
Simple 2-layer
Networks
Connectionism Lab 1

• JavaNNS developed at Tübingen University,
puts a Java front end on SNNS, the Stuttgarter
Neural Network Simulator

• Obtainable for free from http://www-
ra.informatik.uni-tuebingen.de/software/
JavaNNS/welcome_e.html

• From a commmand line, type ‘java -jar
JavaNNS.jar’.

http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html
http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html
http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html
http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html
http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html
http://www-ra.informatik.uni-tuebingen.de/software/JavaNNS/welcome_e.html

JavaNNS start screen

Add error panel and log panel from the ‘view’ menu

Add control panel from the ‘tools’ menu. Rearrange to suit
yourself

Goal: generate a 2 x 1 network, with linear units at
both input and output

[Tools] > [Create] > [Layers]

Input layer has 2 units with
the identity function as the
activation function.
Unfortunately, JavaNNS
insists that these units have
biases. Formally, this is not
strictly necessary.

We need one output unit, and
we give it the nonlinear logistic
activation function

[Tools] > [Create] > [Connections]

Select ‘Connect feed-forward’

The 2 x 1 network, fully
connected.

In SNNS, the bias is not implemented as a separate,
always ‘on’ unit, but as a parameter of each unit. They are
trained along with the weights.

Now save the network in your project folder. Call
the network myAnd.net.

You should create a separate project folder for each
project you undertake with JavaNNS. This will allow
you to identify those files which collectively relate
to a single project.

Now we need to load some patterns. To do this, you will
need to copy either of these two sample pattern files to
a file called myAnd.pat in your project folder. The
formats shown here differ only in the human readable
comments. To the network, they are the same.

SNNS pattern definition file V3.2
generated at Mon Apr 25 15:58:23 1994

No. of patterns : 4
No. of input units : 2
No. of output units : 1

Input pattern 1:
0 0
Output pattern 1:
0
Input pattern 2:
0 1
Output pattern 2:
0
Input pattern 3:
1 0
Output pattern 3:
0
Input pattern 4:
1 1
Output pattern 4:
1

SNNS pattern definition file V3.2
generated at Mon Apr 25 15:58:23 1994

No. of patterns : 4
No. of input units : 2
No. of output units : 1

0 0 0
0 1 0
1 0 0
1 1 1

Verbose

Concise

Use File -> Open to load your patterns

The control panel has 6 tabs. Select the ‘Learning’ tab.

Leave the learning rate (η) as is. d_max will not
bother us here.

Next: initialization and training

Click ‘Init’ in the Learning tab.
Note that the weights (and
the biases, not shown) are
provided with random values.
The range of these values is
set in the ‘Initialization’ tab,
but we can be happy with the
default range of [-1,1].

Plot of summed squared
error

Click on ‘Learn All’. The
network will now perform 100
training cycles (epochs). The
error plot shows how the
summed squared error
decreases as training
progresses.

Repeatedly clicking on the
‘Learn All’ button extends
training. Note how error
drops.

Congratulations. You just trained a neural
network. But did it learn?

Choose ‘Save data’ from the file menu.
Provide a suitable file name (and make sure
it is saving to your project directory).
myAnd.res might be appropriate.

For now, include both input and
output patterns in the results file.

SNNS result file V1.4-3D
generated at Wed May 2 13:57:15 2007

No. of patterns : 4
No. of input units : 2
No. of output units : 1
startpattern : 1
endpattern : 4
input patterns included
teaching output included
#1.1
0 0
0
0.00517
#2.1
0 1
0
0.13902
#3.1
1 0
0
0.13952
#4.1
1 1
1
0.83444

Inputs
Target

Output

Here are my results. Yours will
differ somewhat (why?).

All outputs are ‘close’ to
targets. With additional
training, they can be gotten
closer.

[Tools] > [Analyzer]

Select ‘Pattern no. and Unit. Unit 3 is
the output unit.

Select 4 steps (for 4 patterns) and
click ‘Test’.

Results appear in the
Log window

Save your work! Weights are stored along with the
network configuration in a single .net file.

