
Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 380

HAPE3D—a new constructive algorithm for the

3D irregular packing problem*

Xiao LIU†‡1, Jia-min LIU2, An-xi CAO3, Zhuang-le YAO1
(1School of Civil and Transportation Engineering, South China University of Technology, Guangzhou 510640, China)

(2School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

(3College of Ocean Science and Engineer, Shanghai Maritime University, Shanghai 201306, China)
†E-mail: liuxiao@scut.edu.cn

Received Dec. 8, 2014; Revision accepted Mar. 29, 2015; Crosschecked Apr. 10, 2015

Abstract: We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of
minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons
into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons
in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which
can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to
calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a
meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good perfor-
mance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing
quality.

Key words: 3D packing problem, Layout design, Simulation, Optimization, Constructive algorithm, Meta-heuristics
doi:10.1631/FITEE.1400421 Document code: A CLC number: TP391.7

1 Introduction

The 3D irregular packing problem belongs to a
general class of combinatorial optimization problems
which are concerned with packing a set of irregular
pieces into one or more large containers to minimize
the waste or maximize profit. The 3D irregular
packing problem occurs in many applications, namely,
container loading, human occupied vehicle (HOV)
design (Fig. 1), satellite module layout design (Huo

et al., 2006) (Fig. 2), building layout, and 3D laser
cutting.

2 Literature review

For the 3D packing problem, most published

studies deal with only polyhedrons with regular
shapes, such as cubes (Wu et al., 2010; Allen et al.,
2011), spheres (Al-Raoush and Alsaleh, 2007),
cylinders (Stoyan and Chugay, 2009), and some other
special shapes such as tablet-shaped particles (Song et
al., 2006). Bortfeldt and Wäscher (2013) stated that
only 1.8% of the published works in the packing
problem area are related to irregular pieces.

Since the earliest work of Art (1966), the no-fit
polygon (NFP) has been the most powerful geometric
tool used by most researchers worldwide to solve the
2D irregular packing problem. It has become so

Frontiers of Information Technology & Electronic Engineering

www.zju.edu.cn/jzus; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the Natural Science Foundation of Guangdong
Province, China (No. S2013040016594), the Natural Science Foun-
dation of Liaoning Province, China (No. 201102164), and the Fun-
damental Research Funds for the Central Universities, China (No.
2013ZM0124)

 ORCID: Xiao LIU, http://orcid.org/0000-0003-2975-4749
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2015

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390

381

prevailing that hundreds of methods have been cre-
ated to generate NFPs (Bennell et al., 2001; Liu and
He, 2006; Burke et al., 2007).

Although numerous methods have been pro-
posed, NFP calculation is still time-consuming. Tak-
ing the benchmark problem SWIM as an example,
Burke et al. (2007) declared that it needs 1/66 s to
generate one NFP. The total execution time is only
1/66×(10× 2)2=6.06 s (10 pieces, each with two rota-
tion angles), which appears to be a short time under
this condition. However, if the number of pieces is
increased to 50 and each piece is allowed to have four
orientations, then the execution time will increase to
1/66×(50×4)2 =606.06 s. As for the 3D packing
problem, the long-time calculation for NFPs is
much more intolerable: 1/66×(50×4×3)2=5454.55 s
(approximately 1.5 h). To make matters worse, even if
people do not mind the long time waiting for compu-
ting the NFP, no researcher has ever successfully
provided a promising method to generate the NFP for
the 3D packing problem.

The NFP generating barrier forces researchers to
consider other flexible ways. Stoyan and Chugay
(2009) modeled a polyhedron by a union of axis-
aligned bounding boxes (AABBs, Fig. 3), whose
overlap test is fast. However, if the polyhedron is
rotated, then the AABB will be transformed into an

oriented bounding box (OBB), whose overlap test is
much more complicated than that of AABB (Ericson,
2004). This means Stoyan et al. (2004)’s method will
be slowed down if the polyhedron is allowed to rotate.

Zhang et al. (2008) used spheres to represent
polyhedrons (Fig. 4). Their method is similar to that
of Stoyan et al. (2004), but is more convenient for
collision detection because such a process can be
easily achieved among spheres. Furthermore, a
polyhedron does not need to be remodeled into
spheres after being rotated.

