Analyse Numérique

Matrices et systèmes linéaires

Laurence Lamoulie

EISTI

Ecole Internationale des Sciences du Traitement de l'Information

S.

Problèmes envisagés

Deux problèmes types

• Résolution de système linéaire

$$AX = B$$

où A est une matrice carrée de taille nxn

• Détermination de l'inverse d'une matrice A :

$$B=A^{-1}$$

Les méthodes applicables "à la main" ne sont pas utilisables à la machine.

Méthodes directes pour résoudre AX = B

Principe des méthodes directes

On remplace le problème initial AX = B par un problème équivalent plus simple à résoudre. On s'appuie en général sur une transformation de A.

Exemples: Gauss, LU, Cholesky...

Problèmes des méthodes directes

- Stabilité
- Erreurs numériques
- Structures matricielles (remplissage)

Méthodes itératives pour résoudre AX = B

Principe des méthodes itératives

On approche la solution X du problème initial AX = B par une suite de vecteurs X_k qui converge vers X selon un algorithme donné

Exemples : Jacobi, Gauss-Seidel, Relaxation, SSOR, Gradient conjugué...

Problèmes des méthodes itératives

- Convergence
- Vitesse de convergence
- Préconditionnement...

<u>Besoin d'un arsenal théorique</u>

Prérequis

A voir/revoir absolument

- Applications linéaires : injection, surjection, famille libre, famille génératrice, noyau, image, base, vecteurs
- Algèbre générale : norme, réduction des matrices (valeurs et vecteurs propres, déterminant)
- Théorie des matrices : singularité, rang, orthogonalité, diagonale dominante, définie positivité, symétrie

Pour vous aider : en ligne sur Arel, Algèbre Matricielle et Numérique, Claude Brezinski

Deux exemples de résultats classiques

Majoration du rayon spectral $ho(A) = \max_{1 \le i \le n} |\lambda_i|$

Théorème de Gershgorin : Localisation des valeurs propres Toutes les valeurs propres d'une matrice se trouvent dans l'union des cercles de Gershgorin

$$C_i = \left\{ z \in \mathbb{R}, |z - a_{ii}| \le \sum_{k=1, k \ne i}^n |a_{ik}| \right\} \qquad i = 1...n$$

Exemple: La matrice A donnée par $A = \begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 & 2 \\ -1 & 1 & 5 \end{pmatrix}$ a ses valeurs propres dans la réunion des cercles $C_1(3,2)$, $C_2(4,4)$, $C_3(5,2)$. En fait les valeurs propres sont 2, 4, 6.

Deux exemples de résultats classiques

Majoration du quotient de Rayleigh

Définition: Quotient de Rayleigh

Si A est une matrice carrée, le quotient de Rayleigh est

$$R(v) = \frac{v^T A v}{v^T v}, \qquad v \in \mathbb{R}^n, v \neq 0$$

Résultat : Si A est une matrice carrée **symétrique** alors on a

$$|\lambda_{\min}| \leq |R(v)| \leq |\lambda_{\max}|$$

où λ_{\min} et λ_{\max} sont respectivement la plus petite et la plus grande valeur propre de A en module.

Normes vectorielles

Définitions

Pour tout vecteur $x \in \mathbb{R}^n$, on note :

Norme euclidienne

$$||x||_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^n x_i^2}$$

• Norme I_p

$$\left\|x\right\|_{p} = \left(\sum_{i=1}^{n} x_{i}^{p}\right)^{1/p}$$

Norme du sup

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Normes vectorielles

Théorème 3.1.2 : Normes équivalentes

Toutes les normes $\|.\|$ de \mathbb{R}^n sont **équivalentes**, i.e. pour tout couple de normes $\|.\|_{\alpha}$ et $\|.\|_{\beta}$, il existe deux constantes positives C_1 et C_2 telles que

$$C_1 \|x\|_{\alpha} \leq \|x\|_{\beta} \leq C_2 \|x\|_{\alpha}, \quad \forall x \in \mathbb{R}^n$$

