WEKA

07/20/06

Data Mining

Practical Machine Learning Tools and Techniques

Slides for Chapter 1 of Data Mining by I. H. Witten and E. Frank

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

What's it all about?

- Data vs information
- Data mining and machine learning
- Structural descriptions
- Rules: classification and association Decision trees
- Datasets
 - Weather, contact lens, CPU performance, labor negotiation data, soybean classification
- Fielded applications
- Loan applications, screening images, load forecasting, machine fault diagnosis, market basket analysis Generalization as search
- Data mining and ethics

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

🕬 Data vs. information

- · Society produces huge amounts of data Sources: business, science, medicine, economics, geography, environment, sports, .
- · Potentially valuable resource
- · Raw data is useless: need techniques to automatically extract information from it
 - Data: recorded facts
 - · Information: patterns underlying the data

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

3

WEKA Information is crucial

- Example 1: in vitro fertilization
 - Given: embryos described by 60 features
 - · Problem: selection of embryos that will survive
 - Data: historical records of embryos and outcome
- Example 2: cow culling
 - · Given: cows described by 700 features · Problem: selection of cows that should be culled

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

· Data: historical records and farmers' decisions

4

🕬 Data mining

- Extracting
 - implicit,
 - previously unknown, · potentially useful

 - information from data
- · Needed: programs that detect patterns and regularities in the data
- Strong patterns ⇒good predictions
 - Problem 1: most patterns are not interesting
 - Problem 2: patterns may be inexact (or spurious)
 - Problem 3: data may be garbled or missing

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

- Algorithms for acquiring structural descriptions from examples
- · Structural descriptions represent patterns explicitly
 - Can be used to predict outcome in new situation
 - Can be used to understand and explain how prediction is derived (may be even more important)
- · Methods originate from artificial intelligence, statistics, and research on databases

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 6

WERA (Structur	al desc	riptions	
• Exam	ple: if-the	n rules	đ	
Otherwi then Age	se, if age = recommendati Spectacle prescription	young and as on = soft Astigmatism	Tear production rate	Recommended lenses
Young	Муоре	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Des anachura ia	Hunormotropo	No	Reduced	None
Pre- presbyopic	nypermetrope	INU	Reduced	140110
Presbyopic Presbyopic	Муоре	Yes	Normal	Hard

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Can machines really learn?

} Difficult to measure

} Does a slipper learn?

Trivial for computers

• Definitions of "learning" from dictionary:

To get knowledge of by study, experience, or being taught experience, or being taught To become aware by information or from observation To commit to memory To be informed of, ascertain; to reco

· Operational definition: Things learn when they change their behavior in a way that makes them perform better in the future.

• Does learning imply intention?

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

The weather problem

· Conditions for playing a certain game

Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	Normal	False	Yes

If outlook = sunny and humidity = high then play = no If outlook = rainy and windy = true then play = no If outlook = overcast then play = yes If humidity = normal then play = yes If none of the above then play = yes

07/20/06	Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)	0

WEKA	Ross Quinlan
------	--------------

- Machine learning researcher from 1970's
- University of Sydney, Australia
- 1986 "Induction of decision trees" ML Journal 1993 C4.5: Programs for machine learning.

Morgan Kaufmann

10

Classification vs. association rules Classification rule: predicts value of a given attribute (the classification of an example) If outlook = sunny and humidity = high then play = no Association rule: predicts value of arbitrary attribute (or combination) If temperature = cool then humidity = normal If humidity = normal and windy = false then play = yes If outlook = sunny and play = no then humidity = high If windy = false and play = no then outlook = sunny and humidity = high

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

· Some attributes have numeric values

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

If outlook = sunny and humidity > 83 then play = no If outlook = rainy and windy = true then play = no

- If outlook = rainy and whity = true is If outlook = overcast then play = yes If humidity < 85 then play = yes
- If none of the above then play = yes

