Statistiques descriptives bivariées

- Objectifs des statistiques descriptives bivariées
- Qualitatif x Qualitatif
- Quantitatif x Quantitatif
- Qualitatif x Quantitatif

Objectifs des statistiques bivariées

Observer simultanément des individus d'une population sur deux caractères

```
P \rightarrow M = M_1 \times M_2

\omega c(\omega) = (c_1(\omega), c_2(\omega)) où M_1 et M_2 sont égaux à R (ensemble de valeurs numériques) ou N (ensemble de codes)
```

 Mesurer un lien éventuel entre deux caractères en utilisant un résumé chiffré qui traduit l'importance de ce lien.

```
M^{card} \rightarrow R où card est n la taille de l'échantillo n ou N la taille de la population et l_{card}(v) v le vecteur de tous les couples de réponses
```

- Qualifier ce lien :
 - en cherchant une relation numérique approchée entre deux caractères quantitatifs

• en cherchant des correspondances entre les modalités de deux caractères qualitatifs

Croisement qualitatif \times qualitatif (1)

- Les seuls calculs possibles sur des caractères qualitatifs sont des effectifs et/ou des fréquences
- Chercher un lien entre deux caractères qualitatifs reviendra à étudier l'ensembles des effectifs des sous populations définies par les couples de modalités (x_i,y_j) prises respectivement par C_1 et C_2 .
- On va définir un tableau dit de contingence.

	y ₁	y _j	y _i	
X ₁	n _{1,1}		n _{1,1}	$n_{i,j}$ est le nombre d'individus ω tels que $C_1(ω) = x_i$ et $C_2(ω) = y_j$
X _i	n _{i,1}	n _{i,j} ←	n _{i,l}	
\mathbf{x}_{k}	n _{k,1}	$n_{k,j}$	n _{k,l}	

- On note k le nombre de modalités du caractère C_1 et l le nombre de modalités du caractère C_2 .
- On note $x_1, ..., x_k$ les valeurs de C_1 et $y_1, ..., y_1$ les valeurs de C_2 .

Croisement qualitatif \times qualitatif (2)

- Pour faire des interprétations sur des correspondances entre des modalités de C₁ et des modalités de C2, il faut compléter le tableau avec les effectifs de C1 sans C2 et des effectifs de C₂ sans C₁. Ces effectifs sont appelés effectifs marginaux (en marge de)
- On enrichit donc le tableau dit de contingence avec les effectifs marginaux.

effectifs marginaux de C		Υı	y j	y ₁	
$oldsymbol{n}_{i,} = \sum\limits_{i=1}^{l} oldsymbol{n}_{i,j}$	n _{1,.}	n _{1,l}		n _{1,1}	X_1
J .					
effectifs marginaux de C_i $\boldsymbol{n}_{i,j} = \sum_{i=1}^{k} \boldsymbol{n}_{i,j}$	n _{i,.}	n _{i,l}	n _{i,j}	n _{i,1}	\mathbf{X}_{i}
$oldsymbol{u}_{,j} - \sum\limits_{i=1}^{} oldsymbol{u}_{i,j}$					
	n _{k,} .	n _{k,l}	$n_{k,j}$	$n_{k,1}$	\mathbf{x}_{k}
$card = \sum_{i=1}^{l} n_{.,i} = \sum_{i=1}^{k} n_{.i,i}$	card <	n _{.,I}	n _{.,j}	n _{.,1}	

Pour faire des comparaisons pertinentes, il faudra compléter par des calculs de fréquences comme l'explique les slides suivants.

 $=\sum_{i=1}^k \boldsymbol{n}_{i,i} = \sum_{i=1}^k \sum_{i=1}^l \boldsymbol{n}_{i,j}$

Croisement qualitatif × qualitatif (3)

- Des effectifs ne sont pas directement comparables tandis que des fréquences sont toujours comparables
- On définit donc le tableau de contingence avec des fréquences.

	y ₁	Уj	Υı	
x_1	f _{1,1}		$f_{1,l}$	f _{1,.}
\mathbf{x}_{i}	f _{i,1}	f _{i,j}	$f_{i,l}$	f _{i,.}
\mathbf{x}_{k}	f _{k,1}	$f_{k,j}$	$f_{k,l}$	f _{k,} .
	f _{.,1}	f _{.,j}		1 .

fréquences marginales de C₁.

$$oldsymbol{f}_{i,.} = \sum\limits_{j=1}^{l} oldsymbol{f}_{i,j}$$

fréquences marginales de C₂.