From the previous discussions, it can be ob-

served that both Stoyan et al. (2004) and Zhang et al.
(2008) required disassembling a polyhedron into
many smaller components. Hence, a trade-off between
accuracy and speed raises a dilemma for researchers.

In the current study, we propose a new con-
structive algorithm, called HAPE3D, which is a heu-
ristic algorithm based on the principle of minimum
total potential energy for the 3D packing problem. It
requires neither the NFP nor disassembling a poly-
hedron. HAPE3D can deal with irregularly shaped
pieces with holes and cavities. Furthermore, it allows
a polyhedron to have multiple orientations.

Although HAPE3D itself has exhibited good
performance during the following experiments, it
should be hybridized with a heuristic to search for a
better solution (Allen et al., 2011). Various methods
based on simulated annealing (SA) (Szykman and
Cagan, 1995; Cagan et al., 1998) have been consid-
ered for solving the 3D packing problem. In the

Fig. 4 Approximation representation of spheres, modi-
fied from Zhang et al. (2008)

Fig. 3 Approximate representation of objects (re-
printed from Stoyan and Chugay (2009), Copyright
2009, with permission from Elsevier)

x

x

x
y y

y

z z z

Fig. 1 A human occupied vehicle (HOV)

Fig. 2 A satellite module (Huo et al., 2006)

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 382

current study, we also present a hybrid algorithm
called HAPE3D+SA.

3 A new constructive algorithm: HAPE3D

Liu and Ye (2011) proposed a new constructive

algorithm based on the principle of minimum total
potential energy (HAPE) for the irregular 2D packing
problem. HAPE does not need to calculate the NFP
and is capable of dealing with an irregularly shaped
polygon which is allowed to rotate. The algorithm
presented in this study is based on the work of Liu and
Ye (2011). Therefore, the algorithm is called
HAPE3D. Before presenting the implementation
procedures, several concepts are introduced in the
following sections.

3.1 Principle of minimum total potential energy

The principle of minimum total potential energy
is a fundamental concept which asserts that a structure
or body will be deformed or displaced to a position
that minimizes total potential energy. The total po-
tential energy (Π) is the sum of the elastic strain en-
ergy (U) stored in the deformed body and the poten-
tial energy (V) of the applied forces. It is expressed as
follows:

=U+V. (1)

Given that pieces are rigid in packing problems,

the elastic energy U is zero. Consequently, Eq. (1)
should be rewritten as follows:

=V=Gz, (2)

where G is the force due to gravity and z is the vertical
coordinate of the center of gravity.

The tendency of all weights to lower their posi-
tions is a basic law of nature, which also applies to
packing problems. A piece always attempts to attain
an optimal attitude to keep its center of gravity as low
as possible.

As shown in Fig. 5a, four rectangles are piled up
like an upside-down pyramid, which is evidently
unstable, and likely to collapse under a slight dis-
turbance (Fig. 5b). If the disturbance, caused by
shaking of the container or a blow of the wind, be-

comes more ‘intense’, it will drive the rectangles to
move around and orient to a new direction. Finally,
the rectangles will ‘lay out’ in an attitude which is
more stable (Fig. 5c). Note that both the location and
orientation of the rectangle could be referred to as
‘attitude’. There are infinite attitudes available, but
the piece always prefers to choose the one with the
lowest gravity center.

The center height of the combination of the four
rectangles can be computed as follows:

, i i i

i i

h A h A (3)

where Ai and hi are the area and center height of rec-
tangle i, respectively.

Evidently, as h decreases, the combination will
be increasingly stable and compact (Fig. 5c).

3.2 Polyhedron separation test

Logically, the inverse of overlap is separation.
Therefore, a separation test is proposed, which con-
sists of two subsets as follows:

1. All vertices of polyhedron A are exterior
points of polyhedron B, and vice versa.

2. All line segments of A do not cross any face of
B, and vice versa.

Two aspects must be noted as follows: (1) When
the vertices of A are outside B, A may contain B
completely (Fig. 6a). (2) If only the first subset is
satisfied, then polyhedrons A and B may still be
overlapping (Fig. 6b).

