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1. Introduction

• Financial Asset: Firstly, a contract, which only generate flows of
money is a financial assets. Secondly, a contract, which only
generate flows of other financial assets is also a financial asset.
• Financial Derivative: Financial asset, whose price only depends
on the value of other more basic underlying variables, such as
Stock prices, Bond prices, Temperature, Snow depth, . . .
• (Non-financial) Derivatives ∃ since thousands of years: Forward
Contracts on raw products, s.a. wheat
• Synonyms in this course: Financial Derivative, Derivative,
Derivative Security, Contingent Claim, . . .
• Fundamental Problem: Find a fair price of a derivative
(evaluation). Black, Merton and Scholes (∼1973)
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• Role of Derivatives:

- Hedge (cover) risks for some

- Portfolio management and speculation for others

- Arbitraging for a small number
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1.1 Some different types of derivatives

Underlying Assets: Spot price of a stock, Future price of a stock,
Exchange rate ($/e, . . . ), . . . . Underlying Assets also called
Primary Assets
A) Forward
Forward (contract): Contract that stipulates that its holder can
and shall buy the underlying for a predetermined amount K (the
delivery price) at a given future time T (the time of maturity).
The delivery price K is determined such that the value of the
contract is zero at the contract date
Forward Price: Let t0 be the contract date. Then, by definition,
the Forward Price of the underlying at t0 for delivery at T is K .
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B) Options
• European Call Option: Contract that stipulates that its holder
can buy the underlying for a predetermined amount K (the strike)
at a given future time T (the time of maturity or exercise date).
• American Call Option: As European except that all exercises
dates t ≤ T are allowed.
• Put Options: Substitute sell in place of buy in def. of Call
• Pay-Off at exercise time te and price of underlying Ste :

- Call: (Ste − K )+

- Put: (K − Ste )+

• Other Options: Asian, Barrier, Caps, Floors, Swaptions,
Straddle, Bermudan, Russian, . . .
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1.2 Market Models

• Mono-Period Models: Trading dates T = {0,T},
| |

t = 0 t = T̄

• Discrete Time Models: Trading dates T = {0, 1, . . . ,T − 1,T},

| | | | | |

0 1 2 T̄ −1 T̄

• Continuous Time Models: Trading dates T = [0,T ] (Most
simple and realistic),

| | | | | |

0 1 2 T̄ −1 T̄
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1.3 Arbitrage Pricing

• An Arbitrage Portfolio in a financial market (with a risk-free
asset) is a self-financing portfolio θ, whose value Vt(θ) at date
t ∈ T satisfies:

i) V0(θ) = 0

ii) VT (θ) ≥ 0

iii) P(VT (θ) > 0) > 0

• Arbitrage Free Market: @ an arbitrage portfolio; AOA
• Arbitrage Pricing of Derivatives in a arbitrage free market of
underlying assets: The price of a derivative is determined such that
the extended market of underlying assets and the derivative is
Arbitrage Free

Erik Taflin, EISTI MB Eval



RECALL

Efficient Market Hypothesis: Asset prices reflect all information
and no one can earn excess returns with certainty.
AOA is a precise mathematical formulation of the Efficient Market
Hypothesis.
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1.4 Frictionless and Ideal Market

We make several simplifying hypotheses concerning the financial
market (frictionless market):

The number of financial assets is constant in time

Asset prices take real values. No dividends are payed

One can sell and buy any real number multiple of an asset

Buy and sell prices are equal (i.e. no transaction costs)

Lend and borrow interest rates are equal

The price of asset is independent of the amount one buy and
sell (Price-taker market)

All information is public

A more realistic market can be obtained by modifying the Ideal
Market, with transaction costs and other frictions
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2. Mono-Period Market
2.1 Probabilistic Model

• Trading dates: T = {0,T}
• Probability space: (Ω,P,F), Ω set of elementary events, P a
priori probability, F σ-algebra of possible events
• Usually, but not always: Ω = {ω1, . . . , ωK̄}, where K̄ is the
number of elementary events, pi = P(ωi ) > 0, F = {subsets of Ω}
• N general Assets with prices S1, . . . ,SN (Quoted Spot Prices)
and possibly one more asset, a risk-free Asset with deterministic
price S0.
• Spot prices at t = 0 : S0 = (S1

0 , . . . ,S
N
0 ) ∈ RN if N assets;

S0 = (S0
0 , S

1
0 , . . . ,S

N
0 ) ∈ RN+1 and S0

0 > 0, if N + 1 assets. By
default S0

0 = 1, if not specified differently.
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• Spot prices at T : ST = (S1
T , . . . ,S

N
T ) is a random vector in RN

if N assets; ST = (S0
T , S

1
T , . . . ,S

N
T ) is a random vector in RN+1 if

1 + N assets, S0
1 > 0,

• Interest Rate r , when S0 ∃: S0
T = (1 + r)S0

0 , so 1 + r > 0
• Portfolio: θi is the number of units of the i-th asset held in the
portfolio θ. θ = (θ1, . . . , θN) ∈ RN if N assets.
θ = (θ0, . . . , θN) ∈ R1+N if 1 + N assets
• Value V(θ) of a prtf θ:

- at t = 0 : V0(θ) =
∑

i θ
iS i

0 = θ · S0 ∈ R
- at t = T : VT (θ) =

∑
i θ

iS i
T = θ · ST is random variable in R

• Gains from date 0 to date T on the investment V0(θ) in the prtf
θ: G(θ) = VT (θ)− V0(θ) = θ · (ST − S0) is random variable in R
• Return on the investment in the prtf θ: R(θ) = VT (θ)/V0(θ) if
V0(θ) 6= 0
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• Discounted prices, gains and return, when risk-free asset with
price S0 ∃: S̄ i

t = S i
t/S0

t , V̄t(θ) = θ · S̄0
t , Ḡ(θ) = V̄T (θ)− V̄0(θ),

R̄ = V̄T (θ)/V̄0(θ)
• Representation when Ω is a finite set:

V0(θ)

(VT̄ (θ))(ωK̄)

(VT̄ (θ))(ω1)

(VT̄ (θ))(ω2)

...
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• Matrix notation for calculations when Ω is a finite set:

- Let S and R be, when risk-free asset with price S0 ∃ the
K̄ × (1 + N) matrix and when risk-free asset with price S0 @
the K̄ × N matrix, with elements Sij = S j

T (ωi ) and

Rij = Sij/S j
0 respectively. S is the price matrix and R the

matrix of returns.

- Given a prtf θ, with V0(θ)) 6= 0. Let Θ and ϑ be, when
risk-free asset with price S0 ∃ the (1 + N)× 1 matrix and
when risk-free asset with price S0 @ the N × 1 matrix, with
elements Θi = θi and ϑi = θiS i

0/V0(θ)) respectively. Θ is the
portfolio matrix and ϑ the portfolio fractions matrix.