$$oldsymbol{f}_{.,j} = \sum_{i=1}^k oldsymbol{f}_{i,j}$$

$$1 = \sum_{j=1}^{l} \boldsymbol{f}_{.,j} = \sum_{i=1}^{k} \boldsymbol{f}_{.i,.} = \sum_{i=1}^{k} \sum_{j=1}^{l} \boldsymbol{f}_{i,j}$$

 $f_{i,j} = n_{i,j}$ /card est la proportion d'individus ω dans P tels que $C_1(\omega) = x_i$ et $C_2(\omega) = y_j$

Croisement qualitatif \times qualitatif (4)

- L'analyse croisée consiste à chercher des correspondances entre des modalités de C_1 et des modalités de C_2 .
- On définit donc deux nouvelles notions : profils lignes et profils colonnes.
- Un profil ligne est la répartition en fréquences du caractère C_2 dans une sous population définie par $P_{i.} = \{\omega / C_1(\omega) = x_i\}$
- Un profil colonne est la répartition en fréquences du caractère C_1 dans une sous population définie par $P_{..i} = \{\omega \mid C_2(\omega) = y_i\}$

Profils lignes	y ₁	Уj	Ϋ́Ι	
X_1	f _{1/1}		$f_{l/1}$	f _{1,.}
\mathbf{X}_{i}	$f_{1/i}$	$f_{j/i}$	$f_{l/i}$	f _{i,.}
$\mathbf{X}_{\mathbf{k}}$	$f_{1/k}$	$f_{j/k}$	$f_{l/k}$	f _{k,} .
	f _{.,1}	f _{.,j}	\f_, _I	
	,-	/3		

 $f_{j/i}$ et $f_{.j}$ sont directement comparables. Elles donnent une information sur le même phénomène mais dans deux populations différentes.

La ligne des fréquences marginales de C₂ est appelé profil moyen.

 $f_{j/i}$ est la proportion d'individus ω dans $P_{i,.} = \{\omega / C_1(\omega) = x_i\}$ tels que $C_2(\omega) = y_j$

Croisement qualitatif \times qualitatif (5)

Un premier exemple caricatural.

Exemple 1	y ₁	y ₂	y ₃
x_1	10	20	30
x_2	100	200	300
X ₃	1000	2000	3000

Ex 1 : Profils lignes	y ₁	y ₂	y ₃
x_1	1/6	2/6	3/6
x_2	1/6	2/6	3/6
x_3	1/6	2/6	3/6
Fréq. marginales	1/6	2/6	3/6

Ex 1 : Profils colonnes	Y ₁	y ₂	y ₃	Fréq marginales
x_1	1/111	1/111	1/111	1/111
x_2	10/111	10/111	10/111	10/111
X ₃	100/111	100/111	100/111	100/111

D'une modalité de C₁ à l'autre les répartitions des effectifs de C₂ sont proportionnelles.

Le caractère C_1 ne donne aucune information sur la répartition du caractère C_2 .

Le caractère C_2 ne donne aucune information sur la répartition du caractère C_1 .

Croisement qualitatif \times qualitatif (6)

Un deuxième exemple caricatural.

Exemple 2	y ₁	y ₂	y ₃
x_1	10	0	0
\mathbf{x}_{2}	0	100	0
X ₃	0	0	1000

Ex 2 : Profils lignes	y ₁	y ₂	y ₃
X_1	1	0	0
x_2	0	1	0
X ₃	0	0	1
Fréq. marginales	1/111	10/111	100/111

Ex 2 : Profils colonnes	Y ₁	y ₂	y 3	Fréq marginales
x_1	1	0	0	1/111
x_2	0	1	0	10/111
X ₃	0	0	1	100/111

D'une modalité de C_1 à l'autre les répartitions des effectifs de C_2 sont totalement différentes. Le caractère C_1 donne une information parfaite sur la répartition du caractère C_2 . Le caractère C_2 donne une information parfaite sur la répartition du caractère C_1 .

