
Object-Oriented Design

EISTI : Département d’Informatique : Méthodologies d'Analyse 1

UML 2.0: Relationships

Relationships

• UML 2.0 defines some concepts to model
interactions between classes, each corresponding
to a graphical element in the class diagram.

• From the weakest relationship to the strongest:
– Dependency

EISTI : Département d’Informatique : Méthodologies d'Analyse 2

– Dependency

– Association

– Aggregation

– Composition

– Generalization

Relationships: Dependencies

• Dependency is the weakest relationship between classes

EISTI : Département d’Informatique : Méthodologies d'Analyse 3

• Dependency is the weakest relationship between classes

• Class A depends on class B if A uses B in a way or the other

• Usually, it is a temporary interaction, of which no trace is
kept after use

• If you can say “A uses B”, chances are that there is a
dependency relationship between A and B

Relationships: Associations

EISTI : Département d’Informatique : Méthodologies d'Analyse 4

• A stronger kind of relationship

• Class A is associated to class B if A is connected to B for a
certain amount of type

• Class A and B have an independent life

• If you can say that “A has a B”, chances are that there is an
association between A and B

Associations: Navigability & Names

• Arrows indicate the possibility to navigate from A to B

EISTI : Département d’Informatique : Méthodologies d'Analyse 5

• Arrows indicate the possibility to navigate from A to B

• Navigability from class A to class B means that from an instance
of class A we can access the associated instance of class B

• When the association can be navigated in both directions, no
arrow is drawn

• The association can be named

– optionally, when there is only one relationship

– mandatorily, to distinguish two relationships between the
same classes

Associations: Multiplicity

EISTI : Département d’Informatique : Méthodologies d'Analyse 6

• Usually, association models permanent relationships

• Therefore, they are often used to represent class attributes

• Multiplicity indicates how many instances of a class are involved
in the association

• Default multiplicity is 1

+getArrivalTime() : Date

-flightNumber : int

-departureTime : Date

-flightDuration : int

-departingAirport : string

-arrivingAirport : string

Flight

-id : string

-airPlaneType : string

-maxSpeed : string

-maxDistance : float

Plane

-assignedFlights

*

-assignedPlane

0..1

airline

Associations: Roles

EISTI : Département d’Informatique : Méthodologies d'Analyse 7

• assignedFligts and assignedPlane are the roles of the
relation (or association) airline

• assignedFlights and assignedPlane are attributes by
relation

• A dot on an association’s end means that the end belongs to the

Associations: Ends’ Ownership

EISTI : Département d’Informatique : Méthodologies d'Analyse 8

• A dot on an association’s end means that the end belongs to the
class on the opposite end

• No dot means that the end belongs to the association

• In the example :

– vertex is an attribute owned by class Polygon

– polygon is an attribute owned by relationship MadeOf

Relationships: Aggregation

EISTI : Département d’Informatique : Méthodologies d'Analyse 9

• Aggregation is a stronger relationship than association

• Describes a relationship of property between classes

• To be used when you can say “A owns a B”

Attributes by relation

EISTI : Département d’Informatique : Méthodologies d'Analyse 10

• engine is an attribute of Car and is called an attribute by
relation

• If the name of the role is the same as the name of the
class, usually it is omitted

Relationships: Composition

• Composition is the strongest relationship between classes

EISTI : Département d’Informatique : Méthodologies d'Analyse 11

• Composition is the strongest relationship between classes

• Indicates total possession of class B by class A

• At every single time, the owned class can be into only one
composition relationship

• The owned class cannot exist before the container class

• If proprietary class A is destroyed, so are all classes which are
connected to A by composition

• To be used when you can say “B is part of A”

Relationships: Generalization

EISTI : Département d’Informatique : Méthodologies d'Analyse 12

• Generalization or Inheritance relationships indicate that a class
B is a specialization of class A

• To be used when you can say “B is a A”

• Usually they have neither name, nor multiplicity

Abstract Classes

+sleep()

Animal

+sleep()

Lion

+sleep()

Tiger

+sleep()

Zebra

EISTI : Département d’Informatique : Méthodologies d'Analyse 13

• An abstract class is a class which has at least one
operation whose implementation is absent

sleep() {

 on the belly

}

sleep() {

 on the back

}

sleep() {

 standing

}

Relationships: Association Classes

EISTI : Département d’Informatique : Méthodologies d'Analyse 14

• Often the association between classes is not a simple
structural connection

• When it’s complex and carries a lot of information, an
association class can be used

• An association class is an association with names and
attributes

Association Qualifiers

EISTI : Département d’Informatique : Méthodologies d'Analyse 15

• Sometimes associations between two classes are
indexed on a key

• Usually, the key is an attribute of the target class

• Association qualifiers are the UML 2.0 equivalent of association
tables for programming languages (maps, hash tables, etc.)

Modeling an association

EISTI : Département d’Informatique : Méthodologies d'Analyse 16

• Two alternative ways to model an association
• First one explicitly models the association
• Second one implicitly: it is the ways association are

usually implemented

N-ary association

Subject

Student

Course

Professor
* *

*

EISTI : Département d’Informatique : Méthodologies d'Analyse 17

Enumerations

EISTI : Département d’Informatique : Méthodologies d'Analyse 18

• Enumerations are classes that represent objects which
can take only a finite number of values

