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Abstract:    We propose a new constructive algorithm, called HAPE3D, which is a heuristic algorithm based on the principle of 
minimum total potential energy for the 3D irregular packing problem, involving packing a set of irregularly shaped polyhedrons 
into a box-shaped container with fixed width and length but unconstrained height. The objective is to allocate all the polyhedrons 
in the container, and thus minimize the waste or maximize profit. HAPE3D can deal with arbitrarily shaped polyhedrons, which 
can be rotated around each coordinate axis at different angles. The most outstanding merit is that HAPE3D does not need to 
calculate no-fit polyhedron (NFP), which is a huge obstacle for the 3D packing problem. HAPE3D can also be hybridized with a 
meta-heuristic algorithm such as simulated annealing. Two groups of computational experiments demonstrate the good perfor-
mance of HAPE3D and prove that it can be hybridized quite well with a meta-heuristic algorithm to further improve the packing 
quality. 
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1  Introduction 
 

The 3D irregular packing problem belongs to a 
general class of combinatorial optimization problems 
which are concerned with packing a set of irregular 
pieces into one or more large containers to minimize 
the waste or maximize profit. The 3D irregular 
packing problem occurs in many applications, namely, 
container loading, human occupied vehicle (HOV) 
design (Fig. 1), satellite module layout design (Huo 

et al., 2006) (Fig. 2), building layout, and 3D laser 
cutting. 

 
 

2  Literature review 
 
For the 3D packing problem, most published 

studies deal with only polyhedrons with regular 
shapes, such as cubes (Wu et al., 2010; Allen et al., 
2011), spheres (Al-Raoush and Alsaleh, 2007),  
cylinders (Stoyan and Chugay, 2009), and some other 
special shapes such as tablet-shaped particles (Song et 
al., 2006). Bortfeldt and Wäscher (2013) stated that 
only 1.8% of the published works in the packing 
problem area are related to irregular pieces. 

Since the earliest work of Art (1966), the no-fit 
polygon (NFP) has been the most powerful geometric 
tool used by most researchers worldwide to solve the 
2D irregular packing problem. It has become so  
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prevailing that hundreds of methods have been cre-
ated to generate NFPs (Bennell et al., 2001; Liu and 
He, 2006; Burke et al., 2007).  

Although numerous methods have been pro-
posed, NFP calculation is still time-consuming. Tak-
ing the benchmark problem SWIM as an example, 
Burke et al. (2007) declared that it needs 1/66 s to 
generate one NFP. The total execution time is only 
1/66×(10× 2)2=6.06 s (10 pieces, each with two rota-
tion angles), which appears to be a short time under 
this condition. However, if the number of pieces is 
increased to 50 and each piece is allowed to have four 
orientations, then the execution time will increase to 
1/66×(50×4)2 =606.06 s. As for the 3D packing 
problem, the long-time calculation for NFPs is  
much more intolerable: 1/66×(50×4×3)2=5454.55 s  
(approximately 1.5 h). To make matters worse, even if 
people do not mind the long time waiting for compu-
ting the NFP, no researcher has ever successfully 
provided a promising method to generate the NFP for 
the 3D packing problem.  

The NFP generating barrier forces researchers to 
consider other flexible ways. Stoyan and Chugay 
(2009) modeled a polyhedron by a union of axis- 
aligned bounding boxes (AABBs, Fig. 3), whose 
overlap test is fast. However, if the polyhedron is 
rotated, then the AABB will be transformed into an 

oriented bounding box (OBB), whose overlap test is 
much more complicated than that of AABB (Ericson, 
2004). This means Stoyan et al. (2004)’s method will 
be slowed down if the polyhedron is allowed to rotate. 

Zhang et al. (2008) used spheres to represent 
polyhedrons (Fig. 4). Their method is similar to that 
of Stoyan et al. (2004), but is more convenient for 
collision detection because such a process can be 
easily achieved among spheres. Furthermore, a  
polyhedron does not need to be remodeled into 
spheres after being rotated. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the previous discussions, it can be ob-

served that both Stoyan et al. (2004) and Zhang et al. 
(2008) required disassembling a polyhedron into 
many smaller components. Hence, a trade-off between 
accuracy and speed raises a dilemma for researchers.  

