E.I.S.T.I. - Département Mathématiques 1re Année Ingénieurs PROBABILITES II

Devoir surveillé n^0 2 , donné le 31 mars 2011 (Durée 2h.)

(Tout document et calculatrice sont interdits.)

1 (5 Pts.)

Le débit annuel moyen (m^3/s) de la Seine à Alfortville, mesuré pendant 42 ans de 1966 à 2007, peut être modélisé par une variable aléatoire X qui suit la loi Lognormale de paramètres μ et σ . On sait alors que la variable aléatoire $Y = \ln X$ suit une loi normale de paramètres $\mu = 5,38$ et $\sigma^2 = 10^{-2}$, et que :

$$E[X] = 218, 1 \text{ } m^3/s$$

 $V[X] = (21, 8)^2$

Déterminer la fonction de répartition de X en fonction de la fonction de répartition de la loi Normale Centrée Réduite.

Quelle est la probabilité pour que le débit moyen annuel dépasse 200 m^3/s ? ($\ln(200) \sim 5,30$)

🔾 Quel débit annuel moyen sera dépassé dans 72% des cas ?

 $\c M$. On considère maintenant la variable aléatoire $W=X^2$

Déterminer la fonction de répartition de W en fonction de celle de la loi Normale centrée réduite.

b) Déterminer la fonction de densité de W.

Calculer l'espérance de W.

II (5 Pts.)

On considère un marché des télécoms à 3 opérateurs. A l'année n=0, les clients sont répartis de la façon suivante entre les opérateurs $A,\,B$ et C:

Opérateur A:20%

Opérateur B:40%

Opérateur C:40%.

A la fin de chaque année, un client peut changer d'opérateur suivant les règles observées sur les 10 dernières années :

- Si un client est chez l'opérateur A, il y a 90% de chance qu'il aille chez l'opérateur B et 10% de chance qu'il reste chez l'opérateur A l'année suivante.
- Si un client est chez l'opérateur B, il y a 10% de chance qu'il aille chez l'opérateur A et 40% de chance qu'il aille chez l'opérateur C l'année suivante
- Si un client est chez l'opérateur C, il y a 10% de chance qu'il aille chez l'opérateur A et 30% de chance qu'il aille chez l'opérateur B l'année suivante.

On modélise l'attitude du client par une chaîne de Markov homogène $\{X_n\}_{n\geq 0}$ telle que l'ensemble des états est $E=\{A,\ B,\ C\}$ et n représente l'année.

X Critiquer la modélisation du problème par une chaîne de Markov homogène.

 $oldsymbol{\lambda}$ Déterminer la matrice de transition P et le graphe de la chaîne. Quelle est la probabilité d'être chez l'opérateur B la première année ?

Déterminer les classes d'équivalence et la nature de ces classes de la chaîne.

Déterminer la distribution stationnaire. A long terme, quelle sera la répartition

Déterminer la distribution stationnaire. A long terme, quelle sera la répartition des clients entre les trois opérateurs?

III (5 Pts.)

X Soit X une variable aléatoire continue qui suit une loi exponentielle.

- Donner la définition générale du support C_X , de la fonction de densité f_X et calculer la fonction de répartition F_X .

- Donner l'expression de la fonction de fiabilité $\phi_X(x_0)$.

N Soit T la variable aléatoire qui modélise le temps d'attente avant la 1^{re} panne de la voiture d'occasion de Abderr.

Le concessionnaire a affirmé que la probabilité pour que cette voiture tombe en panne pour la première fois au bout de $t_0=5$ ans, est :

$$P[\{T > 5\}] = 0,018$$

Déterminer la fonction de densité de T.

3. Sachant que la voiture a déjà fonctionné 3 ans sans panne, quelle est la probabilité pour qu' elle fonctionne encore 3 ans de plus sans panne?

Données :

$$ln(0,018) = -4; \quad ln(0,09) = -2,4$$

IV (5 Pts.)

On suppose que 1% des pièces fabriquées par une machine sont défectueuses. Soit X le nombre de pièces défectueuses.

En modélisant X par deux variables aléatoires discrètes différentes, calculer la probabilité pour que dans un échantillon de 100 pièces, plus 3 pièces soient défectueuses.

Donnée: $\exp(-1) = 0.368$

2. On considère 10000 chiffres au hasard dans l'ensemble $\{0, 1, 2, \dots 9\}$. Soit Y la variable aléatoire qui représente le nombre d'apparitions du chiffre 3.

En modélisant Y par une variable aléatoire discrète et une variable aléatoire continue (approximation de la précédente), calculer la probabilité pour que le chiffre 3 figure moins que 950 fois.

1 Tables

Variable Alèatoire centrée réduite

$$\mathcal{F}(x) = P\{N(0, 1) \le x\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

2 Table B_1

¹ Table B_1 donne la valeur de x dont la valeur correspondante de $\mathcal{F}(x)$ est la somme de la colonne et ligne correspondante .

Percentile de la var.normale centrèe rèduite.

