Théorie des Graphes - Les Arbres

Maria Malek

2 mars 2009

Définitions & Propriétés

Les Forêts

Les Isthmes

Les Caractéristiques d'un arbre

Les arbres couvrants

Arbres couvrant dans un graphe valué

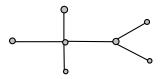
Problème de l'arbre couvrant minimum

Algorithme de Kruskal

Les Forêts Les Isthmes Les Caractéristiques d'un arbr

- Un arbre est un graphe connexe et acyclique.
- ▶ Un arbre est un graphe simple
- ▶ Une chaîne élémentaire est en particulier un arbre
- n est le nombre de sommets et m est le nombre d'arêtes.

Exemples d'arbres



Propriété- 1

- ▶ PROPOSITION I Un arbre tel que *n* >= 2 possède au moins deux sommets pendants (de degré 1 chacun)
- ▶ PREUVE
 - Considérons une chaîne élémentaire maximale (non contenue dans une chaîne élémentaire plus longue) : $(x_0, e_1, x_1, ..., e_k, x_k)$
 - Supposons que x₀ ait une arête incidente f <> e_k la reliant avec un sommet y alors
 - Si y est l'un des sommets de la chaîne $(y = x_i, f, x_0, e_1, x_1, ..., x_i)$ est un cycle dans le graphe!!
 - Sinon

$$(y, f, x_0, e_1, x_1, ..., e_k, x_k)$$

est une chaîne plus longue que la chaîne précédente!!

Donc, dans les deux cas : contradiction

Les Forêts Les Isthmes Les Caractéristiques d'un arbre

Propriété - 2

- ▶ PROPOSITION II Si G est un arbre on a m=n-1
- ► PREUVE
 - ▶ Pour n=1, m= 0, Raisonnons par récurrence :
 - ▶ G est arbre, soit x un sommet pendant de G.
 - ▶ G-x est un graphe connexe et acyclique donc G'=G-x est arbre dans lequelm $m_{G'} = n_{G'} 1$
 - Or $n_G = n_{G'} + 1$ et $m_G = m_{G'} + 1$ on en déduit que $m_G = n_G 1$

Propriété - 3

- ▶ PROPOSITION III Dans un arbre deux sommets quelconques sont reliés par une chaîne élémentaire unique
- ► PREUVE (éléments)
 - La chaîne élémentaire existe car l'arbre est connexe
 - Il faut démontrer l'unicité de la chaîne :
 - On démontre que l'existence de deux chaînes reliant x à y nous ramène à un cycle!!

Les forêts

- Une forêt est un graphe acyclique.
- les composantes connexes d'une forêt sont des arbres.
- ▶ PROPOSITION IV Dans une forêt G on a $m \le n-1$
- ► PREUVE
 - ► Soient *C*₁, *C*₂, ..., *C*_p les composantes connexes de G, Pour chacune nous avons :

$$m_i = n_i - 1$$

- $\sum_{i=n}^{p} m_i = \sum_{i=n}^{p} n_i \sum_{i=n}^{p} 1$
- m = n p, p étant le nombre de composantes p >= 1
- ▶ Donc m <= n-1

Les Isthmes - 1

- ▶ Un Isthme d'un graphe est une arête e telle que G-e a une composante connexe de plus que G :
- Donc dans G-e, les extrémités de e ne sont pas reliées par une chaîne.
- ► LEMME 1 Une arête d'un graphe G est un isthme ssi elle n'appartient pas à un cycle de G
- ▶ PROPOSITION V Dans un arbre toute arête est un isthme