In the current study, we propose a new con-
structive algorithm, called HAPE3D, which is a heu-
ristic algorithm based on the principle of minimum 
total potential energy for the 3D packing problem. It 
requires neither the NFP nor disassembling a poly-
hedron. HAPE3D can deal with irregularly shaped 
pieces with holes and cavities. Furthermore, it allows 
a polyhedron to have multiple orientations.  

Although HAPE3D itself has exhibited good 
performance during the following experiments, it 
should be hybridized with a heuristic to search for a 
better solution (Allen et al., 2011). Various methods 
based on simulated annealing (SA) (Szykman and 
Cagan, 1995; Cagan et al., 1998) have been consid-
ered for solving the 3D packing problem. In the  

Fig. 4  Approximation representation of spheres, modi-
fied from Zhang et al. (2008) 

Fig. 3  Approximate representation of objects (re-
printed from Stoyan and Chugay (2009), Copyright 
2009, with permission from Elsevier) 
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Fig. 1  A human occupied vehicle (HOV)

Fig. 2  A satellite module (Huo et al., 2006)
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current study, we also present a hybrid algorithm 
called HAPE3D+SA. 

 
 

3  A new constructive algorithm: HAPE3D 
 
Liu and Ye (2011) proposed a new constructive 

algorithm based on the principle of minimum total 
potential energy (HAPE) for the irregular 2D packing 
problem. HAPE does not need to calculate the NFP 
and is capable of dealing with an irregularly shaped 
polygon which is allowed to rotate. The algorithm 
presented in this study is based on the work of Liu and 
Ye (2011). Therefore, the algorithm is called 
HAPE3D. Before presenting the implementation 
procedures, several concepts are introduced in the 
following sections. 

3.1  Principle of minimum total potential energy 

The principle of minimum total potential energy 
is a fundamental concept which asserts that a structure 
or body will be deformed or displaced to a position 
that minimizes total potential energy. The total po-
tential energy (Π) is the sum of the elastic strain en-
ergy (U) stored in the deformed body and the poten-
tial energy (V) of the applied forces. It is expressed as 
follows: 

 
=U+V.                                (1) 

 
Given that pieces are rigid in packing problems, 

the elastic energy U is zero. Consequently, Eq. (1) 
should be rewritten as follows: 

 
=V=Gz,                               (2) 

 
where G is the force due to gravity and z is the vertical 
coordinate of the center of gravity. 

The tendency of all weights to lower their posi-
tions is a basic law of nature, which also applies to 
packing problems. A piece always attempts to attain 
an optimal attitude to keep its center of gravity as low 
as possible. 

As shown in Fig. 5a, four rectangles are piled up 
like an upside-down pyramid, which is evidently 
unstable, and likely to collapse under a slight dis-
turbance (Fig. 5b). If the disturbance, caused by 
shaking of the container or a blow of the wind, be-

comes more ‘intense’, it will drive the rectangles to 
move around and orient to a new direction. Finally, 
the rectangles will ‘lay out’ in an attitude which is 
more stable (Fig. 5c). Note that both the location and 
orientation of the rectangle could be referred to as 
‘attitude’. There are infinite attitudes available, but 
the piece always prefers to choose the one with the 
lowest gravity center.  

The center height of the combination of the four 
rectangles can be computed as follows: 

 
, i i i

i i

h A h A                          (3) 

 
where Ai and hi are the area and center height of rec-
tangle i, respectively. 

Evidently, as h decreases, the combination will 
be increasingly stable and compact (Fig. 5c). 

 
 
 
 
 
 
 
 
 
 
 

3.2  Polyhedron separation test 

Logically, the inverse of overlap is separation. 
Therefore, a separation test is proposed, which con-
sists of two subsets as follows: 

1. All vertices of polyhedron A are exterior 
points of polyhedron B, and vice versa. 

2. All line segments of A do not cross any face of 
B, and vice versa. 

Two aspects must be noted as follows: (1) When 
the vertices of A are outside B, A may contain B 
completely (Fig. 6a). (2) If only the first subset is 
satisfied, then polyhedrons A and B may still be 
overlapping (Fig. 6b). 