- Let V be the K̄ × 1 matrix with elements Vi = (VT (θ))(ωi ).

- Then V = SΘ and (R(θ))(ωi ) = (Rϑ)i for 1 ≤ i ≤ K̄ .
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2.2 Arbitrage and Equivalent Martingale Measure

• An Arbitrage Portfolio (or an Arbitrage Opportunity) is a
portfolio θ such that one of the following two statements A and B
is true:

A: The following three statements are true

i) V0(θ) = 0
ii) VT (θ) ≥ 0
iii) P(VT (θ) > 0) > 0

B: The following two statements are true

i) V0(θ) < 0
ii) VT (θ) ≥ 0

• Caution: In this course the above definition is specific for
mono-period case
• An Arbitrage Free Market is a market where @ an Arbitrage
Portfolio; (Also: Arbitraged Market, AOA)
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• State Price Vector: A vector β = (β1, . . . , βK̄ ) ∈ RK̄ satisfying ∀i

S i
0 =

∑

1≤j≤K̄

S i
T (ωj)βj (1)

is called a State Price Vector. The number βi is called a state
price (of ωi )
• Arrow-Debreu assets with pay-off e1, . . . , eK̄ : ei has pay-off 1 in
the state ωi and pay-off 0 in ωj if i 6= j , i.e. ei (ωj) = δij ,
∀i , j ∈ {1, . . . , K̄}.
• Interpretation of βi : If, for a given i , ei is one of the primary
assets, then (1) gives that βi is the price of ei at t = 0
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• Price Π0(X ) at date t = 0 of a general pay-off X at date T .
Intuitively, since βi not always tradable: An asset with pay-off
X (ωi )ei at date T has price X (ωi )βi at t = 0, so a price candidate
is (justification in §3)

Π0(X ) =
∑

1≤i≤K̄

X (ωi )βi (2)

Caution: β not unique in general ⇒ Π0(X ) not unique in general

Theorem 2.1

@ an arbitrage portfolio if and only if ∃ β such that βi > 0, ∀
1 ≤ i ≤ K̄ . Proof:

Erik Taflin, EISTI MB Eval



RECALL

• Equivalent martingale Measure (E.M.M.) and Interest Rate:

- Suppose that ∃ state price vector β, with βi > 0 ∀i . Define r
by

1/(1 + r) =
∑

1≤i≤K̄

βi (3)

- r is the interest rate defined by a risk-free asset. In fact, Eq.
(2) ⇒

Π0(1 + r) =
∑

1≤i≤K̄

(1 + r)βi = 1 (4)

- Define qi = (1 + r)βi and the measure Q by Q(ωi ) = qi .
Then qi > 0 and

∑
1≤i≤K̄ qi = 1, so Q is a probability

measure and P ∼ Q.
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- Expected value w.r.t. Q is: EQ [X ] =
∑

1≤i≤K̄ X (ωi )qi . Eq.
(2) ⇒

Π0(X ) = EQ

[
X

1 + r

]
(5)

- Ingredients : Arbitrage Price, Q ∼ P and Pay-Off discounted
to t = 0
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• Interpretation of Q, when risk-free asset with price S0 ∃:

- S̄ , the discounted prices are defined by: S̄ i
t = S i

t/S0
t for t ∈ T.

So S̄0
0 = S̄0

T = 1

- Eq. (5) gives

S̄ i
0 = EQ

[
S̄ i

T

]
, 0 ≤ i ≤ N (6)

- Eq. (6) ⇒ S̄ is a martingale under Q

• Definition of e.m.m. (in market with or without S0):

Definition 2.2

An Equivalent Martingale Measure (e.m.m.) Q is a probability
measure on (Ω,F) equivalent to P, such that for some r > −1
and ∀i

S i
0 = EQ

[
S i

T

1 + r

]
. (7)
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i) In general there is not a unique e.m.m., i.e. equation (7) for Q
and r has not always a unique solution.
ii) If Q and r is a solution of (7), then βi = qi/(1 + r), with
qi = Q(ωi ), defines a state price vector β satisfying (3).
• First Fundamental Theorem of Finance: Theorem 2.1 gives

Theorem 2.3

∃ an Equivalent Martingale Measure if and only if the market is
arbitrage free
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Corollary 2.4

In an arbitrage free market, we have for all interest rates r and
e.m.m. Q solution of (7) and all portfolios θ that

V0(θ) = EQ

[
VT (θ)

1 + r

]
. (8)

• V̄t(θ) portfolio price discounted to date 0 if S0 ∃: Let
V̄t(θ) = Vt(θ)/S0

t . Corollary 2.4 ⇒

V̄0(θ) = EQ

[
V̄T (θ)

]
. (9)
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2.3 Pricing of Derivative Products

We here introduce arbitrage pricing methods clarifying the validity
and meaning of pricing formulas (2) and (5).
• Derivative Product: A derivative is defined by its pay-off X at
date T , where X is any F-measurable r.v. (Only mono-period
case)
• Hedging Portfolio: A derivative X is hedgeable (or attainable) if
there ∃ a prtf. θ s.t.

VT (θ) = X . (10)

Such θ is called a Hedging portfolio of X .
• M: In the sequel M denotes the spot market defined by S and
the set of possible portfolios.
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Example 2.5

We consider the mono-period market with interest rate r = 10%
and two stocks S1 et S2 :

- Price at t = 0 : S1
0 = S2

0 = 100

- Price at t = T :

S1
T (ω1) = 88, S1

T (ω2) = 110, S1
T (ω3) = 132, (11)

S2
T (ω1) = 132, S2

T (ω2) = 88, S2
T (ω3) = 110. (12)

Find a hedging portfolio of a Put on S1 with strike 105.
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Solution:
The pay-off is X = (105− S1

T )+, so X (ω1) = 17, X (ω2) = 0 and
X (ω3) = 0. The hedging portfolio θ shall satisfy VT (θ) = X .
In matrix notation

X = SΘ, (13)

where

X =




17
0
0


 and S =




11
10 88 132
11
10 110 88
11
10 132 110


 . (14)

Erik Taflin, EISTI MB Eval



RECALL

S is invertible, which gives

Θ = S−1X =




170
33
−17

66
17
66


 . (15)

So the hedging portfolio is θ = ( 170
33 ,−17

66 ,
17
66 ) and its price at

t = 0 is V0(θ) = 170
33 .