Les Isthmes - 2

- ► LEMME 1 Une arête d'un graphe G est un isthme ssi elle n'appartient pas à un cycle de G
- ► PREUVE
 - Considérons le cas où G est connexe, Soit e une arête de G ayant x et y comme extrémités
 - Si e n'est pas un isthme, alors il existe une chaîne élémentaire dans G-e qui relie x et y. Cette chaîne constitue avec e un cycle fermé dans G.
 - ▶ Soit le cycle $C = (x_0, e_1, x_1, e_2, ..., x_{k-1}, e_k, x_0)$ avec $e = e_1$
 - Soit u,v deux sommets de G-e, Ils sont reliés dans G par $D = (u = y_0, f_1, y_1, ..., f_k, y_k = v)$ Si cette chaîne ne passe pas par e cette une chaîne de G-e!!
 - ▶ Sinon $e = f_i$ ayant comme extrémités y_{i-1} et y_i
 - Remplaçons dans D l'arête f_i par la chaîne suivante obtenue à partir de C : $(y_{i-1} = x_0, e_k, x_{k-1}, ..., e_2, x_1 = y_i)$
 - ► La chaîne D' relie u et v dans G-e!!

Caractéristiques des arbres

- ► THÉORÈME 1 Les conditions suivantes pour un graphe G sont équivalentes :
 - 1. G est un arbre.
 - 2. G est connexe et on m=n-1.
 - 3. G est acyclique et on m=n-1.
 - 4. G est connexe et toute arête est un isthme
 - 5. Dans G deux sommets quelconques sont reliés par une chaîne élémentaire unique.

- ▶ Un arbre couvrant d'un graphe G est un graphe partiel de G qui est un arbre.
- ▶ PROPOSITION VI Un graphe connexe G a au moins un arbre couvrant.
- ► PREUVE
 - On retire de G les arêtes non isthmes,
 - le graphe partiel obtenu est connexe et ne contient plus de cycles. C'est donc un arbre

Exemple d'arbre couvrant

- ▶ COROLLAIRE I Si G est connexe alors m >= n 1
- ▶ PREUVE
 - Comme G est connexe il contient un arbre couvrant T.
 - $m_G >= m_T = n_T 1 = n_G 1$
 - ▶ Le cas d'égalité correspond à G=T.

- ▶ PROPOSITION VII Un graphe partiel d'un graphe connexe G est un arbre couvrant de G ssi il est connexe et minimal avec cette propriété relativement à la suppression d'arêtes.
- ▶ PREUVE
 - Condition nécessaire : voir PROPOSITION V
 - Condition suffisante : Soit T un graphe partiel de G connexe et minimal;
 - Pour toute arête e, T-e n'est pas connexe, donc e n'est pas isthme de T selon le THÉORÈME I (4): T est un arbre.

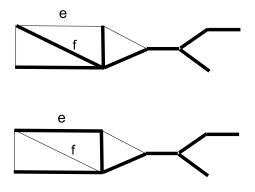
- ▶ PROPOSITION VIII Un graphe partiel d'un graphe connexe G est un arbre couvrant de G ssi il est acyclique et maximal avec cette propriété relativement à l'ajout d'arêtes.
- ▶ PREUVE de la condition nécessaire
 - ► Soit T un arbre couvrant de G. Soit e une arête de G qui n'appartient pas à T :
 - Les extrémités de e sont reliées dans T (T est connexe).
 - ► Cette chaîne simple avec l'arête e définit un cycle dans T+e.
 - Donc, T est acyclique maximal.

- ▶ PROPOSITION VIII Un graphe partiel d'un graphe connexe G est un arbre couvrant de G ssi il est acyclique et maximal avec cette propriété relativement à l'ajout d'arêtes.
- ▶ PREUVE de la condition suffisante
 - Il suffit de démontrer que T est connexe
 - Soient x,y deux sommets de T, II existe une chaîne D de G reliant les deux sommets.
 - ▶ Si D a toutes ses arêtes dans T la démonstration est faite.
 - Sinon, soit e une arête de de D qui n'est pas dans T, alors T+e a un cycle C qui contient e, donc selon LEMME 1 : e n'est pas un isthme.
 - Il existe donc dans T une chaîne qui relie les deux extrémités de e (u et v).
 - ▶ On remplace dans D l'arête e par cette chaîne.
 - On procède ainsi sur toutes les arêtes de D qui ne sont pas dans T, On obtient à la fin une chaîne dans T qui relie x et y.