3.3  Point-in-polyhedron test (PIPT) 

Testing whether a point is inside a polyhedron is 
to test how many times a ray line, starting from this 
point and going any direction, intersects the face of 
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Fig. 5  Collapsing procedure of the upside-down pyramid
(a) Upside-down pyramid; (b) Stable attitude; (c) More stable
attitude 
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the polyhedron. If the intersection number is even, 
then the point is outside the polyhedron. Otherwise, 
the point is inside the polyhedron. As shown in Fig. 7, 
the polyhedron is a combination of two tetrahedrons, 
namely, v0v1v2v3 and v1v2v3v4. A ray, starting from 
point Ptest, intersects face v0v3v2 at point P1 and face 
v2v4v3 at point P2. Because the intersection number is 
two, an even number, Ptest can be regarded as an outer 
point of the polyhedron. Cui et al. (2011) introduced 
an algorithm for PIPT, named threshold-based ray- 
crossing (TBRC), which is efficient and robust 
compared with other classical algorithms. Hence, 
TBRC is used as the PIPT algorithm in HAPE3D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Advance-or-retreat method for polyhedron 
contact 

As shown in Fig. 8a, it is supposed that polyhe-
dron A is fixed, whereas B slides to the left to come in 
contact with A (Fig. 8b). We propose an advance- 
or-retreat method for polyhedron contact (Fig. 9). 

3.5  Implementation procedure of HAPE3D 

HAPE3D can be described as follows: 
1. All pieces are sorted in order of decreasing 

volume and allocated individually into the container 
in this order. 

2. Equally spaced points are set in the container. 
The vertical and horizontal distances between these 
points are referred to as the packing point distance 
(PPD). 

3. The ‘current’ piece ready to be allocated into 
the container is moved to visit the packing points one 
by one.  

4. The center height (z coordinate) of the current 
piece at each point is calculated. The optimal point 
with the smallest z, is determined and the current 
piece is accordingly allocated at the optimal point. 

5. Because the packing points are set in the 
container ‘discretely’, many gaps will appear between 
the current piece and allocated pieces. These gaps can 
be eliminated by the advance-or-retreat method  
(Fig. 9). After vertical and horizontal sliding, the 
current piece will come in contact with other allocated 
ones or with the inner face of the container. 

6. HAPE3D stops when all pieces are allocated. 
The formal process of HAPE3D can also be 

stated by using the following pseudo code: 
Input:  

Point[0…PPN−1]; // Set PPN (packing point number)  
// packing points in the container 

Piece[0…quantity−1]; // Pieces have been sorted in order  
// of decreasing volume 

Begin 
for (int i=0; i<quantity; i++)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ptest
P1

P2

v4

v3

v1

v2

v0

Fig. 7  Point-in-polyhedron test (PIPT)

A
B

A

B

(a) (b)

Fig. 6  Overlapped polyhedrons satisfying only one 
subset of separation test: (a) A contains B; (b) A and B
are overlapping 

B slides to the left by step s

Step s=1 mm
error=0.0001 mm

A and B overlap？

B slides to the right by step s

s<error?s=s/2

End

Yes

Yes

No

No

Fig. 9  Flowchart of the advance-or-retreat method for 
polyhedron contact 
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Fig. 8  Contact between pieces A and B 
(a) Before contact; (b) Contacted 
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{ 
PackOnePiece(Piece[i]);  

} 
End 

The flowchart of packing a single piece is pre-
sented in Fig. 10. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The flowchart in Fig. 10 has been simplified for 
ease of understanding. In reality, necessary modifi-
cations have to be added to increase execution speed. 
For example, after the ‘current’ piece has been allo-
cated in the container, it will occupy some packing 
points which are useless for the following pieces. 
Therefore, these points should be removed before 
allocating the next piece. 

3.6  Hybridizing HAPE3D with simulated annealing 

If the packing problem is represented by a per-
mutation that is interpreted as the order in which the 
pieces are packed, then the constructive packing al-
gorithm HAPE3D can be used to decode and evaluate 
the quality of the permutation in terms of packing 
density. Often, the predefined ordering, e.g., the order 

of decreasing volume, can produce a good packing 
layout. However, usually it is not good enough. Hence, 
a heuristic is required to search for another packing 
order which may give a better result. SA is considered 
as an excellent heuristic which has been successfully 
applied to solve the 3D packing problem (Szykman 
and Cagan, 1995; Cagan et al., 1998). Consequently, 
we also choose SA to be hybridized with HAPE3D.  

