Théorie des Langages - EISTI - ING 1

Yannick Le Nir

Ecole Internationale des Sciences du Traitement de l'Information yannick.lenir@eisti.fr

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions régulières

Construction de langages rationnels

Construction
l'automates
l'états finis

Rappels

Langages, grammaires et automates

- Langages algébriques (hors contexte)
 - grammaire sous forme normale de Chomsky
 - algorithme d'analyse CKY (n³)
 - ▶ automates à pile
- Langages rationnels (réguliers)
 - grammaire de type 3
 - expressions régulières
 - automates états finis

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expression: régulières

Construction de langages rationnel

'automates 'états finis

Langages et automates

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions régulières

Construction de langages rationnels

d'automates d'états finis minimaux

Théorème de Kleene

Un langage est régulier ssi il est reconnu par un automate d'états finis

Objectifs

- Construction de l'automate minimal à partir d'un langage rationnel : méthode des quotients gauches
- Génération du langage à partir de l'automate : mise en équation et lemme d'Arden

Expressions rationnelles ou régulières

Construction

Soit X un alphabet :

- ▶ $\forall x \in X$, x est une expression régulière (ER)
- ▶ si E est une ER, (E) est une ER
- ▶ si E_1 et E_2 sont des ER, $(E_1 + E_2)$ est une ER
- ▶ si E_1 et E_2 sont des ER, $(E_1.E_2)$ est une ER (le point peut être ommis)
- ▶ si E est un ER, E* est une ER

Exemple

- \triangleright (0 + 1)*
- $((0(10)^*)1)$
- $((10)^*(01)^*)$

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions régulières

Construction de langages rationnels

Constructio d'automate d'états finis minimaux

Langages rationnels (réguliers)

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions régulières

Construction de langages rationnels

Construction
d'automates
d'états finis

Propriété fondamentale

Un langages L est rationnel (régulier) si et seulement si il existe une expression rationnelle (régulière) E telle que $L = \mu(E)$.

Remarque

On confondra souvent par abus de langage, une expression et le langage qu'elle représente

Equivalence

- Un langage rationnel peut être reconnu par des automates différents (cf TD 3)
- Un langage rationnel peut également être représenté par différentes expressions (dites équivalentes)

- Les expressions $(a^*b^*)^*$ et $(a + b)^*$ sont équivalentes et représentent toutes les deux le langage $\{a,b\}^*$
- Par contre (aa + b)* et (aa + aab + bb)* ne sont pas équivalentes car par exemple b appartient au langage associé à la première mais pas à celui de la seconde.

Automates et langages

De l'automate au langage

- Déterminer le système d'équations à partir de l'automate
- Déterminer sa solution : le langage reconnu par l'automate
- → résolution via lemme d'Arden

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

xpressions égulières

Construction de langages rationnels

d'automates d'états finis

Système d'équations

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions régulières

Construction de langages rationnels

Lonstructior l'automates l'états finis

Construction d'une ER à partir d'un AFD

- Chaque état devient une inconnue (l'ele langage reconnu par cet état de l'AFD).
- Les évènements sont les constantes.
- ▶ Toutes les transitions (q_0, e_i, q_i) produisent l'équation $q_0 = \sum e_i.q_i(+\varepsilon$ si q_0 est un état final)
- ▶ La solution est la valeur de l'inconnue correspondant à l'état initial (langage reconnu par l'AFD).

Lemme d'Arden

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions égulières

Construction de langages rationnels

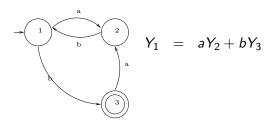
d'automates d'états finis

Lemme

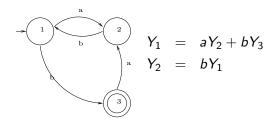
Soit E une équation du type X = A.X + D, avec A et D des langages réguliers.

Alors, une solution de E est le langage $X = A^*D$ si $\varepsilon \notin A$ et le langage $X = A^+D$ sinon.

