WEKA

Data Mining Practical Machine Learning Tools and Techniques

Slides for Chapter 4 of Data Mining by I. H. Witten and E. Frank

· Inferring rudimentary rules Statistical modeling

Algorithms: The basic methods

- Constructing decision trees
- Constructing rules Association rule learning
- Linear models
- Instance-based learning
- Clustering

WEKA

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

🐔 Simplicity first

- · Simple algorithms often work very well!
- There are many kinds of simple structure, eg:

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- + One attribute does all the work
- All attributes contribute equally & independently
- + A weighted linear combination might do
- Instance-based: use a few prototypes
- · Use simple logical rules
- · Success of method depends on the domain

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

3

Inferring rudimentary rules

- 1R: learns a 1-level decision tree
- + I.e., rules that all test one particular attribute · Basic version
 - One branch for each value
 - · Each branch assigns most frequent class
 - · Error rate: proportion of instances that don't belong to the majority class of their corresponding branch

4

· Choose attribute with lowest error rate

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- (assumes nominal attributes)

WEKA Pseudo-code for 1R

- For each sttribute, For each stribute, acke a rule as follows: count how often each class appears find the most frequent class make the rule sesion that class to this attribute-value Calculate the error rate of the rules Choose the rules with the smallest error rate
- Note: "missing" is treated as a separate attribute value

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Evaluating the weather attributes

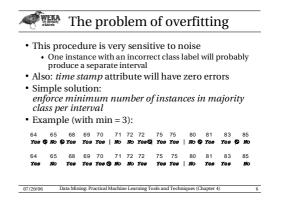
Outlook	Temp	Humidity	Windy	Play				
Sunny	Hot	High	False	No	Attribute	Rules	Errors	Total
Sunny	Hot	High	True	No	Outlook	Sunnv ⊸No	2/5	4/14
Overcast	Hot	High	False	Yes	OULIOOK	Overcast →Yes	0/4	4/14
Rainy	Mild	High	False	Yes				
Rainy	Cool	Normal	False	Yes		Rainy →Yes	2/5	
Rainy	Cool	Normal	True	No	Temp	Hot →No*	2/4	5/14
Overcast	Cool	Normal	True	Yes		Mild →Yes	2/6	
Sunny	Mild	High	False	No		Cool → Yes	1/4	
Sunnv	Cool	Normal	False	Yes	Humidity	High → No	3/7	4/14
Rainv	Mild	Normal	False	Yes		Normal →Yes	1/7	
Sunny	Mild	Normal	True	Yes	Windy	False →Yes	2/8	5/14
Overcast	Mild	High	True	Yes		True →No*	3/6	
Overcast	Hot	Normal	False	Yes				
Rainy	Mild	High	True	No		* indicates a tie		

WEKA	Dealing with	numeric attributes
------	--------------	--------------------

- Discretize numeric attributes
- · Divide each attribute's range into intervals
 - Sort instances according to attribute's values
 - Place breakpoints where class changes (majority class)
 This minimizes the total error
- Example: *temperature* from weather data

 65 68 Ro ¥es	69 70 71 Yes Yes No	72 72 No Yes	75 75 80 Yes Yes No		33 85 "es No
Outlook	Temperature	Humidity	Windy	Play]
Sunny	85	85	False	No	1
Sunny	80	90	True	No	
Overcast	83	86	False	Yes	
Rainy	75	80	False	Yes	

20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



With overfitting avoidance

Resulting rule set:

Attribute	Rules	Errors	Total errors
Outlook	Sunny →No	2/5	4/14
	Overcast →Yes	0/4	
	Rainy →Yes	2/5	
Temperature	≤77.5 →Yes	3/10	5/14
	> 77.5 →No*	2/4	
Humidity	≤ 82.5 → Yes	1/7	3/14
	> 82.5 and ≤ 95.5 →No	2/6	
	> 95.5 →Yes	0/1	
Windy	False →Yes	2/8	5/14
	True →No*	3/6	

07/20/06	Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)	9

Discussion of 1R

- IR was described in a paper by Holte (1993)
 Contains an experimental evaluation on 16 datasets (using cross-validation so that results were representative of performance on future data)
 Minimum number of instances was set to 6 after
 - some experimentation1R's simple rules performed not much worse than
- much more complex decision trees
- Simplicity first pays off!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets Robert C. Holte, Computer Science Department, University of Ottaw

07/20/06 Data Mining: Practical Machine Learning Tools and Techni

Tiscussion of 1R: Hyperpipes

- Another simple technique: build one rule for each class
 - Each rule is a conjunction of tests, one for each attribute • For numeric attributes: test checks whether instance's
 - value is inside an interval • Interval given by minimum and maximum observed
 - in training data For nominal attributes: test checks whether value is one
 - For nominal attributes: test checks whether value is one of a subset of attribute values
 Subset given by all possible values observed in
 - training data • Class with most matching tests is predicted

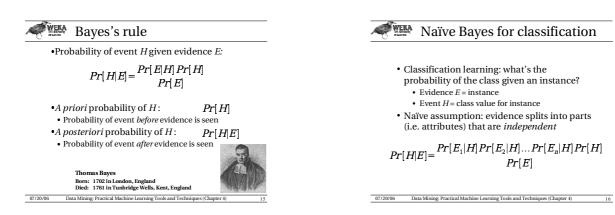
07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 11

