Théorie des Graphes - Généralités

Maria Malek

23 janvier 2009

Avant Propos

- Notion de graphe est récente (formellement au cours du XX^e siècle).
- ▶ Domaine : Informatique fondamentale, Optimisation, Complexité algorithmique.
- ▶ Application : Ordonnancement de tâches, Chemins optimaux dans un graphe, Propriétés de réseaux , Connectivité, etc.
- ► Histoire & Origines
 - Problèmes des ponts de Konigsberg : théorème d'Euler, (XVIII^e siècle).
 - ▶ Problème des quatres couleurs : XIX^e siècle.

Définition des Graphes

Notations & Représentation

Terminologie

Isomorphismes

Graphes Planaires

Graphes Complets

Sous-graphes

Notations

Chaînes et cycles

Degrés

Connexité

Graphes Bipartis

Représentation en machine

Graphes Valués

Notations & Représentation Terminologie Isomorphismes Graphes Planaires Graphes Complets

Un graphe (non orienté) G est défini par :

- ▶ Un ensemble X de sommets (non vide).
- ▶ Un ensemble E d'arêtes (qui peut être vide).
- ▶ A chaque arête e sont associés deux sommets x et y appelés extremités de e.

Notations

- ▶ On note G=(X,E), X(G), E(G).
- On note n le cardinal de G : le nombre de sommets.
- On note m le cardinal de E.
- On note xy la paire d'une arete e (ou yx).

Représentation

- ▶ On dessine le Graphe sur un plan.
- Les sommets sont représentés par des points.
- Les arêtes sont représentées par des lignes simples.

Exemple d'un graphe

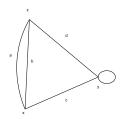


FIGURE:
$$X = \{x,y,z\}, E = \{a,b,c,d,e\}$$

Terminologie

- x et y sont les extrémités d'une arête e :
 - e relie x et y, x et y sont voisins.
 - L'arête e est incidente au sommet x et au sommet y.
 - ► Si x=y e est appelé boucle.
 - ▶ Deux arêtes e et e' ayant les mêmes extrémités sont dites parallèles (ou multiples).
- ▶ Un graphe est dit simple s'il n'a ni boucles ni arêtes multiples.
- ▶ Dans un graphe simple une arête s'identifie à ses deux extrémités : e=xy
- ➤ On associe à un graphe non simple G le graphe simple sousjacent défini ainsi :
 - il a le même ensemble de sommets que G;
 - deux sommets sont reliés par une arête ssi ils sont distincts et reliés par (au moins) une arête dans G.

Isomorphisme de graphes non orientés

- ► Un isomorphisme d'un graphe G=(X,E) sur H=(Y,F) est défini par :
 - une bijection $\Phi: X \to Y$ et une bijection $\Psi: Y \to X$ tq :
 - ▶ si $e \in E$ et $x, y \in X$ on a :
 - ▶ l'arête $\Psi(e)$ a pour extrémités $\Phi(x)$ et $\Phi(y)$ dans H ssi e a pour extrémités x et y dans G.
- Deux graphes isomorphes sont identiques en structures et se distinguent par l'ensemble de sommets et d'arêtes (autrement dit par les étiquettes associées aux sommets et aux arêtes)

Notations & Représentation Terminologie Isomorphismes Graphes Planaires Graphes Complets

Graphes Planaires

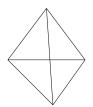
- ► Graphes dont la représentation plane vérifie la condition suivante :
- ▶ Deux lignes arêtes ne se coupent pas en dehors d'extrémités communes (s'il y en a).
- Nous étudierons plus tard leurs propriétés.
- Ils ont un rôle important pour le problème de coloration.

Graphes Complets

- Graphes simples tq deux sommets distincts sont reliés par une arête.
- ▶ Un graphe complet est déterminé par n : le nombre de sommets, et est noté K_n .
- ▶ Le nombre d'arêtes : $m = \frac{n(n-1)}{2}$.
- ▶ D'une façon générale dans un graphe simple nous avons : $m <= \frac{n(n-1)}{2}$.