Croisement qualitatif \times qualitatif (7)

- C_1 et C_2 ne sont pas liés \Leftrightarrow les profils lignes sont égaux \Leftrightarrow les profils colonnes sont égaux
- On nous donne la répartition de C_1 et C_2 . A quoi sont égales les fréquences $f_{i,j}$ si C_1 et C_2 ne sont pas liés ?
- Théorème $\forall (i,j) \in \{1,...,k\} \times \{1,...,l\}$ $f_{i,j} = f_{i,j} \cdot f_{j,j} \Rightarrow C_1 \text{ et } C_2 \text{ sont indépendants}$

Preuve: Calculons les profils lignes :
$$\forall (i,j) \in \{1,...,k\} \times \{1,...,l\}$$
 $f_{j/i} = \frac{f_{i,j}}{f_{i,j}} = \frac{f_{i,j}}{f_{i,j}} = f_{i,j}$

Tous les profils lignes sont égaux au profil ligne moyen. CQFD

	y ₁	Уj	Υı	
x_1	f _{1,.} f _{.,1}		$f_{1,.}f_{.,l}$	f _{1,.}
X _i	f _{i,.} f _{.,1}	f _{i,.} f _{.,j} ←	 $f_{i,f,l}$	f _{i,.}
\mathbf{x}_{k}	$f_{k,.}f_{.,1}$	$f_{i,.}f_{.,j}$	$f_{k,.}f_{.,l}$	f _{k,} .
	f _{.,1}	f _{.,j}	f _{.,l}	1

 $f_{i,i}f_{i,j}$ est la proportion théorique de la case (i,j) si C_1 et C_2 sont indépendants

• On peut démontrer que $f_{i,j} = f_{i,j} \cdot f_{j,j}$ est la seule configuration possible pour que C_1 et C_2 soient indépendants

Croisement qualitatif × qualitatif (8)

• Comment mesurer le lien de dépendance entre les C₁ et C₂ ?

Tableau de contingence théorique si C₁ et C₂ sont indépendants

	y ₁	y j	Υı	
X_1	f _{1,.} f _{.,1}		f _{1,.} f _{.,l}	f _{1,.}
Xi	f _{i,.} f _{.,1}	$f_{i,.}f_{.,j}$	f _{i,.} f _{.,l}	f _{i,.}
\mathbf{x}_{k}	f _{k,.} f _{.,1}	$f_{i,.}f_{.,j}$	$f_{k,.}f_{.,l}$	f _{k,} .
	f _{.,1}	f _{.,,j}	f _{.,l}	1

Tableau de Contingence observe						
y ₁		Уj		Yı		
f _{1,1}				$f_{1,l}$	f _{1,.}	
ŕ				,	ŕ	
$f_{i,1}$		$f_{i,j}$		$f_{i,l}$	f _{i,.}	
ĺ					ĺ	
$f_{k,1}$		$f_{k,j}$		$f_{k,l}$	f _{k,} .	
f _{.,1}		f _{.,j}		f _{.,I}	1	
	y ₁ f _{1,1} f _{k,1}	y ₁ f _{1,1} f _{k,1}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

- On notera $t_{i,j}$ l'effectif théorique de la case (i,j). $t_{i,j} = card \cdot f_{i,j} \cdot f_{i,j}$
- Rappel: $n_{i,j} = card \cdot f_{i,j}$
- Intuitivement, il faudrait trouver une formule de distance entre ces deux matrices.
- Mr Pearson a créé la formule suivante : $\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(n_{i,j} t_{i,j})^2}{t_{i,j}}$

Croisement qualitatif × qualitatif (9)

- Interprétation de la formule $\chi^2 = \sum_{i=1}^k \sum_{j=1}^l \frac{(\boldsymbol{n}_{i,j} \boldsymbol{t}_{i,j})^2}{\boldsymbol{t}_{i,j}}$
 - 1. La distance du χ^2 est d'autant plus grande que C_1 et C_2 sont liées entre eux.
- 2. La distance du χ^2 accorde plus d'importance aux différences entre les effectifs observés et effectifs théoriques sur les petits effectifs théoriques. S'écarter de 2% par rapport à 75% est moins significatif que de s'écarter de 2% par rapport à 5%.
- 3. La distance du χ^2 respecte le principe d'équivalence distributionnelle.
 - Si deux colonnes ont des effectifs proportionnels alors la fusion des modalités correspondante s du caractère C_2 ne change pas la distance du χ^2 entre C_1 et C_2 .
 - Si deux lignes ont des effectifs proportionnels alors la fusion des modalités correspondantes du caractère C_1 ne change pas la distance du χ^2 entre C_1 et C_2 .
- 4. Malheureusement la distance du χ^2 dépend aussi :
 - du nombre de modalités de C_1 et C_2 .
 - du nombre d'individus.
- 5. On ne peut donc comparer deux distance du χ^2 que sur deux tableaux strictement équivalents en modalités et en nombre d'individus.

Croisement qualitatif × qualitatif (10)

- Coefficients normalisés
 - Coefficient de contingence : $CC = \sqrt{\frac{\chi^2}{\chi^2 + card}}$

CC varie entre 0 et presque 1. Plus il est proche de 0 plus C_1 et C_2 sont indépendants et plus il est proche de 1 plus C_1 et C_2 sont liés. Par contre il dépend de k et l. On ne peut donc comparer que des tableaux de mêmes dimensions.