🐗 🎬 Statistical modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
 - equally important
 - statistically independent (given the class value)
 I.e., knowing the value of one attribute says nothing about the value of another (if the class is known)
- Independence assumption is never correct!
- But ... this scheme works well in practice

Ou	tlook		Tempe	rature		Hu	midity		W	findy		R	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5			Outles	k Temp		nidity	Windy	Play
								Sunny	Hot	Hig		False	No
								Sunny	Het	Hig		True	No
								Overce	ast Hot	Hig	h	False	Yes
								Rainy	Mild	Hig	h	False	Yes
								Rainy	Cool	Nor	mal	False	Yes
								Rainy	Cool		mal	True	No
								Overca			mai	True	Yes
								Sunny	Mild	Hig		False	No
								Sunny	Cool		mai	False	Yes
								Rainy	Mild		mai	False	Yes
								Sunny	Mild	Nor		True	Yes
								Overco		Hig		True	Yes
								Overci	ast Hot	Nor	mai	False	Yes

Ou	ıtlook		Tempe	rature		Hu	midity			Windy		F	lay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	٨
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	
Rainy	3/9	2/5	Cool	3/9	1/5								
				L	Sunny	Cool od of the tw	Hiç o class	·	True	?			
					For	"yes" = 2/	9 × 3/ 9	× 3/9	× 3/9	< 9/14 =	0.005	3	
					For	"no" = 3/5	5 × 1/5	× 4/ 5	×3/5 ×	5/14 = 0	0.0206		
					Conversi	on into a p	robabil	ityby	normali	zation:			
					P(')	(es") = 0.00	053 / (0	.0053	+ 0.02	06) = 0.3	205		
P("yes") = 0.0053 / (0.0053 + 0.0206) = 0.209 P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795							0.5						



Outlook Temp. Sunny Cool	Humidity Windy Play High True ?
Pr[yes E]	Pr[Outlook=Sunny yes]
/	×Pr[Temperature=Cool yes]
Probability of	$\times Pr[Humidity=High yes]$
class "yes"	$\times Pr[Windy = True yes]$
	$\bigvee Pr[yes]$
	Pr[E]
	$2 \times 3 \times 3 \times 3 \times 9$
	9^9^9^9^14

The "zero-frequency problem"

- What if an attribute value doesn't occur with every class value?
 (e.g. "Humidity = high" for class "yes")
 Probability will be zero! Pr[Humidity=High]yes]=0
 A posteriori probability will also be zero! Pr[yes]E]=0 (No matter how likely the other values are!)
 Permedie add 1 to the occur for every attribute
- Remedy: add 1 to the count for every attribute value-class combination (*Laplace estimator*)
- Result: probabilities will never be zero! (also: stabilizes probability estimates)
- 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 18

from	n 1 might b	adding a consta e more approp	riate
• Exar	npie: attric	oute <i>outlook</i> for	class yes
	$2 + \mu / 3$	$4 + \mu/3$	$3 + \mu/3$
	$9 + \mu$	$9 + \mu$	$9 + \mu$
	Sunny	Overcast	Rainy
	ghts don't i they must	need to be equa sum to 1)	ıl
	$2 + \mu p_1$	$4 + \mu p_2$	$3 + \mu p_3$

 $9+\mu$

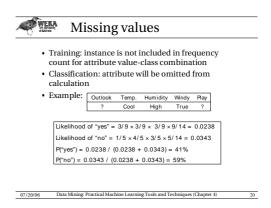
ning Tool

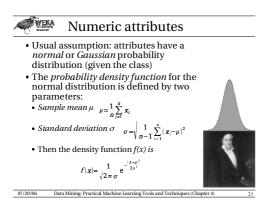
 $9 + \mu$

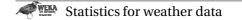
 $9 + \mu$

Data Mining: Practical Mac

07/20/06







Ou	tlook		Tempera	ature	Humic	dity		Windy		PI	ay
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64,68,	65,71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72,80,	70, 75,	90,91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ=73	$\mu = 75$	μ=79	μ=86	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	σ=6.2	$\sigma = 7.9$	σ =10.2	$\sigma = 9.7$	True	3/9	3/5	14	14
Rainy	3/9	2/5									

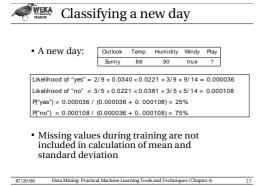
Example density value:

 $f(temperature=66|yes) = \frac{1}{\sqrt{2\pi}6.2} e^{-\frac{|66-73|^2}{2.6.2^2}} = 0.0340$

22

24

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



and the second second		
WEKA	Probability dens	ition
all and all all all all all all all all all al	FIODADIIILV UEIIS	nnes

• Relationship between probability and density:

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

 $\Pr[\,c - \frac{\epsilon}{2} < x < c + \frac{\epsilon}{2}\,] \approx \epsilon \times f(\,c)$

But: this doesn't change calculation of *a posteriori* probabilities because *ε* cancels out
Exact relationship:

 $\Pr[a \leq x \leq b] = \int_{a}^{b} f(t) dt$

Multinomial naïve Bayes I

- Version of naïve Bayes used for document classification using *bag of words* model
- $n_{i'}, n_{2'}, \dots, n_k$: number of times word *i* occurs in document
- $P_{i'}P_{2'}$..., $P_{k'}$ probability of obtaining word *i* when sampling from documents in class *H*
- Probability of observing document E given class H (based on multinomial distribution):