Fin Example 2.5.
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• The value of Hedging Portfolios at t = 0 of X is unique:
Suppose that the market M is Arbitrage Free. Let X be a
hedgeable derivative and let θ and η be hedging portfolios of X .
Then V0(θ) = V0(η). Let Q and r satisfy Eq. (7). Then

V0(θ) = EQ

[
X

1 + r

]
. (16)

Proof: Follows from (8) of Corollary 2.4.
• M′: Let X be a derivative and x ∈ R. In next theorem M′
denotes the market with prices S0 and x at t = 0 and prices ST

and X at t = T .
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Theorem 2.6

Let M be Arbitrage Free. Then the following three statements are
equivalent:

i) The market M′ is arbitrage free

ii) ∃ an e.m.m. Q and a interest rate r , satisfying Eq. (7) and

x = EQ

[
X

1 + r

]
. (17)

iii) ∃ β, satisfying (1), s.t. βi > 0, ∀ 1 ≤ i ≤ K̄ and s.t.

x =
∑

1≤i≤K̄

X (ωi )βi . (18)
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Corollary 2.7

Let M be Arbitrage Free. If X is hedgeable, then the price x for
which statement ii) of Theorem 2.6 holds true is unique.

• Thus, for a hedgeable derivative X , Theorem 2.6 and Corollary
2.7 justify to call this unique price x , The Arbitrage Price of X . It
is denoted Π0(X ) and

Π0(X ) = EQ

[
X

1 + r

]
, (19)

for any e.m.m. Q and a interest rate r , satisfying Eq. (7).
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Example 2.8

We consider the mono-period market with interest rate r = 5%,
two stocks S1 and S2 and three states ω1, ω2 and ω3 :

S1
T

S1
0

(ω1) =
42

31
,

S1
T

S1
0

(ω2) =
21

31
,

S1
T

S1
0

(ω3) =
21

62

and
S2

T

S2
0

(ω1) =
21

124
,

S2
T

S2
0

(ω2) =
42

31
,

S2
T

S2
0

(ω3) =
168

31
.

The a priori probability of ω1, ω2 and ω3 are 1/8, 3/8 and 4/8
respectively.
What is the price (at t = 0) of a Call on S2 with strike
(150/31)S2

0 , obtained by using an e.m.m. Q? Also, find a hedging
portfolio of the Call. What is the price of the hedging portfolio?

Erik Taflin, EISTI MB Eval



RECALL

Solution:
Let qk = Q({ωk}). The eq. EQ

[
S̄T

]
= S̄0 gives

EQ [ST ] = (1 + r)S0, which then gives

q1S i
T (ω1) + q2S i

T (ω2) + q3S i
T (ω3) = (1 + r)S i

0 i = 0, 1, 2.

With matrix notation we obtain

(R)t




q1

q2

q3


 = (1 + r)




1
1
1


 . (20)

Here

R =




21
20

42
31

21
124

21
20

21
31

42
31

21
20

21
62

168
31


 . (21)
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The unique solution of (20) is

q1 =
3

5
, q2 =

3

10
, q3 =

1

10
. (22)

The pay-off of the Call is X = (S2
T − 150

31 S2
0 )+, so X (ω1) = 0,

X (ω2) = 0 and X (ω3) = 18
31 S2

0 . Its price at t = 0 is

EQ

[
X

1 + r

]
= q3

X (ω3)

1 + r
=

12

217
S2

0 . (23)
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A hedging portfolio θ of the Call shall satisfy VT (θ) = X . In matrix
notation

X = SΘ = R



θ0S0

0

θ1S1
0

θ2S2
0


 , where X =




0
0

18
31 S2

0


 . (24)

This gives 

θ0S0

0

θ1S1
0

θ2S2
0


 = S2

0



−3600

8897
12
41
48

287


 . (25)

We have V0(θ) = 12
217 S2

0 , which, as it should be, is the same as the
the price given in (23). Fin Example 2.8.
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• Complete Market: The market M is said to be Complete, when
“all” derivatives are hedgeable.
• Second Fundamental Theorem:

Theorem 2.9

The following two statements are equivalent:

i) The market M is arbitrage free and complete

ii) ∃ a unique e.m.m. Q.

Corollary 2.10

In an arbitrage free and complete market, every derivative X has a
unique arbitrage price Π0(X ) at t = 0, given by (19).
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• Pricing of a derivative X in an Incomplete Market: If X is
hedgeable, then a unique arbitrage price Π0(X ) is given by (19)
according to Corollary 2.7. As we shall see, there is no unique
arbitrage price, when X is not hedgeable.
• Me : Let Me be the set of e.m.m. for the market M, which is
supposed arbitrage free. So Me 6= ∅.
• Possible arbitrage prices of X : Theorem 2.6 and formula (17)
gives that for every Q ∈Me and corresponding interest rate r , a
possible arbitrage price is given by

EQ

[
X

1 + r

]
.

This leads to an interval of possible arbitrage prices.
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• Lower-Upper price spread: ]Π∗0(X ),Π∗0(X )[ , where

Π∗0(X ) = inf
Q∈Me

EQ

[
X

1 + r

]
and Π∗0(X ) = sup

Q∈Me

EQ

[
X

1 + r

]
.

(26)
Remind that in general r in this formula depends on Q. Let M be
Arbitrage Free and let the price of X at t = 0 be x . Then the
market M′ is arbitrage free iff x ∈ ]Π∗0(X ),Π∗0(X )[ .
• Problem: How to choose the price in ]Π∗0(X ),Π∗0(X )[ ?
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Price of derivative and completness

3 Binomial Model, 3.1 Definition

• Assets: One risk-free with price S0 and one risky asset with price
S1, for ex. a stock
• 2 possible evolutions from t to t + 1: Up denoted u and Down
denoted d . The probabilities of u and d are p and 1− p
respectively, where 0 < p < 1 and p is independent of what has
happened before t. Typically, if u (resp. d) then the price S1

evolves by a factor U (resp. D) where D ≤ U :

u

d

S0
t

(1+ r)S0
t

(1+ r)S0
t

t t +1

u

d

S1
t

US1
t

DS1
t

t t +1

Figure: Price binom. mod.
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Price of derivative and completness

• The Random Source in Bin. Mod. is a Bernoulli process ν:

- ν = (ν1, . . . , νT ), where the νt are i.i.d., P(νt = 1) = p and
P(νt = 0) = 1− p

- Ω = {0, 1}T ; νt(ω) is the t:th coordinate of ω ∈ Ω, so
ω = (ν1(ω), . . . , νT (ω)). Convention: ωk has the coordinates
given by the binary representation of the integer k,
0 ≤ k ≤ 2T − 1

- If ω ∈ Ω corresponds to n Up’s (so T − n Down’s) then
P(ω) = pn(1− p)T−n

- Filtration {Ft}t∈T, where F0 = {Ω, ∅} and
Ft = σ(ν1, . . . , νt), for 1 ≤ t ≤ T . So ν1, . . . , νt are known at
t.