• V de Cramer:
$$V = \sqrt{\frac{\chi^2}{card.[\min(k,l)-1]}}$$

Même interprétation que le coefficient précédent avec l'avantage de ne plus dépendre de k et l. C'est le coefficient normalisé le plus utilisé.

- Il existe d'autres coefficients comme le coefficient phi de Pearson ou le PEM (Pourcentage de l'Écart Maximum).
- Mais il faut retenir :
 - 1. que ces coefficients ne varie pas proportionnellement avec l'importance du lien
 - 2. que plus ils sont proches de 0 plus C_1 et C_2 sont indépendants et plus ils sont proches de 1 plus C_1 et C_2 sont liés.
 - 3. qu'il faut comparer l'évolution dans le temps de ces coefficients sur des tableaux équivalents

Deux caractères quantitatifs (1)

On considère C₁ et C₂ deux caractères quantitatifs

P	ω_{1}	ω_{i}	ω_{card}
C_1	$x_1=c_1(\omega_1)$	$x_i = c_1(\omega_i)$	$x_{card} = c_1(\omega_{card})$
C_2	$y_1 = c_2(\omega_1)$	$y_i = c_2(\omega_i)$	$y_{card} = c_2(\omega_{card})$

On considère f une fonction de R dans R. On cherche à approximer le caractère C_2 en fonction du caractère C_1 à l'aide de f. On calcule $EQ(f) = \frac{1}{card} \sum_{i=1}^{card} (y_i - f(x_i))^2$ l'erreur quadratique *EQ(f)*.

$$EQ(f) = \frac{1}{card} \sum_{i=1}^{card} (y_i - f(x_i))^{\frac{1}{2}}$$

L'ensemble des fonctions est infini. On se restreint aux fonctions affines f(x) = a.x + b. On cherche a et b qui minimisent l'erreur quadratique :

$$\min_{(a,b)\in R\times R} EQ(a,b) = \frac{1}{card} \sum_{i=1}^{card} (y_i - a.x_i - b)^2$$

Pour a fixé, on cherche b qui minimise EQ. $EQ_q : R \to R$ $EQ_q = EQ(a, b)$

EQ est une fonction quadratique convexe. Il suffit donc d'annuler la dérivée en b.

$$\frac{dEQ_a(b)}{db} = \frac{\partial EQ(a,b)}{\partial b} = \frac{-2}{card} \sum_{i=1}^{card} (y_i - a.x_i - b) = 0 \Leftrightarrow \bar{y} - a\bar{x} - b = 0 \Leftrightarrow \hat{b}(a) = \bar{y} - a\bar{x}$$
où $\bar{y} = \bar{C}$, et $\bar{x} = \bar{C}$

Pour conclure, on cherche donc à minimiser EQ par rapport à a la fonction suivante :
$$EQ(a,\hat{b}(a)) = \frac{1}{card} \sum_{i=1}^{card} (y_i - a.x_i - \overline{y} + a.\overline{x})^2 = \frac{1}{card} \sum_{i=1}^{card} ((y_i - \overline{y}) - a.(x_i - \overline{x}))^2$$

Deux caractères quantitatifs (2)

$$(1) \frac{dEQ(a,b(a))}{da} = \frac{-2}{card} \sum_{i=1}^{card} (x_i - \bar{x}).((y_i - \bar{y}) - a.(x_i - \bar{x})) = 0 \Leftrightarrow \frac{\sum_{i=1}^{card} (x_i - \bar{x}).((y_i - \bar{y}))}{card} = a.\frac{\sum_{i=1}^{card} (x_i - \bar{x})^2}{card}$$

- (2) le terme $\frac{\sum_{i=1}^{card} (x_i \overline{x}).(y_i \overline{y})}{card}$ est appelé covariance de C_1 et C_2 et est noté $cov(C_1, C_2)$
- (3) Le terme $\frac{\sum_{i=1}^{card} (x_i \bar{x})^2}{card}$ est la variance du caractère C_1 et est notée $var(C_1)$.
- (4) Si C_1 n'est pas constant alors $var(C_1)$ est strictement positif. en conclusion le couple optimal est $(\hat{a}, \hat{b}) = \left(\frac{\text{cov}(C_1, C_2)}{\text{var}(C_1)}, \overline{C}_2 - \frac{\text{cov}(C_1, C_2)}{\text{var}(C_1)}.\overline{C}_1\right)$.
- (5) Rappel l'écart type de C_1 noté $\sigma(C_1)$ vaut $\sqrt{\text{var}(C_1)}$.