 $Pr[E|H] \approx N! \times \prod_{i=1}^{k} \frac{P_i^{n_i}}{n_i!}$

• Ignores probability of generating a document of the right length (prob. assumed constant for each class)

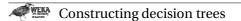
07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Suppose dictionary has two words, yellow and blue • Suppose Pr1yellow|H] = 75% and Pr[blue|H] = 25% • Suppose E is the document "blue yellow blue" • Probability of observing document: $Pr[[blue yellow blue]|H] \approx 31 \times \frac{0.79}{21} \times \frac{0.23}{21} = \frac{9}{64} \approx 0.14$ Suppose there is another class H that has Pr[yellow|H] = 10% and Pr[yellow|H] = 90%: $Pr[[blue yellow blue]|H] \approx 31 \times \frac{0.11}{12} \times \frac{0.99}{21} = 0.24$ • Need to take prior probability of class into account to make final classification • Factorials don't actually need to be computed • Underflows can be prevented by using logarithms

- Naïve Bayes works surprisingly well (even if independence assumption is clearly violated)
- Why? Because classification doesn't require accurate probability estimates as long as maximum probability is assigned to correct class
- However: adding too many redundant attributes will cause problems (e.g. identical attributes)
 Note also: many numeric attributes are not normally
- distributed (\rightarrow kernel density estimators)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

27



Strategy: top down

- Recursive *divide-and-conquer* fashion
- First: select attribute for root node Create branch for each possible attribute value
- Then: split instances into subsets One for each branch extending from the node
- Finally: repeat recursively for each branch, using
- only instances that reach the branch

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

28

• Stop if all instances have the same class

Other attribute to select? Other attribute to select?



💓 WEKA Criterion for attribute selection

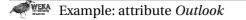
- Which is the best attribute?
 - · Want to get the smallest tree
- Heuristic: choose the attribute that produces the "purest" nodes • Popular impurity criterion: information gain
- Information gain increases with the average purity of the subsets
- Strategy: choose attribute that gives greatest information gain
- 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Computing information

- · Measure information in bits
 - Given a probability distribution, the info required to predict an event is the distribution's *entropy*
 - Entropy gives the information required in bits (can involve fractions of bits!)
- · Formula for computing the entropy: $entropy(p_1, p_2, ..., p_n) = -p_1 \log p_1 - p_2 \log p_2 - ... - p_n \log p_n$

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

07/20/06

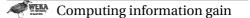


- Outlook = Sunny:
- info([2,3]) = en tropy(2/5,3/5) = -2/5 log(2/5) 3/5 log(3/5) = 0.971 bits• Outlook = Overcast: Note: this
- info([4,0]) = entropy(1,0) = -1 log(1) 0 log(0) = 0 bits is normally outlook = Painu: undefined. • Outlook = Rainy:

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- $info([2,3]) = en tropy(3/5,2/5) = -3/5 \log (3/5) 2/5 \log (2/5) = 0.971 bits$ • Expected information for attribute:
- in fo ([3,2], [4,0], [3,2]) = (5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971 = 0.693 bits

33



 Information gain: information before splitting – information after splitting gain(Outlook) = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693 = 0.247 bits

Information gain for attributes from weather data:

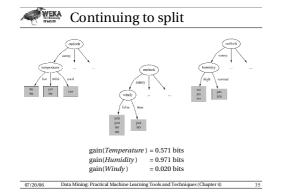
gain(Outlook)	=0.247 bits
gain(Temperature)	= 0.029 bits
gain(Humidity)	=0.152 bits
gain(Windy)	= 0.048 bits

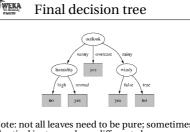
07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

34

36

ga ga





• Note: not all leaves need to be pure; sometimes identical instances have different classes ⇒ Splitting stops when data can't be split any further

Wishlist for a purity measure

- · Properties we require from a purity measure:
 - When node is pure, measure should be zero

 - When impurity is maximal (i.e. all classes equally likely), measure should be maximal
 Measure should obey *multistage property* (i.e. decisions can be made in several stages):
 - $measure([2,3,4]) = measure([2,7]) + (7/9) \times measure([3,4])$
- · Entropy is the only function that satisfies all three properties!
- 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- · The multistage property:
 - $\texttt{entropy}\left(\textit{\textit{p}},\textit{\textit{q}},\textit{\textit{r}}\right) \!=\! \texttt{entropy}\left(\textit{\textit{p}},\textit{\textit{q}} \!+\! \textit{\textit{r}}\right) \!+\! \left(\textit{\textit{q}} \!+\! \textit{\textit{r}}\right) \!\times\! \texttt{entropy}\left(\begin{smallmatrix}q & r \\ q + r & q + r\end{smallmatrix}\right)$
- Simplification of computation: $info([2,3,4]) = -2/9 \times log(2/9) - 3/9 \times log(3/9) - 4/9 \times log(4/9)$ =[$-2 \times \log 2 - 3 \times \log 3 - 4 \times \log 4 + 9 \times \log 9$]/9

