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Abstract This work originates from research carried out in support to the cargo accommo-
dation of space vehicles/modules. The goal of this activity is to maximize the loaded cargo,
taking into account the given accommodation requirements. Items can often be modelled as
parallelepipeds, but it is even more frequent that real-world issues make this approximation
no longer acceptable. These aspects and the presence of additional overall conditions, such as
balancing, give rise to very challenging non-standard packing problems, not only in the frame
of space engineering, but also in different application areas. This article considers first the
orthogonal packing of tetris-like items, within a convex domain and subsequently the packing
of polygons with (continuous) rotations in a convex domain. The proposed approach is based
on mixed integer linear/non-linear programming (MIP, MINLP), from a global optimization
point of view. The tetris-like formulation is exploited to provide the MINLP solution process
with an approximated starting solution.

Keywords Tetris-like item packing · Non-rectangular domains · Polygon packing ·
MIP/MINLP

1 Introduction

This work originates from research carried out in a space engineering frame, in support
to the cargo accommodation of space vehicles and modules. The goal of this activity is
to maximize the loaded cargo (in terms of volume or mass), in compliance with the given
accommodation rules and requirements. Very complex geometrical aspects have to be taken
into account together, in addition to balancing conditions, deriving from very tight attitude
control specifications.
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Small items can often be assumed to be parallelepipeds, even if their actual shapes are
not exactly so, but, generally, such approximation does not realistically hold when dealing
with large items. Clusters of mutually orthogonal parallelepipeds, such as tetris-like items,
or composite prisms are in most cases more suitable. Similar considerations hold, moreover,
as far as the container shape is concerned.

The literature on the optimization of multidimensional packing problems (well known
for being NP-hard) is extensive and advanced methods are available to solve difficult
instances efficiently (e.g. [5,9,20,24]). Even if remarkable works concerning non-stan-
dard packing problems are available in the specialist literature (e.g. [18,27]) most of
the research focuses on the orthogonal placement of rectangular items into rectangular
domains, with no additional conditions. Non-standard packing problems with additional
conditions have been tackled by dedicated heuristics or meta-heuristics, but possible ap-
proaches, based on mixed integer programming (MIP), have also been investigated (e.g.
[2,7,8,25]).

When dealing with non-standard packing problems in the presence of overall conditions,
such as balancing, the quite simplistic approach of placing items one after another results
in being of very scarce efficiency and a global optimization (GO) point of view becomes
a real necessity. The work reported here is addressed to the mixed integer linear/non-linear
programming (MIP, MINLP) and exact GO framework (e.g. [11–14,16,17,19,21–23,26]).

Two classes of non-standard packing problems are considered here:

– packing of (three-dimensional) tetris-like items, with orthogonal rotations, within a con-
vex domain (polyhedron)

– packing of convex and non-convex (simple) polygons with (continuous) rotations in a
convex domain (polygon).

In both cases the objective function consists of maximizing the loaded volume or mass. Sec-
tion 2.1 reports an MIP model to tackle the tetris-like item packing problem.
This model is described at a detailed level in the two previous works [7,8]. As the second
part of this article refers to a tetris-like approximation of the polygon packing problem, the
MIP model is reviewed with the scope of making the proposed approach self-explanatory.
Similarly, Sect. 2.2 gives a high level description of a heuristic approach put forward in [8],
where more details can be found. It has been adopted to efficiently solve the MIP model in
practice. Some experimental details are reported.

Whilst the tetris-like item problem is very challenging, packing issues involving both
convex and non-convex polygons are even more complex. In particular, while the non-inter-
section (necessary and sufficient) conditions are quite straightforward for orthogonal packing
problems involving tetris-like items, the issue becomes much more complicated when poly-
gons have to be dealt with.

Different approaches to this class of problems have been investigated (e.g. [4]). Fischetti
and Luzzi [10] proposed an MIP approach for modelling the placement of a given set of
pre-oriented (simple) polygons into a rectangular domain whose length has to be minimized.
The adopted approach exploits the concept of no-fit and containment polygons.

Stoyan et al. [27] have introduced the Φ-functions concept for modelling complex two-
dimensional packing problems. The placement of a given set of non-convex polygons, with
the possibility of (continuous) rotations, into a strip, minimizing its length, is considered. The
problem is formulated in terms of mathematical programming. An initial feasible solution
is looked into by the sequential placing of polygons approximated by clusters of rectangles
with prefixed (orthogonal) orientation. A local optimization approach is then performed by
perturbing item positions and rotations.
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Fig. 1 Tetris-like item
(two-dimensional representation)

w10

w2

k

h
D

k

h

A GO point of view, based on a successive approximation procedure, is instead presented
here. Section 3.1 is devoted to an MINLP approach aimed at tackling the polygon problem
(possible generalizations including 3-dimensional polyhedrons are not considered, putting
them off to future research). Section 3.2 points out that a tetris-like formulation can be
profitably adopted to look into a good initial (approximate) solution to the MINLP process;
possible extensions are further outlined. Stoyan’s Φ-functions could be adopted to refine the
obtained solutions, in particular when very complex item shapes are involved.

2 Tetris-like items packing

2.1 MIP formulation

This section briefly reviews the tetris-like item problem MIP formulation described at a
detailed level in [8]. A tetris-like item (Fig. 1), hereinafter simply referred to as item, when
no ambiguity can occur, consists of a cluster of mutually orthogonal parallelepipeds (h and
k in the figure), each one representing a component. In the following, the set of components
associated to the generic item i is denoted by Ci . The problem under consideration is stated
as follows.

Given a set of n items and a convex domain D, consisting of a polyhedron or approxi-
mated as such, place items into D maximizing the loaded volume (or mass), with the following
positioning rules, for all picked items:

• for each item, each component side has to be parallel to an axis of a prefixed orthonormal
reference frame ( orthogonality conditions)

• for each item, each component has to be contained within D (domain conditions)
• components (of different items) cannot overlap ( non-intersection conditions).

