.2, “Binding of an anonymous type definition,” clarifies the
generation of content interfaces and typesafe enum classes from an
anonymous type definition.

 ● Section 5.2.4, “List” Simple Type Definition and the handling of list
members within a union were added since public draft.

 ● Clarification on typesafe enum global customization “generateName” in
Section 5.2.3.4, “XML Enumvalue To Java Identifier Mapping.”

 ● Clarification of handling binding of wildcard content in Section 5.9.4.

 ● Chapter6, “Customization,” resolved binding declaration naming
inconsistencies between specification and normative binding schema.

 ● removed enableValidation attribute (a duplicate of
enableFailFastCheck) from <globalBindings>
declaration.

 ● Added default values for <globalBindings> declaration attributes.
1/8/03 JAXB Specification – Final, V1.0 215

Change Log
 ● Changed typesafeEnumBase to a list of QNames. Clarified the
binding to typesafe enum class.

 ● Clarified the usage and support for implClass attribute in <class>
declaration.

 ● Clarified the usage and support for enableFailFastCheck in the
<property> declaration.

 ● Added <javadoc> to typesafe enum class, member and property
declarations.

 ● Mention that embedded HTML tags in <javadoc> declaration must
be escaped.

 ● Fixed mistakes in derived Java code throughout document.

 ● Added Section 7. Compatibility and updated Appendix E.2 “Non
required XML Schema Concepts” accordingly.

G.4 Changes for Public Draft

 ● Section 5.9.10.2, “Bind choice group to a choice content property,”
replaced overloading of choice content property setter method with a
single setter method with a value parameter with the common type of all
members of the choice. Since the resolution of overloaded method
invocation is performed using compile-time typing, not runtime typing,
this overloading was problematic. Same change was made to binding of
union types.

 ● Added details on how to construct factory method signature for nested
content and element interfaces.

 ● Section 3.3, default validation handler does not fail on first warning, only
on first error or fatal error.

 ● Add ID/IDREF handling in section 5.

 ● Updated name mapping in appendix C.

 ● section 4.5.2.1 on page 43, added getIDLenth() to indexed property.

 ● Removed ObjectFactory.setImplementation method from Section 4.2,
“Java Package,” on page 36. The negative impact on implementation
provided to be greater than the benefit it provided the user.

 ● Introduced external binding declaration format.
216 JAXB Specification – Final, V1.0 1/8/03

Changes for Public Draft
 ● Introduced a method to introduce extension binding declarations.

 ● Added an appendix section describing JAXB custom bindings that align
JAXB binding with JAX-RPC binding from XML to Java representation.

 ● Generate isID() accessor for boolean property.

 ● Section 6, Customization has been substantially rewritten.
1/8/03 JAXB Specification – Final, V1.0 217

Change Log
218 JAXB Specification – Final, V1.0 1/8/03

	The Java™ Architecture for XML Binding (JAXB)
	Introduction
	1.1 Data binding
	1.2 Goals
	1.3 Non-Goals
	1.4 Requirements
	1.5 Use Cases
	1.6 Conventions
	1.7 Expert Group Members
	1.8 Acknowledgements

	Architecture
	2.1 Overview
	2.1.1 Java Representation
	2.1.2 Binding Framework
	2.1.3 Binding Declarations

	2.2 Varieties of validation
	2.2.1 Handling Validation Failures

	2.3 An example

	The Binding Framework
	3.1 Binding Runtime Framework Rationale
	3.2 JAXBContext
	3.3 General Validation Processing
	3.4 Validator
	3.5 Unmarshalling
	3.6 Marshalling
	3.6.1 Marshalling Properties

	3.7 Validation Handling

	Java Representation of XML Content
	4.1 Mapping between XML Names and Java Identifiers
	4.2 Java Package
	4.3 Typesafe Enum Class
	4.4 Java Content Interface
	4.5 Properties
	4.5.1 Simple Property
	4.5.2 Collection Property
	4.5.2.1 Indexed Property
	4.5.2.2 List Property

	4.5.3 Constant Property
	4.5.4 isSet Property Modifier
	4.5.5 Property Summary

	4.6 Java Element Interface
	4.7 Summary

	Binding XML Schema to Java Representations
	5.1 Overview
	5.2 Simple Type Definition
	5.2.1 Type Categorization
	5.2.2 Atomic Datatype
	5.2.3 Type Safe Enumeration
	5.2.3.1 Enumeration Class
	5.2.3.2 Enumeration Class
	5.2.3.3 Constant Fields
	5.2.3.4 XML Enumvalue-to-Java Identifier Mapping
	5.2.3.5 Methods and Constructor

	5.2.4 List
	5.2.5 Union Property
	5.2.6 Union

	5.3 Complex Type Definition
	5.3.1 Aggregation of Java Representation
	5.3.1.1 Aggregation of Datatype/Interface
	5.3.1.2 Aggregation of Property Set

	5.3.2 Java Content Interface
	5.3.2.1 Simple Content Binding

	5.4 Attribute Group Definition
	5.5 Model Group Definition
	5.5.1 Bind to a set of properties
	5.5.2 Bind to a list property
	5.5.3 Bind to a Java content interface
	5.5.4 Deriving Class Names for Named Model Group Descendants

	5.6 Attribute Declaration
	5.7 Element Declaration
	5.7.1 Bind to Java Element Interface
	5.7.2 Binding of an anonymous complex type definition
	5.7.3 Bind to a Property

