Mettre exo 0 sur fiche car c'est mieux Exercice 1 1/ conditionnelle, de P(Y|X) 2/ P(Y|X) x\y|1 |0 |-1 | ---+---+---+---+ 0 |0.2|0.7|0.1| ---+---+---+---+ 1 |0.6|0.3|0.1| ---+---+---+---+ (0.7 0.2 0.1 0.3 0.6 0.1) 3/ P(X,Y) x\y|1 |0 |-1 |P_x| ---+---+---+---+---+ 0 | .1|.35|.05| .5| ---+---+---+---+---+ 1 | .3|.15|.05| .5| ---+---+---+---+---+ P_y| .4| .5| .1| ---+---+---+---+ P(X|Y) x\y|1 |0 |-1 | ---+---+---+---+ 0 |.25|0.7|0.5| ---+---+---+---+ 1 |.75|0.3|0.5| ---+---+---+---+ distribution marginale P_x et P_y (voir P(X,Y) (dernière ligne, derniere colonne)) 4/ H(X)= -\sigma_(i=1)^(n=2) p(x_i)log2(p(x_i))=log2(2)= 1 bit/symbole H(Y)= -\sigma_(i=1)^(n=3) p(y_i)log2(p(y_i))=-0.5(log2(0.5)-0.4log2(0.4)-0.log2(0.1)) =~ 1.36 bits/symbole H(X,Y)= -\sigma_(i=1)^(n=2)\sigma_(i=1)^(n=3) p(xi,yj)log2(p(xi,yj)) =~ 2.22 bits/symbole H(X|Y)= -\sigma_(i=1)^(n=2)\sigma_(i=1)^(n=3) p(xi,yj)log2[p(xi,yj)/p(yj)] =~ 1.22bits/symbole \_____________/ p(xi|yj) 5/ I(X,Y)= H(Y)-H(Y|X) = H(X)-H(X|Y) =~ 0.14 bits/symbole EXERCICE 2 1/ canal pas symétrique car : les lignes de la matrice de transition p(X,Y) sont toutes équivalentes par permutation mais pas les colones 2/ x\y|1 |0 |-1 | ---+---+---+---+ 0 | 0|0.2|0.8| ---+---+---+---+ 1 |0.7| 0|0.2| ---+---+---+---+ x\y|1 |0 |-1 |P_x| ---+---+---+---+---+ 0 |0 | | | | ---+---+---+---+---+ 1 | | | | | ---+---+---+---+---+ P_y| | | | ---+---+---+---+ matrice pour simplifier ( 0 0.8p 0.2p p 0.8(1-p) 0 0.2(1-p) (1-p) 0.8(1-p) .8p 0.2 ) /3 Hx(P)= -\sigma_(i=1)^2 p(xi)log2[p(xi)] = -p*log2(p)-(1-p)log(1-p) 4/ ....