SA can be considered as a variant of the hill- 
climbing (HC) method. The most outstanding im-
provement of SA is that it can avoid being trapped in 
local minima. Instead of accepting only neighboring 
solutions that result in an improvement, worse solu-
tions may also be accepted randomly with a certain 
probability. This probability depends on the temper-
ature in physical annealing. When the temperature is 
high, the probability that the worse solutions are ac-
cepted is also high. During the annealing process, 
temperature gradually decreases based on the cooling 
schedule. The finding indicates that the algorithm 
becomes increasingly selective in accepting new so-
lutions. By the end of the process, only moves that 
result in an improvement are accepted. Hence, com-
pared with HC, SA behaves similarly when it reaches 
the lower bound of temperature. 

We apply operator iOpt (i=1, 2, …, N, where N is 
the number of pieces) throughout the searching pro-
cess. 1Opt randomly chooses two pieces and swaps 
their positions in the order; i.e., 1Opt means one 
swapping operation is applied to the order. This op-
erator is extended to NOpt, where N swapping opera-
tions are performed and are likely to produce a radi-
cally different solution, which diversifies the search. 
Each operator has a different chance for selection— 
from 1Opt, which has the highest chance of being 
selected, to NOpt, which has a low chance of being 
selected. Few radical operators allow us to focus our 
search. Highly radical operators, e.g., NOpt, enable us 
to bypass local optima.  

The pseudo codes for HAPE3D+SA are listed as 
follows: 
Input: 

Pieces, RN, PPD, Container size, MaxIterationNum, T0, T 
Begin 

Current.Ordering=SortOrderingbyDecreasingVolume( ); 
Current.PackingDensity=HAPE3D(Current.Ordering); 
Best=Current; // Best Solution=Current Solution 
k=0;    // k: iteration number 
T0=0.01; // Initial temperature 

Fig. 10  Flowchart of packing one piece 
‘feasible*’ indicates that the piece does not overlap with 
others at point[j] 

Start
(1) z_min=point[0].z
(2) point_opt=point[0]
(3) j=1

piece[i].MoveTo(point[j])

Compute the z coordinate of the geometric center:
z=CalculateCenter_Z(piece[i])

z<z_min.AND.
point[j] feasible*

(1) z_min=z;
(2) point_opt=point[j];

Yes

j=j+1

piece[i].MoveTo(point_opt);
End

No

No

j<PPN

Yes
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while (k<MaxIterationNum) 
{ 

    // Calculate current temperature 
T=(MaxIterationNum−k)*T0/MaxIterationNum; 
// randomly generate an integer from 1 to N 
Opt=SelectOperator();  
Neighbor.Ordering=GenerateNeighbor(Current. 

Ordering, Opt); 
Neighbor.PackingDensity=HAPE3D(Neighbor. 

Ordering); 
if (Neighbor.PackingDensity>Current.PackingDensity) 

{Current=Neighbor;} 
else 
{ 

// Calculate accepting probability 
P=exp(−(Current.PackingDensity−Neighbor. 

PackingDensity)/T); 
// if P is greater than the random number produced  
// by computer 
if (P>random())  

{Current=Neighbor;} 
} 
if (Neighbor.PackingDensity>Best.PackingDensity) 

{Best=Neighbor;} 
k=k+1; 

} 
return Best; 

End 
 
 
4  Computational experiments 

 
To evaluate the performance of HAPE3D and the 

corresponding hybrid algorithm HAPE3D+SA, two 
experiments were conducted using a computer with a 
2.0 GHz CPU. The data sets in the first experiment 
are listed in the appendix and those in the second 
experiment are obtained from Stoyan et al. (2004). 

4.1  Experiment 1 

Thirty-six polyhedrons with five types, as shown 
in Fig. 11 and Table 1, were to be allocated into a 
box-shaped container (20 mm×20 mm×60 mm). The 
PPD was set to 1 mm. Each polyhedron was allowed  
 
 
 
 
 
 
 
 

to have eight orientations (RN=8, each polyhedron is 
allowed to have eight rotation angles: 0°, 45°, …, 
315°) around the x, y, and z coordinate axes at each 
packing point. The polyhedrons were sorted in order 
of decreasing volume before being allocated into the 
container.  