- νt+1(ω) = 0 and νt+1(ω) = 1 are identified with the evolution
d and u respectively, from t to t + 1.
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Price of derivative and completness

• Information tree: one-to-one correspondence between states and
final leaves

t = 0 t = 1 t = 2 t = 3 t = T̄ − 1 t = T̄
ω0

ω1

ωn

ωn+1

ωK̄−2

ωK̄−1

Figure: Information tree; Number of states K̄ = 2T
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Price of derivative and completness

• Path lattice: one-to-one correspondence between states ω and
paths

t = 0 t = 1 t = 2 t = 3 t = T̄ − 1 t = T̄

Figure: Path lattice; Number of paths K̄ = 2T
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Price of derivative and completness

Example 3.1

t = 0 t = 1 t = 2 t = T̄

ω0 = (0,0,0)

ω1 = (0,0,1)
ω2 = (0,1,0)

ω3 = (0,1,1)
ω4 = (1,0,0)

ω5 = (1,0,1)
ω6 = (1,1,0)

ω7 = (1,1,1)

Figure: Information tree, with T = 3, K̄ = 8
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Price of derivative and completness

2) Filtration:

- F0 = {Ω, ∅}.
- F1 = σ(ν1). To find it, let A1(0) = ν−1

1 ({0}) and
A1(1) = ν−1

1 ({1}), where ν−1
1 (B) is the inverse image of the

set B.

Then A1(0) = {ω0, ω1, ω2, ω3},A1(1) = {ω4, ω5, ω6, ω7}

so F1 = σ(A1(0),A1(1)).

Since {A1(0),A1(1)} is a partition of Ω it follows that, at
time t = 1 we can distinguish between events in A1(0) and
events in A1(1), but we can not distinguish between events
within A1(0) or events within A1(1).
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Price of derivative and completness

- F2 = σ(ν1, ν2). Let A2(i , j) = ν−1
1 ({i}) ∩ ν−1

2 ({j}). Then

A2(0, 0) = {ω0, ω1},A2(0, 1) = {ω2, ω3},
A2(1, 0) = {ω4, ω5},A2(1, 1) = {ω6, ω7},

(27)

so F2 = σ(A2(0, 0),A2(0, 1),A2(1, 0),A2(1, 1)}. Since the
A2(i , j) defines a partition of Ω, at t = 2 one can distinguish
between events which are in two different such sets, but not
within the same set.

- F3 = σ(ν1, ν2, ν3). Let
A3(i , j , k) = ν−1

1 ({i}) ∩ ν−1
2 ({i}) ∩ ν−1

3 ({k}). Then
A3(i , j , k) = {(i , j , k)}. Explicitly,

A3(0, 0, 0) = {ω0}, . . . ,A3(1, 1, 1) = {ω7}.

So F3 is the set of all subsets of Ω.
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3) Let X be a r.v. (later on it will be a derivative product)

- X is F0-measurable, i.e known at t = 0, means exactly that X
is constant on Ω, i.e. X (ω) = X (ω′) ∀ω, ω′ ∈ Ω

- X is F1-m. ⇔ X is constant on A1(0) and constant on A1(1).

- X is F2-m. ⇔ X is constant on each one of the sets
A2(0, 0),A2(0, 1),A2(1, 0),A2(1, 1)

- X is F3-m. ⇔ X is arbitrary
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• Number of Up’s: Let Nt be the number of Up’s up to date t
included:

N0 = 0, Nt = ν1 + . . .+ νt , if t > 0. (28)

• Binomial Distribution: If 0 ≤ n ≤ t, then

P(Nt = n) =

(
t

n

)
pn(1− p)t−n.

• Price Distribution:

S1
t = S1

0 UNt Dt−Nt

gives P(S1
t = S1

0 UnDt−n) =

(
t

n

)
pn(1− p)t−n.

• Recall that:

E [Nt ] = tp and var [Nt ] = tp(1− p).
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• Markov Process:
S1

t+1

S1
t

are independent of S1
0 , ..,S

1
t

• To sum up, the binomial price model is given by the filtered
probability space (Ω,P,F ,A), the two dimensional price process S
and the possible trading times t ∈ T = {0, . . . ,T}, where

Ω is the set of elementary events

P is the a priori probability measure

F = FT is the σ-algebra of all events

A = (Ft)t∈T is the filtration
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Example 3.2

U = 2 , D = 1
2 , p = 3

4 , S1
0 = 1 , T = 3 Reduced tree S1 :

1

2

1
2

4

1

1
4

8

2

1
2

1
8

Figure: Price path lattice, ω1 = (0, 0, 1), ω2 = (0, 1, 0) and ω4 = (1, 0, 0).

Erik Taflin, EISTI MB Eval



RECALL

Price of derivative and completness

P (ω4) = p(1 − p)2 = 3
4

(
1
4

)2
= 3

64

P (ω2) = p(1 − p)2 = 3
64

P (ω1) = p(1 − p)2 = 3
4

(
1
4

)2
= 3

64

P (ω0) = (1 − p)3 =
(

1
4

)3

ω7

ω6

ω5

ω4

ω3

ω2

ω1

ω0

P (S1
3 = 1

2
) = P ({ω1 , ω2 , ω4})

= 3 · 3
64

= 9
64

Figure: Information tree
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3.2 Portfolios

• A portfolio θ is given by:

θi
t is the number of units held at time t of asset nr. i

θt = (θ0
t , θ

1
t ) is the portfolio held at time t. θt is known at t,

i.e. is Ft-measurable

θ = (θ0, θ1, ..., θT ) is the portfolio process. It is adapted to
the filtration (Ft)t∈T.

• Value (price) Vt(θ) of θ at t

Vt(θ) = θ0
t S0

t + θ1
t S1

t = θt · St

• Gains process G (θ); Gains Gt(θ) from 0 to t

Gt(θ) =
∑

0≤s<t

θs · (Ss+1 − Ss)
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• Discounted prices S̄ = S
S0 , i.e. S̄0

t = S0
t

S0
t

= 1 and S̄1
t = S1

t

S0
t

• Discounted value of θ at t : V̄T (θ) = Vt(θ
S0

t
= θt · S̄t .

• Discounted gains

Ḡt(θ) =
∑

0≤s<t

θs · (S̄s+1 − S̄s)

• Self-financed portfolio

Definition 3.3

A portfolio θ is self-financed iff

∀ t ∈ T, Vt(θ) = V0(θ) + Gt(θ) (29)
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Theorem 3.4

θ is self-financed iff

∀ t ∈ {0, . . . ,T − 1}, θt · St+1 = θt+1 · St+1 (30)

Proof: By definition Vt+1(θ) = θt+1 · St+1. Suppose (30) true.
Repeated use of the following equality then shows that θ is
self-financed:

Vt+1(θ) = θt · St+1 = θt · St + θt · (St+1 − St) = Vt(θ) + θt · (St+1 − St)

If θ is self-financed then repeated use of this equality, with the last
member = θt+1 · St+1, in the opposite direction proves that (30) is
true. �

Theorem 3.5

θ is self-financed iff ∀ t ∈ T, V̄t(θ) = V0(θ) + Ḡt(θ).
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3.3 Arbitrage and Equivalent Martingale Measure (e.m.m.)