An orthogonal reference frame with origin O and axes wβ,β ∈ {1, 2, 3}, is defined, while
a local reference frame is associated to each item. Each local reference frame is chosen so that
all item components lie within its first (positive) octant. Its origin coordinate, with respect to
the main reference frame wβ axes, is denoted in the following by oβi . We shall then introduce
the set Ω of all possible orthogonal rotations, admissible for any item local reference frame,
with respect to the main one. It is easily seen they are twentyfour in all, since items are in
general asymmetric objects.

This is illustrated by Fig. 2, where an item, consisting of three mutually orthogonal com-
ponents, is considered. The components have lengths of 1, 3 and 9 units, respectively. The
component of length 3 units is parallel to the vertical axis of the observer reference frame.
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Fig. 2 Tetris-like item rotations
around an axis

Two sub-cases are considered: in one (corresponding to the four images above) the item is
up-oriented, while in the other (corresponding to the four images below) it is down-oriented.
As can be seen from the figure, four orthogonal (clock-wise) rotations (around the vertical
axis) are associated to each sub-case, so that, when the component of length 3 units is vertical
(either up-oriented or down-oriented) eight relative rotations have to be taken into account.
The same holds when either the component of length 1 unit or the one of length 9 units assume
the vertical position, so that the total number of orthogonal orientation is twenty four.

We shall introduce for each item i the set Ehi of all (8) vertices associated to each of its
component h. An extension of this set is obtained by adding to Ehi the geometrical centre of
component h. The so defined extended set is denoted in the following by E∗

hi . For each item
i and each possible (orthogonal) orientation ω we define the following binary variables:
χi ∈{0,1}, with χi = 1 if item i is picked, χi = 0 otherwise;

ϑωi ∈ {0, 1} , with ϑωi = 1 if item i(is picked and it) has the (orthogonal) orientation
ω ∈ Ω , ϑωi = 0 otherwise.

The above orthogonality conditions can be expressed as follows:

∀i
∑

ω

ϑωi = χi , (1)

∀β,∀i,∀h ∈ Ci ,∀η ∈ E∗
hi wβηhi = oβi +

∑

ω

Wωβηhiϑωi , (2)

where:
wβηhi

(∀η ∈ E∗
hi

)
are the vertex coordinates of component h, or its geometrical centre (η =

0), relative to item i , with respect to the reference frame axes wβ ;
Wωβηhi are the coordinate differences between points ∀η ∈ E∗

hi and the origin of the local
reference frame, projected along the wβ axis of the main reference frame, corresponding to
the (item i) orientation ω.
The domain conditions are expressed as follows:

∀β,∀i,∀h ∈ Ci ,∀η ∈ Ehi wβηhi =
∑

γ

Vβγ λγηhi , (3)

∀i,∀h ∈ Ci ,∀η ∈ Ehi

∑

γ

λγηhi = χi , (4)

where:
wβηhi (η ∈ Ehi ) are the vertex coordinates of component h relative to item i , with respect to
the reference frame axes wβ ;
λγηhi are non-negative variables;
(V11, V21, V31) , . . . , (V1u, V2u, V3u) are the vertices of D (whose coordinates, in the main
reference frame, are assumed as non-negative, with no loss of generality);
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The non-intersection conditions are represented by the constraints below:

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0hi − wβ0k j ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) − Dβ

(
1 − σ+

βhki j

)
, (5-1)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0k j − wβ0hi ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) − Dβ

(
1 − σ−

βhki j

)
, (5-2)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j∑
β

(
σ+

βhki j + σ−
βhki j

)
≥ χi + χ j − 1, (6-1)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j∑
β

(
σ+

βhki j + σ−
βhki j

)
≤ χi ,

(6-2)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j∑
β

(
σ+

βhki j + σ−
βhki j

)
≤ χ j ,

(6-3)

where Dβ are the sides of the parallelepiped of minimum volume enveloping D;wβ0hi and
wβ0k j are the centre coordinates of components h and k; Lωβhi and Lωβk j are their sides, par-
allel to the wβ axis, corresponding to the orientation ω; σ+

βhki j ∈ {0, 1} and σ−
βhki j ∈ {0, 1} (it

should be noticed that both constraints (6-2) and (6-3) are not necessary conditions and just
play a role in tightening the MIP model). If in (5) a σ variable is set to one, the corresponding
constraint is denoted by relative position constraint.

The constants Dβ appearing in constraints (5-1) and (5-2) could be substituted with any
constants Mβhki j arbitrarily big (big-M), up to making the relative constraint redundant when
the corresponding σ is zero. The following proposition holds.

Proposition 1 If the domain D is a parallelepiped, constants Mβhki j cannot be inferior to
the corresponding Dβ .

Proof Consider any two items i, j and any relative components h and k, respectively and
write constraints (5-1) and (5-2) in the form:

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0hi − wβ0k j ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) − Mβhki j

(
1 − σ+

βhki j

)
,

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0k j − wβ0hi ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) − Mβhki j

(
1 − σ−

βhki j

)
.

If σ+
βhki j = 1, the non-intersection condition between h and k is attained with respect to the

corresponding β axis. In this case the coefficient of Mβhki j becomes zero and the relative
big-M is inactive. The same holds if σ−

βhki j = 1. If, instead, σ+
βhki j = 0, the inequality below

must hold for any possible position of i and j in D:

Mβhki j ≥ −wβ0ki + wβ0hj + 1

2

∑

ω

(
Lωβhiϑωi + Lωβk jϑωj

)
.