38

40

· Note: instead of maximizing info gain we could just minimize information

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values

 - ⇒ Information gain is biased towards choosing attributes with a large number of values \Rightarrow This may result in *overfitting* (selection of an
 - attribute that is non-optimal for prediction)

39

41

• Another problem: fragmentation

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA Weather data with ID code

ID code	Outlook	Temp.	Humidit	Windy	Play
A	Sunny	Hot	High	False	No
в	Sunny	Hot	High	True	No
с	Overcast	Hot	High	False	Yes
D	Rainy	Mild	High	False	Yes
E	Rainy	Cool	Normal	False	Yes
F	Rainy	Cool	Normal	True	No
G	Overcast	Cool	Normal	True	Yes
н	Sunny	Mild	High	False	No
1	Sunny	Cool	Normal	False	Yes
J	Rainy	Mild	Normal	False	Yes
к	Sunny	Mild	Normal	True	Yes
L	Overcast	Mild	High	True	Yes
м	Overcast	Hot	Normal	False	Yes
N	Rainy	Mild	High	True	No

WEKA Tree stump for ID code attribute (ID code no no yes • Entropy of split: $info(ID \ code) = info([0,1]) + info([0,1]) + ... + info([0,1]) = 0 \ bits$ ⇒ Information gain is maximal for ID code (namely 0.940 bits)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA Gain ratio

- Gain ratio: a modification of the information gain that reduces its bias
- · Gain ratio takes number and size of branches into account when choosing an attribute • It corrects the information gain by taking the *intrinsic information* of a split into account
- · Intrinsic information: entropy of distribution of instances into branches (i.e. how much info do we need to tell which branch an instance belongs to)

Computing the gain ratio

- Example: intrinsic information for ID code $\inf_{o}([1,1,\ldots,1])=14\times(-1/14\times\log{(1/14)})=3.807\,\text{bits}$
- Value of attribute decreases as intrinsic
- information gets largerDefinition of gain ratio:
- gain_ratio(*attribute*)=^{gain[attribute]}
- Example:

$gain_ratio(ID\ code) = {}^{0.940\ bits}_{3\ 807\ bits} = 0.24\ 6$

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 43

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940- 0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.557
Gain ratio: 0.247/ 1.577	0.157	Gain ratio: 0.029/ 1.557	0.019
Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940- 0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 44

More on the gain ratio

- "Outlook" still comes out top
- However: "ID code" has greater gain ratio
 Standard fix: *ad hoc* test to prevent splitting on that type of attribute
- type of attribute
 Problem with gain ratio: it may overcompensate
 May choose an attribute just because its intrinsic
 - May choose an attribute just because its intrinsic information is very low
 Standard fix: only consider attributes with greater
 - Standard fix: only consider attributes with greater than average information gain

45

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

🕬 Discussion

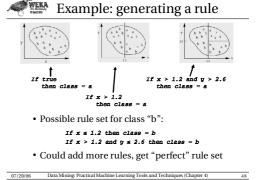
- Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
 Gain ratio just one modification of this basic
 - Gain ratio just one modification of this basic algorithm
 ⇒ C4.5: deals with numeric attributes, missing
 - → C4.5: deals with numeric attributes, missing values, noisy data
- Similar approach: CART
- There are many other attribute selection criteria! (But little difference in accuracy of result)

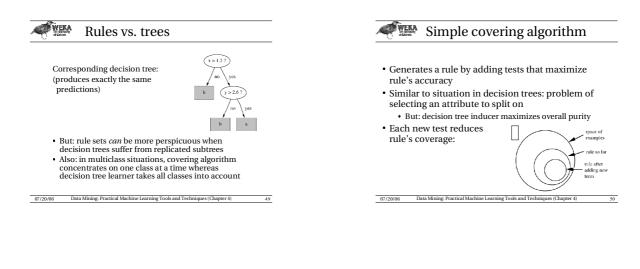
07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

46

Covering algorithms

- Convert decision tree into a rule set
 Straightforward, but rule set overly complex
 More effective conversions are not trivial
- Instead, can generate rule set directly
 for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- Called a *covering* approach:
 at each stage a rule is identified that "covers" some of the instances





Goal: maximize accuracy

- *t* total number of instances covered by rule
- *p* positive examples of the class covered by rule
- t p number of errors made by rule
- \Rightarrow Select test that maximizes the ratio p/t
- We are finished when *p*/*t* = 1 or the set of instances can't be split any further

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 51

Example: contact lens data

 Rule we seek: If ? then recommendation = hard
 Possible tests:

	Age = Young	2/8	
	Age = Pre-presbyopic	1/8	
	Age = Presbyopic	1/8	
	Spectacle prescription = Myope	3/12	
	Spectacle prescription = Hypermetrope	1/12	
	Astigmatism = no	0/12	
	Astigmatism = yes	4/12	
	Tear production rate = Reduced	0/12	
	Tear production rate = Normal	4/12	
07/20/06	Data Mining: Practical Machine Learning Tools and Techniques (Chapt	er 4)	52

Modified rule and resulting data

• Rule with best test added:	
If astigmatism = yes then recommendation	=

· Instances covered by modified rule

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

haró

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 53

Further refinement

Current state:	If astigmatism = yes and ? then recommendation =	bard
Possible tests:		
Age = Young		2/4
Age = Pre-pre	sbyopic	1/4
Age = Presbyo	pic	1/4
Spectacle pres	scription = Myope	3/6
Spectacle pres	scription = Hypermetrope	1/6
Tear production	on rate = Reduced	0/6
Tear production	on rate = Normal	4/6