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	No	Reduced	None
Young	Myope	No	Normal	Soft
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	No	Reduced	None
Young	Hypermetrope	No	Normal	Soft
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
te-presbyopic	Myope	No	Reduced	None
re-presbyopic	Myope	No	Normal	Soft
re-presbyopic	Myope	Yes	Reduced	None
te-presbyopic	Myope	Yes	Normal	Hard
re-presbyopic	Hypermetrope	No	Reduced	None
re-presbyopic	Hypermetrope	No	Normal	Soft
re-presbyopic	Hypermetrope	Yes	Reduced	None
re-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	No	Reduced	None
Presbyopic	Hypermetrope	No	Normal	Soft
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

	team production wate - reduced then recommendation - nere
Tf	are - young and astigmatic - no
	and tear production rate = normal then recommendation = soft
If	age = pre-presbyopic and astigmatic = no
	and tear production rate = normal then recommendation = soft
If	age = presbyopic and spectacle prescription = myope and astigmatic = no then recommendation = none
If	<pre>spectacle prescription = hypermetrope and astigmatic = no and tear production rate = normal then recommendation = soft</pre>
If	<pre>spectacle prescription = myope and astigmatic = yes and tear production rate = normal then recommendation = hard</pre>
If	age young and astigmatic = yes and tear production rate = normal then recommendation = hard
If	age = pre-presbyopic and spectacle prescription = hypermetrope
	and astigmatic = yes then recommendation = none
If	age = presbyopic and spectacle prescription = hypermetrope and astigmatic = yes then recommendation = none

Classifying iris flowers

	Sepal length	Sepal width	Petal length	Petal width	Туре
1	5.1	3.5	1.4	0.2	Iris setosa
2	4.9	3.0	1.4	0.2	Iris setosa
	7.0	0.0	47		leis
51	1.0	3.2	4.7	1.4	IT IS VERSICOIOF
52	6.4	3.2	4.5	1.5	Iris versicolor
101	6.3	3.3	6.0	2.5	lris virginica
102	5.8	2.7	5.1	1.9	Iris virginica

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 16

If petal length < 2.45 then Iris setosa If sepal width < 2.10 then Iris versicolor

...

WEKA	Predicting CPU performance

	Cycle time (ns)	Main r (F	memory (b)	Cache (Kb)	Cha	nnels	Performance
	MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP
1	125	256	6000	256	16	128	198
2	29	8000	32000	32	8	32	269
208	480	512	8000	32	0	0	67
209	480	1000	4000	0	0	0	45

Linear regression function

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 17

Data from labor negotiations

Attribute	Туре	1	2	3	40
Duration	(Number of years)	1	2	3	2
Wage increase first year	Percentage	2%	4%	4.3%	4.5
Wage increase second year	Percentage	?	5%	4.4%	4.0
Wage increase third year	Percentage	?	?	?	?
Cost of living adjustment	{none,tcf,tc}	none	tcf	?	none
Working hours per week	(Number of hours)	28	35	38	40
Pension	{none,ret-allw, empl- cntr}	none	?	?	?
Standby pay	Percentage	?	13%	?	?
Shift-work supplement	Percentage	?	5%	4%	4
Education allowance	{yes,no}	yes	?	?	?
Statutory holidays	(Number of days)	11	15	12	12
Vacation	{below-avg,avg,gen}	avg	gen	gen	avg
Long-term disability assistance	{yes,no}	no	?	?	yes
Dental plan contribution	{none,half,full}	none	?	full	full
Bereavement assistance	{yes,no}	no	?	?	yes
Health plan contribution	{none,half,full}	none	?	full	half
Acceptability of contract	{good,bad}	bad	good	good	good

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 18

PRP = -55.9 + 0.0489 MYCT + 0.0153 MMIN + 0.0056 MMAX + 0.6410 CACH - 0.2700 CHMIN + 1.480 CHMAX

				California
	Attribute	Number of values	Sample value	
Environment	Time of occurrence	7	July	
	Precipitation	3	Above normal	
Seed	Condition	2	Normal	12
	Mold growth	2	Absent	
Fruit	Condition of fruit pods	4	Normal	
	Fruit spots	5	?	
Leaf	Condition	2	Abnormal	
	Leaf spot size	3	?	
Stem	Condition	2	Abnormal	
	Stem lodging	2	Yes	
Root	Condition	3	Normal	
Diagnosis		19	Diaporthe stem canker	