Notations & Représentation Terminologie Isomorphismes Graphes Planaires Graphes Complets

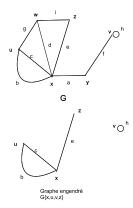
Exemple d'un graphe complet



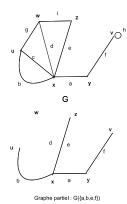
Sous-Graphes

- ▶ Soit G=(X,E), H=(Y,F) est un sous-graphe de G ssi
 - Y ⊂ Xet F ⊂ E sont tels que toute arête de F a ses extrémités dans Y.
- ▶ Un sous graphe H de G est dit engendré si F est l'ensemble d'arêtes de E qui ont leurs extrémités dans Y. Ce graphe est noté G_Y . Remarquer que $G_X = G$.
- ▶ Un sous graphe H de G est dit couvrant si Y = X. On dit aussi que H est graphe partiel de G.
- ▶ Le sous graphe engendré par F est le graphe (X,F); on le note G(F).

Exemples de sous graphes - 1



Exemples de sous graphes - 2



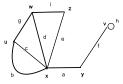
Notations

- ▶ G X où $Y \subset X$: sous graphe de G engendré par $X \setminus Y$
- ▶ G F où $F \subset E$: sous graphe partiel de G engendré par $E \setminus F$.
- ▶ G x est noté G x.
- ▶ G e est noté G e.
- ▶ par extension on notera l'ajout d'une arête e à un graphe par G + e.

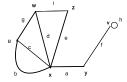
Chaînes

- ▶ Une chaîne d'un graphe G=(X,E) est une suite de la forme : $(x_0, e_1, x_1, ..., e_k, x_k)$ tq :
 - ▶ x_i est un sommet du graphe, e_{i+1} est une arête qui relie x_i à x_{i+1} .
 - ▶ k est la longueur de la chaîne, k >= 0.
 - x₀ et x_k sont les extrémités de la chaîne.
- Lorsque G est simple, une chaîne peut être définie par la suite des sommets $(x_0, x_1, ..., x_k)$.
- ▶ Une chaîne est dite simple si ses arêtes $\{e_i\}$ sont deux à deux distinctes.
- ▶ Une chaîne est dite élémentaire si ses sommet {x_i} sont deux à deux distinctes.
- Une chaîne élémentaire est simple!

Exemples de chaînes - 1

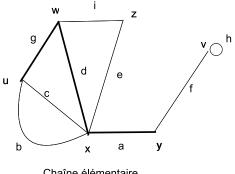


Chaîne non simple: y,a,x,d,w,g,u,b,x,d,w,i,z



Chaîne simple non élémentaire : y,a,x,d,w,g,u,b,x,e,z

Exemples de chaînes - 2



Chaîne élémentaire y,a,x,d,w,g,u

Chaînes

- ► LEMME I Si dans un graphe deux sommets sont reliés par une chaîne alors ils sont reliés par une chaîne élémentaire.
- ► PREUVE
 - Soit une chaîne qui relie les deux sommet x_0 et x_k dans laquelle apparaît le même sommet deux fois $x_i = x_i$:
 - $(x_0, e_1, x_1, ..., x_i, e_{i+1}, ..., x_j, ..., e_k, x_{k+1})$
 - nous pouvons raccourcir la chaîne en enlevant la sous chaîne qui relie x_i et x_i
 - nous obtenons alors : $(x_0, e_1, x_1, ..., x_i = x_i, ...e_k, x_{k+1})$
 - nous répétons le même procédé tant qu'il existe un sommet qui se retrouve deux fois dans la chaîne raccourcie, etc.