Définition: Norme subordonnée

On appelle norme matricielle **subordonnée** à la norme vectorielle $\|.\|$ la norme définie par :

$$\forall A \in \mathbb{R}^{n \times n}, \qquad |||A||| = \max_{v \in \mathbb{R}^n, v \neq 0} \frac{||Av||}{||v||}$$

Définition: Norme consistante

Une norme matricielle $\|.\|$ est dite **consistante** avec une norme vectorielle $\|.\|$ si :

$$\forall A \in \mathbb{R}^{n \times n}, \forall v \in \mathbb{R}^{n}, \qquad ||Av|| \leq ||A|| \, ||v||$$

Conséquence des définitions

Toute norme subordonnée est consistante

Définition: Norme sous multiplicative

Une norme matricielle ||.|| est dite **sous multiplicative** si elle vérifie :

$$\forall A, B \in \mathbb{R}^{n \times n}, \qquad ||AB|| \leq ||A|| \cdot ||B||$$

Conséquence de cette définition

Les normes consistantes et subordonnées sont sous-multiplicatives

Définitions des normes subordonnées aux normes usuelles

Pour toute matrice $A \in \mathbb{R}^{n \times n}$ on note

• Norme 1 : Somme des v.a. des termes en colonnes

$$||A||_1 = \max_{j=1,\dots n} \sum_{i=1}^n |a_{ij}|$$

• Norme 2

$$||A||_2 = \rho^{1/2}(A^*A) = \mu_1$$
 plus grande valeur singulière de A

• Norme infinie : Somme des v.a. des termes en lignes

$$||A||_{\infty} = \max_{i=1,...n} \sum_{j=1}^{n} |a_{ij}|$$

Exemple de norme non subordonnée

Pour toute matrice $A \in \mathbb{R}^{n \times n}$ on appelle **norme de Frobenius** ou de Schur, la norme suivante

$$||A||_{S} = \left(\sum_{i,j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = \sqrt{tr(A^{T}A)}$$

Remarque importante

Pour toute matrice $A \in \mathbb{R}^{n \times n}$ hermitienne $(A^* = A)$ on a

$$\left\|A
ight\|_2=
ho^{1/2}(A^2)=\lambda_1$$
 plus grande valeur propre de A

Cette norme ne doit pas être confondue avec la norme de Frobenius ou de Schur

Conditionnement

Définition du conditionnement d'une matrice

Pour toute matrice $A \in \mathbb{R}^{n \times n}$ on appelle **conditionnement** de A relativement à la norme de Holder $\|.\|$ la quantité

$$cond(A) = ||A|| \cdot ||A^{-1}||$$

Résultat important

Pour toute matrice $A \in \mathbb{R}^{n \times n}$ on a

$$cond(A) \ge 1$$

Conditionnement

Démonstration de $cond(A) \ge 1$

On a
$$||A.A^{-1}|| = ||I|| = 1$$

Comme les normes de Holder sont sous multiplicatives, on en déduit :

$$1 = ||A.A^{-1}|| \le ||A|| \cdot ||A^{-1}||$$
 soit $cond(A) \ge 1$

Remarques

La valeur du conditionnement dépend de la norme utilisée pour l'évaluer, mais pour deux normes $\|.\|_\alpha$ et $\|.\|_\beta$ équivalentes, on a

$$C_1^2 cond_{\alpha}(A) \leq cond_{\beta}(A) \leq C_2^2 cond_{\alpha}(A)$$

Un **bon** conditionnement est un conditionnement proche de 1.

Principe

Résolution de système

On suppose que l'on résout AX = B où

- A est une matrice de $\mathbb{R}^{n \times n}$,
- X et B sont des vecteurs de \mathbb{R}^n .