Modified rule and resulting data

• Rule with best test added:

If astigmatism = yes and tear production rate = normal then recommendation = hard

Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 55

Further refinement • Current state: If astigmatism = yes and tear production rate = normal and ? then recommendation = hard • Possible tests: 2/2 Age = Young Age = Pre-presbyopic Age = Presbyopic 1/2 1/2 Spectacle prescription = Mgope 3/3 Spectacle prescription = Huperm 1/3 · Tie between the first and the fourth test · We choose the one with greater coverage Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4 07/20/06 56

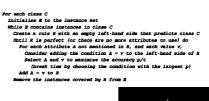
- Final rule: If astigmatiam = yes and tear production rate = normal and apoetacle prescription = myope then recommendation = bard
- Second rule for recommending "hard lenses": (built from instances not covered by first rule)

If age = young and astigmatism = yes and tear production rate = normal then recommendation = hard

These two rules cover all "hard lenses":
Process is repeated with other two classes

07/20/06	Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)	57

Pseudo-code for PRISM



Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn't matter because all rules predict the same class
- Outer loop considers all classes separately
 No order dependence implied

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Problems: overlapping rules, default rule required

59

Separate and conquer

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- Methods like PRISM (for dealing with one class) are *separate-and-conquer* algorithms:
 - · First, identify a useful rule
 - Then, separate out all the instances it covers
 - Finally, "conquer" the remaining instances
- Difference to divide-and-conquer methods:
 Subset covered by rule doesn't need to be explored any further

🐗 🎬 Mining association rules

- Naïve method for finding association rules:
 Use separate-and-conquer method
- Treat every possible combination of attribute values as a separate class
- Two problems:
 - Computational complexity
 - Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- But: we can look for high support rules directly!

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 61

Item sets

- Support: number of instances correctly covered by association rule
- The same as the number of instances covered by *all* tests in the rule (LHS and RHS!) *Item*: one test/attribute-value pair
- *Item set* : all items occurring in a rule
- Goal: only rules that exceed pre-defined support

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

⇒ Do it by finding all item sets with the given minimum support and generating rules from them!

Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Item sets for weather data

One- item sets	Two-item sets	Three- item sets	Four-item sets
Outlook = Sunny (5)	Outlook = Sunny Temperature = Hot (2)	Outlook = Sunny Temperature = Hot Humidity = High (2)	Outlook = Sunny Temperature = Hot Humidity = High Play = No (2)
Temperature = Cool (4)	Outlook = Sunny Humidity = High (3)	Outlook = Sunny Humidity = High Windy = False (2)	Outlook = Rainy Temperature = Mild Windy = False Play = Yes (2)

• In total: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets (with minimum support of two)

64

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA	Generating rules from an item set	

- Once all item sets with minimum support have been generated, we can turn them into rules
 Example:
- Humidity = Normal, Windy = False, Play = Yes (4)
- Seven (2^N-1) potential rules:

If Humidity = Normal and Windy = False then Play = Yes	4/4
If Humidity = Normal and Play = Yes then Windy = False	4/6
If Windy = False and Play = Yes then Humidity = Normal	4/6
If Humidity = Normal then Windy = False and Play = Yes	4/7
If Windy = False then Humidity = Normal and Play = Yes	4/8
If Play = Yes then Humidity = Normal and Windy = False	4/9
If Then then themidity - Normal and Mindy - Palao	

If True then Humidity = Normal and Windy = False and Play = Yes 4/12

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 65

WEKA Rules for weather data • Rules with support > 1 and confidence = 100%: cistion rule Conf. A 100% 100% Humiditu=Normal Wi ⇒Play=Yes 2 Temperature=Cool midity 3 Outlook=Overcast ⇒ Play=Yes 100% ersture=Cold Pla ⇒Humidity-3 1004 . . . ••• 58 Outlook=Su ⇒Humidity=High 2 1004 nu Temperature • In total: 3 rules with support four 5 with support three 50 with support two 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 66

WEKA Example rules from the same set

· Item set:

ure = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

• Resulting rules (all with 100% confidence):

Temperature = Cool, Windy = False →Humidity = Normal, Flay = Yes Temperature = Cool, Windy = False, Humidity = Normal →Flay = Yes Temperature = Cool, Windy = False, Flay = Yes →Humidity = Normal

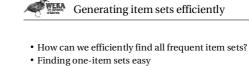
due to the following "frequent" item sets:

 Temperature = Cool, Windy = False
 (2)

 Temperature = Cool, Humidity = Hormal, Windy = False
 (2)

 Temperature = Cool, Windy = False, Flay = Yes
 (2)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 07/20/06



- · Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
 - If (A B) is frequent item set, then (A) and (B) have to be frequent item sets as well!
 - In general: if X is frequent k-item set, then all (k-1)-item subsets of X are also frequent
 - \Rightarrow Compute k-item set by merging (k-1)-item sets

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

WEKA Example

- · Given: five three-item sets
 - (A B C), (A B D), (A C D), (A C E), (B C D)
- Lexicographically ordered!
- · Candidate four-item sets:
 - (ABCD) OK because of (A C D) (B C D)
- (ACDE) Not OK because of (C D E)
- · Final check by counting instances in dataset!
- (k-1)-item sets are stored in hash table