Cycles

- ▶ Un Cycle est une chaîne de longueur >= 1 simple et fermé : $(x_0, e_1, x_1, ..., e_k, x_0)$
- ▶ Un cycle de longueur 1 correspond à un sommet contenant une boucle.
- ▶ Dans un graphe simple un cycle est une suite de sommets : $(x_0, x_1, ..., x_0)$
- Un cycle est élémentaire si ses sommets sont deux a distincts.
- ▶ Un cycle peut être pair ou impair (sa longueur).
- Remarquer que dans un graphe simple le même cycle peut être désigné différemment
 - $(x_0, x_1, x_2, x_3, x_4, x_0)$
 - $(x_3, x_4, x_0, x_1, x_2, x_3)$
 - $(x_0, x_4, x_3, x_2, x_1, x_0)$

Degrés

- On appelle degré d'un sommet x le nombre d'arêtes incidentes à x. (une boucle compte deux fois).
- ► Exemple d(w)=3 (dans la dernière figure vue auparavant)
- Un sommet de degré nul est dit isolé.
- ▶ PROPOSITION II Dans un graphe quelconque G on a $\sum_{x \in X} d(x) = 2m$
- COROLLAIRE II Dans un graphe le nombre de sommets de degrés impairs est pair.
- ▶ On note le degré minimum d'un graphe δ_G et le degré maximum Δ_G .
- ▶ PROPOSITION III $n\delta_G <= 2m <= n\Delta_G$

Graphe Régulier

- ▶ Un graphe G est dit régulier lorsque les degrés de ses sommets sont tous égaux.
- ► Si le degré commun est égal à k, on dit que le graphe et k-régulier.
- ▶ Dans un graphe k-régulier nous avons : nk = 2m

Graphe Connexe

- ► Un graphe G est connexe si quelque soient deux sommets de G, ils sont reliés par une chaîne.
- ► Les composantes connexes d'un graphe G sont les sous graphes engendrés connexes maximaux.
- ► Les composantes connexes d'un graphes sont à deux deux disjointes.

Graphes Bipartis - 1

- ▶ Un graphe G est bipartis si son ensemble de sommets peut être divisé en deux parties disjointes tq toute arête a un extrémité dans chaque classe.
- ➤ On note un graphe biparti G par G=(X,Y,E) où X,Y sont les deux parties disjointes (ou les classes).
- ▶ Un graphe biparti n'a pas de boucles.
- ▶ Un graphe biparti G=(X,Y,E) est complet si toute paire de sommets de X et de Y est une arête.

Graphes Bipartis - 2

- ► THÉORÈME IV Un graphe est biparti ssi il n'a pas de cycle impair.
- ► PREUVE (elements)
 - ► Condition nécessaire : par l'absurde
 - Condition suffisante : marquer les sommets alternativement avec 0 et 1, raisonner éventuellement sur un marquage consécutif de 11 ou 00. Trouver la contradiction!!

Exemples de graphes bipartis

Représentation en machine - 1

- ► Trois représentations possibles :
 - 1. tableau ou liste des arêtes :

arêtes	extrémités	
1	1	2
2	3	1
3	3	3
4	2	4

- 2. Matrice d'adjacence.
- 3. Liste des voisins.

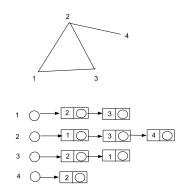
Représentation en machine - 2

- ► Trois représentations possibles :
 - 1. tableau ou liste des arêtes.
 - 2. Matrice d'adjacence :

	1	2	3	4
1	0	1	1	0
2	1	0	1	1
3	1	1	0	0
4	0	1	0	0

3. Liste des voisins.

Représentation en machine - 3



Graphes Valués

- Un graphe dont les arêtes sont valuées.
- ▶ Un graphe valué G(X,E) est un graphe avec une application : $v:E \to R$
- Un graphe valué peut être représenté par une matrice d'adjacence.
- ▶ L'absence d'une arête entre deux sommets x_i et x_j est représentée par : $v(x_i, x_i) = \infty$ ssi $(x_i x_i) \notin E$
- ▶ Par extension, $v(x_i, x_i) = 0$