To prove the statement it is then sufficient to consider the limit cases, where item i and
j enveloping rectangles are, with respect to the Dβ side, at its opposite limit positions (i.e.
at their maximum relative distance). Suppose, for instance, that item i enveloping rectangle,
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is at the Dβ side upper limit and item j enveloping rectangle at the lower one. Denoting,
then, for any rotation ω and ω’ of i and j , respectively, by Lωβi and Lω′β j the side projection
of their enveloping rectangles on Dβ, it is seen by simple computations that the following
inequality must hold:

Mβhki j ≥ Dβ − Lωβ j − Lω′β j + Lωβhi + Lω′βhj .

As it must hold for any ω and ω’, it is true also when −Lωβ j − Lω′β j + Lωβhi + Lω′βhj = 0.
The same reasoning occurs obviously if σ−

βhki j = 0, so that Mβhki j ≥ Dβ . �	

As pointed out in [8], a number of additional conditions, such as the pre-fixed position/ori-
entation of some items, a minimum gap between objects, forbidden zones (holes) inside the
domain or the presence of separation planes (movable within given ranges), as well as the
statement that the overall centre of mass must stay within a given (convex) domain (balancing
conditions) can be easily taken into account, by extending the basic model reported above.

A particular version of this model can be formulated when the problem is expressed in
terms of a feasibility one, that is when no objective function is a priori posed and all the given
items have to be picked. This issue arises in practice, when, for instance, all the elements of
a certain system have to be accommodated into a given domain and no one may be excluded.
Concerning the context considered herewith, the feasibility problem formulation becomes of
particular interest when dealing with the heuristic procedure described in the next section.
Since no objective function is specified, any arbitrary one can be profitably introduced in
order to make easier the task of looking into an integer-feasible solution.

It is well known that a major difficulty in MIP problem modelling and solving concerns
the issue of tightening bounds. The work [28] deals with fixed charge (large-scale) models
and presents an efficient pre-processing method aimed at minimizing the big-M terms, that
is, at reducing (a priori) the region delimited by the corresponding fixed charge constraints
in the LP-relaxation. An approach, aimed at minimizing the search region R, relative to
the non-intersection (big-M) constraints (5), is described hereinafter to efficiently tackle the
above feasibility problem. Constraints (5) are reformulated in an LP-relaxed form and an ad
hoc objective function is introduced.

The reformulated model is reported below. All variables χi are set to one, as all the given
items must be inside the domain. The non-intersection constraints are rewritten as:

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0hi − wβ0k j ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) + d+
βhki j − Dβ, (7-1)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

wβ0k j − wβ0hi ≥ 1
2

∑
ω

(
Lωβhiϑωi + Lωβk jϑωj

) + d−
βhki j − Dβ . (7-2)

Constraints (6) are substituted with the following:

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j d+
βhki j ≥ σ+

βhki j Dβ, (8-1)

∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j d−
βhki j ≥ σ−

βhki j Dβ, (8-2)

∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j

3∑

β=1

(
σ+

βhki j + σ−
βhki j

)
= 1, (9)
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where d+
βhki j and d−

βhki j ∈ [0, Dβ ]. The adopted ad hoc objective function is:

max
∑

β,h,k,i< j

(d+
βhki j + d−

βhki j ). (10)

The conditions ∀β,∀i,∀ j, i < j,∀h ∈ Ci ,∀k ∈ C j d+
βhki j + d−

βhki j ≤ Dβ could be
advantageously added to tighten the feasibility region, without excluding any solution. Any
optimal solution of the reformulated model identifies a minimal subset of the region R, rela-
tive to the original model. When an LP-relaxation is performed, by dropping the integrality
conditions on the σ variables, the objective function (10), tends to induce the d variables to
attain their upper bounds, so that, indirectly, it minimizes the overall overlapping of items.
This aspect is advantageously exploited by the heuristic procedure described in the next sec-
tion. When the problem is expressed in terms of feasibility (i.e. the set of items to load is
fixed a priori) the following proposition holds.

Proposition 2 For any fixed set of items, the solution regions, associated to the basic and
the reformulated model respectively (apart from variables d+ and d−), are coincident.

Proof Dealing with the feasibility problem, all χ variables, corresponding to the selected set
of items that have to be loaded are set to one. In such a way, constraints (1), (2), (3) and (4)
are obviously coincident in both models and it is thus sufficient to point out that constraints
(5) and (6) of the basic model are equivalent to constraints (7), (8) and (9) of the reformulated
model. It is immediately seen that, being that all χ variables are set to one, constraints (6)
are reduced to constraints (9). To show that constraints (5) are equivalent to (7) and (8) we
shall distinguish the cases where the σ variables are zero from the one where they are equal
to one. For instance, consider σ+

βhki j = 0. This implies that constraints (5-1) become:

wβ0hi − wβ0k j ≥ 1

2

∑

ω

(
Lωβhiϑωi + Lωβk jϑωj

) − Dβ .

They are equivalent to constraints (7-1), with d+
βhki j = 0, in compliance with constraints

(8-1). Considering, instead, σ+
βhki j = 1, this implies that constraints (5-1) become:

wβ0hi − wβ0k j ≥ 1

2

∑

ω

(
Lωβhiϑωi + Lωβk jϑωj

)
.

They are equivalent to constraints (7-1), with d+
βhki j = Dβ, in compliance with constraints

(8-1). As the same reasoning can be carried out, taking into account the cases relative to the
σ−

βhki j variables, the two models are equivalent.