07/20/06 Data Mining- Practical Machine Learning Tools and Techniques (Chapter 4) 69

WEKA Generating rules efficiently

- We are looking for all high-confidence rules · Support of antecedent obtained from hash table • But: brute-force method is (2^N-1)
- Better way: building (c + 1)-consequent rules from *c*-consequent ones
 - Observation: (*c* + 1)-consequent rule can only hold if all corresponding *c*-consequent rules also hold
- Resulting algorithm similar to procedure for

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

70

large item sets

Example

- 1-consequent rules:
 - If Outlook = Sunny and Windy = False and Play = No then Humidity = High (2/2)
 - If Humidity = High and Windy = False and Play = No then Outlook = Sunny (2/2)
- Corresponding 2-consequent rule:
 - If Windy = False and Play = No then Outlook = Sunny and Humidity = High (2/2)
- · Final check of antecedent against hash table!

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

Association rules: discussion

- · Above method makes one pass through the data for
- each different size item set
 Other possibility: generate (k+2)-item sets just after (k+1)-item sets have been generated
 Result: more (k+2)-item sets than necessary will be considered but less passes through the data
 Melken correct if data tace large for main support

 - Makes sense if data too large for main memory
- Practical issue: generating a certain number of rules (e.g. by incrementally reducing min. support)

Other issues

- Standard ARFF format very inefficient for typical market basket data
 - Attributes represent items in a basket and most items are usually missing
 Data should be represented in sparse format
- · Instances are also called transactions
- · Confidence is not necessarily the best measure Example: milk occurs in almost every supermarket transaction
 - · Other measures have been devised (e.g. lift)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

🀖 🎬 Linear models: linear regression

- · Work most naturally with numeric attributes
- · Standard technique for numeric prediction Outcome is linear combination of attributes $x = w_0 + w_1 a_1 + w_2 a_2 + \ldots + w_k a_k$
- · Weights are calculated from the training data
- Predicted value for first training instance ${\bm a}^{\scriptscriptstyle (1)}$

 $w_0 a_0^{|1|} + w_1 a_1^{|1|} + w_2 a_2^{|1|} + \dots + w_k a_k^{|1|} = \sum_{j=0}^k w_j a_j^{|1|}$ (assuming each instance is extended with a constant attribute with value 1)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

💓 WEKA Minimizing the squared error

- Choose k+1 coefficients to minimize the squared error on the training data
- · Squared error: $\sum_{i=1}^{n} (\, {\boldsymbol{x}}^{|i|} - \sum_{j=0}^{k} \, {\boldsymbol{w}}_{j} {\boldsymbol{a}}_{j}^{|j|})^{2}$
- · Derive coefficients using standard matrix operations
- · Can be done if there are more instances than
- attributes (roughly speaking) • Minimizing the absolute error is more difficult

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

75

WEKA Classification

- · Any regression technique can be used for classification
 - Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't

76

78

- · Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this is known as multiresponse linear regression
- Problem: membership values are not in [0,1] range, so aren't proper probability estimates

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

AT Linear models: logistic regression

- · Builds a linear model for a transformed target variable
- · Assume we have two classes
- · Logistic regression replaces the target

 $P[1 | a_1, a_2, \dots, a_k]$

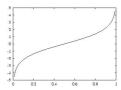
by this target

 $\log \big(\begin{smallmatrix} P_1 \ 1 & a_1, \ldots, a_k \\ 1 & P_1 \ 1 & a_1, a_2, \ldots, a_k \end{smallmatrix} \big)$

• *Logit transformation* maps [0,1] to $(-\infty, +\infty)$

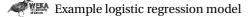
07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

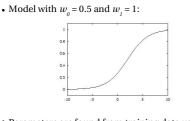
Logit transformation



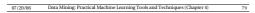
• Resulting model:

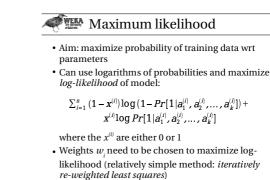
 $Pr[1|a_{1,}a_{2,}...,a_{k}] = \frac{1}{(1+e^{-w_{1}-w_{1}a_{1,}}-w_{1}a_{2,}-w_{2}a_{2})}$





• Parameters are found from training data using *maximum likelihood*





Multiple classes

- Can perform logistic regression independently for each class (like multi-response linear regression)
- Problem: probability estimates for different classes won't sum to one
- Better: train coupled models by maximizing likelihood over all classes
- Alternative that often works well in practice: *pairwise classification*

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

81

• Idea: build model for each pair of classes, using only training data from those classes

Pairwise classification

- Problem? Have to solve *k*(*k*-1)/2 classification problems for *k*-class problem
- Turns out not to be a problem in many cases because training sets become small:
 - Assume data evenly distributed, i.e. 2n/k per learning problem for *n* instances in total

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Then runtime of pairwise classification is proportional to $(k(k-1)/2) \times (2n/k) = (k-1)n$

82

Linear models are hyperplanes

• Decision boundary for two-class logistic regression is where probability equals 0.5:

 $Pr[1|a_1, a_2, \dots, a_k] = 1/(1 + \exp(-w_0 - w_1 a_1 - \dots - w_k a_k)) = 0.5$