It can be seen from Fig. 12a that HAPE3D is 
capable of dealing with all kinds of pieces with ir-
regular shapes including hole-filling and concave. To 
achieve a better packing result, SA was used as a 
search mechanism to derive new and improved input 
orderings for piece placement. The entire searching 
procedure was run for totally 500 iterations; i.e., 500 
HAPE3Ds were executed during the entire searching 
procedure. The resulting packing height h obtained by 
HAPE3D+SA (Fig. 12b) was 31.2 mm, which was 
20.0% lower than that of HAPE3D (Fig. 12a). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

4.2  Experiment 2 

Stoyan et al. (2004) conducted four experiments 
using a PC with 900 MHz CPU which allocates 10 
types of concave polyhedrons into a box-shaped 

Table 1  Piece quantity and volume 

Piece name Quantity Volume (mm3)

Tetrahedron 8 144 

Ring 4 132 

Arrow 8 125 

Star 8 108 

Cube 8 48 

 

Fig. 12  Layout generated using HAPE3D (RN=8) 
(a) HAPE3D (h=39.0 mm, t=16.1 s); (b) HAPE3D+SA (500 
iterations, h=31.2 mm, t=9637.5 s) 

(a)

 
(b) 

Tetrahedron        Ring                  Arrow                Star            Cube 

Fig. 11  Five types of polyhedrons 
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container with a rectangular bottom (35 mm×30 mm). 
In the first experiment 20 polyhedrons were packed, 
with two same polyhedrons of each type. The next 
three experiments were similar to the first experiment, 
but had 3, 4, and 5 copies for each type respectively. 
The packing height and execution time for these four 
experiments are listed in Table 2.  

To evaluate the performance of HAPE3D, we 
conducted the same four experiments (Table 2 and  
Fig. 13) as in Stoyan et al. (2004). Table 2 shows that 
if a rotation is forbidden, h obtained by HAPE3D is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

similar to that of Stoyan et al. (2004). However, 
HAPE3D is much more time-consuming than the 
method proposed by Stoyan et al. (2004). The sig-
nificant difference largely results from the fact that 
Stoyan et al. (2004) disassembled the polyhedron into 
many cuboids (AABB), whose overlap test algorithm 
was simple and efficient. However, if the polyhedron 
was rotated, the edge of the cuboids would not be 
parallel with the coordinate axis anymore. That means 
AABB will be transformed into OBB after rotation. 
As has been stated in Section 2, overlap test of OBB is 
much more complicated than that of AABB. That is to 
say, if rotation is allowed, the execution speed of 
Stoyan et al. (2004)’s method will also be slowed 
down. 

From the previous discussion, it can be deduced 
that the execution time will be significantly increased 
under two conditions: (1) Polyhedron is allowed to be 
rotated; (2) A heuristic, e.g., SA, is used as a search 
mechanism. To further examine the performance of 
HAPE3D under these conditions, more experiments 
were conducted. HAPE3D was hybridized with SA 
(500 iterations) and all polyhedrons were allowed to 
rotate around the coordinate axis at RN different an-
gles. The corresponding results are listed in Table 3 
and Fig. 14. Due to space limitations, detailed layout 
results of only RN=4 are shown in Fig. 15. 

As shown in Table 3 and Fig. 14, the packing 
height goes down gradually with the increase of RN, 
whereas the execution time rises up rapidly. Another 
conclusion can be drawn, by comparing Figs. 13 and 
15, that HAPE3D can be well hybridized with SA, 
and further decrease the packing height. Taking n=50 
as an example, h decreases from 92.0 mm (Fig. 13d) 
to 73.6 mm (Fig. 15d), which means the packing 
efficiency is significantly improved by 25%. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Packing height and execution time with differ-
ent RNs (HAPE3D+SA) 

n
Packing height (mm)  Calculation time (s) 

RN=1 RN=2 RN=4 RN=1 RN=2 RN=4 

20 36.9 34.0 31.0  5921.5 14 100.1 26 202.1

30 55.6 48.0 46.0  10 398.6 27 745.6 53 741.5

40 71.8 65.0 59.0  18 383.9 48 950.9 99 952.0

50 92.0 80.1 73.6  23 113.1 64 463.0 125 210.6

Note: n is the number of polyhedrons and RN=4 means each poly-
hedron is allowed to rotate around each coordinate axis at four angles 
(0°, 90°, 180°, and 270°) 

Fig. 13  Layout generated using HAPE3D when rota-
tion is forbidden (RN=1) 
(a) n=20, h=44.7 mm; (b) n=30, h=62 mm; (c) n=40, 
h=79.9 mm; (d) n=50, h=92.0 mm 

(c) 
 

(d) 
 

(a) 
 

(b) 
 

Table 2  Comparison of HAPE3D and the method of 
Stoyan et al. (2004) 

n 
Packing height (mm) Calculation time (s) 

HAPE3D 
Stoyan et al.

