
C U A U H T E M O C C A R B A J A L

I T E S M C E M

2 2 / 0 4 / 2 0 1 4

Web Development with Flask
and the Raspberry Pi

Leading by Example

Introduction

Flask: lightweight web application framework
written in Python and based on the Werkzeug WSGI
toolkit and Jinja2 template engine

Web application framework (WAF) :

software framework designed to support the development of
dynamic websites, web applications, web services and web
resources.

Aims to alleviate the overhead associated with common activities
performed in web development.

For example, many frameworks provide libraries for database
access, templating frameworks and session management, and they
often promote code reuse.

Introduction

Web Server Gateway Interface: specification for simple and
universal interface between web servers and web applications
or frameworks for the Python programming language.

Werkzeug WSGI toolkit: started as a simple collection of
various utilities for WSGI applications and has become one of
the most advanced WSGI utility modules.

It includes a powerful debugger, fully featured request and
response objects, HTTP utilities to handle entity tags, cache
control headers, HTTP dates, cookie handling, file uploads, a
powerful URL routing system and a bunch of community
contributed addon modules.

Jinja:template engine for the Python programming language

Dynamic web page generation

Pages are assembled “on the fly” as and when they are
requested. Most server side languages as PHP, JSP and ASP
powered sites do this technology by actively encourages
dynamic content creation. Generating pages dynamically
allows for all sorts of clever applications, from e-commerce,
random quote generators to full on web applications such as
Hotmail.

Static web page generation

HTML pages are pre-generated by the publishing software
and stored as flat files on the web server, ready to be served.
This approach is less flexible than dynamic generation in
many ways and is often ignored as an option as a result, but in
fact the vast majority of content sites consist of primarily
static pages and could be powered by static content
generation without any loss of functionality to the end user.

Flask microframework

Flask: keeps the core simple but extensible:

There is no database abstraction layer, form validation, or any
other components where third-party libraries already exist to
provide common functionality.

However, Flask supports extensions, which can add such
functionality into an application as if it was implemented in
Flask itself.

There are extensions for object-relational mappers, form
validation, upload handling, various open authentication
technologies, and more.

Comparison to other frameworks

Time allocated to:

PHP-based Python-based

Handling HTTP methods

The most common keyword argument to app.route is
methods, giving Flask a list of HTTP methods to
accept when routing (default: GET)

GET: used to reply with information on resource

POST: used to receive from browser/client updated
information for resource

PUT: like POST, but repeat PUT calls on a resource should
have no effect

DELETE: removes the resource

HEAD: like GET, but replies only with HTTP headers and not
content

OPTIONS: used to determine which methods are available for
resource

Installation

RPi

In order to install Flask, you’ll need to have pip installed pip. If
you haven’t already installed pip, it’s easy to do:

pi@raspberrypi ~ $ sudo apt-get install python-pip

After pip is installed, you can use it to install flask and its
dependencies:

pi@raspberrypi ~ $ sudo pip install flask

Flask is fun!

hello-flask.py
from flask import Flask

app = Flask(__name__)

@app.route('/')

def hello_world():

return "Hello World!"

if __name__ == '__main__':

app.run(debug=True)

TERMINAL 1

$ python hello-flask.py
* Running on http://127.0.0.1:5000/

* Restarting with reloader

TERMINAL 2

$ midori &

$ Gtk-Message: Failed to load module "canberra-gtk-module"

$ sudo apt-get install libcanberra-gtk3-module

$ midori &

Note: don’t call your file flask.py if you
are interested in avoiding problems.

hello-flask

hello-flask

When we create an instance of the Flask class, the
first argument is the name of the application's
module or package

When using a single module, use __name__ because
this will work regardless of whether __name__
equals '__main__' or the actual import name

app = Flask(__name__)

hello-flask

The app.run() function runs the application on a
local server

This will only be visible on your own computer! We
will talk about deployment later

app.run()

Debugging

When testing, use app.run(debug=True)

Now the server will reload itself on code changes

Additionally, you will see error messages in the browser

But never leave this on in production!

hello-flask

The app.route('/') decorator tells Flask to call the
hello_world() function when the relative URL '/' is
accessed.

