E.I.S.T.I. - Département Mathématiques 1re Année Ingénieurs

ALGEBRE

Devoir surveillé n^0 1a (Rattrapage) donné le 3 mars 2014 (Durée 2h.)

Tout document, calculatrices, téléphones portables, sont interdits.

I (5 Pts.)

i) Déterminer toutes les formes canoniques de **Jordan** possibles pour la matrice réelle A dont le polynôme caractéristique $P_A(t)$ et le polynôme minimal $m_A(t)$ correspondants sont les suivants :

$$P_A(t) = (t^2 - 2t + 1)^3 (t^2 - 1)^4$$

 $m_A(t) = (t^2 - 2t + 1)^2 (t^2 - 1)^4$.

ii) Soit E un espace vectoriel de dimension $10 \operatorname{sur} \mathbb{R}$ et soit l'endomorphisme $f: E \to E$, ayant pour polynôme minimal :

$$m_f(t) = (t^2 + t + 1)^2 (t^2 + 3)^2.$$

Trouver toutes les formes rationnelles canoniques possibles pour la représentation matricielle B_f de f.

\mathbf{II} (10 Pts.)

On considère la matrice $A \in \mathcal{M}_3(\mathbb{C})$ à coefficients complexes suivante :

$$A = egin{pmatrix} -1 & i & 1 \ -i & 0 & 0 \ 0 & i & 0 \end{pmatrix}$$

1. Soit f l'application définie par :

$$f: \mathbb{C}^3 \times \mathbb{C}^3 \mapsto \mathbb{C}$$

$$\langle X, Y \rangle = \sum_{i=1}^3 x_i \bar{y}_i$$

avec

$$X=\left(egin{array}{c} x_1 \ x_2 \ x_3 \end{array}
ight), \qquad Y=\left(egin{array}{c} y_1 \ y_2 \ y_3 \end{array}
ight)$$

- a) Vérifier que f définit un produit scalaire sur $\mathbb{C}^3 \times \mathbb{C}^3$. En déduire la norme vectorielle associée a ce produit scalaire. Quelle est la relation de f avec le produit scalaire usuel?
- b) La matrice A est-elle Hermitienne?
- c) Appelons aussi A l'opérateur qui admet la matrice A comme représentation matricielle. En utilisant le produit scalaire f déterminer l'opérateur adjoint A^* de A.

- 2. a) Vérifier si la matrice AA^* est normale et hermitienne. Déterminer les valeurs propres de AA^* et en déduire le rayon spectral correspondant.
 - b) Enoncer et démontrer le théorème de Gerschgorin Hadamard
 - c) Appliquer ce théorème à la matrice AA^* pour constater la **localisation** de ses valeurs propres (trouvées précédemment au a) à l'intérieur de l'union des disques de Hadamard. Faire le graphique et interpréter votre résultat.
- 3. a) Pour toute matrice $B \in \mathcal{M}_3(\mathbb{C})$ on définit la **norme matricielle** subordonnée à la norme vectorielle (issue du produit scalaire usuel) $\|v\|_2$ par :

$$||B||_2 \equiv \sup_{v \neq 0} \frac{||B(v)||_2}{||v||_2}$$

Déterminer la norme matricielle $||A||_2$ en termes du rayon spectral de AA^* trouvé dans 2).

(Utilisation d'un théorème du cours sans démonstration).

- b) Si U et V sont deux opérateurs unitaires donner la valeur de la norme matricielle $||U^*AV||_2$. Justifier votre réponse en **donnant la démonstration** de la conservation des normes matricielles par transformation unitaire.
- III (5 Pts.) Soit E l'espace vectoriel des polynômes sur $\mathbb R$ de degré $d \leq 2$, donc :

$$E = \{P(t) = a + bt + ct^2; (a, b, c) \in \mathbb{R}^3\}$$

On définit une application g de E^2 dans $\mathbb R$ par :

$$g: E \times E \mapsto E$$

 $g(P,Q) = P(1)Q(1) + P'(1)Q'(1) + P''(1)Q''(1)$

- a) Montrer que g définit un produit scalaire sur E^2 et en déduire la norme associée.
- b) Soit F un sous espace vectoriel de E orthogonal à Q(t)=2t. Trouver une base de F.
- c) Trouver une base orthonormée de E, en utilisant le procédé de Gramm-Schmidt.