(2004) 
HAPE3D 

Stoyan et al. 
(2004) 

20 44.7 43.7  10.0 0.6 

30 62.0 59.0  21.1 1.2 

40 79.9 81.4  24.5 2.9 

50 92.0 94.6  42.8 4.3 

Note: n is the number of polyhedrons 
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5  Conclusions 
 
From what has been discussed above, we can 

draw the conclusion that HAPE3D is a very promis-
ing constructive algorithm for the 3D packing prob-
lem. The most obvious distinction from the traditional  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
packing algorithm is that HAPE3D does not need to 
calculate NFP anymore. Another merit for HAPE3D 
is that the 3D piece can retain its original shape. 
People do not need extra execution time on splitting 
an irregularly shaped piece into numerous tiny regular 
objects. The third advantage is that HAPE3D does not 
forbid the rotation freedom of the piece. Lastly, 
HAPE3D can be hybridized very well with other 
meta-heuristic algorithms to further improve the 
packing efficiency.  

However, there is still much room for im-
provement. For example, the speed of HAPE3D does 
not fully satisfy the real industrial requirement. Be-
cause the smaller the PPD is, the more computing 
time it will cost. Actually, it is not suitable to assign 
only one PPD for different pieces as we do in this 
study. It is more reasonable to adjust PPD size dy-
namically according to the size of the piece. 

Besides PPD, RN is another important impact 
factor on the performance of HAPE3D. Although 
larger RN tends to produce higher packing efficiency 
in this study, it is not suggested to assign a large value 
for RN without limitation, because the execution time 
is proportional to RN. Besides, Liu and Ye (2011) 
indicated that a larger RN does not always generate a 
better result. How to choose a reasonable value for 
PPD or RN could be a meaningful question for future 
research. 
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Fig. 14  Packing height (a) and execution time (b) with different rotation numbers 
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Fig. 15  Layout by HAPE3D+SA (500 iterations, RN=4)
(a) n=20, h=31.0 mm; (b) n=30, h=46.0 mm; (c) n=40, 
h=59.0 mm; (d) n=50, h=73.6 mm 
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Appendix: Data set of Experiment 1 

Data set of Tetrahedron 

Name 
Tetrahedron 
Volume 
144.3376 
Mass center 
5, 2.8868, 2.5 
Reference/origin point 
0, 0, 0 
 
VertexList 
0: 0, 0, 0 2: 5, 8.6603, 0 
1: 10, 0, 0 3: 5, 2.8868, 10 
EndVertexList 
 
EdgeList 
0: 0, 1  3: 0, 3 
1: 1, 2  4: 1, 3 
2: 2, 0  5: 2, 3 
EndEdgeList 
 
FaceList 
0(3): 0, 2, 1 2(3): 1, 2, 3 
1(3): 0, 1, 3 3(3): 3, 2, 0 
EndFaceList 

Data set of Ring 

Name 
Ring 
Volume 
132 
Mass center 
0, 0, 1.5 
Reference/origin point 
0, 0, 1.5 
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VertexList 
0: −6, −6, 0 8: −6, −6, 3 
1: 6, −6, 0 9: 6, −6, 3 
2: 6, 6, 0 10: 6, 6, 3 
3: −6, 6, 0 11: −6, 6, 3 
4: −5, −5, 0 12: −5, −5, 3 
5: 5, −5, 0 13: 5, −5, 3 
6: 5, 5, 0 14: 5, 5, 3 
7: −5, 5, 0 15: −5, 5, 3 
EndVertexList 
 
EdgeList 
0: 0, 1  12: 12, 13 
1: 1, 2  13: 13, 14 
2: 2, 3  14: 14, 15 
3: 3, 0  15: 15, 12 
4: 4, 5  16: 4, 12 
5: 5, 6  17: 5, 13 
6: 6, 7  18: 6, 14 
7: 7, 4  19: 7, 15 
8: 8, 9  20: 0, 8 
9: 9, 10  21: 1, 9 
10: 10, 11 22: 2, 10 
11: 11, 8 23: 3, 11 
EndEdgeList 
 
FaceList 
0(4): 0, 4, 5, 1  8(4): 12, 13, 5, 4 
1(4): 5, 6, 2, 1  9(4): 13, 14, 6, 5 
2(4): 3, 2, 6, 7  10(4): 14, 15, 7, 6 
3(4): 3, 7, 4, 0  11(4): 15, 12, 4, 7 
4(4): 8, 9, 13, 12  12(4): 9, 8, 0, 1 
5(4): 9, 10, 14, 13 13(4): 10, 9, 1, 2 
6(4): 15, 14, 10, 11 14(4): 11, 10, 2, 3 
7(4): 8, 12, 15, 11 15(4): 8, 11, 3, 0 
EndFaceList 