3.3 Point-in-polyhedron test (PIPT)

Testing whether a point is inside a polyhedron is
to test how many times a ray line, starting from this
point and going any direction, intersects the face of

x

y

o

Direction of gravity

1
2
3
4

1 2 3
4

x

y

o

Collapse

12
34

x

y

o

Stable

(a) (b) (c)

Fig. 5 Collapsing procedure of the upside-down pyramid
(a) Upside-down pyramid; (b) Stable attitude; (c) More stable
attitude

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390

383

the polyhedron. If the intersection number is even,
then the point is outside the polyhedron. Otherwise,
the point is inside the polyhedron. As shown in Fig. 7,
the polyhedron is a combination of two tetrahedrons,
namely, v0v1v2v3 and v1v2v3v4. A ray, starting from
point Ptest, intersects face v0v3v2 at point P1 and face
v2v4v3 at point P2. Because the intersection number is
two, an even number, Ptest can be regarded as an outer
point of the polyhedron. Cui et al. (2011) introduced
an algorithm for PIPT, named threshold-based ray-
crossing (TBRC), which is efficient and robust
compared with other classical algorithms. Hence,
TBRC is used as the PIPT algorithm in HAPE3D.

3.4 Advance-or-retreat method for polyhedron
contact

As shown in Fig. 8a, it is supposed that polyhe-
dron A is fixed, whereas B slides to the left to come in
contact with A (Fig. 8b). We propose an advance-
or-retreat method for polyhedron contact (Fig. 9).

3.5 Implementation procedure of HAPE3D

HAPE3D can be described as follows:
1. All pieces are sorted in order of decreasing

volume and allocated individually into the container
in this order.

2. Equally spaced points are set in the container.
The vertical and horizontal distances between these
points are referred to as the packing point distance
(PPD).

3. The ‘current’ piece ready to be allocated into
the container is moved to visit the packing points one
by one.

4. The center height (z coordinate) of the current
piece at each point is calculated. The optimal point
with the smallest z, is determined and the current
piece is accordingly allocated at the optimal point.

5. Because the packing points are set in the
container ‘discretely’, many gaps will appear between
the current piece and allocated pieces. These gaps can
be eliminated by the advance-or-retreat method
(Fig. 9). After vertical and horizontal sliding, the
current piece will come in contact with other allocated
ones or with the inner face of the container.

6. HAPE3D stops when all pieces are allocated.
The formal process of HAPE3D can also be

stated by using the following pseudo code:
Input:

Point[0…PPN−1]; // Set PPN (packing point number)
// packing points in the container

Piece[0…quantity−1]; // Pieces have been sorted in order
// of decreasing volume

Begin
for (int i=0; i<quantity; i++)

Ptest
P1

P2

v4

v3

v1

v2

v0

Fig. 7 Point-in-polyhedron test (PIPT)

A
B

A

B

(a) (b)

Fig. 6 Overlapped polyhedrons satisfying only one
subset of separation test: (a) A contains B; (b) A and B
are overlapping

B slides to the left by step s

Step s=1 mm
error=0.0001 mm

A and B overlap？

B slides to the right by step s

s<error?s=s/2

End

Yes

Yes

No

No

Fig. 9 Flowchart of the advance-or-retreat method for
polyhedron contact

AA

x

y

Slide to the left

B B

(a) (b)

Fig. 8 Contact between pieces A and B
(a) Before contact; (b) Contacted

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 384

{
PackOnePiece(Piece[i]);

}
End

The flowchart of packing a single piece is pre-
sented in Fig. 10.

The flowchart in Fig. 10 has been simplified for
ease of understanding. In reality, necessary modifi-
cations have to be added to increase execution speed.
For example, after the ‘current’ piece has been allo-
cated in the container, it will occupy some packing
points which are useless for the following pieces.
Therefore, these points should be removed before
allocating the next piece.

3.6 Hybridizing HAPE3D with simulated annealing

If the packing problem is represented by a per-
mutation that is interpreted as the order in which the
pieces are packed, then the constructive packing al-
gorithm HAPE3D can be used to decode and evaluate
the quality of the permutation in terms of packing
density. Often, the predefined ordering, e.g., the order

of decreasing volume, can produce a good packing
layout. However, usually it is not good enough. Hence,
a heuristic is required to search for another packing
order which may give a better result. SA is considered
as an excellent heuristic which has been successfully
applied to solve the 3D packing problem (Szykman
and Cagan, 1995; Cagan et al., 1998). Consequently,
we also choose SA to be hybridized with HAPE3D.