2.2 Heuristic approach

Denoting by N the total number of couples (h, k) of components belonging to different items
(from a set of n elements), any model instance contains:

O(24n)(binary) variables ϑ,

O(n)(binary) variables χ ,
O(6N )(binary) variables σ ,
O(7N) non-intersection constraints.
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Fig. 3 Approximate (left) and
exact (right) solutions

When dealing with real world instances, the resulting problems are very hard to solve, in
particular because of the presence of a very large number of big-M constraints, essentially
related to the non-intersection conditions (e.g. an instance involving 50 items of 5 compo-
nents each, gives rise to about 3×104non-intersection constraints). A heuristic procedure has
previously been introduced [8] to efficiently solve the MIP model, when each item consists
of a single parallelepiped (i.e. tetris-like items with just a component). Its generalization, in
order to deal with tetris-like items, is straightforward, acting on each single component. The
proposed heuristic is a recursive procedure, based on the concept of abstract configuration.
Given N couples of components (belonging to different items), an abstract configuration
consists of N relative position constraints (non-intersection constraints (5) with their relative
σ variable set to one), one and only one for each couple, giving rise to a feasible solution in
any unbounded domain (while the original domain D is, on the contrary, bounded).

The proposed procedure aims at generating a sequence of goodabstract configurations
and at solving, step by step, a reduced MIP model obtained by eliminating, from the original
one, all the redundant non-intersection constraints (i.e. non-intersection constraints not con-
templated by the currentabstract configuration). At each step, items are rejected, if necessary,
to make the current abstract configuration compatible with the given domain D. The heu-
ristic overall logic is based on the following modules: Initialization, Abstract Configuration
Generation, Packing, Hole-filling, Item-exchange.

The goal of the Initialization module is to obtain a good approximate initial solution.
The feasibility model described in Sect. 2.1 is adopted and the integrality condition on
the σ variables is dropped. In this case constraints (8-1), (8-2), (9) can be replaced by:
∑3

β=1

(
d+
βhki j
Dβ

+ d−
βhki j
Dβ

)
≥ 1.

As mentioned above, the ad hoc objective function has the job of minimizing the intersec-
tion between the components of different items. This is showed by Fig. 3, where LP-relaxed
solutions (on the left, with possible intersection between items) are compared with the cor-
responding MIP solutions (on the right, with no intersection between items).

The approximate solution so obtained is given as input to the Abstract Configuration Gen-
eration module. It aims at generating an abstract configuration, starting from any approximate
solution obtained by the Initialisation/Hole-filling modules. A non-intersection constraint (5)
is selected for each pair of components (belonging to different items). For non-intersecting
components, the satisfied non-intersection constraints are considered and when more than
one non-intersection constraint is satisfied for the same pair of components, the one corre-
sponding to the maximum relative distance between the coordinates of the components is se-
lected. For intersecting items, the non-intersection constraint corresponding to the minimum
overlapping is chosen. The so generated abstract configuration is given as input to the Packing
module.
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The goal of this module is to look into a solution to the MIP model including just the
selected non-intersection constraints corresponding to the generated abstract configuration
(it is easy to prove that in these conditions the integrality request on the σ variables can be
dropped tout court). If a satisfactory solution is found, it is taken as the final solution and the
whole process ends. Otherwise, the best-so-far solution is stored and the process continues
by activating the Hole-filling or Item-exchange modules (a stopping rule can be posed).

The Hole-filling module is aimed at performing a non-blind local search by perturbing the
Packing module (current) solution. Empty spaces are exploited, whenever possible, to obtain
an improved approximate solution (better in terms of volume or mass loaded, but with possi-
ble intersections) and a hopefully improved subsequent abstract configuration. The Packing
module (current) solution is immersed into a grid domain and a number of non-picked items
are pre-selected as candidates to cover non-covered nodes of the grid. The Hole-filling mod-
ule is based on an ad hoc allocation MIP model [8]. The approximate solution, obtained
by this module, is utilised to generate an abstract configuration that is given as input to the
Packing module.

The Item-exchange module is aimed at performing a non-blind local search by perturb-
ing the abstract configuration relative to the current Packing module solution (to tentatively
give rise to an improved abstract configuration). Non-loaded items are exchanged (in the
current abstract configuration) with picked items, to increase the loaded volume (or mass).
The approximate solution obtained by the Item-exchange module is adopted to generate a
new abstract configuration for the Packing module.

The packing problems considered in this work, just because non-standard, are quite hard
to classify and it is very difficult to perform statistics on them as well. The efficiency of the
approach proposed depends on a variety of factors, since the complexity of the problems to
solve (in addition to the number of items/components) are indeed strongly dependent on the
characteristics of the items, components and domain involved, as well as on overall condi-
tions such as the balancing ones. The separation planes, as it is even too obvious, significantly
reduce the volume exploitation, especially when the items are quite different from each other,
in terms of volumes, dimensions, and ratios between their dimensions. The difficulties related
to the centre of mass domain tightness are however not independent from the item typologies
(in terms of mass, volume, dimensions).

An experimental analysis (presently ongoing) has been carried out in the following envi-
ronments:

XP Professional Service Pack 2, Core 2 Duo P8600, 2.40 GHz, 1.93 GB RAM;
CLP COIN-OR LP 2.0, as simplex solver;
CBC COIN-OR 2.0 as LP-based branch-and-cut library;
CGL COIN-OR 2.0, as library of cutting-plane generators [3];
IBM ILOG CPLEX Optimizer 12.3 (with preliminary results only).

Roughly speaking, it could be said that balancing conditions with some percentage of
admissible off-centering (with respect to the container dimensions) can decrease the exploited
volume by 15–20% and increase the computational effort by up 25–30%. These estimates
are however very imprecise and indicate just a general trend. The results obtained so far
(COIN-OR) showed that for instances involving 75–100 components, the Initialization phase
can require 50–120 CPU s; for each execution step the Abstract Configuration Generation
generally lasts <2 s, the Packing one 240–360 s; the Hole Filling and the Item Exchange
phases, involving 25–35 non-loaded items, can require <10 and 2 s. respectively. Table 1
reports some case studies showing the overall CPU time requested to obtain satisfactory
(non-proven optimal) solutions. All models utilized by the heuristic have been generated by
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Fig. 4 Tetris-like items into a
curved domain with a separation
plane (∼3 CPU hours,
COIN-OR)

adopting the IBM MIP algebraic modeler [15]. The preliminary results obtained up to now by
utilizing the IBM ILOG CPLEX Optimizer seem very promising (more than 80% reduction
is in general expected), but further in-depth analysis is needed.