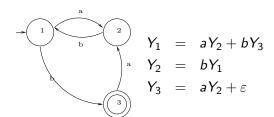
- ► Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



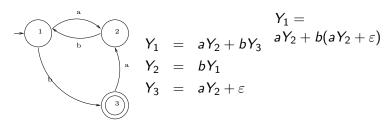
- Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



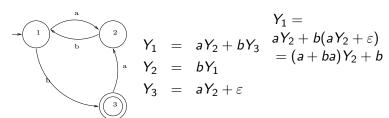
- Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ► La solution est le langage reconnu par l'AFD



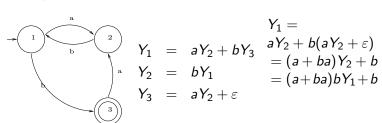
- ► Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



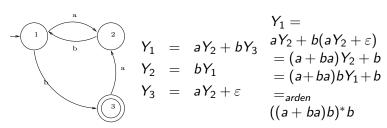
- Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



- Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



- ► Générer le système d'équations
- Appliquer plusieurs fois le lemme d'Arden pour résoudre le système d'équations
- ▶ La solution est le langage reconnu par l'AFD



Langages et automates

Du langage à l'automate minimal

- ▶ Déterminer les états à partir du langage
- Déterminer les transitions
- ▶ → construction via quotients gauches

Théorie des Langages - EISTI -ING 1

Yannick Le Nir

Introduction

Expressions ·égulières

Construction de langages rationnels

Construction d'automates d'états finis minimaux

Construction d'automates d'états finis minimaux

Définition

Soit $L = L_1.L_2$ un langage donné sur un alphabet $\{a,b\}$. Les quotients gauches de L sont : $a^{-1}L$ et $b^{-1}L$, avec : $\left\{ \begin{array}{ll} u^{-1}L_1.L_2 = (u^{-1}L_1)L_2 + u^{-1}L2 & \text{si } \varepsilon \in L_1 \\ u^{-1}L_1.L_2 = (u^{-1}L_1)L_2 & \text{sinon} \\ u^{-1}(L_1 + L_2) = u^{-1}L_1 + u^{-1}L_2 \end{array} \right.$

Théorème

L'ensemble des quotients gauches de L, Q(L), est fini

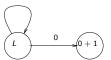
Proposition

Soit un AFD, A, d'états E, $Q(L) = \{L_q(A), q \in Q\}$. On peut donc construire un automate minimal qui reconnait L et dont chaque état correspond à un élément de R(L)

- ► Chaque quotient est un état de l'automate
- ► Chaque transition permet de passer d'un état à l'autre
- ightharpoonup L'état final est le quotient chaîne vide arepsilon
- L'état poubelle est le quotient vide

Soit I'E.R.
$$L = 1*0(0+1)$$

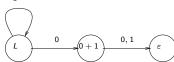
 $0^{-1}_{1}L = 0+1$ et $1^{-1}L = L$



- ► Chaque quotient est un état de l'automate
- ► Chaque transition permet de passer d'un état à l'autre
- ightharpoonup L'état final est le quotient chaîne vide arepsilon
- ▶ L'état poubelle est le quotient vide

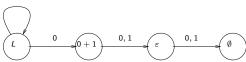
Soit I'E.R.
$$L = 1*0(0+1)$$

 $0^{-1}(0+1) = \varepsilon$ et $1^{-1}(0+1) = \varepsilon$



- Chaque quotient est un état de l'automate
- ► Chaque transition permet de passer d'un état à l'autre
- ightharpoonup L'état final est le quotient chaîne vide arepsilon
- L'état poubelle est le quotient vide

Soit l'E.R.
$$L=1^*0(0+1)$$
 $0^{-1}_{_1}\varepsilon=\emptyset$ et $1^{-1}\varepsilon=\emptyset$



- Chaque quotient est un état de l'automate
- ► Chaque transition permet de passer d'un état à l'autre
- ightharpoonup L'état final est le quotient chaîne vide arepsilon
- ► L'état poubelle est le quotient vide

Soit l'E.R.
$$L = 1*0(0+1)$$

 $0^{-1}\emptyset = \emptyset$ et $1^{-1}\emptyset = \emptyset$
 $0,1$
 $0,1$
 $0,1$
 $0,1$