Question for motivation of the introduction of e.m.m

• Binomial model T = 3, U = 2, D = 1
2 , r = 0, p = 3

4 , S1
0 = 1

• European Call: Strike K = 1 (at the money), Maturity T

1

2

1
2

4

1

1
4

8

2

1
2

1
8

Pay Off = X = (S1
T −K)+ = (S1

T − 1)+

7 = X({ω7})

1 = X({ω3}) = X({ω5}) = X({ω6})

0 = X({ω1}) = X({ω2}) = X({ω4})

0 = X({ω0})

• What is the price of the Call at t = 0?
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Answer:

• The price is 13
27 . In fact

13

27
= Q(S1

3 = 2) · 1 + Q(S1
3 = 8) · 7 = 3q2(1− q) + 7q3. (31)

Q is here an Equivalent Martingale Measure (e.m.m) given by

Q(S1
t+1 = US1

t+1) ≡ q =
1 + r − D

U − D
=

1− 1/2

2− 1/2
=

1

3
. (32)
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• Arbitrage Opportunity (OA) and Arbitrage Portfolio in the
Binomial financial market

Definition 3.6

An Arbitrage Portfolio is a self-financing portfolio θ, whose value
Vt(θ) at date t ∈ T satisfies:

i) V0(θ) = 0

ii) VT (θ) ≥ 0

iii) P(VT (θ) > 0) > 0

• AOA ⇔ @ OA ⇔ Arbitrage free market

Theorem 3.7

The Binomial financial market is arbitrage free iff

D < 1 + r < U or D = 1 + r = U.
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Lemma 3.8

The following two statements are equivalent:

1 The Binomial market is arbitrage free

2 Every mono-period sub-market of the Binomial market is
arbitrage free
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Proof:
• Suppose first that there exists a mono-period sub-market with an
OA

ω2T−1

ω1

ω0

états ∈ Ω0Ft

t0 t0 + 1
Sous-Modèle de t0 à t0 + 1
avec OA permet la construction
d’un portefeuille d’arbitrage de t0 à t = T
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θ0 = · · · = θt0−1 = 0




θt0 · St0
= 0

θt0 · St0+1 ≥ 0

E
[
θt0 · St0+1|Ft

]
> 0

(33)

θt0+1 = (θ0
t+1, 0) = · · · = θT = (θ0

T , 0) all invested in the bank
account.
⇒ θ is an arbitrage portfolio.
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• Suppose then that there does not exist a mono-period
sub-market with an OA. Let θ be a self-financed portfolio such
that VT (θ) ≥ 0.

VT (θ) ≥ 0

t = t0 t = T
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• Then VT−1(θ) ≥ 0, (or otherwise there exists an arbitrage
portfolio from T − 1 to T )
• So, by iteration VT (θ) ≥ 0, VT−1(θ) ≥ 0, . . . , V0(θ) ≥ 0.
• Let θ be such that V0(θ) = 0. Since V1(θ) ≥ 0, we must have
V1(θ) = 0 (if not ∃ OA). Similarly

V1(θ) = 0 ⇒ V2(θ) = 0 ⇒ · · ·VT (θ) = 0

⇒ @ arbitrage portfolio θ. �
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• e.m.m.; Equivalent Martingale Measure in the Binomial financial
market

Definition 3.9

An e.m.m. is a probability measure Q s.t.
Q ∼ P and S̄ = S

S0 , is a Q martingale, i.e.

S̄t = EQ

[
S̄t+1|Ft

]
, for all t = 0, 1, ...,T . (34)
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• Find an e.m.m; Q ∼ P and (34) ⇔

S1
t (ω)

(1 + r)t
= EQ

[
St+1

(1 + r)t+1
|Ft

]
(ω)

⇔ S1
t (ω) = qt(ω)

S1
t (ω)U

(1 + r)
+ (1− qt(ω))

S1
t (ω)D

(1 + r)

⇔ qt(ω) = q ≡ 1 + r − D

U − D
, if U > D and 0 < qt(ω) < 1 if U = D.

Here q is the probability under the mono-periode e.m.m.

Theorem 3.10

For the Binomial financial market there exists an e.m.m. iff

D < 1 + r < U or D = 1 + r = U.
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Corollary 3.11

For the Binomial financial market there exists an e.m.m. iff there is
AOA

• Price of a self-financed portfolio θ:
V̄ (θ) is a Q-martingale, i.e.

V̄t(θ) = EQ

[
V̄t+1(θ)|Ft

]
.

In fact, since θ is self-financed θt+1 · S̄t+1 = θt · S̄t+1 and since θt
is Ft-measurable:

EQ

[
V̄t+1(θ)|Ft

]
= EQ

[
θt+1 · S̄t+1|Ft

]
= EQ

[
θt · S̄t+1|Ft

]

=
∑

i

θi
tE
[
S̄ i

t+1|Ft

]
=
∑

i

θi
t S̄ i

t = V̄t(θ). (35)
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3.4 Price of a derivative and completness

• A European Derivative is a contract, which determines the
pay-off X (ω) for all ω ∈ Ω at the exercise date T . T coincide with
the maturity date.
⇒ Bijective relation between real r.v. X on Ω and EU derivatives.
• Hedging portfolio θ of an EU derivative X is a self-financed
portfolio θ s.t. VT (θ) = X . X is said to be hedgeable.
• Consider the cases for which there is AOA

1 D = 1 + r = U

2 D < 1 + r < U

What are the hedgeable EU derivatives X ?
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1) D = 1 + r = U ⇒ S1
t = S1

0 S0
t

⇒ Vt(θ) = S0
t (θ0

t + θ1
t S1

0 )
θ self-financed ⇒ θtSt+1 = θt+1St+1

⇒ θ0
t S0

t+1 + θ1
t S1

0 S0
t+1 = θ0

t+1S0
t+1 + θ1

t+1S1
0 S0

t+1

⇒ θ0
t + θ1

t S1
0 = θ0

t+1 + θ1
t+1S1

0

⇒ θ0
t + θ1

t S1
0 = V0(θ)

⇒ Vt(θ) = V0(θ)S0
t

⇒ Only deterministic X are hedgeable !!
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2) D < 1 + r < U. Let X be an arbitrary r.v. on Ω. Try to find θ
self-financed and with VT (θ) = X .