Figure 4 depicts a solution typology quite frequent in the framework of the space cargo
accommodation, when curved containers are present (the curved shape offers the advantage of
fitting the cylindrical domain of modules/vehicles, while the separation planes are generally
adopted to facilitate the unloading operations).

A further example is reported here below, to give more insight into the experimental
results, by pointing out both the input and output details. It consists of a fabricated instance,
purposely built in order to deal with an easy-to-verify but nevertheless non-trivial problem,
for which a high quality solution is known a priori. The proposed case study assumes thus
the characteristic of a problem solving issue.

Given the main reference frame (O, X, Y, Z), we shall consider a rectangular domain, with
a vertex coincident with O and all the remaining ones within the first (positive) octant. The
domain dimensions are LX = 13, LY = 11 and LZ = 10 (generic) units, respectively. The
given set of items is reported in Table 2, having introduced, for each item i , the local reference
frame (Oi , xi yi,zi ). The first column enumerates the set of items, while the second one their
components. Columns 3-4-5 report each component projection on the xi,yi,zi of the local
reference frame axes respectively. Column 6 gives, for each component, its geometrical cen-
ter coordinates, with respect to the relative item local reference frame (all data is expressed
in generic units).

Table 3 reports, in the second column, the position obtained for each item local frame
origin Oi , with respect to the main reference frame (O,X,Y,Z). The remaining columns report
all the non-zero direction cosines of the angles formed by the local and main reference frame
axes respectively, for each item: xX, xY, xZ, yX, yY, yZ, zX, zY, zZ.

Two different views of the obtained solution are shown in Fig. 5, where components
belonging to the same tetris-like item are denoted by the same relative item identifier. All the
a-priori fabricated items of our instance have been properly loaded, attaining, as expected,
97.67% of the container volume. As can be gathered from Fig. 5, the T-shaped item (It1) is
loaded upside down and partially covered by the surrounding items. The two C-shaped items
(It2 and It3), in the figure, are rotated clock-wise. The total CPU time necessary to obtain
Table 3 solution was about 110 s with COIN-OR and 40 s with CPLEX, respectively.

3 Polygons packing

3.1 MINLP formulation

Complex packing problems involving polygons have been considered in terms of MIP/MIN-
LP (e.g. [10,18]).This section investigates some necessary conditions, formulated in terms
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Table 2 Fabricated instance input

Items Components Component
projection on x

Component
projection on y

Component
projection on z

Component centre
coordinates
(x, y, z)

It1 (T -shaped) C11 3 4 6 5.5, 2, 3

C21 11 4 4 5.5, 2, 8

It2 (C-shaped) C11 4 4 8 2, 2, 4

C21 5 4 4 6.5, 2, 2

C31 4 4 8 11, 2, 4

It3 (C-shaped) C13 4 4 8 2, 2, 4

C23 5 4 4 6.5, 2, 2

C33 4 4 8 11, 2, 4

It4 (single comp.) − 2 4 13 1, 2, 6.5

It5 (single comp.) − 2 4 13 1, 2, 6.5

It6 (single comp.) − 3 5 6 1.5, 2.5, 3

It7 (single comp.) − 3 4 10 1.5, 2, 5

It8 (single comp.) − 3 4 5 1.5, 2, 2.5

Table 3 Fabricated instance output

Items Local reference
frame origin
coordinates
(X, Y, Z)

Local reference
frame x axis
orientation

Local reference
frame y axis
orientation

Local reference
frame z axis
orientation

It1 (T -shaped) 8, 11, 10 cos(xY) = −1 cos(yX) = −1 cos(zZ) = −1

It2 (C-shaped) 13, 0, 8 cos(xX) = −1 cos(yY) = 1 cos(zZ) = −1

It3 (C-shaped) 0, 11, 8 cos(xX) = 1 cos(yY) = −1 cos(zZ) = −1

It4 (single comp.) 0, 11, 8 cos(xZ) = 1 cos(yY) = −1 cos(zX) = 1

It5 (single comp.) 0, 4, 8 cos(xZ) = 1 cos(yY) = −1 cos(zX) = 1

It6 (single comp.) 8, 7, 0 cos(xY) = 1 cos(yX) = −1 cos(zZ) = 1

It7 (single comp.) 0, 7, 0 cos(xY) = 1 cos(yX) = −1 cos(zZ) = 1

It8 (single comp.) 8, 4, 6 cos(xZ)= 1 cos(yX) = 1 cos(zY) = 1

Fig. 5 Two views of the fabricated instance solution
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Fig. 6 Simple polygons inside a
convex domain

Pj

Pi
D

0
W1

W2

of MINLP, to look into approximate solutions to the two-dimensional problem of placing
(a subset out of n) simple polygons (i.e. polygons with no intersection between two non-con-
secutive edges) into a polygon D (convex domain), maximizing the overall surface of the
loaded items (Fig. 6). For each polygon any possible orientation is admitted. A recursive pro-
cess can be adopted to improve, by successive approximation, the so-far-obtained solution,
until a satisfactory one is reached.