SA can be considered as a variant of the hill-
climbing (HC) method. The most outstanding im-
provement of SA is that it can avoid being trapped in
local minima. Instead of accepting only neighboring
solutions that result in an improvement, worse solu-
tions may also be accepted randomly with a certain
probability. This probability depends on the temper-
ature in physical annealing. When the temperature is
high, the probability that the worse solutions are ac-
cepted is also high. During the annealing process,
temperature gradually decreases based on the cooling
schedule. The finding indicates that the algorithm
becomes increasingly selective in accepting new so-
lutions. By the end of the process, only moves that
result in an improvement are accepted. Hence, com-
pared with HC, SA behaves similarly when it reaches
the lower bound of temperature.

We apply operator iOpt (i=1, 2, …, N, where N is
the number of pieces) throughout the searching pro-
cess. 1Opt randomly chooses two pieces and swaps
their positions in the order; i.e., 1Opt means one
swapping operation is applied to the order. This op-
erator is extended to NOpt, where N swapping opera-
tions are performed and are likely to produce a radi-
cally different solution, which diversifies the search.
Each operator has a different chance for selection—
from 1Opt, which has the highest chance of being
selected, to NOpt, which has a low chance of being
selected. Few radical operators allow us to focus our
search. Highly radical operators, e.g., NOpt, enable us
to bypass local optima.

The pseudo codes for HAPE3D+SA are listed as
follows:
Input:

Pieces, RN, PPD, Container size, MaxIterationNum, T0, T
Begin

Current.Ordering=SortOrderingbyDecreasingVolume();
Current.PackingDensity=HAPE3D(Current.Ordering);
Best=Current; // Best Solution=Current Solution
k=0; // k: iteration number
T0=0.01; // Initial temperature

Fig. 10 Flowchart of packing one piece
‘feasible*’ indicates that the piece does not overlap with
others at point[j]

Start
(1) z_min=point[0].z
(2) point_opt=point[0]
(3) j=1

piece[i].MoveTo(point[j])

Compute the z coordinate of the geometric center:
z=CalculateCenter_Z(piece[i])

z<z_min.AND.
point[j] feasible*

(1) z_min=z;
(2) point_opt=point[j];

Yes

j=j+1

piece[i].MoveTo(point_opt);
End

No

No

j<PPN

Yes

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390

385

while (k<MaxIterationNum)
{

 // Calculate current temperature
T=(MaxIterationNum−k)*T0/MaxIterationNum;
// randomly generate an integer from 1 to N
Opt=SelectOperator();
Neighbor.Ordering=GenerateNeighbor(Current.

Ordering, Opt);
Neighbor.PackingDensity=HAPE3D(Neighbor.

Ordering);
if (Neighbor.PackingDensity>Current.PackingDensity)

{Current=Neighbor;}
else
{

// Calculate accepting probability
P=exp(−(Current.PackingDensity−Neighbor.

PackingDensity)/T);
// if P is greater than the random number produced
// by computer
if (P>random())

{Current=Neighbor;}
}
if (Neighbor.PackingDensity>Best.PackingDensity)

{Best=Neighbor;}
k=k+1;

}
return Best;

End

4 Computational experiments

To evaluate the performance of HAPE3D and the

corresponding hybrid algorithm HAPE3D+SA, two
experiments were conducted using a computer with a
2.0 GHz CPU. The data sets in the first experiment
are listed in the appendix and those in the second
experiment are obtained from Stoyan et al. (2004).

4.1 Experiment 1

Thirty-six polyhedrons with five types, as shown
in Fig. 11 and Table 1, were to be allocated into a
box-shaped container (20 mm×20 mm×60 mm). The
PPD was set to 1 mm. Each polyhedron was allowed

to have eight orientations (RN=8, each polyhedron is
allowed to have eight rotation angles: 0°, 45°, …,
315°) around the x, y, and z coordinate axes at each
packing point. The polyhedrons were sorted in order
of decreasing volume before being allocated into the
container.

It can be seen from Fig. 12a that HAPE3D is
capable of dealing with all kinds of pieces with ir-
regular shapes including hole-filling and concave. To
achieve a better packing result, SA was used as a
search mechanism to derive new and improved input
orderings for piece placement. The entire searching
procedure was run for totally 500 iterations; i.e., 500
HAPE3Ds were executed during the entire searching
procedure. The resulting packing height h obtained by
HAPE3D+SA (Fig. 12b) was 31.2 mm, which was
20.0% lower than that of HAPE3D (Fig. 12a).