- If leaf condition is normal and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown
- en diagnosis is rhizoctonia root rot
- If leaf malformation is absent and stem condition is abnormal and stem cankers is below soil line and canker lesion color is brown
- diagnosis is rhizoctonia root rot

But in this domain, "leaf condition is normal" implies "leaf malformation is absent"! Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Fielded applications

- The result of learning—or the learning method itself-is deployed in practical applications
 - Processing loan applications
 - · Screening images for oil slicks
 - Electricity supply forecasting
 Diagnosis of machine faults
 - Marketing and sales
 - · Separating crude oil and natural gas

 - Reducing banding in rotogravure printing Finding appropriate technicians for telephone faults
 - Scientific applications: biology, astronomy, chemistry

22

Automatic selection of TV programs

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Monitoring intensive care patients

Processing loan applications

· Given: questionnaire with financial and personal information • Question: should money be lent?

07/20/06

21

- Simple statistical method covers 90% of cases
- · Borderline cases referred to loan officers
- But: 50% of accepted borderline cases defaulted!
- Solution: reject all borderline cases? No! Borderline cases are most active customers

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

🐗 🎬 Enter machine learning

- · 1000 training examples of borderline cases
- 20 attributes:
 - age
 - · years with current employer
 - years at current address
 - years with the bank
 - other credit cards possessed,...
- · Learned rules: correct on 70% of cases human experts only 50%
- · Rules could be used to explain decisions to customers

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 24

Screening images

- · Given: radar satellite images of coastal waters
- · Problem: detect oil slicks in those images
- Oil slicks appear as dark regions with changing size and shape
- · Not easy: lookalike dark regions can be caused by weather conditions (e.g. high wind)
- · Expensive process requiring highly trained personnel

07/20/06

WEKA Load forecasting

· Electricity supply companies need forecast of future demand for power · Forecasts of min/max load for each hour

- ⇒significant savings · Given: manually constructed load model that
- assumes "normal" climatic conditions
- · Problem: adjust for weather conditions · Static model consist of:
- · base load for the year
- · load periodicity over the year
 - · effect of holidays
- 07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

🐗 🎬 Enter machine learning

- · Extract dark regions from normalized image
- Attributes:
 - size of region
 - shape, area
 - intensity
 - sharpness and jaggedness of boundaries
 proximity of other regions
 - info about background
- Constraints:
 - · Few training examples—oil slicks are rare!
 - Unbalanced data: most dark regions aren't slicks
 - · Regions from same image form a batch Requirement: adjustable false-alarm rate
 - Data Mining: Practical Machine Learning Tools and Techniques (Chap

🐖 🎬 Enter machine learning

- · Prediction corrected using "most similar" days
- Attributes:
 - temperature
 - humidity
 - wind speed
 - · cloud cover readings
- + plus difference between actual load and predicted load · Average difference among three "most similar" days
- added to static model

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Linear regression coefficients form attribute weights in similarity function

28

Diagnosis of machine faults

- · Diagnosis: classical domain of expert systems
- · Given: Fourier analysis of vibrations measured
- at various points of a device's mounting
- Question: which fault is present?
- · Preventative maintenance of electromechanical motors and generators
- Information very noisy

07/20/06

· So far: diagnosis by expert/hand-crafted rules

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

· Available: 600 faults with expert's diagnosis

• ~300 unsatisfactory, rest used for training

Enter machine learning

- · Attributes augmented by intermediate concepts that embodied causal domain knowledge
- · Expert not satisfied with initial rules because they did not relate to his domain knowledge
- · Further background knowledge resulted in more complex rules that were satisfactory
- · Learned rules outperformed hand-crafted ones