X(ω2T−1)

X(ω2T−2)

X(ω3)

X(ω2)
X(ω1)

X(ω0)

V (θ)(ω2T−1)
2T − 2

V (θ)(ω3)
2

V (θ)(ω1)
0
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• We have, for ω = ω0 or ω1 :
VT (θ)(ω) = θT (ω) · ST (ω) = θT−1(ω) · ST (ω) = X (ω)
But, since θT−1 is FT − 1-measurable:
θT−1(ω0) = θT−1(ω1) = θT−1(ω) ⇒

{
θ0
T−1(ω)(1 + r)T + θ1

T−1(ω)S1
T−1(ω)U = X (ω1)

θ0
T−1(ω)(1 + r)T + θ1

T−1(ω)S1
T−1(ω)D = X (ω0)

⇒ {
θ1
T−1(ω)S1

T−1(ω) = X (ω1)−X (ω0)
U−D

θ0
T−1(ω)(1 + r)T−1 = 1

1+r
X (ω0)U−X (ω1)D

U−D
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• Same method for ω = ω2 or ω3

• Same method for ω = ω4 or ω5

• etc. same method up to ω = ω2T−2 or ω2T−1

• Then by iteration from T − 1 to T − 2, . . . , from t = 1 to t = 0.
• ⇒ All EU derivatives X are hedgeable.
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• Complete Market: A financial market is said to be complete if all
derivatives are hedgeable. We have proved

Theorem 3.12

For the Binomial Market the following statements are equivalent

The Market is arbitrage free and complete

D < 1 + r < U

∃ a unique e.m.m. Q

• Π(X ), Arbitrage price of X : Let θ be a hedging portfolio of X .
For such θ, V (θ) is independent of θ, so we define

∀ t ∈ T Πt(X ) = Vt(θ). (36)

In the sequel price = arbitrage price
• Π̄(X ), Discounted price of X : Π̄t(X ) = Πt(X )/S0

t .
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Theorem 3.13

In the Binomial Model the discounted price of any derivative X is a
Q-martingale,i.e.

Π̄t(X ) = EQ

[
Π̄t+1(X ) | Ft

]
, for 0 ≤ t ≤ T − 1. (37)

Erik Taflin, EISTI MB Eval



RECALL

Price of derivative and completness

Example 3.14

Prices for all ω and t in (31)

1

2

1
2

4

1

1
4

8

2

1
2

1
8

Price of X Pay Off = X = (S1
T −K)+ = (S1

T − 1)+

7 = X({ω7})

1 = X({ω3}) = X({ω5}) = X({ω6})

0 = X({ω1}) = X({ω2}) = X({ω4})

0 = X({ω0})

13
27

11
9

1
9

3

1
3

0
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Example 3.15 (Barrier)

Let T = 3, r = 1
10 , U = 5

4 , D = 4
5 , S1

0 = 400, p = 3
4 . Find the

price at t = 0 of a Barrier Option of the type Down-And-Out Call
with

Barrier H = 350, Strike K = 450.

N.B : The Pay Off at T in the state ω is given by

X (ω) =

{
0 if min0≤t≤T S1

t (ω) < H

(S1
T (ω)− K )+ if min0≤t≤T S1

t (ω) ≥ H
(38)

We also have, denoting by 1A the caracteristic function of a set A :

X = (S1
T − K )+ 1{min0≤t≤T S1

t ≥H}. (39)
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Solution: q = 1+r−D
U−D =

11
10
− 4

5
5
4
− 4

5

. So q = 2
3

400

500

320

635

400

256

3135
4

= 781, 24

500

320

1024
5

= 204, 8

t = 0 t = 1 t = 2 t = 3 = T

S1
t

350 = H
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400

500

320

635

400

400

256

3125
4

= 781, 25

500

500

500

320

320

320

1024
5

= 204, 8

Information tree with S1

PAY-OFF in ω

(3125
4
− 450)+ = 1325

4
(ω7)

(500− 450)+ = 50 (ω6)

50 (ω5)

0 (ω4)

0 (ω3)

0 (ω2)

0 (ω1)

0 (ω0)
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• Price at t = 0 :

Π0(X ) = EQ

[
X

S0
T

]
=

1

(1 + r)T
EQ [X ]

1

(1 + r)T
EQ [X ] =

(
10

11

)3(
Q({ω5})50 + Q({ω6})50 + Q({ω7})

1325

4

)

=

(
10

11

)3(
2 · 50q2(1− q) +

1325

4
q3

)

=

(
10

11

)3
(

100 ·
(

2

3

)2

(
1

3
) +

1325

4
·
(

2

3

)3
)

=

(
10

33

)3

(400 + 2 · 1325) ≈ 84.87.
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Example 3.16 (Asian Call Option)

Let T = 4, r = 1
4 , D = 1, U = 2, S1

0 = 10, p = 3
4 .

Consider an option with pay-off X at maturity T :

X = (
1

T

T∑

t=1

S1
t − K )+, with strike K = 35. (40)

Find the price (ΠX (t))(ω), for all t, ω.
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Before studying the price of the option, we note that the pay-off X
is path dependant.

10

20

10

40

20

10

80

40

20

10

160

80

40

20

10

⇒ 1
T

∑T
t=1 S1

t = 220
4

⇒ 1
T

∑T
t=1 S1

t = 150
4
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S1
0 = 10

20

10

40

20

20

10

80

40

40

20

10

20

20

40

160

80
80

40
80

40
40

20

10

20
20

40
20

40
40

80

ω ∈ Ω ; Ω = {ω0, ω1, ..., ω15} K = 35

Arbre des prix S1
t (ω)
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S1
4(ω) 1

4

∑4
t=1 S1

t (ω) X = (1
4

∑4
t=1 Si

t −K)+

S1
4(ω15) = 160 300

4
= 75 X(ω15) = 40

S1
4(ω14) = 80 220

4
= 55 X(ω14) = 20

S1
4(ω13) = 80 180

4
= 45 X(ω13) = 10

S1
4(ω12) = 40 140

4
= 35 X(ω12) = 0

S1
4(ω11) = 80 160

4
= 40 X(ω11) = 5

S1
4(ω10) = 40 120

4
= 30 X(ω10) = 0

S1
4(ω9) = 40 100

4
= 25 X(ω9) = 0

S1
4(ω8) = 20 80

4
= 20 X(ω8) = 0

S1
4(ω7) = 80 150

4
= 75

2
X(ω7) = 5

2

S1
4(ω6) = 40 110

4
= 55

2
X(ω6) = 0

S1
4(ω5) = 40 90

4
= 45

2
X(ω5) = 0

S1
4(ω4) = 20 70

4
= 35

2
X(ω4) = 0

S1
4(ω3) = 40 80

4
= 20 X(ω3) = 0

S1
4(ω2) = 20 60

4
= 15 X(ω2) = 0

S1
4(ω1) = 20 50

4
= 25

2
X(ω1) = 0

S1
4(ω0) = 10 40

4
= 10 X(ω0) = 0
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61
250

29
25

1
50

26
5

1
5

0

1
10

20

2

1

0

0

0

0

1
2

q =
5
4
−1

2−1
= 1

4
; Πt(X) = 1

1+r
EQ [Πt+1(X)|Ft] = 4

5

(
1
4
Πt+1(X)(up) + 3

4
Πt+1(X)(down)

)

⇒ Πt(X) = 1
5
Πt+1(X)(up) + 3

5
Πt+1(X)(down)

X

X(ω15) = 40

X(ω14) = 20
X(ω13) = 10

X(ω12) = 0
X(ω11) = 5

X(ω10) = 0
X(ω9) = 0

X(ω8) = 0

X(ω0) = 0

X(ω1) = 0
X(ω2) = 0

X(ω3) = 0
X(ω4) = 0

X(ω5) = 0
X(ω6) = 0

X(ω7) = 5
2
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4 Continuous Time Markets

• Aim: Introduce the model of Black, Merton and Scholes and its
generalizations
• Why Continuous time models?