The problem positioning rules (for the picked items) are simply:

• each polygon has to be contained within D (domain conditions)
• polygons cannot overlap (non-intersection conditions)

To formulate the relative mathematical model, consider a given reference frame with origin
O and axes wβ, β ∈ {1, 2}. The domain D consists of a polygon with u vertices. Their coor-
dinates (V11, V21), . . ., (V1u, V2u ,), are assumed as non-negative (with no loss of generality)
with respect to the (main) reference frame. We shall then consider any simple polygon i from
the given set and associate to it a local reference frame wβi , with origin Oi , of coordinates
oβi (with respect to the main reference frame). The set of all vertices associated to polygon i
is denoted by Ei and the coordinates of any vertex η ∈ Ei are denoted by (V1ηi, V2ηi ). The
vector equations below hold:

∀i,∀η ∈ Ei wηi = χi oi + χi
∥∥qββ ′

∥∥
i Vηi, (11)

where, for each vertex η ∈ Ei , wρi = (w1ηi , w2ηi )
T , oi = (o1i , o2i )

T , Vηi =
(V1ηi , V2ηi )

T ,
∥∥qββ ′

∥∥
i is the (orthogonal) rotation matrix of the local reference frame, asso-

ciated to polygon i , with respect to the main one (β ∈ {1, 2}) and χi ∈ {0, 1} has the same
meaning assumed in Sect. 2.

The domain conditions below are stated to guarantee that each picked polygon i lay within
the given polygon D:

∀β,∀i,∀η ∈ Ei wβηi =
∑

γ

Vβγ λγηi , (12)

∀i,∀η ∈ Ei

∑

γ

λγηi = χi , (13)

where wβηi are the vertex coordinates (defined by Eq. 11) of polygon i , the λ variables are
non-negative and have the same meaning as in Sect. 2.

While in the case of tetris-like items the non-intersection conditions are quite easy to state,
when dealing with polygons, they become much more complex. Three immediate-to-prove
necessary conditions are posed here, to state a basis for the recursive process (acting by
successive approximation). The following propositions are then stated.
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Fig. 7 Augmented polygon
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Proposition 3 Given a set of internal circles Si and S j, for any pair of polygons i and j
respectively, no circle of Si can intersect a circle of S j .

Proposition 4 For any pair of polygons i and j , no vertex of Pi can belong to any circle of
S j and vice versa.

Proposition 5 For each pair of polygons i and j , any set of points ∈ Pi must belong to the
external region of Pj and vice versa (this holds in particular for all vertices of the polygons).

The third necessarynon-intersection conditions (Prop. 5) posed above can be advanta-
geously restricted to bounded external regions (slices, Fig. 7, see [10]). To this purpose the
concept of augmented polygon is introduced, by posing the following definitions.

Definition 1 (Augmented polygon) For each polygon i consider the polygon Pi such that:

Pi ⊂ Pi

Pi − Pi = ⋃
ν∈Qi

Uνi

where Uνi, are convex polygons (not necessarily disjoint) associated to polygon i and Qi is
their set. Each Pi , so obtained, is called augmented polygon associated to polygon i . (Notice
that Pi − Pi could always be partitioned into a set of triangles).

Definition 2 (Domain-covering augmented polygon) For each polygon i, any associated
augmented polygon that covers the whole domain D, for any position and orientation of i
within D, is called domain-covering augmented polygon associated to polygon i and it is

denoted by Pi .

The third necessary non-intersection conditions (Prop. 5), restricted to bounded external
regions, can then be expressed as follows (Fig. 8):

for each pair of polygons i and j, with any associated Pi and P j , each point of Pi must

belong to P j − Pj and vice versa.
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Fig. 8 Necessary non-intersection conditions

We shall now introduce, for each pair i, j of polygons the (implicitly binary) variable
χi j ∈ [0, 1], with the following conditions:

∀i,∀ j, i < j χi j ≤ χi , (14-1)

∀i,∀ j, i < j χi j ≤ χ j , (14-2)

∀i,∀ j, i < j χi j ≥ χ j + χ j − 1. (15)

The first necessarynon-intersection conditions (Prop. 3) are expressed by the following
constraints:

∀i,∀ j, i < j,∀h ∈ Si ,∀k ∈ S j ,∑
β

(oβhi − oβk j )
2 ≥ χi j (Rhi + Rkj )

2, (16)

∀i,∀h ∈ Si ohi = χi oi + χi
∥∥qββ ′∥∥

i
Ohi , (17)

where Si and S j denote the (arbitrary) sets of internal circles associated to polygons i and
j, Rhi and Rkj the radius of circles h and k respectively, oβhi and oβki their centre coordinates,
with respect to the reference frame. Vector equations 17 (as Eqs. 11) represent (with obvious
meaning of the symbols), for the centre of circle h, the coordinate transformation between
the local reference frame (associated to polygon i) and the main one. Prop. 4 formulation is
very similar (and it is not reported hereinafter).

Once a domain-covering augmented polygon has been associated to each polygon i , the
following constraints express the third necessarynon-intersection conditions (Prop. 5):

∀β,∀i,∀ j,∀η ∈ Ei χi jwβηi =
∑

γ∈Uν j
ν∈Q j

μηiγ ν jwβγν j , (18)

∀i,∀ j,∀η ∈ Ei ,∀ν ∈ Q j

∑

γ∈Uν j

μηiγ ν j = δηiν j , (19)

∀i,∀ j,∀η ∈ Ei

∑

ν∈Q j

δηiν j = χi j , (20)
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Fig. 9 Covering tetris-like items
(corresponding to rotations
ω1, ω2, ω3, of the same
polygon i)

w2

w1
0

(i,ω1) 
(i,ω3) 

(i,ω2) 

where wβηi are the coordinates of polygon i vertices (given by Eqs. 11) with respect to
the main reference frame, and, similarly, wβγν j are the coordinates of the Uν j vertices,
determining the (domain-covering) augmented polygon j; μηiγ ν j are non-negative variables,
δηiν j ∈ {0, 1} are binary variables. Constraints (19–20) ensure that, if both polygons i and j
are loaded, each vertex of polygon i will belong to one (and only one) Uν j and vice versa.