	5.8 Attribute use
	5.8.1 Bind to a Java Constant property
	5.8.1.1 Contributions to Local Structural Constraint

	5.8.2 Binding an IDREF component to a Java property

	5.9 Content Model - Particle, Model Group, Wildcard
	5.9.1 Element binding style
	5.9.2 Bind each element declaration name to a content property
	5.9.3 General content property
	5.9.3.1 Examples

	5.9.4 Bind mixed content
	5.9.5 Bind wildcard schema component
	5.9.6 Bind a repeating occurrence model group
	5.9.7 Content Model Default Binding
	5.9.7.1 Default binding of content model “derived by extension”

	5.9.8 Model group binding style
	5.9.9 Bind Top-level Model Group to a Property Set
	5.9.10 Bind Nested Model Group
	5.9.10.1 Bind a Choice Group to a Content Interface
	5.9.10.2 Bind choice group to a choice content property

	5.9.11 Model Group binding algorithm

	5.10 Default Binding Rule Summary

	Customization
	6.1 Binding Language
	6.1.1 Extending the Binding Language
	6.1.2 Inline Annotated Schema
	6.1.3 External Binding Declaration
	6.1.3.1 Restrictions

	6.1.4 Version Attribute
	6.1.5 Invalid Customizations

	6.2 Notation
	6.3 Naming Conventions
	6.4 Customization Overview
	6.4.1 Scope
	6.4.2 XML Schema Parsing

	6.5 <globalBindings> Declaration
	6.5.1 Usage
	6.5.2 Customized Name Mapping
	6.5.3 Underscore Handling

	6.6 <schemaBindings> Declaration
	6.6.1 Usage
	6.6.1.1 package
	6.6.1.2 nameXmlTransform

	6.7 <class> Declaration
	6.7.1 Usage
	6.7.2 Customization Overrides
	6.7.3 Customizable Schema Elements
	6.7.3.1 Complex Type Definition
	6.7.3.2 Model Group Definition
	6.7.3.3 Model Group
	6.7.3.4 Global Element Declaration
	6.7.3.5 Local Element

	6.8 <property> Declaration
	6.8.1 Usage
	6.8.1.1 baseType
	6.8.1.2 Usage Constraints

	6.8.2 Customization Overrides
	6.8.3 Customizable Schema Elements
	6.8.3.1 Global Attribute Declaration
	6.8.3.2 Local Attribute
	6.8.3.3 Global Element Declaration
	6.8.3.4 Local Element
	6.8.3.5 Wildcard
	6.8.3.6 Model Group
	6.8.3.7 Model Group Reference
	6.8.3.8 ComplexType

	6.9 <javaType> Declaration
	6.9.1 Usage
	6.9.1.1 name
	6.9.1.2 xmlType
	6.9.1.3 hasNsContext
	6.9.1.4 Namespace Context
	6.9.1.5 parseMethod
	6.9.1.6 printMethod

	6.9.2 DatatypeConverter
	6.9.2.1 Usage
	6.9.2.2 Lexical And Value Space

	6.9.3 Built-in Conversions
	6.9.4 Events
	6.9.5 Customization Overrides
	6.9.6 Customizable Schema Elements
	6.9.6.1 Simple Type Definition
	6.9.6.2 GlobalBindings
	6.9.6.3 <baseType> declaration

	6.10 <typesafeEnum> Declaration
	6.10.1 Usage
	6.10.2 value Attribute
	6.10.3 Inline Annotations
	6.10.4 Customization Overrides
	6.10.5 Customizable Schema Elements

	6.11 <javadoc> Declaration
	6.11.1 Javadoc Sections
	6.11.2 Usage
	6.11.3 Javadoc Customization

	6.12 Annotation Restrictions

	Compatibility
	References
	Package javax.xml.bind
	Normative Binding Schema Syntax
	Binding XML Names to Java Identifiers
	C.1 Overview
	C.2 The Name to Identifier Mapping Algorithm
	C.2.1 Collisions and conflicts

	C.3 Deriving a legal Java identifier from xs:string
	C.4 Deriving an identifier for a model group
	C.5 Generating a Java package name
	C.5.1 Mapping from a Namespace URI

	C.6 Conforming Java Identifier Algorithm

	External Binding Declaration
	D.1 Example
	D.2 Transformation

	XML Schema
	E.1 Abstract Schema Model
	E.1.1 Simple Type Definition Schema Component
	E.1.2 Enumeration Facet Schema Component
	E.1.3 Complex Type Definition Schema Component
	E.1.4 Element Declaration Schema Component
	E.1.5 Attribute Declaration Schema Component
	E.1.6 Model Group Definition Schema Component
	E.1.7 Identity-constraint Definition Schema Component
	E.1.8 Attribute Use Schema Component
	E.1.9 Particle Schema Component
	E.1.10 Wildcard Schema Component
	E.1.11 Model Group Schema Component

	E.2 Not Required XML Schema concepts
	E.2.1 Concepts detected at binding compilation time
	E.2.1.1 Binding Compilation Errors
	E.2.1.2 Binding compilation warnings

	E.2.2 Not supported while manipulating the XML content

	Relationship to JAX-RPC Binding
	F.1 Overview
	F.2 Mapping XML name to Java identifier
	F.3 Bind XML enum to a typesafe enumeration
	F.3.1 Restriction Base Type
	F.3.2 Enumeration Name Handling

	Change Log
	G.1 Changes for Final
	G.2 Changes for Proposed Final
	G.3 Changes for Public Draft 2
	G.4 Changes for Public Draft