Data set of Arrow 

Name 
Arrow 
Volume 
125 
Mass center 
5, 5, 2.5 
Reference/origin point 
5, 5, 2.5 
 

VertexList 
0: 0, 0, 0 4: 0, 0, 5 
1: 5, 5, 0 5: 5, 5, 5 
2: 10, 0, 0 6: 10, 0, 5 
3: 5, 10, 0 7: 5, 10, 5 
EndVertexList 
 
EdgeList 
0: 0, 1  6: 6, 7 
1: 1, 2  7: 7, 4 
2: 2, 3  8: 0, 4 
3: 3, 0  9: 1, 5 
4: 4, 5  10: 2, 6 
5: 5, 6  11: 3, 7 
EndEdgeList 
 
FaceList 
0(4): 0, 3, 2, 1  3(4): 6, 5, 1, 2 
1(4): 4, 5, 6, 7  4(4): 7, 6, 2, 3 
2(4): 5, 4, 0, 1  5(4): 4, 7, 3, 0 
EndFaceList 

Data set of Star 

Name 
Star 
Volume 
108 
Mass center 
0, 0, 1.5 
Reference/origin point 
0, 0, 1.5 
 
VertexList 
0: 0, −6, 0  8: 0, −6, 3 
1: 1.5, −1.5, 0  9: 1.5, −1.5, 3 
2: 6, 0, 0  10: 6, 0, 3 
3: 1.5, 1.5, 0  11: 1.5, 1.5, 3 
4: 0, 6, 0  12: 0, 6, 3 
5: −1.5, 1.5, 0  13: −1.5, 1.5, 3 
6: −6, 0, 0  14: −6, 0, 3 
7: −1.5, −1.5, 0  15: −1.5, −1.5, 3 
EndVertexList 
 
EdgeList 
0: 0, 1  12: 12, 13 
1: 1, 2  13: 13, 14 
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2: 2, 3  14: 14, 15 
3: 3, 4  15: 15, 8 
4: 4, 5  16: 0, 8 
5: 5, 6  17: 1, 9 
6: 6, 7  18: 2, 10 
7: 7, 0  19: 3, 11 
8: 8, 9  20: 4, 12 
9: 9, 10  21: 5, 13 
10: 10, 11 22: 6, 14 
11: 11, 12 23: 7, 15 
EndEdgeList 
 
FaceList 
0(3): 0, 7, 1  9(4): 9, 11, 13, 15 
1(3): 3, 2, 1  10(4): 0, 1, 9, 8 
2(3): 5, 4, 3  11(4): 1, 2, 10, 9 
3(3): 7, 6, 5  12(4): 2, 3, 11, 10 
4(4): 7, 5, 3, 1  13(4): 3, 4, 12, 11 
5(3): 8, 9, 15  14(4): 4, 5, 13, 12 
6(3): 9, 10, 11  15(4): 5, 6, 14, 13 
7(3): 11, 12, 13  16(4): 6, 7, 15, 14 
8(3): 13, 14, 15  17(4): 0, 7, 15, 8 
EndFaceList 

Data set of Cube 

Name 
Cube 
Volume 
48 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mass center 
1, 2, 3 
Reference/origin point 
1, 2, 3 
 
VertexList 
0: 0, 0, 0  4: 0, 0, 6 
1: 2, 0, 0  5: 2, 0, 6 
2: 2, 4, 0  6: 2, 4, 6 
3: 0, 4, 0  7: 0, 4, 6 
EndVertexList 
 
EdgeList 
0: 0, 1  6: 6, 7 
1: 1, 2  7: 7, 4 
2: 2, 3  8: 0, 4 
3: 3, 0  9: 1, 5 
4: 4, 5  10: 2, 6 
5: 5, 6  11: 3, 7 
EndEdgeList 
 
FaceList 
0(4): 0, 3, 2, 1  3(4): 1, 2, 6, 5 
1(4): 4, 5, 6, 7  4(4): 3, 7, 6, 2 
2(4): 0, 1, 5, 4  5(4): 0, 4, 7, 3 
EndFaceList 
 