The hello_world() function returns the web page (in
this case, a simple string) to be displayed.

@app.route('/')

def hello_world():

return "Hello World!"

More routing

Variable Rules

To add variable parts to a URL, use
<variable_name>

The variables are passed as arguments to the
function

@app.route('/user/<username>')

def greet_user(username):

return "Hello %s!" % username

hello-flask3

Variable Rules

Multiple URLs can route to the same function:

@app.route('/name/<first>')

@app.route('/name/<first>/<last>')

def greet_name(first, last=None):

name = first +' '+ last if last else first

return "Hello %s!" % name

hello-flask4

Why we need templates?

Let's consider we want the home page of our app to have a
heading that welcomes the logged in user.
An easy option to output a nice and big heading would be to
change our view function to output HTML, maybe something
like this:

Why we need templates?

Templating

Generating HTML from within Python is not fun, and
actually pretty cumbersome because you have to do
the HTML escaping on your own to keep the
application secure.

Consider how complex the code will become if you
have to return a large and complex HTML page with
lots of dynamic content.

And what if you need to change the layout of your
web site in a large app that has dozens of views, each
returning HTML directly?

This is clearly not a scalable option.

Templating

Templates to the rescue…
A web template system uses a template
engine to combine web templates to form
finished web pages, possibly using some data
source to customize the pages or present a
large amount of content on similar-looking
pages.

Flask uses a templating system called Jinja.

Jinja is beautiful!

Philosophy: keep the logic of your application separate from the
layout or presentation of your web pages
Jinja2 allows you to use most of the Python syntax that you are used
to, inside of your templates, helping you generate either text or code
in a powerful, yet flexible way.
We just wrote a mostly standard HTML page, with the only
difference that there are some placeholders for the dynamic content
enclosed in {{ ... }} sections.

view function

template

Rendering Templates

To render a template you can use the
render_template() method. All you have to do is
provide the name of the template and the variables
you want to pass to the template engine as keyword
arguments.

Here’s a simple example of how to render a template:

Flask will look for templates in the templates folder.

Control statements in templates

The Jinja2 templates also support control
statements, given inside {%...%} blocks.

<!doctype html>

<title>Hello from Flask</title>

{% if name %}

<h1>Hello {{ name }}!</h1>
{% else %}

<h1>Hello World!</h1>

{% endif %}

template-name

hello-template

#hello-template.py

from flask import Flask, render_template

import datetime

app = Flask(__name__)

@app.route("/")

def hello():

now = datetime.datetime.now()

timeString = now.strftime("%Y-%m-%d %H:%M")

templateData = {

'title' : 'HELLO!',

'time': timeString

}

return render_template('main.html', **templateData)

if __name__ == "__main__":

app.run(host='0.0.0.0', port=80, debug=True)

hello-template

RPi
$ sudo python hello-template.py

PC

Adding a favicon

A “favicon” is an icon used by browsers for tabs and
bookmarks. This helps to distinguish your website and to give
it a unique brand.
How to add a favicon to a flask application?

First, of course, you need an icon.
It should be 16 × 16 pixels and in the ICO file format. This is not a
requirement but a de-facto standard supported by all relevant browsers.
Put the icon in your static directory as favicon.ico.
Now, to get browsers to find your icon, the correct way is to add a link
tag in your HTML. So, for example:

That’s all you need for most browsers.

<link rel="shortcut icon" href="{{ url_for('static',
filename='favicon.ico') }}">

Adding a favicon

main.html modified from hello-template

Python hello-template.py

Template Inheritance

The most powerful part of Jinja is template
inheritance. Template inheritance allows you to
build a base “skeleton” template that contains all the
common elements of your site and defines blocks
that child templates can override.

Sounds complicated but is very basic. It’s easiest to
understand it by starting with an example.

Base Template

This template, which we’ll call template.html, defines
a simple HTML skeleton document. It’s the job of
“child” templates to fill the empty blocks with
content.

Child templates

view file

$ python inheritance.py