- Assets are (in many cases) quoted at high frequency and
without interruption; Ex: Foreign Exchange rates and
Stock-indices
⇒ Almost continuously quoted

- A robust discrete time model must give predictions almost
independent of the time increment ∆, when ∆ is small:

| | | | | |

0 t t + Δ

⇒ Continuous limit ∃
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- Quotes are not equidistant in reality:

| | | | | | | | | | || | | | | |

⇒ Quotes can be considered as a sample of a Continuous
Time Process

- Technical reasons:
Discrete mathematics complicated
Theory of continuous time processes ∃ and computational
easier (Stochastic integration, Itô’s calculus, Girsanov’s
transformation, . . . )
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4.1 Original Black-Scholes Model

Stock price model
• Trading dates: T = [0,T ]
• Random source: A one dimensional Brownian motion W is
defined on a (complete) probability space (Ω,P,F), where P is
the a priori probability measure.
• Filtration: {Ft}t∈T generated by W (and the null-sets); F = FT

• Two assets: A Risk-free bank account, with price process

S0
t = S0

0 exp(rt) (41)

and a Risky stock with price process, which is an “exponential
Brownian”

S1
t = S1

0 exp(σWt + (µ − 1

2
σ2)t), (42)

where r , µ, σ ∈ R and σ 6= 0. S1
t /S1

0 is log-normal; ln(S1
t /S1

0 ) is
N ((µ − 1

2σ
2)t, σ2t)
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• SDEs (Stochastic Differential Equation) by Itô’s lemma:

dS0
t = rS0

t dt (43)

dS1
t = S1

t µdt + S1
t σdWt . (44)

Here r is the (continuous compounded) spot interest rate, µ the
drift and σ the volatility.
• Discounted price S̄ : S̄ i = S i/S0

dS̄0
t = 0 (45)

dS̄1
t = S̄1

t (µ − r)dt + S̄1
t σdWt . (46)

Exercise 4.1

Let γ = µ−r
σ and ξt = exp(−γWt − 1

2γ
2t). Establish that ξS̄ is a

P-martingale. (N.b. γ is called the market price of risk).
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Portfolio
• The portfolio θ = (θ0, θ1) :

- θ0
t is the number of units of the risk-free asset held at time t

- θ1
t is the number of units of the risky asset held at time t

- θ0
t and θ1

t are known at time t, i.e. they are Ft-measurable.

- θt = (θ0
t , θ

1
t ) is the instantaneous portfolio at t.

• Price process V (θ) of a portfolio θ:

Vt(θ) = θt · St , t ∈ T. (47)

• Discounted Price process V̄(θ) of a portfolio θ: (Discounted to
date 0)

V̄t(θ) = Vt(θ)/S0
t . (48)

Obviously V̄t(θ) = θt · S̄t .
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• Gains process G(θ) of prtf. θ: Sum of the gains from date 0 up
to date t

Gt(θ) =

∫ t

0
θs · dSs , t ∈ T. (49)

Warning: To be rigorous, one should here introduce a set of
admissible portfolios, such that the gains process is well-defined
and such that the model is arbitrage free (excluding for example
doubling strategies). This is outside the scope of this course and
we shall just suppose that the prtf. is sufficiently integrable or
uniformly bounded from below, as to guarantee these properties.
• Discounted Gains process Ḡ(θ) of prtf. θ:

Ḡt(θ) =

∫ t

0
θs · dS̄s , t ∈ T. (50)

• Self-financing prtf. θ is a prtf. where the changes in its price
only comes from variations in the asset prices, i.e.

Vt(θ) = V0(θ) + Gt(θ), ∀t ∈ T. (51)
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Exercise 4.2

Establish that the definition of a self-financing prtf. by formula
(51) is equivalent to

V̄t(θ) = V̄0(θ) + Ḡt(θ), ∀t ∈ T. (52)
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Black-Scholes Equation
• Simple EU derivative X , i.e.

X = f (S1
T ), for some f

• Hedging prtf. θ of X :

VT (θ) = X , for some self-fin. prtf. θ

• To construct the hedging prtf. θ of X we try the ansatz: There
is a function F ∈ C 1,2([0,T [ × ]0,∞[ ) s.t.

Vt(θ) = F (t,S1
t ), ∀t ∈ T (53)

and
F (T , x) = f (x), ∀x > 0. (54)

Introduce: F1(t, x) = ∂F (t, x)/∂t, F2(t, x) = ∂F (t, x)/∂x and
F22(t, x) = ∂2F (t, x)/∂x2.
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Differentiation of the l.h.s. of (53) gives, since θ is self-fin.:

dVt(θ) = θt · dSt = (rS0
t θ

0
t + µS1

t θ
1
t )dt + σS1

t θ
1
t dWt

= (rVt(θ) + (µ − r)S1
t θ

1
t )dt + σS1

t θ
1
t dWt

(55)

(53) and (55) give,

dVt(θ) = (rF (t,S1
t ) + (µ − r)S1

t θ
1
t )dt + σS1

t θ
1
t dWt (56)

Differentiation of the r.h.s. of (53) gives, by Itô’s lemma,
∀t ∈ [0,T [ :

dF (t,S1
t ) = (F1(t, S1

t ) + µS1
t F2(t, S1

t ) +
1

2
σ2(S1

t )2F22(t,S1
t ))dt

+ σS1
t F2(t,S1

t )dWt .

(57)
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Identification of (56) and (57) gives, first

θ1
t = F2(t, S1

t ), (58)

and then

rF (t,S1
t )+(µ−r)S1

t θ
1
t = F1(t, S1

t )+µS1
t F2(t, S1

t )+
1

2
σ2(S1

t )2F22(t,S1
t ).

(59)
• Eqs. (59) and (54) give the Black-Scholes Equation:
∀ (t, x) ∈ T×]0,∞[,
{

∂
∂t F (t, x) + rx ∂

∂x F (t, x) + 1
2σ

2x2 ∂2

∂x2 F (t, x) = rF (t, x),

F (T , x) = f (x), ∀x > 0.
(60)

• The hedging prtf. θ is given by (58)
{

θ1
t = F2(t,S1

t )

θ0
t = 1

S0
t

(
F (t,S1

t )− F2(t, S1
t )S1

t

)
.