On définit le coefficient de corrélation linéaire de Pearson : $r(C_1, C_2) = \frac{cov(C_1, C_2)}{\sigma(C_1).\sigma(C_2)}$

(6) Une autre version du couple optimal est $(\hat{a}, \hat{b}) = \left(r(C_1, C_2) \cdot \frac{\sigma(C_2)}{\sigma(C_1)}, \overline{C}_2 - r(C_1, C_2) \cdot \frac{\sigma(C_2)}{\sigma(C_1)}, \overline{C}_1 \right)$

Deux caractères quantitatifs (3)

(7) Propriété : $|\operatorname{cov}(C_1, C_2)| \le \sigma(C_1) \cdot \sigma(C_2)$

Preuve: l'inégalité de Cauchy - Schwartz nous donne
$$\left| \sum_{i=1}^{card} (x_i - \overline{x}).(y_i - \overline{y}) \right| \leq \sqrt{\sum_{i=1}^{card} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{card} (y_i - \overline{y})^2}$$
on en déduit
$$\frac{\left| \sum_{i=1}^{card} (x_i - \overline{x}).(y_i - \overline{y}) \right|}{card} \leq \sqrt{\frac{\sum_{i=1}^{card} (x_i - \overline{x})^2}{card}} \sqrt{\frac{\sum_{i=1}^{card} (y_i - \overline{y})^2}{card}} \Leftrightarrow \frac{\left| \sum_{i=1}^{card} (x_i - \overline{x}).(y_i - \overline{y}) \right|}{card} \leq \sqrt{\frac{\sum_{i=1}^{card} (x_i - \overline{x})^2}{card}} \cdot \sqrt{\frac{\sum_{i=1}^{card} (y_i - \overline{y})^2}{card}}$$

en conclusion $|\text{cov}(\boldsymbol{C}_1, \boldsymbol{C}_2)| \leq \boldsymbol{\sigma}(\boldsymbol{C}_1).\boldsymbol{\sigma}(\boldsymbol{C}_2)$

(8) On déduit de la propriété (7) que
$$-1 \le r(C_1, C_2) = \frac{\text{cov}(C_1, C_2)}{\sigma(C_1) \cdot \sigma(C_2)} \le 1$$

- 1. $|\mathbf{r}|$ est proche de 1 alors C_1 et C_2 sont très liés entre eux par une droite affine.
- 2. r < 0: globalement C_1 et C_2 varient en sens inverse.
- 3. r > 0: globalement C_1 et C_2 varient dans le même sens .
- 4. $|\mathbf{r}| \cong 0$: on ne peut rien dire sur un lien éventuel entre C_1 et C_2 .

(9) Calculons l'erreur globale
$$EQ(\hat{a},\hat{b}) = \frac{1}{card} \sum_{i=1}^{card} (y_i - \hat{a}x_i - (\bar{y} - \hat{a}\bar{x}))^2 = \frac{1}{card} \sum_{i=1}^{card} ((y_i - \bar{y}) - \hat{a}(x_i - \bar{x}))^2 = \sigma^2(C_2)$$

$$EQ(\hat{a},\hat{b}) = \sigma^2(C_2) + \hat{a}^2 \cdot \sigma^2(C_1) - 2\hat{a} \cdot \text{cov}(C_1, C_2)$$

On a les deux égalités suivantes :
$$cov(C_1, C_2) = r(C_1, C_2).\sigma(C_1).\sigma(C_2)$$
 et $\hat{a} = \frac{r(C_1, C_2).\sigma(C_2)}{\sigma(C_1)}$

On en déduit :
$$EQ(\hat{a}, \hat{b}) = \sigma^2(C_2) + r^2(C_1, C_2) \cdot \sigma^2(C_2) - 2r^2(C_1, C_2) \cdot \sigma^2(C_2) = \sigma^2(C_2)(1 - r^2(C_1, C_2))$$

- 1. L'erreur globale est proportionnelle à la variance du caractère C_2 .
- 2. L'erreur est d'autant plus petite que le coefficient est proche de 1 en valeur absolue.