- which occurs when $-w_0 w_1 a_1 \dots w_k a_k = 0$ • Thus logistic regression can only separate data that
- can be separated by a hyperplaneMulti-response linear regression has the same problem. Class 1 is assigned if:

$$\begin{split} & w_0^{|1|} + w_1^{|1|} a_1 + \ldots + w_k^{|1|} a_k > w_0^{|2|} + w_1^{|2|} a_1 + \ldots + w_k^{|2|} a_k \\ \Leftrightarrow (w_0^{|1|} - w_0^{|2|}) + (w_1^{|1|} - w_1^{|2|}) a_1 + \ldots + (w_k^{|1|} - w_k^{|2|}) a_k > 0 \end{split}$$

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 83

Linear models: the perceptron

- Don't actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane
- Assumption: data is *linearly separable*
- Algorithm for learning separating hyperplane: *perceptron learning rule*
- Hyperplane: $0 = w_0 a_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k$ where we again assume that there is a constant attribute with value 1 (*bias*)
- If sum is greater than zero we predict the first class, otherwise the second class

🐗 🎬 The algorithm

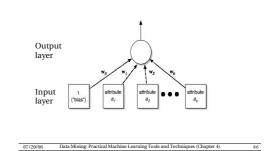
Set all weights to zero thtil all instances in the training data are classified correctly For each instance I in the training data If I is classified incorrectly by the perceptrom If I belongs to the first class add it to the weight vector also subtract if from the weight vector

• Why does this work? Consider situation where instance *a* pertaining to the first class has been added:

 $(w_0+a_0)a_0+(w_1+a_1)a_1+(w_2+a_2)a_2+\ldots+(w_k+a_k)a_k$ This means output for *a* has increased by:

 $a_0a_0+a_1a_1+a_2a_2+\ldots+a_ka_k$ This number is always positive, thus the hyperplane has moved into the correct direction (and we can show output decreases for instances of other class)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 07/20/06 85



🎻 🌇 Perceptron as a neural network

🐗 🎬 The algorithm

🐗 🔛 Linear models: Winnow

- Another mistake-driven algorithm for finding a separating hyperplane
 - + Assumes binary data (i.e. attribute values are either zero or one)
- Difference: multiplicative updates instead of additive updates
- Weights are multiplied by a user-specified parameter $\alpha > 1$ (or its inverse)
- Another difference: user-specified threshold
- parameter θ
- Predict first class if $w_0 a_0 + w_1 a_1 + w_2 a_2 + \dots + w_k a_k > 0$

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 87

while some instances are misclassified for each instance a in the training data classify a uning the current weights if the predicted class is incourset if a belongs to the first class for each a that is 1, multiply w/ by alpha iff a, is 0, leaves w, unchanged) otherwise therwise for each a_i that is 1, divide w_i by alpha {if a_i is 0, leave w_i unchanged}

- · Winnow is very effective in homing in on relevant features (it is attribute efficient)
- · Can also be used in an on-line setting in which new instances arrive continuously (like the perceptron algorithm)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

88

🐗 🎬 Balanced Winnow

- Winnow doesn't allow negative weights and this can be a drawback in some applications
- · Balanced Winnow maintains two weight vectors, one for each class:

- while some instances are misclassified for such instances a in the training data classify using the current weights if the predicted class is incorrect if a belonge to the first class for each a, that is 1, multiply w, by sight and divide w, by sight (if a, is 0, leave w, and w, unchanged) otherwise
 - ervise or each a, that is 1, multiply w, by alpha and divide w, by alpha (if a, is 0, leave w, and w, unchanged)
- Instance is classified as belonging to the first class (of two classes) if:

 $(W_0^+ - W_0^-) a_0 + (W_1^+ - W_2^-) a_1 + \dots + (W_k^+ - W_k^-) a_k > \theta$ 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 89

WEKA Instance-based learning

- · Distance function defines what's learned
- · Most instance-based schemes use Euclidean distance:

$\sqrt{(\mathbf{a}_1^{|1|} - \mathbf{a}_1^{|2|})^2 + (\mathbf{a}_2^{|1|} - \mathbf{a}_2^{|2|})^2 + \dots (\mathbf{a}_k^{|1|} - \mathbf{a}_k^{|2|})^2}$

- $\mathbf{a}^{\scriptscriptstyle (1)}$ and $\mathbf{a}^{\scriptscriptstyle (2)} {:}$ two instances with k attributes
- · Taking the square root is not required when
- comparing distances • Other popular metric: city-block metric
- · Adds differences without squaring them

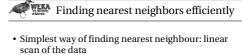
Normalization and other issues

• Different attributes are measured on different scales ⇒need to be *normalized*:

 $a_i = \frac{v_i - minv_i}{max v_i - minv_i}$

- v_i : the actual value of attribute i
- Nominal attributes: distance either 0 or 1
- Common policy for missing values: assumed to be maximally distant (given normalized attributes)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)



- Classification takes time proportional to the product of the number of instances in training and test sets
- Nearest-neighbor search can be done more efficiently using appropriate data structures
- We will discuss two methods that represent training data in a tree structure:

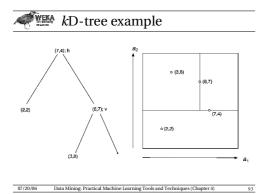
Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

