
© 2008 Carmen Avila & Yoonsik Cheon OCL 2.0 QUICK REFERENCE The University of Texas at El Paso

 1

OCL Constructs

context

Specifies the context for OCL expressions.

context Account

inv

States a condition that must always be met by all instances of a

context type.

context Account

 inv: balance >= 0

pre

States a condition that must be true at the moment when an

operation starts its execution.

context Account::deposit(amt: Integer): void

 pre: amt > 0

post

States a condition that must be true at the moment when an

operation ends its execution.

context Account::deposit(amt: Integer): void

 post: balance = balance@pre + amt

init

Specifies the initial value of an attribute or association role.

context Account::balance: Integer

 init: 0

derive

Specifies the value of a derived attribute or association role.

context Account::interest: Real

derive: balance * .03

body

Defines the result of a query operation.

context Account::getBalance(): Integer

 body: balance

def

Introduces a new attribute or query operation.

context Account

 def: getBalance(): Integer = balance

package

Specifies explicitly the package in which OCL expressions

belong.

package BankSystem::Accounting

context Account

 inv: balance >= 0

endpackage

OCL Expressions

self

Denotes the contextual instance.

context Account

 inv: self.balance >= 0

result

In a postcondition, denotes the result of an operation.

context Account::getBalance(): Integer

post: result = balance

@pre

In a postcondition, denotes the value of a property at the start of

an operation.

context Account::deposit(amt: Integer): void

post: balance = balance@pre + amt

Navigation

Navigation through attributes, association ends, association

classes, and qualified associations.

context Account

inv: self.balance >= 0 -- dot notation

-- collection operator (->)

inv: owners->size() > 0

-- association class, TransInfo

inv: transactions.TransInfo->forall(amount > 0)

-- qualified association, owners

inv: not owners[‘primary’].isOclUndefined()

if-then-else expression

Conditional expression with a condition and two expressions.

context Account::interestRate: Real

derive: if balance > 5000 then .03 else .02 endif

let-in expression

Expression with local variables.

context Account::canWithdraw(amt: Integer): boolean

def: let newBalance: Integer = balance – amt

 in newBalance > minimumBalance

Messaging (^)

Indicates that communication has taken place.

context Account::deposit(s: Sequence(Integer)): void

 pre: s->forAll(amt: Integer | amt > 0)

post: balance = balance@pre + s->sum()

post: s->forAll(amt: Integer | self^deposit(amt))

OCL Standard Library

Basic Types

Type Values Operations

Boolean false, true or, and, xor, not, =, <>, implies

Integer -10, 0, 10, …
=, <>, <, >, <=, >=, +, -, *, /,

mod(), div(), abs(), max(),

min(), round(), floor() Real -1.5, 3.14, …

String „Carmen‟

=, <>, concat(), size(),

toLower(), toUpper(),

substring()

OclAny

Supertype of all UML and OCL types

© 2008 Carmen Avila & Yoonsik Cheon OCL 2.0 QUICK REFERENCE The University of Texas at El Paso

 2

Operation Description

=

<>

oclIsNew()

oclIsUndefined()

oclAsType(type)

oclIsTypeOf(type)

oclIsKindOf(type)

oclisInState(state)

T::allInstance()

True if self and the argument are the same

True if self and the argument are not the same

True if sel was created during the operation

True if self is undefined

self as of the given type, type

True if self is an instance of the given type, type

True if self conforms to the given type, type

True if self is in the given state, state

Set of all instances of the type T

OclVoid

Type with one single instance (undefined) that conforms to all

others types

Operation Description

oclIsUndefined()

Always true

OclMessage

Messages that can be sent to and received by objects

Operation Description

hasReturned()

result()

isSignalSent()

isOperationCall()

Is the operation (self) called and returned?

Result of the operation (self) or undefined

Is self a sending of a UML signal?

Is self a UML operation call?

Tuple

A tuple consists of named parts each of which can have a

distinct type.

-- Tuple(name: String, age: Integer)

Tuple {name: String = ’John, age: Integer = 20}

Collection Types

Four collection types (Set, OrderedSet, Bag, and Sequence) with

Collection as the abstract supertype.

Collection constants

Set {1, 2, 3} -- Set(Integer)

OrderedSet {„apple, „pear‟, „orange‟} -- OrderedSet(String)

Bag {1, 1, 2, 2} -- Bag(Integer)

Sequence {1..(4 + 6), 15} – Sequence(Integer)

Standard operations

Operation Description

count(o)

execludes(o)

excludesAll(c)

includes(o)

includesAll(c)

isEmpty()

notEmpty()

size()

sum()

Number of occurrences of o in the collection (self)

Is o not an element of the collection?

Are all the elements of c not present in the collection?

Is o an element of the collection?

Are all the elements of c contained in the collection?

Does the collection contain no element?

Does the collection contain one or more elements?

Number of elements in the collection

Addition of all elements in the collection

Collection operations

Operation Set OrderedSet Bag Sequence

=

<>

-

append(o)

asBag()

asOrderedSet()

asSequence()

asSet()

at(i)*

excluding(o)

first()

flatten()

including(o)

indexOf(o)

insertAt(i, o)

intersection(c)

last()

prepend(o)

subOrderedSet(l, u)

subsequence(l, u)

symmetricDifference(c)

union(c)

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

*OCL uses 1-based index for ordered sets and sequences.

including(o): new collection as self but with o added

excluding(o): new collection as self but with o removed

Iteration operations

Operation Description

any(expr)

collect(expr)

collectNested(expr)

exists(expr)

forAll(expr)

isUnique(expr)

iterate(x: S; y: T| expr)

one(expr)

reject(expr)

select(expr)

sortedBy(expr)

Returns any element for which expr is true

Returns a collection that results from evaluating

expr for each element of self

Returns a collection of collections that result

from evaluating expr for each element of self

Has at least one element for which expr is true?

Is expr true for all elements?

Does expr has unique value for all elements?

Iterates over all elements

Has only one element for which expr is true?

Returns a collection containing all elements for

which expr is false

Returns a collection containing all elements for

which expr is true

Returns a collection containing all elements

ordered by expr

accounts->any(a: Account | a.balance > 1000)

accounts->collect(name) -- all the names

accounts->collectNested(owners)

accounts->exists(balance > 5000)

accounts->forAll(balance >= 0)

accounts->isUnique(name)

accounts->iterate(a: Account; sum: Integer = 0 | sum + a.balance)

accounts->one(name = “Carmen”)

accounts->reject(balance > 1000)

accounts->select(balance <= 1000)

accounts->sortedBy(balance)