Deux caractères quantitatifs (4)

- 1. $y = \hat{a}x + \hat{b}$ est appelée droite de régression de C_2 en C_1 . Elle traduit les variations de C_2 qui peuvent être expliquées par C_1 .
- 2. Attention la droite de régression de C_1 en C_2 n'est nécessairement la même que celle de C_2 en C_1
- (10) Propriété : $\overline{\hat{a}C_1 + \hat{b}} = \overline{C}_2$

Preuve:
$$\frac{1}{\hat{a}C_1 + \hat{b}} = \frac{\sum_{i=1}^{card} \hat{a}x_i + \overline{y} - \hat{a}.\overline{x}}{card} = \frac{card.\overline{y}}{card} + \frac{\sum_{i=1}^{card} \hat{a}x_i}{card} - \frac{card.\overline{a}.\overline{x}}{card} = \overline{y} + \hat{a}.\overline{x} - \hat{a}.\overline{x} = \overline{y} = \overline{C}_2$$

Le caractère C₂ et la partie de ce caractère expliquée par la droite de régression ont la même moyenne.

(11) Propriété : $\operatorname{var}(\hat{\boldsymbol{a}}\boldsymbol{C}_1 + \hat{\boldsymbol{b}}) = \operatorname{var}(\boldsymbol{C}_2)\boldsymbol{x}^2(\boldsymbol{C}_1,\boldsymbol{C}_2)$

Preuve: var
$$(\hat{a}C_1 + \hat{b}) = \frac{\sum_{i=1}^{card} (\hat{a}x_i + \hat{b} - \overline{y})^2}{card} = \frac{\sum_{i=1}^{card} (\hat{a}x_i + \overline{y} - \hat{a}.\overline{x} - \overline{y})^2}{card} = \hat{a}^2 \cdot \frac{\sum_{i=1}^{card} (x_i - \overline{x})^2}{card}$$

$$\operatorname{var}(\hat{a}C_{1} + \hat{b}) = \frac{r^{2}(C_{1}, C_{2}) \cdot \operatorname{var}(C_{2}) \cdot \operatorname{var}(C_{1})}{\operatorname{var}(C_{1})} = r^{2}(C_{1}, C_{2}) \cdot \operatorname{var}(C_{2})$$

- 1. La variance de C₂ expliquée la droite de régression est plus petite que la variance de C₂.
- 2. La variance de C₂ expliquée la droite de régression est d'autant meilleure que le coefficient de Pearson est proche de 1 en valeur absolue.

Deux caractères quantitatifs (5)

Exemple: Etude du lien entre l'âge et le poids chez les enfants de 6 ans

Enfant	1	2	3	4	5	6	7	8	9	10
Taille	121	123	108	118	111	109	114	103	110	115
Poids	25	22	19	24	19	18	20	15	20	21

Les valeurs communes aux deux régression s $\frac{\overline{C}_1}{113.2}$ $\frac{\overline{C}_2}{20.3}$ $\frac{\sigma^2(C_1)}{34.76}$ $\frac{\sigma^2(C_2)}{7.61}$ $\frac{r(C_1, C_2)}{0.90013}$

$$C_2$$
 par rapport à C_1 : $\hat{a} = r(c_1, c_2) \frac{\sigma(C_2)}{\sigma(C_1)} = 0.90013 \frac{\sqrt{7.61}}{\sqrt{34.76}} = 0.45$ et $\hat{b} = 20.3 - 0.45.113.2 = -30.64$

La variance de C_2 vaut 8.46, la variance de C_2 expliquée par C_1 vaut 8.46. $(.90013)^2 = 6.85$ et la variance résiduelle de C_2 non expliquée par C_1 vaut 8.46. $(1 - (.90013)^2) = 1.6054$. L'écart - type résiduel vaut $\sqrt{1.6054} = 1.27$ Kg

En moyenne si on estime le poids avec la droite de régression on fera une erreur de 1.27 kg

$$C_1$$
 par rapport à C_2 : $\hat{a}' = r(c_1, c_2) \frac{\sigma(C_1)}{\sigma(C_2)} = 0.90013 \frac{\sqrt{34.76}}{\sqrt{7.61}} = 1.92$ et $\hat{b}' = 113.2 - 1.92 * 20.3 = 74.22$

La variance de C_1 vaut 34.76, la variance de C_1 expliquée par C_2 vaut 34.76 * $(.90013)^2 = 28.16$ et la variance résiduelle de C_1 non expliquée par C_2 vaut 34.76. $(1 - (.90013)^2) = 6.60$. L'écart - type résiduel vaut $\sqrt{6.6} = 2.57$ cm.