4.2 Experiment 2

Stoyan et al. (2004) conducted four experiments
using a PC with 900 MHz CPU which allocates 10
types of concave polyhedrons into a box-shaped

Table 1 Piece quantity and volume

Piece name Quantity Volume (mm3)

Tetrahedron 8 144

Ring 4 132

Arrow 8 125

Star 8 108

Cube 8 48

Fig. 12 Layout generated using HAPE3D (RN=8)
(a) HAPE3D (h=39.0 mm, t=16.1 s); (b) HAPE3D+SA (500
iterations, h=31.2 mm, t=9637.5 s)

(a)

(b)

Tetrahedron Ring Arrow Star Cube

Fig. 11 Five types of polyhedrons

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 386

container with a rectangular bottom (35 mm×30 mm).
In the first experiment 20 polyhedrons were packed,
with two same polyhedrons of each type. The next
three experiments were similar to the first experiment,
but had 3, 4, and 5 copies for each type respectively.
The packing height and execution time for these four
experiments are listed in Table 2.

To evaluate the performance of HAPE3D, we
conducted the same four experiments (Table 2 and
Fig. 13) as in Stoyan et al. (2004). Table 2 shows that
if a rotation is forbidden, h obtained by HAPE3D is

similar to that of Stoyan et al. (2004). However,
HAPE3D is much more time-consuming than the
method proposed by Stoyan et al. (2004). The sig-
nificant difference largely results from the fact that
Stoyan et al. (2004) disassembled the polyhedron into
many cuboids (AABB), whose overlap test algorithm
was simple and efficient. However, if the polyhedron
was rotated, the edge of the cuboids would not be
parallel with the coordinate axis anymore. That means
AABB will be transformed into OBB after rotation.
As has been stated in Section 2, overlap test of OBB is
much more complicated than that of AABB. That is to
say, if rotation is allowed, the execution speed of
Stoyan et al. (2004)’s method will also be slowed
down.

From the previous discussion, it can be deduced
that the execution time will be significantly increased
under two conditions: (1) Polyhedron is allowed to be
rotated; (2) A heuristic, e.g., SA, is used as a search
mechanism. To further examine the performance of
HAPE3D under these conditions, more experiments
were conducted. HAPE3D was hybridized with SA
(500 iterations) and all polyhedrons were allowed to
rotate around the coordinate axis at RN different an-
gles. The corresponding results are listed in Table 3
and Fig. 14. Due to space limitations, detailed layout
results of only RN=4 are shown in Fig. 15.

As shown in Table 3 and Fig. 14, the packing
height goes down gradually with the increase of RN,
whereas the execution time rises up rapidly. Another
conclusion can be drawn, by comparing Figs. 13 and
15, that HAPE3D can be well hybridized with SA,
and further decrease the packing height. Taking n=50
as an example, h decreases from 92.0 mm (Fig. 13d)
to 73.6 mm (Fig. 15d), which means the packing
efficiency is significantly improved by 25%.

Table 3 Packing height and execution time with differ-
ent RNs (HAPE3D+SA)

n
Packing height (mm) Calculation time (s)

RN=1 RN=2 RN=4 RN=1 RN=2 RN=4

20 36.9 34.0 31.0 5921.5 14 100.1 26 202.1

30 55.6 48.0 46.0 10 398.6 27 745.6 53 741.5

40 71.8 65.0 59.0 18 383.9 48 950.9 99 952.0

50 92.0 80.1 73.6 23 113.1 64 463.0 125 210.6

Note: n is the number of polyhedrons and RN=4 means each poly-
hedron is allowed to rotate around each coordinate axis at four angles
(0°, 90°, 180°, and 270°)

Fig. 13 Layout generated using HAPE3D when rota-
tion is forbidden (RN=1)
(a) n=20, h=44.7 mm; (b) n=30, h=62 mm; (c) n=40,
h=79.9 mm; (d) n=50, h=92.0 mm

(c)

(d)

(a)

(b)

Table 2 Comparison of HAPE3D and the method of
Stoyan et al. (2004)

n
Packing height (mm) Calculation time (s)

HAPE3D
Stoyan et al.