As the presence of the δηiν j binary variables increases the model complexity dramatically,
constraints (19–20) could be profitably substituted by the following:

∀i,∀ j,∀η ∈ Ei ,∀ν ∈ Q j

∑

γ∈Uν j

μηiγ ν j = χi j . (21)

In such a case, the logical restriction expressed by constraints (19–20) could then be treated
algorithmically, by introducing proper special ordered sets, similar to the ones suggested by
Escudero [6]. In particular they should manage the μηiγ ν j variables so that only the ones
corresponding to a single Uν j ∈ Q j are allowed to be positive, while all the remaining are
forced to be zero.

3.2 Application and extensions

As in the case of the tetris-like items, because of the complexity of the problem per se, even
when non-large-scale instances are involved, it is not expected to solve the polygon MINLP
model tout court and a step-by-step procedure is thus strongly recommended. As a first rough
approximation, the MINLP model solution process can be executed taking into account, for
each polygon i, just one of the biggest internal circles (Fig. 8). The number of internal circles
to take into account (Eq. 16–17) can be sequentially increased, for all pairs of polygons
intersecting, until a satisfactory solution is attained.

As it is well known, however, when dealing with MINLP problems, a major difficulty in
obtaining a satisfactory solution, in a reasonable computational time, strongly depends on
the availability of a good initial guess. In the present case, this can be profitably looked into
by temporary replacing polygons with covering tertris-like items and considering, for each
polygon i , a set Ω = {1, . . ., p} of possible (arbitrary) discretized rotations.

Given the generic polygon i , for each rotation ω ∈ Ω , define a tetris-like item (i,ω) (with
sides orthogonal/parallel to the main reference frame axes), covering the polygon for that
rotation (Fig. 9). The so defined tetris-like items are then characterized by the W’wβhi terms
and by Eq. 2 of Sect. 2.1. In such a way, a single tetris-like item (i,ω) is associated to a single
rotation ω of polygon i . Tetris-like items do not rotate any longer, but each of them correspond
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Table 4 Polygon packing case study instance

Items Vertex coordinates (local ref. frame)

It1: triangle V1(30,0), V2(30,15)

It2: triangle V1(20,0), V2(0,43)

It3: triangle V1(20,0), V2(0,43)

It4: triangle V1(50,0), V2(25,30)

It5: rectangle V1(30,0), V2(30,75)

It6: rectangle V1(55,0), V2(55,65)

It7: (L-shaped) irregular hexagon V1(45,0), V2(43,11), V3(5,11), V4(10,39), V5(−3,33)

It8: (C-shaped) irregular octagon V1(27,0), V2(19,14), V3(4,9), V4(6,37),
V5(35,39),V6(25,53), V7(3,52)

It9: irregular dodecagon (quasi-rectan figure
with two handles)

V1(53,0), V6(56,20), V7(−1,20) (*)

It10: 16-sided figure (eight-pointed star) V1(7,0), V2(10,−3), V3(13,0), V4(20,0) (*)

It11: 22-sided figure (jagged
quasi-rectangular figure)

V1(4,0), V2(9,−3), V3(10,0), V10(55,0), V11(52,17),
V21(2,17) (*)

It12: 32-sided figure (jagged quasi-squared
figure)

V1(5,−3), V2(8,0), V7(32,0), V16(33,35),
V23(−2,35) (*)

It13: irregular quadrilateral V1(45,0), V2(25,33), V3(−2,22)

It14: irregular quadrilateral V1(21,0), V2(31,5), V3(−9,28)

It15: triangle V1(52,0), V2(27,25)

It16: (L-shaped) irregular hexagon V1(45,0), V2(43,11), V3(5,11), V4(10,39), V5(−3,33)

It17: (C-shaped) irregular octagon V1(27,0), V2(19,14), V3(4,9), V4(6,37),
V5(35,39),V6(25,53), V7(3,52)

(*) only a subset of vertices reported

to a possible (discretized) rotation ω of a polygon i . The MIP model formulation reported
in Sect. 2.1 holds unaltered (provided that for each polygon i at most a single item (i,ω) is
loaded) and can be directly adopted to obtain a good starting solution for the original MINLP
model. As any tetris-like item covers the corresponding polygon for a specific rotation of it,
any feasible solution of the tetris-like item problem is also a feasible solution of the polygon
problem and represents a lower bound. Once a good initial solution is attained, the actual
items (polygons) can be taken into account and the GO process carried out, by adding new
items, until a satisfactory ultimate solution is obtained.

A heuristic approach, currently at a preliminary stage, performs the above tetris-like
approximation as a first step. Then different overall packing techniques, such as item fixing,
item-item exchange and hole filling are adopted by introducing, time after time, a number
of the MINLP necessary conditions described in this section. In such a way the scale of the
original instance can be dramatically reduced, significantly limiting the number of variables
and constraints involved.

An illustrative case study is described hereinafter. Table 4 reports the given set of items to
load inside a rectangular domain of dimension 150 and 170 (generic) units respectively. Each
one is identified by its vertex coordinates, expressed (in generic units) with respect to its rela-
tive local reference frame. The local reference frame is centered in vertex V0(0,0) and its first
axis contains vertex V1. All vertices are ordered on the basis of an anticlockwise sequence.
Table 5 reports the numerical results obtained, pointing out both the items loaded and the ones
rejected. The tetris-like step was up to loading items 1–12. This first step was carried out by
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Table 5 Polygon packing case study numerical results

Items V0 coordinates
(main ref. frame);
α angle (rad.)
between V1 − V0
and the X axes
(main ref. frame)

Status

It1: triangle V0(112,0); α = 0 Loaded (*)

It2: triangle V0(65,21); α = −2π/3 Loaded (*)

It3: triangle V0(52,170); α = −2π Loaded (*)

It4: triangle V0(150,170); α = −2π Loaded (*)

It5: rectangle V0(0,52); α = 0 Loaded (*)

It6: rectangle V0(93,72); α = 0 Loaded (*)