En moyenne si on estime la taille avec la droite de régression on fera une erreur de 2.57cm

L'équation de la régression de C_2 en C_1 : y = 0.45.x - 30.64

L'équation de la régression de
$$C_1$$
 en C_2 : $x = 1.92.y + 74.22 \Leftrightarrow y = \frac{x - 74.22}{1.92} = 0.52.x - 38.65$

Deux caractères quantitatifs (6)

- 1. Les droites de régression n'explique que les liaisons linéaires.
- 2. Si C_1 et C_2 sont liées par une relation de la forme $C_2 = a.(C_1)^2$ alors $r(C_1, C_2) = 0$ Le coefficient de corrélation linéaire de Pearson ne peut pas détecter cette liaison.
- 3. Il n'existe pas de mesure universelle pour détecter des relations quelconques
- 4. On essaie par des transformations de se ramener à une droite affine

Famille	Fonctions	Transformation	Forme affine
exponentielle	$y = a.e^{bx}$	$y' = \log(y)$	$y' = \log(a) + b.x$
puissance	$y = ax^b$	$y' = \log(y) x' = \log(x)$	$y' = \log(a) + b.x'$
inverse	$y=a+\frac{b}{x}$	$x' = \frac{1}{x}$	y'=a+b.x'
logistique	$y = \frac{1}{1 + e^{-(a \cdot x + b)}}$	$y' = \log\left(\frac{y}{1-y}\right)$	y'=a.x+b

Croisement qualitatif × quantitatif (1)

- On croise C_1 un caractère qualitatif avec C_2 un caractère quantitatif. On note k le nombre de modalités du caractère C_1 et x_i la ième modalité de C_1 .
- Question : Est-ce que les variations de C_2 sont différentes d'une modalité à une autre modalité de C_1 ?
- Le caractère C_I partitionne la population en k sous populations. On note k_i la valeur de la ième modalité de C_I et k_i l'effectif de la ième sous population.
- On définit k+1 populations : $P_i = \{ \boldsymbol{\omega} \in \boldsymbol{P} / \boldsymbol{C}_1(\boldsymbol{\omega}) = \boldsymbol{x}_i \}$ $\Omega = \{ P_i / i \in \{1,...,k\} \}$
- On peut étudier le caractère C_2 à travers 2+k populations : P, Ω et $P_{i i \in \{1, ..., k\}}$

$$P \rightarrow R$$

$$\omega \quad C_2(\omega)$$
Les variations de C_2 dans la population

$$P_i \rightarrow R$$
 $\omega \qquad C_{2,i}^{intra}(\omega) = C_2(\omega)$

Les variations de C_2 dans les sous populations définies par C_1

$$\Omega \rightarrow R$$

$$P_{i} \qquad C_{2}^{\text{inter}}(P_{i}) = \overline{C}_{2,i}^{\text{intra}}$$

Les variations de C_2 en réduisant chaque sous population à un représentant

Croisement qualitatif \times quantitatif (2)

(1):
$$\overline{C}_{2} = \frac{1}{card} \sum_{i=1}^{k} k_{i}.\overline{C}_{2,i}^{intra}$$

Preuve:

$$\frac{1}{\operatorname{card}} \sum_{i=1}^{k} k_{i} \cdot \overline{C}_{2,i}^{\operatorname{intra}} = \frac{1}{\operatorname{card}} \sum_{i=1}^{k} \left(k_{i} \cdot \frac{1}{k_{i}} \sum_{\omega \in P_{i}} C_{2}(\omega) \right) = \frac{1}{\operatorname{card}} \sum_{i=1}^{k} \sum_{\omega \in P_{i}} C_{2}(\omega) = \overline{C}_{2}$$

En d'autres termes, la moyenne du caractère C_2 sur la population P est la moyenne des moyennes de C_2 sur les sous populations P_i pondérées par les effectifs k_i de ces sous populations

On définit les trois variances suivantes :

$$Var^{inter}(C_2) = Var(C_2^{inter}) = \frac{1}{card} \sum_{i \in ', k} k_i \cdot (C_2^{inter}(P_i) - \overline{C}_2)^2$$

$$Var^{totale}(C_2) = Var(C_2) = \frac{1}{card} \sum_{\omega \in P} (C_2(\omega) - \overline{C}_2)^2$$

$$Var^{intra}(C_2) = \frac{1}{card} \sum_{i=1}^{k} k_i Var(C_{2,i}^{intra})$$

Croisement qualitatif \times quantitatif (3)