(2004)
HAPE3D

Stoyan et al.
(2004)

20 44.7 43.7 10.0 0.6

30 62.0 59.0 21.1 1.2

40 79.9 81.4 24.5 2.9

50 92.0 94.6 42.8 4.3

Note: n is the number of polyhedrons

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390

387

5 Conclusions

From what has been discussed above, we can

draw the conclusion that HAPE3D is a very promis-
ing constructive algorithm for the 3D packing prob-
lem. The most obvious distinction from the traditional

packing algorithm is that HAPE3D does not need to
calculate NFP anymore. Another merit for HAPE3D
is that the 3D piece can retain its original shape.
People do not need extra execution time on splitting
an irregularly shaped piece into numerous tiny regular
objects. The third advantage is that HAPE3D does not
forbid the rotation freedom of the piece. Lastly,
HAPE3D can be hybridized very well with other
meta-heuristic algorithms to further improve the
packing efficiency.

However, there is still much room for im-
provement. For example, the speed of HAPE3D does
not fully satisfy the real industrial requirement. Be-
cause the smaller the PPD is, the more computing
time it will cost. Actually, it is not suitable to assign
only one PPD for different pieces as we do in this
study. It is more reasonable to adjust PPD size dy-
namically according to the size of the piece.

Besides PPD, RN is another important impact
factor on the performance of HAPE3D. Although
larger RN tends to produce higher packing efficiency
in this study, it is not suggested to assign a large value
for RN without limitation, because the execution time
is proportional to RN. Besides, Liu and Ye (2011)
indicated that a larger RN does not always generate a
better result. How to choose a reasonable value for
PPD or RN could be a meaningful question for future
research.

Acknowledgements
The authors would like to thank Guangzhou Wenchong

Shipyard Co., Ltd. and Guangzhou Shipyard International Co.,
Ltd. for supporting this research.

Fig. 14 Packing height (a) and execution time (b) with different rotation numbers

1 2 3 4
30

40

50

60

70

80

90

P
a

ck
in

g
h

ei
gh

t (
m

m
)

Rotation number

 n=20
 n=30
 n=40
 n=50

(a) (b)

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E

xe
cu

tio
n

tim
e

 (
1

05
 s

)

Rotation number

 n=20
 n=30
 n=40
 n=50

Fig. 15 Layout by HAPE3D+SA (500 iterations, RN=4)
(a) n=20, h=31.0 mm; (b) n=30, h=46.0 mm; (c) n=40,
h=59.0 mm; (d) n=50, h=73.6 mm

(a)

(b)

(c) (d)

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 388

References
Allen, S.D., Burke, E.K., Kendall, G., 2011. A hybrid place-

ment strategy for the three-dimensional strip packing
problem. Eur. J. Oper. Res., 209(3):219-227. [doi:10.
1016/j.ejor.2010.09.023]

Al-Raoush, R., Alsaleh, M., 2007. Simulation of random
packing of polydisperse particles. Powder Technol.,
176(1):47-55. [doi:10.1016/j.powtec.2007.02.007]

Art, J.R.C., 1966. An Approach to the Two Dimensional Ir-
regular Cutting Stock Problem. IBM Cambridge Scien-
tific Center Report, Massachusetts.

Bennell, J.A., Dowsland, K.A., Dowsland, W.B., 2001. The
irregular cutting-stock problem—a new procedure for
deriving the no-fit polygon. Comput. Oper. Res., 28(3):
271-287. [doi:10.1016/S0305-0548(00)00021-6]

Bortfeldt, A., Wäscher, G., 2013. Constraints in container
loading—a state-of-the-art review. Eur. J. Oper. Res.,
229(1):1-20. [doi:10.1016/j.ejor.2012.12.006]

Burke, E.K., Hellier, R.S.R., Kendall, G., et al., 2007. Com-
plete and robust no-fit polygon generation for the irreg-
ular stock cutting problem. Eur. J. Oper. Res., 179(1):
27-49. [doi:10.1016/j.ejor.2006.03.011]

Cagan, J., Degentesh, D., Yin, S., 1998. A simulated annealing-
based algorithm using hierarchical models for general
three-dimensional component layout. Comput.-Aid. Des.,
30(10):781-790. [doi:10.1016/S0010-4485(98)00036-0]

Cui, S., Zhang, S., Chen, X., et al., 2011. Point-in-polyhedra
test with direct handling of degeneracies. Geo-spatial
Inform. Sci., 14(2):91-97. [doi:10.1007/s11806-011-0453-
8]

Ericson, C., 2004. Real-Time Collision Detection. The Morgan
Kaufmann Series in Interactive 3-D Technology. CRC
Press, USA.