On va supposer successivement :

- que l'on commet une erreur sur le second membre B, i.e. on résout $A(X + \Delta X) = B + \Delta B$
- 2 que l'on commet une erreur sur la matrice A, i.e. on résout $(A + \Delta A)(X + \Delta X) = B$
- **3** que l'on commet une erreur sur les deux, i.e. on résout $(A + \Delta A)(X + \Delta X) = B + \Delta B$.

et on va estimer les répercutions sur la solution X du système.

Cas 1 : Perturbation de B

On résout

$$A(X + \Delta X) = B + \Delta B$$

or AX = B donc

$$A\Delta X = \Delta B$$
 soit $\Delta X = A^{-1}\Delta B$

d'où

$$\|\Delta X\| \leq \|A^{-1}\| \|\Delta B\|$$

Or
$$AX = B$$
 donc $||B|| \le ||A|| \, ||X||$ donc

$$\|\Delta X\| \|B\| \le \|A\| \|A^{-1}\| \|\Delta B\| \|X\|$$

et si $||B|| \neq 0$ on en déduit

$$\frac{\|\Delta X\|}{\|X\|} \leq cond(A) \frac{\|\Delta B\|}{\|B\|}$$

Cas 2 : Perturbation de A

On résout

$$(A + \Delta A)(X + \Delta X) = B$$

or AX = B donc

$$A\Delta X = -\Delta A(X + \Delta X)$$
 soit $\Delta X = -A^{-1}\Delta A(X + \Delta X)$

d'où (en utilisant le fait que les normes matricielles sont sous-multiplicatives)

$$\|\Delta X\| \le \|A^{-1}\| \|\Delta A\| (\|X\| + \|\Delta X\|)$$

Soit

$$\|\Delta X\| \left(1 - \|A^{-1}\| \|\Delta A\|\right) \le \|A^{-1}\| \|\Delta A\| \|X\|$$

et si $||X|| \neq 0$ on en déduit

$$\frac{\|\Delta X\|}{\|X\|} \leq \frac{\|A^{-1}\| \|\Delta A\|}{1 - \|A^{-1}\| \|\Delta A\|} = \frac{\|A^{-1}\| \|A\|}{1 - \|A^{-1}\| \|\Delta A\|} \cdot \frac{\|\Delta A\|}{\|A\|}$$

Cas 2 : Perturbation de A

On suppose que la perturbation de A est "petite" au sens où

$$\left\|A^{-1}\right\|\left\|\Delta A\right\|\ll 1$$

et on déduit alors que

$$\frac{\|\Delta X\|}{\|X\|} \leq cond(A).\frac{\|\Delta A\|}{\|A\|}$$

Cas 3 : Perturbations de A et de B

On résout

$$(A + \Delta A)(X + \Delta X) = B + \Delta B$$

De façon analogue aux cas précédents, on montre que :

$$\frac{\|\Delta X\|}{\|X\|} \leq cond(A).\left(\frac{\|\Delta A\|}{\|A\|} + \frac{\|\Delta B\|}{\|B\|}\right)$$

Exemple (from M. Schatzman)

Importance du conditionnement matriciel

On considère la matrice $A = \begin{pmatrix} 1 & 1 \\ 1 & 1.0001 \end{pmatrix}$ et on résout successivement :

$$Ax = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 et $A(x + \delta x) = \begin{pmatrix} 2 \\ 2.0001 \end{pmatrix}$

On trouve:

$$x = \begin{pmatrix} 2.0 \\ 0 \end{pmatrix}$$
 et $x + \delta x = \begin{pmatrix} 1.0 \\ 1.0 \end{pmatrix}$

sachant que $cond_2(A) = 40004$.

Références

- Analyse numérique, M. Schatzman, InterEditions, 1991,
- Analyse numérique matricielle appliquée à l'art de l'ingénieur, P. Lascaux R. Theodor, Masson, 1993.
- Algèbre matricielle numérique, C. Brezinski, document pdf