Théorème :
$$Var^{totale}(C_2) = Var^{inter}(C_2) + Var^{intra}(C_2)$$

$$Var^{totale}(C_{2}) = \frac{1}{card} \cdot \sum_{\boldsymbol{\omega} \in P} (C_{2}(\boldsymbol{\omega}) - \overline{C}_{2})^{2} = \frac{1}{card} \cdot \sum_{i=1}^{k} \sum_{\boldsymbol{\omega} \in P_{i}} (C_{2}(\boldsymbol{\omega}) - \overline{C}_{2})^{2}$$

$$Var^{totale}(C_2) = \frac{1}{card} \sum_{i=1}^{k} \sum_{\boldsymbol{\omega} \in P_i} (C_2(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra} + \overline{C}_{2,i}^{intra} - \overline{C}_2)^2$$

$$Var^{totale}(C_{2}) = \frac{1}{card} \cdot \begin{pmatrix} \sum_{i=1}^{k} \sum_{\boldsymbol{\omega} \in P_{i}} (C_{2}(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra})^{2} + \sum_{i=1}^{k} \sum_{\boldsymbol{\omega} \in P_{i}} (\overline{C}_{2,i}^{intra} - \overline{C}_{2})^{2} \\ -2 \cdot \sum_{i=1}^{k} \left((\overline{C}_{2,i}^{intra} - \overline{C}_{2}) \cdot \sum_{\boldsymbol{\omega} \in P_{i}} (C_{2}(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra}) \right) \end{pmatrix}$$

$$Var^{totale}(C_2) = \frac{1}{card} \cdot \left(\sum_{i=1}^k \sum_{\boldsymbol{\omega} \in P_i} (C_2(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra})^2 + \sum_{i=1}^k \sum_{\boldsymbol{\omega} \in P_i} (\overline{C}_{2,i}^{intra} - \overline{C}_2)^2 - 2 \cdot \sum_{i=1}^k \left((\overline{C}_{2,i}^{intra} - \overline{C}_2) \cdot 0 \right) \right)$$

$$Var^{totale}(C_2) = \frac{1}{card} \cdot \left(\sum_{i=1}^k \sum_{\boldsymbol{\omega} \in P_i} (C_2(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra})^2 + \sum_{i=1}^k \sum_{\boldsymbol{\omega} \in P_i} (\overline{C}_{2,i}^{intra} - \overline{C}_2)^2\right)$$

$$Var^{totale}(C_{2}) = \frac{1}{card} \cdot \left(\sum_{i=1}^{k} k_{i} \cdot \frac{1}{k_{i}} \sum_{\boldsymbol{\omega} \in P_{i}} (C_{2}(\boldsymbol{\omega}) - \overline{C}_{2,i}^{intra})^{2} + \sum_{i=1}^{k} k_{i} \cdot (\overline{C}_{2,i}^{intra} - \overline{C}_{2})^{2} \right)$$

$$Var^{totale}(C_{2}) = \frac{1}{card} \cdot \sum_{i=1}^{k} k_{i} \cdot Var(C_{2,i}^{intra}) + \frac{1}{card} \cdot \sum_{i=1}^{k} k_{i} \cdot (\overline{C}_{2,i}^{intra} - \overline{C}_{2})^{2}$$

$$Var^{{}^{totale}}(C_{_2}) = Var^{{}^{inter}}(C_{_2}) + Var^{{}^{intra}}(C_{_2})$$
 EISTI : Département Mathématique : Statistique bivariée

Croisement qualitatif \times quantitatif (4)

- Pour étudier le lien entre un caractère qualitatif et un caractère quantitatif, on partitionne la population P en sous populations : une sous population pour chaque modalité du caractère qualitatif
- On étudie le caractère quantitatif C_2 sur chaque sous population en calculant la moyenne et la variance de C_2 . On parle de variation intra.
- Pour chaque sous population, on crée un individu virtuel dont la valeur sur C_2 est égale à la moyenne des valeurs de C_2 des individus de la sous population.
- On crée donc une nouvelle population formée de ces individus virtuels. Chaque individu aura un poids de k_i où est l'effectif de chaque sous population.
- On peut donc définir trois variances sur la caractère C_2 .
 - 1. une première qui explique les variations de C_2 dans toute la population : totale
 - 2. une deuxième qui explique les variations de C_2 dans les sous populations : intra
 - 3. une troisième qui explique les variations de C_2 entre les sous populations.
- Nous avons l'égalité suivante : $Var^{totale}(C_2) = Var^{inter}(C_2) + Var^{intra}(C_2)$
- On en déduit une mesure du lien entre C_1 et C_2 avec l'expression $\frac{\textit{Var}^{\text{inter}}(\textit{\textbf{C}}_2)}{\textit{Var}^{\text{totale}}(\textit{\textbf{C}}_2)}$
- Cette expression varie entre 0 et 1. Plus sa valeur est proche de 1 plus les deux caractères sont liés