Huo, J., Li, G., Teng, H., 2006. Layout optimization of a sat-
ellite module using a parallel genetic-Powell-ant colony
hybrid algorithm. J. Dalian Univ. Technol., 46(5):
679-684.

Liu, H., He, Y., 2006. Algorithm for 2D irregular-shaped
nesting problem based on the NFP algorithm and lowest-
gravity-center principle. J. Zhejiang Univ.-Sci. A, 7(4):
570-576. [doi:10.1631/jzus.2006.A0570]

Liu, X., Ye, J., 2011. Heuristic algorithm based on the principle
of minimum total potential energy (HAPE): a new algo-
rithm for nesting problems. J. Zhejiang Univ.-Sci. A (Appl.
Phys. & Eng.), 12(11):860-872. [doi:10.1631/jzus.
A1100038]

Song, Y., Turton, R., Kayihan, F., 2006. Contact detection
algorithms for DEM simulations of tablet-shaped parti-
cles. Powder Technol., 161(1):32-40. [doi:10.1016/j.
powtec.2005.07.004]

Stoyan, Y., Chugay, A., 2009. Packing cylinders and rectan-
gular parallelepipeds with distances between them into a
given region. Eur. J. Oper. Res., 197(2):446-455. [doi:10.
1016/j.ejor.2008.07.003]

Stoyan, Y.G., Gil, N.I., Pankratov, A., et al., 2004. Packing
Non-convex Polytopes into a Parallelepiped. Technische

Universität Dresden, Dresden.
Szykman, S., Cagan, J., 1995. A simulated annealing-based

approach to three-dimensional component packing. J.
Mech. Des., 117(2A):308-314. [doi:10.1115/1.2826140]

Wu, Y., Li, W., Goh, M., et al., 2010. Three-dimensional bin
packing problem with variable bin height. Eur. J. Oper.
Res., 202(2):347-355. [doi:10.1016/j.ejor.2009.05.040]

Zhang, W., Gao, Y., Fang, L., et al., 2008. Three-dimensional
component layout modeling and optimization design.
Acta Aeronaut. Astronaut. Sin., 29(6):1554-1562 (in
Chinese).

Appendix: Data set of Experiment 1

Data set of Tetrahedron

Name
Tetrahedron
Volume
144.3376
Mass center
5, 2.8868, 2.5
Reference/origin point
0, 0, 0

VertexList
0: 0, 0, 0 2: 5, 8.6603, 0
1: 10, 0, 0 3: 5, 2.8868, 10
EndVertexList

EdgeList
0: 0, 1 3: 0, 3
1: 1, 2 4: 1, 3
2: 2, 0 5: 2, 3
EndEdgeList

FaceList
0(3): 0, 2, 1 2(3): 1, 2, 3
1(3): 0, 1, 3 3(3): 3, 2, 0
EndFaceList

Data set of Ring

Name
Ring
Volume
132
Mass center
0, 0, 1.5
Reference/origin point
0, 0, 1.5

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390

389

VertexList
0: −6, −6, 0 8: −6, −6, 3
1: 6, −6, 0 9: 6, −6, 3
2: 6, 6, 0 10: 6, 6, 3
3: −6, 6, 0 11: −6, 6, 3
4: −5, −5, 0 12: −5, −5, 3
5: 5, −5, 0 13: 5, −5, 3
6: 5, 5, 0 14: 5, 5, 3
7: −5, 5, 0 15: −5, 5, 3
EndVertexList

EdgeList
0: 0, 1 12: 12, 13
1: 1, 2 13: 13, 14
2: 2, 3 14: 14, 15
3: 3, 0 15: 15, 12
4: 4, 5 16: 4, 12
5: 5, 6 17: 5, 13
6: 6, 7 18: 6, 14
7: 7, 4 19: 7, 15
8: 8, 9 20: 0, 8
9: 9, 10 21: 1, 9
10: 10, 11 22: 2, 10
11: 11, 8 23: 3, 11
EndEdgeList