92

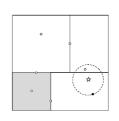
94

kD-trees and ball trees

07/20/06



Wing *k*D-trees: example



More on *k*D-trees

- Complexity depends on depth of tree, given by logarithm of number of nodes
- Amount of backtracking required depends on quality of tree ("square" vs. "skinny" nodes)
- How to build a good tree? Need to find good split point and split direction
- Split direction: direction with greatest varianceSplit point: median value along that direction
- Using value closest to mean (rather than median) can be better if data is skewed
- Can apply this recursively

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 95

Building trees incrementally

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- Big advantage of instance-based learning: classifier can be updated incrementally
 - Just add new training instance!
- Can we do the same with kD-trees?
- Heuristic strategy:
 - Find leaf node containing new instance
 - Place instance into leaf if leaf is empty
 - Otherwise, split leaf according to the longest dimension (to preserve squareness)
- Tree should be re-built occasionally (i.e. if depth grows to twice the optimum depth)

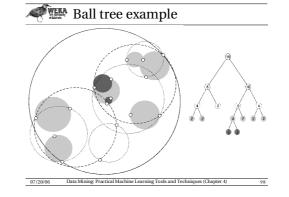
🐗 🎬 Ball trees

07/20/06

- Problem in kD-trees: corners
- Observation: no need to make sure that regions don't overlap
- Can use balls (hyperspheres) instead of hyperrectangles
 - A *ball tree* organizes the data into a tree of *k*-dimensional hyperspheres

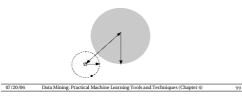
Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

• Normally allows for a better fit to the data and thus more efficient search



Wing ball trees

- Nearest-neighbor search is done using the same backtracking strategy as in *k*D-trees
- Ball can be ruled out from consideration if: distance from target to ball's center exceeds ball's radius plus current upper bound



🐗 🎬 Building ball trees

- Ball trees are built top down (like *k*D-trees)
- Don't have to continue until leaf balls contain just two points: can enforce minimum occupancy (same in kD-trees)
- Basic problem: splitting a ball into two
- Simple (linear-time) split selection strategy:
- Choose point farthest from ball's center
- Choose second point farthest from first one

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- Assign each point to these two points
- Compute cluster centers and radii based on the two subsets to get two balls

100

Discussion of nearest-neighbor learning

- · Often very accurate
- Assumes all attributes are equally important
- Remedy: attribute selection or weights
- Possible remedies against noisy instances:
- Take a majority vote over the k nearest neighbors
- Removing noisy instances from dataset (difficult!)
- Statisticians have used k-NN since early 1950s
- If n→∞and k/n→0, error approaches minimum
 kD-trees become inefficient when number of
- attributes is too large (approximately > 10)
- Ball trees (which are instances of *metric trees*) work well in higher-dimensional spaces

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 101

More discussion

- Instead of storing all training instances, compress them into regions
- Example: hyperpipes (from discussion of 1R)
- Another simple technique (Voting Feature Intervals):
 - Construct intervals for each attribute
 - Discretize numeric attributes
 - Treat each value of a nominal attribute as an "interval"
 - Count number of times class occurs in interval
 - Prediction is generated by letting intervals vote (those that contain the test instance)

Clustering

- Clustering techniques apply when there is no class to be predicted
- Aim: divide instances into "natural" groups
- As we've seen clusters can be:
- disjoint vs. overlapping
- deterministic vs. probabilistic
- flat vs. hierarchical
- We'll look at a classic clustering algorithm called *k*-means

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

+ k-means clusters are disjoint, deterministic, and flat

103

To cluster data into *k* groups:

(*k* is predefined) 1. Choose *k* cluster centers

The *k*-means algorithm

- e.g. at random
- 2. Assign instances to clustersbased on distance to cluster centers

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

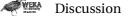
104

106

- 3. Compute *centroids* of clusters
- 4. Go to step 1

07/20/06

until convergence

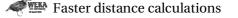


- Algorithm minimizes squared distance to cluster
- centers

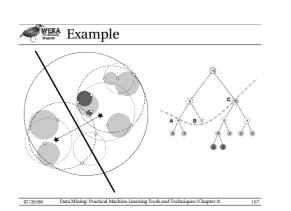
 Result can vary significantly
- based on initial choice of seeds Can get trapped in local minimum
- Example:

- To increase chance of finding global optimum: restart with different random seeds
- Can we applied recursively with k = 2

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4) 105



- Can we use *k*D-trees or ball trees to speed up the process? Yes:
 - First, build tree, which remains static, for all the data points
 - At each node, store number of instances and sum of all instances
 - In each iteration, descend tree and find out which cluster each node belongs to
 - Can stop descending as soon as we find out that a node belongs entirely to a particular cluster
 - Use statistics stored at the nodes to compute new cluster centers



Comments on basic methods

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 4)

- Bayes' rule stems from his "Essay towards solving a problem in the doctrine of chances" (1763)
 Difficult bit in general: estimating prior probabilities (easy in the case of naïve Bayes)
- Extension of naïve Bayes: Bayesian networks (which we'll discuss later)
- Algorithm for association rules is called APRIORI
 Minsky and Papert (1969) showed that linear
- classifiers have limitations, e.g. can't learn XOR • But: combinations of them can (→ multi-layer neural nets, which we'll discuss later)