It7: (L-shaped) irregular hexagon V0(17,35); α = −0.87 Loaded (*)

It8: (C-shaped) irregular octagon V0(52, 130); α = −0.7 Loaded (*)

It9: irregular dodecagon (quasi-rectan figure
with two handles)

V0(120, 70); α= π /6 Loaded (*)

It10: 16-sided figure (eight-pointed star) V0(39,52); α= π /6 Loaded (*)

It11: 22-sided figure (jagged quasi-rectangular
figure)

V0(40,100); α = −π/6 Loaded (*)

It12: 32-sided figure (jagged quasi-squared
figure)

V0(70,73); α = −2.18 Loaded (*)

It13: irregular quadrilateral V0(3,135); α = −0.12 Loaded (**)

It14: irregular quadrilateral V0(2,12); α = −0.47 Loaded (**)

It15: triangle V0(130,34); α = 0.57 Loaded (**)

It16: (L-shaped) irregular hexagon − Not loaded

It17: (C-shaped) irregular octagon − Not loaded

(*) Tetris-phase
(**) Hole-filling phase

concentrating unexploited areas in a limited number of empty zones, in order to make the task
of a further hole-filling approach easier. This was achieved subsequently by fixing all items
already loaded at their positions. Figure 10 shows on the left the results relative to the tetris-
like step and on the right the obtained solution adopting LGO [23] as nonlinear optimizer (the
whole process took about 40 min (COIN-OR was adopted as MIP solver for the tetris-like
item approximation phase), but significant enhancements are expected improving the heuris-
tic both in terms of solution efficiency and computational time. As the approach is currently
under study and its relative analysis at a preliminary stage, an in-depth experimental activity
is foreseen to estimate realistically the expected performances of the approach we are putting
forward. Nonetheless, as far as the first phase is concerned, since it is based on the tetris-like
approach described in Sect. 2, the experimental results reported there can give some sensible
indication. Moreover, as Prop. 3 necessary conditions can be seen in terms of circle packing
constraints, an insight concerning the relative computational effort can be found in [1].

The polygon packing problem described here is restricted to a two-dimensional case. The
generalization to the three-dimensional problem is, in principle, straightforward. As for the
tetris-like item case, balancing conditions could easily be added to the model. Possible exten-
sions could also include non-simple polygons and non-convex domains. Some instances of
non-simple polygons that can be treated with the proposed approach are illustrated by Fig. 11.
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Fig. 10 Polygon packing case study graphical results

Fig. 11 Non-simple polygon
(with holes)

When patterns with holes are considered, the holes become part of the item external region.
They have thus to be covered by convex polygons, to extend the item domain-covering aug-
mented polygon. Non-convex domains can be easily modeled by fixing virtual (zero-mass)
items that act as forbidden zones (Fig. 12).

The approach proposed in this section is aimed at finding satisfactory approximate global
optimal solutions to the polygon packing problem. In some cases, however, a further refine-
ment could be desirable. To this purpose the Stoyan’s Φ-functions [28] could be profitably
considered.

Given two (general two-dimensional) items Ai (oi ) and A j (oi ), where oi = (o1i , o2i ) and
oi = (o1 j i , o2i j ) represent their local reference frame position respectively, any everywhere
continuous function Φi j :�4 → � is called a Φ-function of Ai (oi ) and A j (o j ) if it possesses
the following characteristic properties:

Φi j > 0 if Ai (oi ) ∩ A j
(
o j

) = Ø;
Φi j = 0 if int Ai (oi ) ∩ int A j

(
o j

) = Ø and ∂ Ai (oi ) ∩ ∂ A j
(
o j

) �= Ø;
Φi j < 0 if int Ai (oi ) ∩ int A j

(
o j

) �= Ø.
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Fig. 12 Non-convex domain
(with internal holes)
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In such a way, Φi j ≥ 0 guarantees that items Ai (oi ) and A j (o j ) don’t intersect. An
MINLP new model can thus be formulated by introducing a Φ-function for each couple of
polygons. The approximated global solution obtained by the approach proposed in this article
can be profitably utilized as an initial guess to efficiently solve the Φ-function-based MINLP
model.

4 Conclusion and future work

The work presented in this paper originates from research carried out in space engineering,
where very challenging non-standard packing problems with complex geometries, concern-
ing both item and domain shapes, in the presence of additional conditions, such as balancing
and operational requirements, are even more frequent. Similar applications can also arise
in several different industrial fields relative to the transportation systems (e.g. aeronautical,
naval, high-speed rail), as well as in logistics, manufacturing and system engineering.

The recent remarkable successes reached by the global optimization, in particular due
to the approach based on exact methods, have given a boost to tackling very challenging
packing problems from this point of view.

This paper presents two classes of non-standard packing problems. In both cases the
loaded volume or mass has to be maximized. The first class concerns the packing of (three-
dimensional) tetris-like items, with orthogonal rotations, within a convex domain (polyhe-
dron). The second class concerns the packing of convex and non-convex simple polygons
with (continuous) rotations in a convex domain (polygon), with possible additional condi-
tions.

An MIP and MINLP formulations have been described respectively. The MIP model
aimed at solving the tetris-like item problem has been discussed at a detailed level by the
author in previous works and it has been briefly reviewed here, as its concept is preliminary
to the second part of the article. The MINLP model aims at providing an (approximated)
global optimal solution to the polygon problem. Both formulations are suitable to take into
account non-trivial additional conditions, quite frequent in practice. A first (two-dimensional)
tetris-like approximation is suggested to look into a good initial guess for the polygon pack-
ing problem and possible extensions to the MINLP formulation are outlined. In order to
show possible applications of the approach proposed, a heuristic procedure, at present under
study, is mentioned. In addition to its enhancement, future research has to be addressed to an
in-depth experimental analysis and study of ad hoc MIP/MINLP strategies.
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