F	.000	.010	.020	.030	.040	.050	.060	.070	.080	.090
.5	.000	.025	.050	.075	.100	.126	.151	.176	.202	.228
.6	.253	.279	.305	.332	.358	.385	.412	.440	.468	.496
.7	.524	.553	.583	.613	.643	.674	.706	.739	.772	.806
.8	.842	.878	.915	.954	.994	1.036	1.080	1.126	1.175	1.227
.9	1.282	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

х	1.960	2.576	3.090	3.291	3.891	4.417	4.892
F	.975	.995	.999	.9995	.99995	.999995	.9999995
2(1-F)	.050	.010	.002	.001	.0001	.00001	.000001

3 Table B_2

² Table B_2 donne $\mathcal{F}(x)$, o x est donnè par la somme de la colonne et de la ligne correspondante.

Exemple 3.1

Pour la valeur 0.36 on a $\mathcal{F}(0.36)=0.6406$ (par la ligne .3 et la colonne .06 de la table B_2

¹Source R.A. Fisher and F.Yates. *Statistical Tables for Biological, Agricultural and Medical Research*, Table 1; publiè par Longman Group Ltd., London (prècèdemment publiè par Olivier and Boyd, Edinburgh); avec la permission des auteurs et èditeurs.

²Source : A. Hald, *Statistical Tables and Formulas* (1952), Table II : reimprimè avec la permission de John Wiley

Fonction de rèpartition de la var.alèatoire normale centrèe rèduite.

				COLUMN TO SECURITION OF							
	х	.000000	.010000	.020000	.030000	.040000	.050000	.060000	.070000	.080000	.090000
	.0	.500000	.504000	.508000	.512000	.516000	.519900	.523900	.527900	.531900	.535900
	.1	.539800	.543800	.547800	.551700	.555700	.559600	.563600	.567500	.571400	.575300
	.2	.579300	.583200	.587100	.591000	.594800	.598700	.602600	.606400	.610300	.614100
	.3	.617900	.621700	.625500	.629300	.633100	.636800	.640600	.644300	.648000	.651700
	.4	.655400	.659100	.662800	.666400	.670000	.673600	.677200	.680800	.684400	.687900
	.5	.691500	.695000	.698500	.701900	.705400	.708800	.712300	.715700	.719000	.722400
	.6	.725700	.729100	.732400	.735700	.738900	.742200	.745400	.748600	.751700	.754900
	.7	.758000	.761100	.764200	.767300	.770300	.773400	.776400	.779400	.782300	.785200
	.8	.788100	.791000	.793900	.796700	.799500	.802300	.805100	.807800	.810600	.813300
	.9	.815900	.818600	.821200	.823800	.826400	.828900	.831500	.834000	.836500	.838900
	1.0	.841300	.843800	.846100	.848500	.850800	.853100	.855400	.857700	.859900	.866100
	1.1	.864300	.866500	.868600	.870800	.872900	.874900	.877000	.879000	.881000	.883000
	1.2	.884900	.886900	.888800	.890700	.892500	.894400	.896200	.898000	.899700	.901470
	1.3	.903200	.904900	.906580	.908240	.909880	.911490	.913090	.914660	.916210	.917740
	1.4	.919240	.920730	.922200	.923640	.925070	.926470	.927850	.929220	.930560	.931890
	1.5	.933190	.934480	.935740	.936690	.938220	.939430	.940620	.941790	.942950	.944080
	1.6	.945200	.946300	.947380	.948450	.949500	.950530	.951540	.952540	.953520	.954490
	1.7	.955430	.956370	.957280	.958180	.959070	.959940	.960800	.961640	.962460	.963270
-	1.8	.964070	.964850	.965620	.966380	.967120	.967840	.968560	.969260	.969950	.970620
	1.9	.971280	.971930	.972570	.973200	.973810	.974410	.975000	.975580	.976150	.976700
	2.0	.977250	.977780	.978310	.978820	.979320	.979820	.980300	.980770	.981240	.981690
	2.1	.982140	.982570	.983000	.983410	.983820	.984220	.984610	.985000	.985370	.985740
	2.2	.986100	.986450	.986790	.987130	.987450	.987780	.988090	.988400	.988700	.988990
	2.3	.989280	.989560	.989830	.990097	.990358	.990613	.990863	.991106	.991344	.991576
-	2.4	.991802	.992024	.992240	.992451	.992656	.992857	.993053	.993244	.993431	.993613
	2.5	.993790	.993963	.994132	.994297	.994457	.994614	.994766	.994915	.995060	.995201
	2.6	.995339	.995473	.995604	.995731	.995855	.995975	.996093	.996207	.996319	.996427
	2.7	.996533	.996636	.996736	.996833	.996928	.997020	.997110	.997197	.997282	.997365
	2.8	.997445	.997523	.997599	.997673	.997744	.997814	.997882	.997948	.998012	.998074
	2.9	.998134	.998193	.998250	.998305	.998359	.998411	.998462	.998511	.998559	.998605
	3.0	.998650	.998694	.998736	.998777	.998817	.998856	.998893	.998930	.998965	.998999