Cartouche du document

Année: ING 1 - Matière: Théorie des langages - Activité: Travail dirigé

Objectifs

Ce travail dirigé a pour but d'étudier la bijection entre les langages hors-contexte et les automates à pile.

Un langage hors contexte est aussi appelé langage algébrique

Une grammaire hors-contexte (ou algébrique) est un quadruplet T,N,S,P où :

- T : ensemble des éléments terminaux
- N : ensemble des éléments non terminaux
- S : élément non terminal initial (axiome)
- P : ensemble de règles de la forme :
 - $X \longrightarrow a$ où $a \in T$ et $X \in N$
 - $X \longrightarrow Y$ où $Y \in (N \cup T)^*$ et $X \in N$

Sommaire des exercices

1 - Langages algébriques et automates à piles

Corps des exercices

1 - Langages algébriques et automates à piles

Énoncé:

Dans ces exercices, nous chercherons à montrer qu'un langage est algébrique en trouvant une grammaire algébrique le représentant. Puis, le langage étant de type 2, nous chercherons un automate à pile pour le représenter.

Question 1)

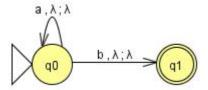
Énoncé de la question

Soit le langage $L_1 = \{a^*b\}$. Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

```
G = {
T = {a,b}
N = {S}
S = S
P = {
S ---> b
S ---> aS
}
```

On remarque que les règles respectent bien le format des grammaires de type 2.


On peut également constater qu'elles suivent également le format de type 3.

Question 2)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Question 3)

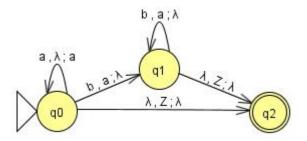
Énoncé de la question

Soit le langage $L_2 = \{a^nb^n \, / \, n \in N\}$. Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

```
G = \{
T = \{a,b\}
N = \{S\}
S = S
P = \{
S \longrightarrow \epsilon
S \longrightarrow aSb
\}
```

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 4)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Z est le symbole que l'on met dans la pile à l'initialisation (symbole de fin de pile).

Question 5)

Énoncé de la question

Soit le langage $L_3=\{\ a^nb^p\ /\ n>p\ où\ (p,n)\in\ N\ x\ N\}.$ Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

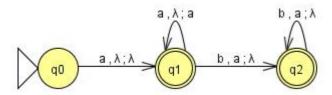
Solution de la question

```
G = \{
T = \{a,b\}
N = \{S,X,Y\}
S = S
P = \{
S \longrightarrow XY
X \longrightarrow a \mid aX
Y \longrightarrow \epsilon \mid aYb
\}
```

On remarque que les règles respectent bien le format des grammaires de type 2.

Par contre, cette grammaire ne respecte pas le format de type 3.

Une autre grammaire possible:


```
G = \{ \\ T = \{a,b\} \\ N = \{S,X\} \\ S = S \\ P = \{ \\ S \longrightarrow aSb \\ S \longrightarrow aX \\ X \longrightarrow \epsilon \mid aX \\ \} \\ \}
```

Question 6)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

La première transition sert à compter au moins un a de plus que de b.

Question 7)

Énoncé de la question

Soit le langage $L_4 = \{ a^n b^p / n \neq p \text{ où } (p,n) \in N \text{ x } N \}$. Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

On décompose le langage de cette manière :

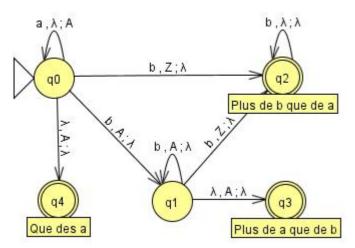
 $L_4 = \{\ a^nb^p\ /\ n > p\ où\ (p,n) \in\ N\ x\ N\}\ U\ \{\ a^nb^p\ /\ n < p\ où\ (p,n) \in\ N\ x\ N\}\ On\ décompose\ chaque\ mot\ sous\ la\ forme:$

$$a^{n-p}(a^pb^p)$$
 $(a^nb^n)b^{p-n}$

On obtient la grammaire suivante :

```
G = \{
T = \{a,b\}
N = \{S,X,Y\}
S = S
P = \{
S \longrightarrow aSb
S \longrightarrow aX
S \longrightarrow bY
X \longrightarrow \epsilon \mid aX
Y \longrightarrow \epsilon \mid bY
```