(61)
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A special case of the Feynman-Kac̆ formula gives the solution of
the B-S eq.:

Theorem 4.3

(Under certain conditions on f ). If

F (t, x) = e−r(T−t)

∫ ∞

−∞
f (xey )

1√
2πσ2(T − t)

exp

(
−(y − (T − t)(r − 1

2σ
2))2

2σ2(T − t)

)
dy ,

(62)

where (t, x) ∈ [0,T [ × ]0,∞[ , then F is the solution of the B-S
Eq. (60) and θ defined by (61) is a hedging prtf. of X = f (S1

T ).

Proof:
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Black-Scholes Formula for a Call
• Let f be the pay-off of a EU Call with strike K > 0 :

f (x) = (x − K )+, x > 0 (63)

and let C be the solution of the B-S eq. given by formula (62).
Then

C(t, x) = e−r(T−t)
Z ∞
−∞

(xey − K)+
1q

2πσ2(T − t)
exp

 
−

(y − (T − t)(r − 1
2
σ2))2

2σ2(T − t)

!
dy

= e−r(T−t)
Z ∞

ln(K/x)
(xey − K)

1q
2πσ2(T − t)

exp

 
−

(y − (T − t)(r − 1
2
σ2))2

2σ2(T − t)

!
dy.

(64)

We make the substitution

z = −y − (T − t)(r − σ2/2)

σ
√

T − t
, so y = −zσ

√
T − t+(T−t)(r−σ2/2).
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Let

z0 =
ln(x/K ) + (T − t)(r − σ2/2)

σ
√

T − t
.

Formula (64) now gives

C (t, x) = e−r(T−t)

∫ z0

−∞

(
x exp(−zσ

√
T − t + (T − t)(r − σ2/2))− K

) e−
z2

2√
2π

dz .

(65)
Let

I1(t, x) = e−r(T−t)

∫ z0

−∞
x exp(−zσ

√
T − t + (T − t)(r − σ2/2))

e−
z2

2√
2π

dz

and

I2(t, x) = −Ke−r(T−t)

∫ z0

−∞

e−
z2

2√
2π

dz .

Then
C (t, x) = I1(t, x) + I2(t, x).

Let N be the normal (0, 1) pdf (probability distribution function).
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It follows that

I1(t, x) = x e−r(T−t)

∫ z0

−∞
exp(−zσ

√
T − t + (T − t)(r − σ2/2))

e−
z2

2√
2π

dz

= x

∫ z0

−∞
exp

(
− (z + σ

√
T − t)2

2

)
dz√
2π

= x N(z0 + σ
√

T − t ).

For I2 it follows that

I2(t, x) = −Ke−r(T−t)N(z0).

To sum up, introduce τ = T − t, d1(τ) = z0 + σ
√
τ and d2(τ) = z0, i.e.

d1(τ) =
1

σ
√
τ

(ln
x

K
+ τ(r +

σ2

2
)) (66)

d2(τ) =
1

σ
√
τ

(ln
x

K
+ τ(r − σ2

2
)), (67)

then (65) gives the Black-Scholes Formula for the price of a EU Call

C (t, x) = xN(d1(τ))− Ke−rτ N(d2(τ)). (68)
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Figure: Price C (0, x). Here T = 1, K = 1, r = 1/10 and σ = 4/10
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Figure: Price C (0, x). Here T = 1, K = 1, r = 1/10 and σ = 4/10
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• Call-Put relation: Let P(T , x) = (K − x)+. Then

C (T ,S1
T )− P(T , S1

T ) = S1
T − K .

The arbitrage price at time t of each side then gives

C (t, S1
t )− P(t,S1

t ) = S1
t − Ke−r(T−t). (69)

Since this is true for all values of S1
t , we obtain the Call-Put

relation
C (t, x)− P(t, x) = x − Ke−r(T−t), (70)

for x > 0.
• Price of a Put P(t, x) is obtained from formulas (68) and (70)
and the relation 1− N(z) = N(−z)

P(t, x) = −xN(−d1(τ)) + Ke−rτN(−d2(τ)). (71)

for x > 0.
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Example 4.4

Consider a standard B-S market, with annual interest rate
r = 3.5% and annual volatility σ = 30%. The stock price is 132e
today. What is the price today of a Call and a Put, with 9 months
to maturity and strike 125?
Let t be today. We have τ = 3/4Y and according to (66) and (67):
d1(τ) = 1

3/10
√

3/4
(ln (132/125) + 3/4(35/1000 + (3/10)2/2)) ≈

0.440665 and d2(τ) =
1

3/10
√

3/4
(ln (132/125) + 3/4(35/1000− (3/10)2/2)) ≈ 0.180858.

N(d1(τ)) ≈ 0.670272 and N(d2(τ)) ≈ 0.57176. Formula (68) gives
C (t, 132) ≈ 18, 8576. The Call-Put parity relation (70) then gives
P(t, 132) ≈ 8.61903.
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4.2 The greeks

• B-S model is complete, so by definition every derivative is
hedgeable
• However, in practice a hedge is in general only approximate for
several reasons, as
1) The portfolio can not be re-balanced continuously in time.
2) The underlying price model, here the original B-S model, is only
an approximation of the real price dynamics.
3) The model parameters are only determined with a certain
accuracy.
• Let F be the price function (here given by B-S eq. (60)) of a
simple EU derivative X and let θ be an approximate hedging prtf.,
s.t. its value at time t is a function of the stock price S1

t . Then the
price difference p at t of derivative and hedge is:

p(t, S1
t ) = F (t,S1

t )− Vt(θ). (72)
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• p is also a function of the model parameters r , µ and σ, if this is
the case for θ. Sensitivities of derivative price F (t, x), w.r.t.
variations in t, x , r and σ needed;
• “Greeks” for a Call F (t, x) = C (t, x) :

Delta ∆ =
∂C (t, x)

∂x
= N(d1) > 0, for x > 0. (73)

Gamma Γ =
∂2C (t, x)

∂x2
=

1

xσ
√
τ

N ′(d1) > 0, for x > 0. (74)

(So, the Call-price is strictly concave.)

Theta Θ =
∂C

∂t
= − xσ

2
√
τ

N ′(d1)−Ke−rτ r N(d2) < 0, for x > 0,

(75)
where τ = T − t. (So C is increasing in τ .)
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Vega V =
∂C

∂σ
= x
√
τ N ′(d1) > 0, for x > 0. (76)

Rho ρ =
∂C

∂r
= Kτe−rτ N(d2) > 0, for x > 0. (77)

• ∆, Γ and Θ satisfies, for a simple derivative with price F (see
B-S eq. (60)) :

Θ + rx∆ +
1

2
σ2x2Γ− rF = 0. (78)
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Example 4.5

In the situation of Example 4.4, what are today the hedging
portfolios of the Call and the Put respectively?
The hedging prtfs. are obtained from (61). Let x = 132. In the
case of the Call, eq. (73) gives

θ1
t = N(d1) ≈ 0.670272 stocks

and
θ0
t S0

t = C (t, x)− N(d1)x ≈ −69.6184 e.
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