- ▶ PROPOSITION IX Étant donné un arbre couvrant T de G et une arête e de G qui n'appartient pas à T. T+e contient un seul cycle élémentaire
- ► PREUVE
 - ▶ Selon la *proposition VIII* T+e contient un cycle.
 - Si e appartient à deux cycles différents alors il existe dans T deux chaînes élémentaires reliant ses extrémités (x et y)
 - Donc, contradiction avec la proposition III.

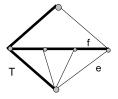
- ▶ LEMME II (L'échange) Étant donné un arbre couvrant T de G et une arête e de G qui n'appartient pas à T et une arête f du cycle T+e, alors T+e-f est un arbre couvrant de G.
- ► PREUVE
 - ▶ Selon le *théorème I* T+e-f est connexe car l'arête f n'est pas un isthme de T+e puisqu'elle appartient à un cycle.
 - ▶ D'autre part nous avons on a : $m_{T+e-f} = m_T = n_T 1 = n_{T+e-f} 1$

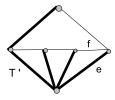
Exemple de l'échange



▶ LEMME III (L'échange fort) Étant donnés deux arbres couvrants T et T' de G et une arête $e \in T' \setminus T$, il existe une arête $f \in T \setminus T'$ telle que T+e-f et T'+f-e sont des arbre couvrants de G.

Exemple de l'échange fort





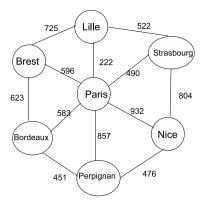
Arbres couvrants & Graphes valués

- Soit G =(X,E) un graphe valué par une application v : E → R*+
- Nous désignons par τ_G l'ensemble des arbres couvrants de G.
- ▶ Pour chaque $T \in \tau_G$, notons par v(T) la somme des valeurs par v des arêtes de T.
- ▶ Deux arbres couvrants T et T' sont dits voisins dans τ_G s'il existe deux arêtes e et f telles que : T' = T + e f et T = T' + f e

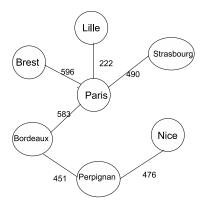
Problème de l'arbre couvrant minimum

- ▶ Étant donné un graphe simple connexe G = (X,E) valué par l'application v dans R^+ .
- ► Trouver un graphe connexe de G : T=(X,A) tel que $c(T) = \sum_{e \in A} v(e)$ soit minimum.
- ► T est nécessairement un arbre couvrant sinon on contredit la minimalité!!

Exemple du problème



Exemple de la solution



Problème de l'arbre couvrant minimum : solution

- La recherche exhaustive d'une solution est très coûteuse.
- Examen de tous les arbres couvrants possibles!!
- procédé très coûteux, estimé en milliers de siècles!!!
- ► On applique l'algorithme glouton qui n'arrive pas forcement à la solution optimale.
- En s'appuyant sur la proposition XIII on ajoute au fur et à measure une arête e qui ne créé pas de cycle avec celles déjà retenues, tel que v(e) soit minimum.

Algorithme de Kruskal

▶ procedure Kruskal (G,v) $F \leftarrow E$ $A \leftarrow \Phi$ tantque |A| < n-1 faire

Trouver $e \in F$ tel que v(e) soit minimum $F \leftarrow F - e$ si $G(A \cup \{e\})$ est acyclique alors $A \leftarrow A \cup \{e\}$ fin si
fin tantque

Algorithme de Kruskal : complexité

- Evaluation de la complexité de :
 - ► Tri des arêtes à tester : tri rapide O(m*log(m)).
 - ▶ Gestion des composantes connexes de G(A): Procédure un peu compliquée mais qui peut se faire en $O(m*\alpha(n))$ α étant une fonction très lente avec une valeur inférieur à 4.
 - L'algorithme de Kruskal est pratiquement linéaire (si les arêtes sont déjà triées).