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 8)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Question 9)

Énoncé de la question

Soit le langage $L_5=\{\ a^nb^*c^nd^*\ /\ n\in N\}\cup \{\ a^*b^nc^*d^n\ /\ n\in N\}.$ Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

$$G = \{$$

$$T = \{a,b,c,d\}$$

$$N = \{S,X,Y,Z,V,U,T\}$$

$$S = S$$

$$P = \{$$

$$S \longrightarrow XY$$

$$X \longrightarrow \epsilon \mid aXc \mid bZ$$

$$Z \longrightarrow \epsilon \mid bZ$$

$$Y \longrightarrow \epsilon \mid dY$$

$$S \longrightarrow VU$$

$$V \longrightarrow \epsilon \mid aV$$

$$U \longrightarrow \epsilon \mid bUd \mid cT$$

$$T \longrightarrow \epsilon \mid cT$$

}

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 10)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Question 11)

Énoncé de la question

Soit le langage $L_6=\{\ a^nb^pc^q\ /\ n,q>=0,\ p>=(n+q)\ \}.$ Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

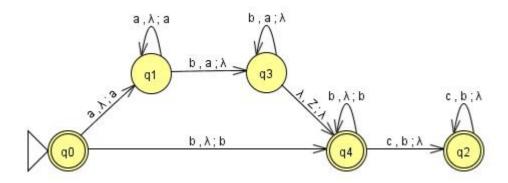
On décompose chaque mot sous la forme :

$$(a^nb^n)b^{p-n-q}(b^qc^q)$$

On obtient la grammaire suivante :

```
G = \{
T = \{a,b,c\}
N = \{S,X,Y,Z\}
S = S
P = \{
S \longrightarrow XYZ
X \longrightarrow \epsilon \mid aXb
Y \longrightarrow \epsilon \mid bY
Z \longrightarrow \epsilon \mid bZc
\}
```

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 12)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Question 13)

Énoncé de la question

Soit le langage $L_7=\{\ a^nb^p\ /\ n\neq p+2\ \}.$ Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

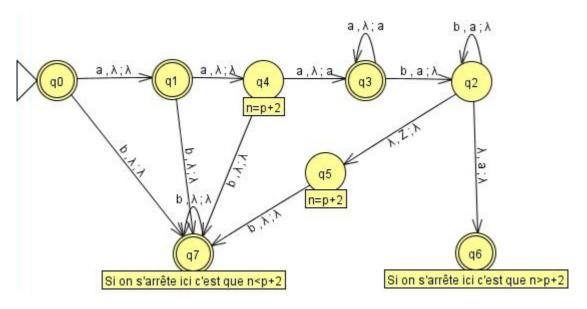
On décompose le langage sous la forme :

$$L_7 = \{ \ a^n b^p \ / \ n \neq p+2 \ et \ n+p >= 3 \} \ \cup \{ \ a^n b^p \ / \ n \neq p+2 \ et \ n+p < 3 \}$$

On obtient la grammaire suivante :

```
G = \{ \\ T = \{a,b\} \\ N = \{S,X,Y,Z\} \\ S = S \\ P = \{ \\ S \longrightarrow XY \mid YZ \\ X \longrightarrow a \mid aX // a^{+} \\ Y \longrightarrow aa \mid aYb // a^{n+2}b^{n} \\ Z \longrightarrow b \mid bZ // b^{+} \\ S \longrightarrow \epsilon \mid a \mid b \mid ab \mid bb \\ \} \\ \end{tabular}
```

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 14)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

Question 15)

Énoncé de la question

Soit le langage $L_8=\{\ a^nb^p\ /\ n>=0\ et\ n<=p<=2n\ \}.$ Ecrire la grammaire de ce langage et montrer que c'est un langage algébrique.

Solution de la question

```
G = \{
T = \{a,b\}
N = \{S\}
S = S
P = \{
S \longrightarrow \epsilon \mid aSb \mid aSbb
\}
```

On remarque que les règles respectent bien le format des grammaires de type 2.


Par contre, cette grammaire ne respecte pas le format de type 3.

Question 16)

Énoncé de la question

Trouver un automate à pile pour représenter ce langage.

Solution de la question