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 30

🎻 🎬 Marketing and sales I

- · Companies precisely record massive amounts of marketing and sales data
- Applications:
 - Customer loyalty: identifying customers that are likely to defect by detecting changes in their behavior (e.g. banks/phone companies)
 - Special offers:
 - identifying profitable customers (e.g. reliable owners of credit cards that need extra money during the holiday season)

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

🎻 🎬 Marketing and sales II

· Market basket analysis · Association techniques find groups of items that tend to occur together in a transaction (used to analyze checkout data)

- · Historical analysis of purchasing patterns · Identifying prospective customers
 - · Focusing promotional mailouts (targeted campaigns are cheaper than mass-marketed ones)

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 07/20/06

💓 WEKA Machine learning and statistics

- Historical difference (grossly oversimplified): · Statistics: testing hypotheses
 - Machine learning: finding the right hypothesis
- · But: huge overlap
 - Decision trees (C4.5 and CART)
 - Nearest-neighbor methods
- · Today: perspectives have converged
- Most ML algorithms employ statistical techniques

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

33

WEKA Statisticians

- Sir Ronald Aylmer Fisher
- Born: 17 Feb 1890 London, England
- Died: 29 July 1962 Adelaide, Australia Numerous distinguished contributions to developing the theory and application of statistics for making quantitative a vast field of biology

07/20/06

34

 Leo Breiman · Developed decision trees • 1984 Classification and Regression Trees. Wadsworth.

WEKA Generalization as search

- · Inductive learning: find a concept description that fits the data
- · Example: rule sets as description language
 - · Enormous, but finite, search space
- Simple solution:
 - · enumerate the concept space
 - · eliminate descriptions that do not fit examples
 - · surviving descriptions contain target concept

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

Enumerating the concept space

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

· Search space for weather problem

- 4 x 4 x 3 x 3 x 2 = 288 possible combinations
- With 14 rules $\Rightarrow 2.7 \times 10^{34}$ possible rule sets
- Other practical problems:
 - · More than one description may survive
 - No description may survive Language is unable to describe target concept *or* data contains noise
- · Another view of generalization as search: hill-climbing in description space according to pre-
- specified matching criterion Most practical algorithms use heuristic search that cannot guarantee to find the optimum solution

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 36

🕬 Bias

- · Important decisions in learning systems:
 - Concept description language
 - Order in which the space is searched
 - Way that overfitting to the particular training data is avoided

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

- These form the "bias" of the search:
 - Language bias
 - Search bias

07/20/06

+ Overfitting-avoidance bias

🐔 🔛 Language bias

- · Important question: is language universal
 - or does it restrict what can be learned?
- · Universal language can express arbitrary subsets of examples
- If language includes logical or ("disjunction"), it is universal
- · Example: rule sets
- · Domain knowledge can be used to exclude some concept descriptions a priori from the search

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

WEKA Search bias

· Search heuristic

- "Greedy" search: performing the best single step
- "Beam search": keeping several alternatives
- ...
- · Direction of search
 - General-to-specific
 - E.g. specializing a rule by adding conditions Specific-to-general
 - · E.g. generalizing an individual instance into a rule

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

39

Overfitting-avoidance bias

- · Can be seen as a form of search bias
- Modified evaluation criterion + E.g. balancing simplicity and number of errors
- Modified search strategy

• E.g. pruning (simplifying a description)

- Pre-pruning: stops at a simple description before search proceeds to an overly complex one
 Post-pruning: generates a complex description first and simplifies it afterwards

40

42

WEKA Data mining and ethics I

- · Ethical issues arise in practical applications
- · Data mining often used to discriminate
 - E.g. loan applications: using some information (e.g. sex, religion, race) is unethical
- Ethical situation depends on application E.g. same information ok in medical application
- · Attributes may contain problematic information
 - E.g. area code may correlate with race

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1) 41

WEKA Data mining and ethics II

07/20/06 Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

- · Important questions:
 - · Who is permitted access to the data?
 - · For what purpose was the data collected?
 - · What kind of conclusions can be legitimately drawn from it?
- · Caveats must be attached to results
- Purely statistical arguments are never sufficient!

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 1)

· Are resources put to good use?

07/20/06