FaceList
0(4): 0, 4, 5, 1 8(4): 12, 13, 5, 4
1(4): 5, 6, 2, 1 9(4): 13, 14, 6, 5
2(4): 3, 2, 6, 7 10(4): 14, 15, 7, 6
3(4): 3, 7, 4, 0 11(4): 15, 12, 4, 7
4(4): 8, 9, 13, 12 12(4): 9, 8, 0, 1
5(4): 9, 10, 14, 13 13(4): 10, 9, 1, 2
6(4): 15, 14, 10, 11 14(4): 11, 10, 2, 3
7(4): 8, 12, 15, 11 15(4): 8, 11, 3, 0
EndFaceList

Data set of Arrow

Name
Arrow
Volume
125
Mass center
5, 5, 2.5
Reference/origin point
5, 5, 2.5

VertexList
0: 0, 0, 0 4: 0, 0, 5
1: 5, 5, 0 5: 5, 5, 5
2: 10, 0, 0 6: 10, 0, 5
3: 5, 10, 0 7: 5, 10, 5
EndVertexList

EdgeList
0: 0, 1 6: 6, 7
1: 1, 2 7: 7, 4
2: 2, 3 8: 0, 4
3: 3, 0 9: 1, 5
4: 4, 5 10: 2, 6
5: 5, 6 11: 3, 7
EndEdgeList

FaceList
0(4): 0, 3, 2, 1 3(4): 6, 5, 1, 2
1(4): 4, 5, 6, 7 4(4): 7, 6, 2, 3
2(4): 5, 4, 0, 1 5(4): 4, 7, 3, 0
EndFaceList

Data set of Star

Name
Star
Volume
108
Mass center
0, 0, 1.5
Reference/origin point
0, 0, 1.5

VertexList
0: 0, −6, 0 8: 0, −6, 3
1: 1.5, −1.5, 0 9: 1.5, −1.5, 3
2: 6, 0, 0 10: 6, 0, 3
3: 1.5, 1.5, 0 11: 1.5, 1.5, 3
4: 0, 6, 0 12: 0, 6, 3
5: −1.5, 1.5, 0 13: −1.5, 1.5, 3
6: −6, 0, 0 14: −6, 0, 3
7: −1.5, −1.5, 0 15: −1.5, −1.5, 3
EndVertexList

EdgeList
0: 0, 1 12: 12, 13
1: 1, 2 13: 13, 14

Liu et al. / Front Inform Technol Electron Eng 2015 16(5):380-390 390

2: 2, 3 14: 14, 15
3: 3, 4 15: 15, 8
4: 4, 5 16: 0, 8
5: 5, 6 17: 1, 9
6: 6, 7 18: 2, 10
7: 7, 0 19: 3, 11
8: 8, 9 20: 4, 12
9: 9, 10 21: 5, 13
10: 10, 11 22: 6, 14
11: 11, 12 23: 7, 15
EndEdgeList

FaceList
0(3): 0, 7, 1 9(4): 9, 11, 13, 15
1(3): 3, 2, 1 10(4): 0, 1, 9, 8
2(3): 5, 4, 3 11(4): 1, 2, 10, 9
3(3): 7, 6, 5 12(4): 2, 3, 11, 10
4(4): 7, 5, 3, 1 13(4): 3, 4, 12, 11
5(3): 8, 9, 15 14(4): 4, 5, 13, 12
6(3): 9, 10, 11 15(4): 5, 6, 14, 13
7(3): 11, 12, 13 16(4): 6, 7, 15, 14
8(3): 13, 14, 15 17(4): 0, 7, 15, 8
EndFaceList

Data set of Cube

Name
Cube
Volume
48

Mass center
1, 2, 3
Reference/origin point
1, 2, 3

VertexList
0: 0, 0, 0 4: 0, 0, 6
1: 2, 0, 0 5: 2, 0, 6
2: 2, 4, 0 6: 2, 4, 6
3: 0, 4, 0 7: 0, 4, 6
EndVertexList

EdgeList
0: 0, 1 6: 6, 7
1: 1, 2 7: 7, 4
2: 2, 3 8: 0, 4
3: 3, 0 9: 1, 5
4: 4, 5 10: 2, 6
5: 5, 6 11: 3, 7
EndEdgeList

FaceList
0(4): 0, 3, 2, 1 3(4): 1, 2, 6, 5
1(4): 4, 5, 6, 7 4(4): 3, 7, 6, 2
2(4): 0, 1, 5, 4 5(4): 0, 4, 7, 3
EndFaceList

